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Abstract

The geodesics are widely applied to studies of the geometrical structure
and topological structure of manifolds. There exists a close link between the
behavior of geodesics and curvature of manifolds. In general, a universal cov-
ering space has been used to study the behavior of geodesics in manifolds.
In this way, the geodesic flows of compact Riemannian manifolds with nega-
tive curvature have been studied and contributed to the development of the
dynamical systems. Moreover, H. Busemann and F. P. Pedersen have stud-
ied geodesics in a G-space whose universal covering spaces is straight, i.e.,
all geodesics are minimal. Their studies are applied to studies of geodesics
in a 2-torus. N. Innami has studied the asymptotic behavior of geodesic
circles in a 2-torus of revolution. N. Innami and T. Okura have proved for a
Riemannian 2-torus T 2: ε-density of geodesic circles with sufficiently large
radii.

In this paper, we study the asymptotic behavior of geodesic circles in an
orientable finitely connected and geodesically convex Finsler surfaceM with
genus g ≥ 1. We have a generalization of their study if all geodesics inM are
reversible, by using an intrinsic distance function and the Busemann function
on its special covering space. In particular, this paper shows the global
behavior of geodesics without assumptions on curvature and geodesically
completeness of the surface. Furthermore, the absence of those assumptions
is different from other previously studies of geodesics. Additionally, most of
the proofs do not need the reversibility assumption on geodesics.
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Chapter 1

Introduction

In a connected smooth Finsler manifold M , a geodesic is by definition a
solution of the Euler-Lagrange equation of the length function of piecewise
smooth curves. The definitions of a length of curves and an intrinsic distance
induced by a Finsler metric on a Finsler manifold are seen in Appendix. A
smooth shortest curve is a geodesic when the boundary ofM does not exist.
Then it is called a minimal geodesic. A geodesic sphere SM (p, t) with center
p and radius t is by definition the set of all terminal points of geodesics
emanating from p with length t. A distance sphere SdM (p, t) with center
p and radius t is by definition the set of all terminal points of minimal
geodesics emanating from p with length t. Obviously, SdM (p, t) ⊂ SM (p, t)
and, generally, SdM (p, t) ̸= SM (p, t). For a unit tangent vector u ∈ SpM let
γu be a geodesic such that γu(0) = p and γ̇u(0) = u. We define a function
t(u) on u ∈ SpM as

t(u) := sup{t > 0 | d(p, γu(t)) = L(γu(t))}

for u ∈ SpM. If t(u) > 0, then a cut point along γu of the point p is defined
by γu(t(u)) = expp(t(u)u) where TpM is the tangent vector space of M at
p and expp : TpM → M is the exponential map at p. The set of all cut
points of p ∈M is called the cut locus of p ∈M . If there exist no cut point
of p ∈M , then SdM (p, t) = SM (p, t).

Light has the nature behaving like both a particle and a wave. Mathe-
matically, the geodesics describe the trajectories as the behavior of the par-
ticles, and the geodesic spheres describe the behavior of wavefronts which
spread according to Huygens’ principle. The indicatrix of a Finsler metric
describes the shape of an infinitesimal wavefront (cf. (1.17) in [34]).

We recall Huygens’ principle in order to understand how geodesic spheres
behave in Finsler manifolds as wavefronts. Let ϕp(t) be a wavefront from a
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point source p at time t. For every q ∈ ϕp(t), ϕq(s) is called a wavelet of the
wavefront for a sufficiently small s > 0. For every q ∈ ϕp(t), we consider the
wavelet at time s, ϕq(s). Then Huygens’ principle states that the wavefront
of p at time t+s, ϕp(t+s) is the envelope of all wavefronts ϕq(s) for q ∈ ϕp(t)
(cf. [11]).

p

wavelets

envelope

Figure 1.1: The propagation of wavefronts.

The triangle inequality of the intrinsic distance d(·, ·) induced by the
Finsler metric is almost equivalent to Huygens’ principle when we consider
the distance spheres as wavefronts. Namely, for any point p1 in a minimal
geodesic from p to q, SdM (p1, d(p1, q)) is inscribed in SdM (p, d(p, q)) at the
point q if and only if for any point q1 in SdM (p1, d(p1, q)) we have d(p, q1) ≤
d(p, p1) + d(p1, q1) and equality holding ⇔ q1 = q. Furthermore if there
exist geodesics from p to q, then for a point p2 ∈ SdM (p, d(p, p1)) in another
minimal geodesic from p to q, SdM (p2, d(p1, q)) is inscribed in SdM (p, d(p, q)) at
the point q. However, if p3 ∈ SdM (p, d(p, p1)) is a cut point of p, then for any
point q2 in SdM (p3, d(p1, q)) we have d(p, q2) < d(p, p3) + d(p3, q2) = d(p, q)
and thus SdM (p3, d(p1, q)) does not inscribe in S

d
M (p, d(p, q)) (see Figure 1.2).

Hence, the distance spheres SdM (p, t) do not satisfy Huygens’ principle if it
contains a cut point of p.

p

p
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q

Sd
M
(p, d(p, q))

p
2

Sd
M
(p, d(p, p

1
))

p
3

Minimal geodesics

Figure 1.2: The remark of the geodesic circle.
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On the other hand, if we impose some condition on Finsler manifolds,
then we have Huygens’ principle for the distance spheres. In fact, in forward
geodesically complete, simply connected Finsler manifolds of non-positive
flag curvature without boundary, the distance spheres with center at any
point satisfy Huygens’ principle, since all geodesics are minimal and Gauss’s
lemma holds, i.e., geodesics emanating from p intersect the geodesic spheres
with center p orthogonally (cf. [4]). Furthermore, as more general settings,
we assume the cut locus of p does not exist. Then we have Huygens’ principle
for the distance spheres with center at any point. LetM be an n-dimensional
smooth Finsler manifold and U ⊂M a smooth domain. Let A be a compact
subset of M and ρ : M → R with ρ(q) := d(A, q). We assume that ρ(U) =
[s, r] where 0 < s < r. If ρ−1(s) is the wavefront at time t = 0 and
there are no cut point in ρ−1

(
[s, r]

)
. Then, for each t ∈ [s, r], ρ−1(t) is

the wavefront at time t − s and Huygens’ principle is satisfied by all the
wavefronts {ρ−1(t)}t∈[s,r] (cf. [11]). These facts suggest that the geometry
of geodesics in a Finsler manifold is useful to study the global behavior of
wavefronts.

