ログイン
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate

To

Field does not validate

To
lat lon distance


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 0 資料タイプ別
  2. 02 学位論文
  1. 230 大学院自然科学研究科
  2. 60 博士学位論文
  3. 10 博士学位論文

Propagation behavior of spreading geodesic circles in geodesically convex Finsler surfaces

http://hdl.handle.net/10191/00051770
http://hdl.handle.net/10191/00051770
bc4b1510-c1e3-4078-8f79-632b87f38d92
名前 / ファイル ライセンス アクション
r1fsk449.pdf 本文 (437.2 kB)
r1fsk449_a.pdf 要旨 (141.0 kB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2020-08-31
タイトル
タイトル Propagation behavior of spreading geodesic circles in geodesically convex Finsler surfaces
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_46ec
タイプ thesis
その他のタイトル
その他のタイトル 測地的に凸なフィンスラー曲面上で広がる測地円の伝搬挙動
著者 Kondo, Toshiki

× Kondo, Toshiki

WEKO 177960

Kondo, Toshiki

Search repository
著者別名
識別子Scheme WEKO
識別子 177961
姓名 近藤, 俊樹
抄録
内容記述タイプ Abstract
内容記述 The geodesics are widely applied to studies of the geometrical structure and topological structure of manifolds. There exists a close link between the behavior of geodesics and curvature of manifolds. In general, a universal covering space has been used to study the behavior of geodesics in manifolds. In this way, the geodesic flows of compact Riemannian manifolds with negative curvature have been studied and contributed to the development of the dynamical systems. Moreover, H. Busemann and F. P. Pedersen have studied geodesics in a G-space whose universal covering spaces is straight, i.e., all geodesics are minimal. Their studies are applied to studies of geodesics in a 2-torus. N. Innami has studied the asymptotic behavior of geodesic circles in a 2-torus of revolution. N. Innami and T. Okura have proved for a Riemannian 2-torus T^2: ε-density of geodesic circles with sufficiently large radii. In this paper, we study the asymptotic behavior of geodesic circles in an orientable finitely connected and geodesically convex Finsler surface M with genus g ≥ 1. We have a generalization of their study if all geodesics in M are reversible, by using an intrinsic distance function and the Busemann function on its special covering space. In particular, this paper shows the global behavior of geodesics without assumptions on curvature and geodesically completeness of the surface. Furthermore, the absence of those assumptions is different from other previously studies of geodesics. Additionally, most of the proofs do not need the reversibility assumption on geodesics.
書誌情報 p. 1-42
著者版フラグ
値 ETD
学位名
学位名 博士(理学)
学位授与機関
学位授与機関名 新潟大学
学位授与年月日
学位授与年月日 2020-03-23
学位授与番号
学位授与番号 13101甲第4759号
学位記番号
内容記述タイプ Other
内容記述 新大院博(理)甲第449号
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 07:55:22.058705
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Kondo, Toshiki, n.d., Propagation behavior of spreading geodesic circles in geodesically convex Finsler surfaces: p. 1–42.

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3