N. Innami and T. Okura have studied the behavior of geodesics and the
asymptotic behavior of geodesic circles in a 2-torus equipped with a Rieman-
nian metric and have proved ε-density of geodesic circles with sufficiently
large radii (cf. [23]). The following facts have played a crucial role in the
proof:

1. The Jordan curve theorem holds true in the universal covering space
N of T 2, since N is topologically a plane R2.

2. The covering transformation group of a torus is isomorphic to Z2 where
Z is the set of all integers.

In this paper, we obtain the same properties for surfaces with Finsler
metrics and with genus ≥ 1 by making a special covering space in which the
Jordan curve theorem is true and on which Z2 acts, and work in them.

We mention a difference between a shortest curve and a minimal geodesic
and prepare definitions to state a generalization of their study. The length
of a minimal geodesic from p to q equals the distance from p to q. However,
a shortest curve may not be a geodesic if, for example, an interior point of
it touches the boundary of M and it is not smooth at the point of contact.
We say thatM is geodesically convex if there exists a minimal geodesic from
p to q in M for any points p, q ∈ M . All forward geodesically complete
Finsler manifolds without boundary are geodesically convex because of the
Hopf-Rinow theorem (cf. [34]).
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We say that a geodesic c : [a, b] → M is reversible if the reverse curve
c−1 : [a, b] → M , c−1(t) = c(a + b − t), is a geodesic as a point set. If F
is reversible, i.e., F (x, y) = F (x,−y) for all y ∈ TxM , then all geodesics
are reversible. It is well known that all geodesics are reversible in (M,F ) if
F := α+β is a Randers metric where α is the norm induced by a Riemannian
metric and β is a closed 1-form with ∥β∥α < 1 (cf. [14], [20], [34]). Further-

more, all geodesics are reversible in (M,F ) if and only if F := α+ β + β2

α is
a first approximate Matsumoto metric where α and β are the same as above

such that F0 := α + β2

α is a Finsler metric (cf. [29], [31]). Additionally,

F := α2

α−β is called a Matsumoto metric (cf. [30], [33]) which is a Finsler

metric if ∥β∥α < 1
2 (cf. [5]).

We say that a surface M is finitely connected if there exist a compact
surface S, with or without boundary, and finitely many points p1, · · · , pk ∈ S
such that M is homeomorphic to S ∖ {p1, · · · , pk} (cf. [35], p.41).

The following theorem shows the asymptotic behavior of geodesics with-
out assumptions on curvature and geodesically completeness.

Theorem 1.0.1. Let (M,F ) be an orientable finitely connected and geodesi-
cally convex smooth Finsler surface with genus g ≥ 1. Assume that all
geodesics are reversible. Then, for any number ε > 0 and any points
p, q ∈ M there exists a number R > 0 such that the geodesic circle SM (p, t)
with center p and radius t meets the ε-ball B(q, ε) with center q for any
t > R.

Here SM (p, t) ∩B(q, ε) consists of many subarcs of SM (p, t) (see Figure
1.3), although we do not count the number of those subarcs (see Corollary
1.0.5 below). In the process of the proof of Theorem 1.0.1, we know the
movement of subarcs of SM (p, t) in B(q, ε): There exists a geodesic circle
SM (p, t0) passing through q while a subarc of SM (p, t) gets into B(q, ε) and
leaves.

p

Mq

S
M
(p, t)

B(q, ")

q

@M

S
M
(p, t)

Figure 1.3: The propagation of geodesic circles.
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Remark 1.0.2. If a Finsler surface (M,F ) is not orientable, thenM has an
orientable double covering surface π : M1 → M . If a Finsler metric F1 of
M1 is the pullback of F by π, i.e., F1 = π∗F , then the image of any geodesic
in (M1, F1) by π is a geodesic in (M,F ) with same length. Hence, (M1, F1)
satisfies the assumption of Theorem 1.0.1. Assume that the genus of M1 is
greater than or equal to one. Choosing p1, q1 ∈M1 such that π(p1) = p and
π(q1) = q and applying Theorem 1.0.1 to p1 and q1 inM1, we have the same
conclusion for p and q through the projection π.

The following corollary is a direct consequence but the situation may
often arise when (M,F ) is complete.

Corollary 1.0.3. Let (M,F ) be an orientable Finsler surface such that all
geodesics are reversible and p, q ∈M . Assume that there exists a surface M1

embedded in M containing p and q and with genus g ≥ 1 such that M1 is
finitely connected and geodesically convex. Then, for any ε > 0 there exists
a number R > 0 satisfying the same property in Theorem 1.0.1.

Let E : Ωp,q → R be the energy function on the path space Ωp,q from p
to q. The critical points of E are geodesics from p to q in M (cf. [27], [34]).

Corollary 1.0.4. Let (M,F ) be as in Theorem 1.0.1. For any number ε > 0
and any points p, q ∈ M there exists a number R > 0 such that the set of
critical values of E is ε-dense in [R,∞).

To clarify the role of the geodesic reversibility assumption, we study
geodesics and geodesic circles under more general settings. Hereafter, let
(M,F ) be an orientable finitely connected and geodesically convex smooth
Finsler surface with genus g ≥ 1. From the assumption on the genus of
M , there exist g simple closed curves c1, · · · , cg in M such that they are
disjoint and M ∖∪gi=1ci is connected. We assume that g−1 curves of them,
say c1, · · · , cg−1, are reversible geodesics. This assumption is automatically
satisfied if all geodesics are reversible in the Finsler surface. We study
geodesics in M ∖ ∪g−1

i=1 ci and the asymptotic behavior of geodesic circles.
Namely, we develop geometry of geodesics in M , using no geodesic which
intersects c1, · · · , cg−1. The set M ∖ ∪g−1

i=1 ci and its covering space N are
geodesically convex when c1, · · · , cg−1 are reversible geodesics. In fact, if

the distance d1(p, q) from a point p to a point q in M ∖ ∪g−1
i=1 ci is defined

as the infimum of the lengths of all piecewise smooth curves from p to q in
M ∖∪g−1

i=1 ci, then M ∖∪g−1
i=1 ci is geodesically convex with respect to d1. The

distances of M and M ∖ ∪g−1
i=1 ci induced by F are different but a geodesic

in M ∖ ∪g−1
i=1 ci remains a geodesic in M . We make use of those geodesics
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which do not intersect c1, · · · , cg−1 inM to obtain the properties mentioned
in Theorem 1.0.1.

The following corollary is a rough estimate of the number of critical
points and sufficiently large critical values of E. In the following corollary
we use a phrase ‘a pencil of geodesics’ which is a set of geodesics converging
to or narrowly diverging from a point.

Corollary 1.0.5. Let (M,F ) be as mentioned above. Let n be any positive
integer. For any number ε > 0 and any points p, q ∈M∖∪g−1

i=1 ci there exists
a number R > 0 such that at least n pencils of geodesics emanating from
p with length t intersect the ε-ball with center q for any t > R where the
sequences of the lifts of these n pencils of geodesics into N converge to rays
with different slopes as t→ ∞.

Here, the covering space N ofM∖∪g−1
i=1 ci is defined in Section 2.4 and the

notion of slopes for rays is defined in Section 4.2. We work in the covering
space N where the covering transformation group Φ is isomorphic to Z2.
Such a covering space can be constructed because M ∖∪g−1

i=1 ci is considered
to be a subset in a 2-torus. Hence we find and use many analogous results
on the behavior of geodesics on 2-tori. Working in N , we prove Theorem
2.4.4 which is sufficient for Theorem 1.0.1.

The geodesics on 2-tori of revolution embedded in the Euclid space E3

have been studied by G. A. Bliss [7] and B. F. Kimball [25]. Recently, J.
Gravesen, S. Markvorsen, R. Sinclair and M. Tanaka [13] have studied the
cut locus in a 2-torus of revolution. N. Innami [18] has studied geodesics in
a 2-torus having poles. H. M. Morse [28] and G. A. Hedlund [15] studied
the geodesics on arbitrary Riemannian tori whose lifts into the universal
covering space are straight lines. H. Busemann and F. P. Pedersen [9] have
determined how the straight lines behave in the universal covering planes
of 2-tori with one-parameter groups of motions. Their methods are unified
by V. Bangert [3] with those of J. N. Mather [26] and S. Aubry and P.
Y. Le Daeron [2] to study a monotone twist map of the annulus and the
discrete Frenkel-Kontrova model (cf. [24]). The method of finding straight
lines by displacement functions can be applied in more general situations.
Indeed, in [3], we can see the complete classification of straight lines in the
universal covering plane of an arbitrary 2-torus, as an application. Recently,
J. P. Schröder [32] has generalized those results for non-symmetric distance
cases. We modify the methods in [9] to have analogous results for studying
the asymptotic behavior of geodesic circles. In the light of the classification
of straight lines, we can study the limit circles which are the level sets of
Busemann functions.
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Let Gt : SX → SX be the geodesic flow of a unit tangent bundle SX of
a complete Finsler manifold X without boundary. It follows from Poincaré’s
recurrence theorem that for almost all y ∈ SX there exists a sequence of
numbers tn such that tn → ∞ and Gtn(y) → y as n → ∞ if the volume
of X is finite. We can estimate the averages of the return time for almost
all y ∈ SX by using Birkhoff ergodic theorem (cf. [1]). In comparison with
these results, Theorem 1.0.1 states that some terminal points of geodesics
emanating from p and with length t > R always exist near q. An event
occurs at a point p, its influence spreads according to Huygens’ principle,
and after the time R, at the point q, it is affected every time less than ε.

We say that Gt is topologically mixing if for any two open sets U and
V of the unit tangent bundle SX there exists a number R > 0 such that
Gt(U) ∩ V ̸= ∅ for all t with |t| > R. P. Eberlein [12] has proved that the
geodesic flowGt is topologically mixing on SX if the Riemannian manifoldX
is a compact visibility manifold of non-positive curvature. We are interested
in existence of wavefronts more than the directions of trajectories, so it is
important to study the asymptotic behavior of geodesic spheres related to
the property of topological mixing in the underlying manifold, since the
geodesic circles spread according to Huygens’ principle.

We say that the geodesic flow Gt is topologically sub-mixing if for any
open sets U and V ofX there exists a number R > 0 such that ρ(Gt(SqX)) =
expq(tSqX) intersect V for some point q ∈ U and for all t > R, i.e.,
Gt(ρ−1(U)) ∩ ρ−1(V ) ̸= ∅, where ρ : SX → X is the natural projection
and expq : TqX → X is the exponential map at q. Here we note that
SX(q, t) = expq(tSqX) is the geodesic sphere with center q and radius t.
The geodesic flow of a flat n-torus, n ≥ 2, is topologically sub-mixing, but
not mixing. W. Sierpinski (in 1906) (cf. [16]) has estimated the asymp-
totic difference between the area πt2 of the circle S(t) with radius t and
the number N(t) of lattice points contained in S(t) in the Euclidean plane,
proving that |πt2 − N(t)| ≤ O(t2/3), which means that N(t + ε) − N(t) =
π(t + ε)2 − πt2 + O(t2/3) = 2πεt + O(t2/3) → ∞ as t → ∞. We find the
similar estimate for a flat n-torus Tn in [10] where the error term is O(tα),
0 ≤ α < n − 1. These properties prove the topological sub-mixing prop-
erty of Tn. In [19], N. Innami have investigated the asymptotic behavior of
geodesic circles in a 2-torus of revolution and have proved that the geodesic
flow of a 2-torus of revolution is topologically sub-mixing. In [23], N. Innami
and T. Okura have proved the geodesic flow of any 2-torus is topologically
sub-mixing. Theorem 1.0.1 states that the sub-mixing property of geodesic
flow is true for much wider class of surfaces.
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Chapter 2

A surface cut along simple
closed geodesics

2.1 Cutting and opening M along simple closed
geodesics

We recall that M is an orientable finitely connected and geodesically
convex smooth Finsler surface with genus g ≥ 1 . From the assumption
on the genus of M , there exist g simple closed curves c1, · · · , cg in M such
that they are disjoint and M ∖ ∪gi=1ci is connected. We assumed that g − 1
curves of them, say c1, · · · , cg−1, are reversible geodesics. This assumption
is automatically satisfied if all geodesics are reversible in the Finsler surface.

c
1

c
2

c
1

c
2

c
1

c
2

MM
0

I x

I-1(x)

Figure 2.1: The case of M is compact with genus g = 3.

We construct an orientable finitely connected Finsler surface (M0, F0)
with boundary and with genus one (see Figure 2.1) satisfying the following
properties : There exists a map I : M0 →M such that
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1. the interior Int(M0) of M0 is isometric to M ∖ ∪g−1
i=1 ci, i.e., the re-

striction I : Int(M0) → M ∖ ∪g−1
i=1 ci is a diffeomorphism such that

F0(x, y) = F (I(x), dIx(y)) for all x ∈ Int(M0) and y ∈ TxM0,

2. for any point x ∈ ∪g−1
i=1 ci, I

−1(x) consists of exactly two points in
the boundary ∂M0 of M0. When those two points are identified, the
quotient space M0/I is naturally thought as M by the quotient map
M0/I →M .

The boundary ∂M0 of M0 consists of I−1(∪g−1
i=1 ci) and I−1(∂M) (the

original boundary of M) as surfaces. Hence, ∂M0 has at least 2(g − 1)
connected components. The set {p1, · · · , pk} is contained in the boundary
∂M ofM = S∖{p1, · · · , pk} as a topological sub-space in a certain compact
surface S, but we think no point in ∂M0 is sent to p1, · · · , pk by I.

The finitely connected Finsler surface M0 with genus one defined as
above is geodesically convex, since M is geodesically convex and all ci, i =
1, · · · , g − 1, are reversible geodesics. The boundary of M0 is not empty if
g > 1.

Notice that c is a geodesic in the interior Int(M0) of M0 if and only
if I(c) is a geodesic in M ∖ ∪g−1

i=1 ci. It should be noted that there exist no
geodesic touching ∂M0 any place other than its endpoints because all curves
ci and reverse curves ci

−1 are geodesics for i = 1, · · · , g−1 and the geodesic
is uniquely determined from the initial condition. Namely, any geodesic c
whose end points are in Int(M0) satisfies that I(c) ⊂M ∖ ∪g−1

i=1 ci.
We define a distance d0(p, q) for p, q ∈ M0 as usual; d0(p, q) is the infi-

mum of the lengths of piecewise smooth curves from p to q in M0. Then a
shortest curve from p to q in Int(M0) is a minimal geodesic c in Int(M0),
i.e., d0(p, q) is the length of c.

Minimal geodesicMinimal geodesic

MM
0

I

p

q

I(p)

I(q)

Figure 2.2: Minimal geodesics in M0 and M .
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It is of course that d0(p, q) ≥ d(I(p), I(q)) for any p, q ∈M0 where d(·, ·)
is the distance on M induced by F . In fact, if a minimal geodesic γ from
I(p) to I(q) in M crosses ci for some i = 1, · · · , g − 1, then the minimal
geodesics from p to q in M0 are longer than γ (see Figure 2.2).

2.2 Another construction of a geodesically convex
surface M0 with genus one

Assume in this section that all geodesics in M are reversible. Since
M∖∪g−1

i=1 ci is a geodesically convex set, we have g−1 simple closed geodesics
di, i = 1, · · · , g − 1, such that

1. ci ∩ di is a single point for each i = 1, · · · , g − 1,

2. ci ∪ di, i = 1, · · · , g − 1, are mutually disjoint.

Then there exists an open neighborhood Ui of ci∪di such that Ui∖ ci∪di is
homeomorphic to an open cylinder S1 × (0, 1) for each i = 1, · · · , g − 1. As
was seen before, we make an orientable finitely connected and geodesically
convex Finsler surface (M0, F0), M0 = M ∖ ∪g−1

i=1 ci ∪ di, with boundary
and with genus 1 such that there exists a map I : M0 → M satisfying
the same property as above. In this construction, the boundary ∂M0 is
the union of I−1(∪g−1

i=1 ci ∪ di) and I−1(∂M). Each connected component of

I−1(∪g−1
i=1 ci ∪ di) is a broken geodesic, but not a (smooth) geodesic.

c
1

c
2

c
1

c
2

M
0

d
1

d
2

c
1

c
2

d
1

d
2

c
1

c
2

Figure 2.3: Another geodesically convex surface M0.

12



2.3 The geodesic circles in M0

Let M1 be a finitely connected and geodesically convex Finsler surface.
For a point p ∈M1 and a unit vector v ∈ SpM1 let γv : (−a(v), b(v)) →M1

be a unit speed geodesic such that γ̇v(0) = v, possibly a(v) = ∞, b(v) = ∞.
Here the interval (−a(v), b(v)) is supposed to be maximal, i.e., there exists
no proper extension of γv in M1. If M1 is complete and without boundary,
then a(v) = ∞ and b(v) = ∞ for all v ∈ SM1. For a number t ∈ (−∞,∞)
let SM1(t) be the set of all v ∈ SM1 such that t ∈ (−a(v), b(v)). Then a
map Gt : SM1(t) → SM1 is defined by

Gt(v) := γ̇v(t)

for any v ∈ SM1(t). Let π : SM1 → M1 be a natural projection of the
unit tangent bundle of M1. Then SM1(p, t) := π(Gt(SpM1 ∩ SM1(t))) =
{γv(t) | v ∈ SpM1(t)} is called a geodesic circle with center p and radius t in
M1 for any point p and any t > 0. If M1 is complete and without boundary,
then SM1(t) = SM1 for all t ∈ (−∞,∞) and Gt is called the geodesic flow
on SM1 (cf. [1]). Hereafter let M0 denotes a surface constructed in Section
2.1 from M .

Remark 2.3.1. We emphasize that

I(SM0(p, t)) ⊂ SM (I(p), t)

for all t > 0 and any p ∈ M0. On the other hand, this inclusion relation is
not true for the distance spheres. That is

I(SdM0
(p, t)) ̸⊂ SdM (I(p), t),

in general. Here SdM0
(p, t) := {q ∈M0 | dM0(p, q) = t}.

2.4 A covering surface and its transformation group

We make a surface S0 from S ( ⊃ M) in the same way as M0 from
M . Then we think M0 = S0 ∖ {p1, · · · , pk}. Let k′ be the number of the
connected components of the boundary ∂M of M .

Remark 2.4.1. Recall that the genus of M0 is one, ∂M0 has 2(g − 1) + k′

connected components and k points p1, · · · , pk are removed.

13



If 2(g − 1) + k′ disks Ki, i = 1, · · · , 2(g − 1) + k′, are glued along the
boundary ∂M0 and k points pj , j = 1, · · · , k, are plugged up at the origi-
nal location in S0, then this operation turns S0 into a 2-torus topologically.
Hence its universal covering surface is topologically a plane R2 and the cov-
ering transformation group Φ is isomorphic to Z2. Moreover, Φ is properly
discontinuous, i.e., every point p ∈ R2 has a neighborhood Up such that the
intersection τ(Up) ∩ Up with its translate under the group action via some
element τ ∈ Φ is non-empty only for id. ∈ Φ. Namely, τ(Up) ∩ Up ̸= ∅ ⇒
τ = id.. We define a surface N by

N := R2 ∖ Φ(∪2(g−1)+k′

i=1 Int(K̃i) ∪ {p̃1, · · · , p̃k})

where K̃i (resp., p̃j) is a lift of Ki (resp., pj) into R2 for each i = 1, · · · , 2(g−
1) + k′ (resp., j = 1, · · · , k). Then N is a covering surface of M0 with a
natural covering map π : N →M0.
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Figure 2.4: The covering space of M0 with genus 1.

Lemma 2.4.2 (The Jordan curve theorem). Let C be a simple closed curve
in Int(N). Then N ∖ C consists of two connected components.

Proof. Since C ⊂ N ⊂ R2, the Jordan curve theorem for R2 implies that
R2∖C consists of two connected components X1 and X2. Then X1∩N and
X2 ∩N are the connected components of N ∖ C.

If we define a Finsler metric F̃ on N by

F̃ (x, y) := F0(π(x), dπ(y))

for any x ∈ N and any y ∈ TxN , then Φ acts on N as an isometry group
isomorphic to Z2 such thatM0 = N/Φ (see Figure 2.5). From the definitions
of geodesic circles and distance circles, we have the following lemma.
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Lemma 2.4.3. Let (M,F ) be as mentioned above. Then there exist an
isometric surface I : Int(M0) → M ∖ ∪g−1

i=1 ci and its covering surface π :
N → M0 such that M0 = N/Φ where Φ is a covering transformation group
isomorphic to Z2, satisfying that

I(π(SdN (p, t))) ⊂ I(SM0(π(p), t)) = I(π(SN (p, t)))

⊂ SM (I(π(p)), t) = ρ(Gt(SI(π(p))M ∩ SM(t)))

for any p ∈ N and any t > 0.

From Lemma 2.4.3, it suffices to prove Theorem 2.4.4 in order to obtain
Theorem 1.0.1.

Theorem 2.4.4. Let N be a covering surface of M0 constructed as above.
Let p, q ∈ N . Given ε > 0 there exists a number R > 0 such that SdN (p, t) ∩
Φ(B(q, ε)) ̸= ∅, equivalently Φ(SdN (p, t)) ∩ Φ(B(q, ε)) ̸= ∅ for all t > R.

Thanks to Lemmas 2.4.2 and 2.4.3, the process of the proof for Theorem
2.4.4 is the same as in [23], although N is not homeomorphic to a plane and
the distance is not symmetric. However, from the next section up to Proof
of Theorem 1.0.1 in Chapter 5, we progress the study parallel to ones in [9]
and [23]. It makes this paper self-contained. The arguments here include
some improvements.
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Figure 2.5: The special covering space of M .
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Chapter 3

Axial straight lines

3.1 The displacement function on N

Let N be a surface constructed in Section 2.4. Then N is topologically a
plane removed many open disks and points, and geometrically a geodesically
convex Finsler surface on which the isometry group Φ isomorphic to Z2 acts
so that M0 = N/Φ. Therefore, N has many properties which a plane has:
A simple closed curve and a simple curve diverging both directions as a
curve in R2 divides N into two connected components, etc.. Let d(·, ·) be
the distance on N induced by F̃ = π∗F0. Since we do not assume that F
is reversible, we have d(p, q) ̸= d(q, p) for points p, q ∈ N , in general. For
τ ∈ Φ, let dτ : N → R denote the displacement function of τ which is
defined by

dτ (p) := d(p, τ(p))

for all p ∈ N . We say that a minimal geodesic T is a straight line in N if T
is unbounded in both directions as a curve in R2 where N lies.

Note that if M0 contains two unbounded tubes, then there exists a min-
imal geodesic T defined on R in N which is not a straight line. There exists
a parametrization γ : (−∞,∞) → N of T such that d(γ(s), γ(t)) = t − s
for any s, t ∈ (−∞,∞) with s < t. The unboundedness of T in R2 implies
that any half part of T does not stay in a fundamental domain in N over
S0 = M0 ∪ {p1, · · · , pk} and is not contained in any tube of N . Moreover,
the reverse curve T−1 of T may not be a geodesic. We have seen in [20],
[21] and [23] what phenomenon happens on geodesics in Finsler 2-tori, in
comparison with the case of a Riemannian surface.
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Proposition 3.1.1 (cf. [9]). Let τ ∈ Φ, τ ̸= id.. Then dτ takes a positive
minimum. If p ∈ N is a minimum point of dτ , then there exists a unique
straight line γ : (−∞,∞) → N such that γ(0) = p and τ(γ(t)) = γ(t + c)
for all t ∈ (−∞,∞) where c = min dτ > 0.

We call a straight line γ as in Proposition 3.1.1 an axis of τ .

Remark 3.1.2. It follows that τ−1(γ(t)) = γ(t− c) for all t ∈ (−∞,∞) for
an axis γ of τ . However, the reverse curve γ−(t) = γ(−t) for t ∈ (−∞,∞)
is neither axis of τ−1 nor geodesic, in general (cf. [20]).

Proposition 3.1.1 is certified by the following Lemmas 3.1.3 to 3.1.5.

Lemma 3.1.3. For all τ ∈ Φ, τ ̸= id., the displacement function dτ take the
positive minimum on N . The set of all minimum points of dτ is contained
in Int(N) and invariant under Φ.

Proof. Since Φ is abelian, we have dτ (σ(q)) = dτ (q) for all q ∈ N and all
σ ∈ Φ. Hence, the set of all minimum points of dτ is invariant under Φ.

Since Φ is a covering transformation group and τ ∈ Φ, we have m :=
inf{dτ (q) | q ∈ N} > 0.We prove that the set of minimum points of dτ is not
empty, and if dτ (q) = min dτ for a point q ∈ N , then q ∈ Int(N). Let qj ∈ N

be a sequence of points in a fundamental domain M̃0 forM0 such that dτ (qj)
converges tom as j → ∞. We suppose for indirect proof that qj converges to
a point q ∈ ∂N or q = p̃i ∈ R2 for some i = 1, · · · , k where π(p̃i) = pi ∈ S0.
In case q = p̃i,M0 is bounded around pi with respect to the distance d0, since
qj and τ(qj) belong to different fundamental domain. This is not the case
when M is geodesically complete. Then the minimal geodesics T (qj , τ(qj))
from qj to τ(qj) in N satisfy T (qj , τ(qj))∖ {qj , τ(qj)} ⊂ Int(N), since N is
geodesically convex and any connected component of ∂N can not contain
both qj and τ(qj). In particular, the midpoint rj ∈ T (qj , τ(qj)) is contained
in Int(N). We assume that rj converges to a point r as well. Then we have
r ∈ Int(N) because r is a interior point of a minimal geodesic. Furthermore,
T (q, τ(q)) ∪ τ(T (q, τ(q))) is the union of minimal geodesics broken at τ(q).
Since N is geodesically convex and r ∈ Int(N), a minimal geodesic T (r, τ(r))
is contained in Int(N). Hence we have that

dτ (r) < d(r, τ(q)) + d(τ(q), τ(r)) = d(r, τ(q)) + d(q, r) = lim
j→∞

dτ (qj) = m,

a contradiction. Therefore, we have q ∈ Int(N).
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Lemma 3.1.4. Let τ ∈ Φ, τ ̸= id.. If p ∈ N is a minimum point of dτ ,
then

Tτ (p) :=

∞∪
n=−∞

T (τn(p), τn+1(p))

is a unique τ -invariant and simple geodesic through p in N .

Proof. We first prove that Tτ (p) is a geodesic in N . Let q ∈ T (p, τ(p)) be a
point between p and τ(p), i.e., q ∈ T (p, τ(p))∖ {p, τ(p)}. We then have

d(p, τ(p)) ≤ d(q, τ(q))

≤ d(q, τ(p)) + d(τ(p), τ(q))

= d(p, q) + d(q, τ(p))

= d(p, τ(p)).

Therefore, we have

d(p, τ(p)) = d(q, τ(q)) = d(q, τ(p)) + d(τ(p), τ(q)),

meaning that T (p, τ(p)) and T (τ(p), τ2(p)) is smoothly joined at τ(p) to
make a geodesic segment T (p, τ(p))∪ T (τ(p), τ2(p)) in N . In particular, we
note that there exists a unique minimal geodesic segment T (p, τ(p)) from
p to τ(p), because τ preserves the orientation of N . In fact, if there exist
two minimal geodesics T1 and T2 from p to τ(p), then both T1 ∪ τ(T1) and
T2 ∪ τ(T2) are smooth geodesics having the same end points p and τ2(p)
and crossing at τ(p). However, two simple closed curves T1 ∪ T2

−1 and
τ(T1 ∪ T2−1) = τ(T1) ∪ τ(T2)−1 have different orientations, a contradiction.
From the uniqueness of the minimal geodesic from p to τ(p), the joined
geodesics Tτ (p) is a unique τ -invariant geodesic passing through p.

Since {τn(p) |n ∈ Z} is unbounded, Tτ (p) is not a closed geodesic in
N . We next prove that Tτ (p) is simple. Suppose for indirect proof that
τn(T (p, τ(p))) ∩ τm(T (p, τ(p))) ≠ ∅ for some integers n and m, n ̸= m.
Since Tτ (p) is not a closed geodesic, τn(T (p, τ(p)))∩ τm(T (p, τ(p))) consists
of a single point q. However, it is impossible because τn(T (p, τ(p))) and
τm(T (p, τ(p))) contains a sub-segment of T (q, τ(q)) in common.

The straightness of Tτ (p) in N can be proved by the same way as H.
Busemann and F. P. Pedersen [9]. We then use Lemma 2.4.2 (The Jordan
curve theorem) for N .
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Lemma 3.1.5. Let τ ∈ Φ, τ ̸= id.. If p ∈ N is a minimum point of dτ ,
then Tτ (p) is a straight line in N invariant under τ .

Proof. Suppose for indirect proof that Tτ (p) is not minimal in N . There
exists a minimum integer k such that Tτ (p)

k := ∪k−1
n=0T (τ

n(p), τn+1(p)) is
not a minimal geodesic segment in N . We then have k ≥ 2 and

d(p, τk(p)) < kmin dτ .

Since Tτ (p)
k is not minimal, a minimal geodesic T (p, τk(p)) from p to

τk(p) is different from Tτ (p)
k. In fact, we have

T (p, τk(p)) ∩ Tτ (p)k = {p, τk(p)},

because both T (p, τk−1(p)) and T (τk−1(p), τk(p)) are minimal. Since τ
is an orientation preserving isometry of N and Tτ (p) is invariant under
τ , we see from Lemma 2.4.2 that T (p, τk(p)) intersects τ(T (p, τk(p))) =
T (τ(p), τk+1(p)) at one point q (see Figure 3.1). Furthermore, we have

τ(q) ∈ T (τ(p), τk+1(p)) ∩ T (τ2(p), τk+2(p)).

τk(p)

p

τ(p)

τ2(p)

τk+1(p)
τk+2(p)

q

τ(q)

T(p,τk(p))

T
τ
(p)k+2

T(τ(p),τk+1(p))

Figure 3.1: Tτ (p)
k in N .

Since

kmin dτ > d(p, τk(p))

= d(τ(p), τk+1(p))

= d(τ(p), q) + d(q, τ(q)) + d(τ(q), τk+1(p))

= d(τ(p), q) + d(q, τ(q)) + d(q, τk(p))

≥ d(τ(p), τk(p)) + d(q, τ(q))

= (k − 1)min dτ + d(q, τ(q)),

we have min dτ > d(q, τ(q)), a contradiction.
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3.2 Isometries leaving an Axis invariant

Any point in Tτ (p) is a minimum point of dτ . Hence, the parametrization
γ : (−∞,∞) → N of Tτ (p) satisfies the property τ(γ(t)) = γ(t + c) as in
Proposition 3.1.1. There are some phenomena which do not happen in the
case of reversible geodesics.

Remark 3.2.1. The following are true.

1. Let τ ∈ Φ, τ ̸= id.. If p, q ∈ N are minimum points of dτ , then either
Tτ (p) = Tτ (q) or Tτ (p)∩Tτ (q) = ∅ is true. Furthermore, τ−1(Tτ (p)) =
Tτ (p), but the reverse curve Tτ (p)

−1 may be neither axis of τ−1 nor
straight line (cf. [20]).

2. Let τ, σ ∈ Φ, τ, σ ̸= id., τ ̸= σ. Assume that an axis γ : (−∞,∞) →
N of τ intersects an axis α : (−∞,∞) → N of σ at p = γ(0) = α(0).
Then γ((0,∞)) ∩ α((0,∞)) = ∅ and γ((−∞, 0)) ∩ α((−∞, 0)) = ∅
are true. However, γ((0,∞)) ∩ α((−∞, 0)) ̸= ∅ and γ((−∞, 0)) ∩
α((0,∞)) ̸= ∅ may happen (cf. [20]).

A straight line γ : (−∞,∞) → N divides N into two connected compo-
nents. We call them the right side E(γ) and the left side W (γ) of γ.

In conjunction with Proposition 3.1.1, we have the following Proposition
3.2.2, using the same argument in [8].

Proposition 3.2.2. Let γ : (−∞,∞) → N be a straight line in N . If γ
is positively invariant under τ ∈ Φ, i.e., τ(γ(t)) = γ(t+ c) for some c > 0,
then c = min dτ and γ is an axis of τ . Hence all points p ∈ γ((−∞,∞))
are minimum points of dτ and γ((−∞,∞)) = Tτ (p). Moreover, there exists
τ0 ∈ Φ such that, if τ ∈ Φ leaves γ invariant, then τ = τ0

k for some k ∈ Z.
If τ0 = φm ◦ ψn, then m and n are relatively prime where φ and ψ are the
generators of Φ.

Proof. Let p = γ(t) for a number t ∈ (−∞,∞) and q ∈ N . From the
assumption, we then have c = dτ (p) and

nd(p, τ(p)) = d(p, τn(p))

≤ d(p, q) +
n∑
k=1

d(τk−1(q), τk(q)) + d(τn(q), τn(p))

= d(p, q) + nd(q, τ(q)) + d(q, p).
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Hence, we have

d(p, τ(p)) ≤ d(q, τ(q)) +
d(p, q) + d(q, p)

n
.

As n → ∞, we conclude that c = dτ (p) ≤ dτ (q), meaning that p is a
minimum point of dτ .

Let Φ1 := {τ ∈ Φ | τ(γ(t)) = γ(t + min dτ ) for all t ∈ (−∞,∞) } and
c := inf{min dτ | τ ∈ Φ1, τ ̸= id.}. Since Φ is properly discontinuous, there
exists τ0 ∈ Φ1 such that min dτ0 = c > 0. Let τ ∈ Φ1 and d := min dτ . If
d = c, then τ = τ0. Let d = kc + e for some k ∈ Z with k ≥ 0 and some
number e with 0 ≤ e < c. We prove e = 0. In fact, τ1 = τ0

−k ◦ τ satisfies
that τ1 ∈ Φ1 and e = min dτ1 , contradicting the choice of c if e ̸= 0 (see
Figure 3.2).

p

τ(p)

γ

τ
0
-1(τ(p))

τ
0
-2(τ(p))

τ
0
-k(τ(p))

e

Figure 3.2: An axis of τ .

Since e = 0, we have τ1 = id.. Hence τ = τ0
k with k > 0. This implies

that if γ is positively invariant under τ ∈ Φ, we then have τ = τ0
k for some

k > 0. In case there exists a number c > 0 such that τ(γ(t)) = γ(t− c) for
all t ∈ (−∞,∞), we have τ−1 = τ0

k for some k > 0, since τ−1(t) = γ(t+ c)
for all t ∈ (−∞,∞). Then τ = τ−k0 .

Suppose for indirect proof that m and n is not relatively prime, i.e.,
m = km1 and n = kn1 for some integers k > 1, m1 and n1. Let τ1 =
φm1 ◦ ψn1 . From the choice of c, we have τ1(γ(−∞,∞)) ∩ γ((−∞,∞)) = ∅
because both τ1 ◦ γ and γ are axes of τ0 (see Remark 3.2.1). Since τ1
preserves the orientation of N , if τ1 ◦ γ is contained in E(γ) (resp., W (γ)),
then τ1

k ◦ γ is also contained in E(γ) (resp., W (γ)). This contradicts that
τ1
k ◦ γ((−∞,∞)) = τ0 ◦ γ((−∞,∞)) = γ(−∞,∞).
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Chapter 4

Straight lines and slopes

4.1 Busemann functions and limit circles

Let γ : (−∞,∞) → N be a straight line. We define the Busemann
function Bγ : N → R of γ by

Bγ(p) := lim
t→−∞

d(γ(t), p) + t

for all p ∈ N . It follows that

−d(p, q) ≤ Bγ(p)−Bγ(q) ≤ d(q, p)

for all p, q ∈ N . Hence, Bγ is differentiable on a full measure set in N .
The structure of the level sets of a Busemann function has been studied in
[23] and [36]. We say that a ray α : (−∞, 0] → N is a co-ray to γ− :
(−∞, 0] → N , γ−(t) = γ(t), ending at p = α(0) if there exist a sequence of
numbers tj → −∞ and a sequence of points pj ∈ N such that a sequence
of minimal geodesics αj : [−d(γ(tj), pj), 0] → N converges to α as j → ∞
where αj(−d(γ(tj), pj)) = γ(tj) and pj = αj(0). From [8], we see that a
curve α : (−∞, 0] → N is a co-ray to γ− ending at α(0) if and only if
Bγ(α(t)) = t + Bγ(α(0)) for all t ≤ 0. We call the end point of a maximal
co-ray to γ− a co-point to γ−. Let C(γ−) denote the set of all co-points to
γ−. Then Bγ is of class C1 on N ∖C(γ−) and the gradient vector of Bγ at
p ̸∈ C(γ−) is α̇(0) where α : (−∞, 0] → N is a unique co-ray to γ− ending
at p = α(0) (cf. [17]). We say that a straight line α : (−∞,∞) → N is
an asymptote to γ− if Bγ(α(t)) = t + Bγ(α(0)) for all t ∈ (−∞,∞). In
addition, if a restriction α : [a,∞) → N is a co-ray to γ, i.e., there exists a
sequence of minimal geodesics αj from pj = αj(a) to γ(tj) = αj(d(pj , γ(tj))
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such that αj converges to α and tj → ∞ as j → ∞, we call α a parallel to γ.
The Busemann functions on the universal covering spaces of Finsler 2-tori
are studied in [21] and [23].

For a function f on N , let [f = a] := {p ∈ N | f(p) = a}, [f ≤ a] := {p ∈
N | f(p) ≤ a} and so on. When γ is a straight line, it follows from (22.14)
in [8], p.133, that [Bγ = a] = limt→−∞ SdN (γ(t), a− t) for all a ∈ R. We call
[Bγ = a] a limit circle with central ray γ− (see Figure 4.1).

γ(a)

γ(t)

γ(0)

[B  =a]γ

Figure 4.1: The limit circle with central ray γ−.

Lemma 4.1.1 (cf. Theorem (32.4) in [8]). Let τ ∈ Φ, τ ̸= id.. Then all
axes of τ are parallels to each other.

Proof. Let c = min dτ and let γ and α be two axes of τ . We prove that
α|(−∞,s] is a co-ray to γ− for any s ∈ (−∞,∞). Since

Bγ(α(s− c)) = Bγ(τ
−1(α(s)))

= lim
t→−∞

d(γ(t), τ−1(α(s))) + t

= lim
t→−∞

d(τ−1(γ(t+ c)), τ−1(α(s))) + t

= lim
t→−∞

d(γ(t+ c), α(s)) + t

= Bγ(α(s))− c,

α(s− c) is a foot of α(s) on [Bγ = Bγ(α(s))− c]. From (22.17) and (22.18)
in [8], we conclude that α is an asymptote to γ−. The similar argument
proves that α|[s,∞) is a co-ray to γ.
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4.2 Fundamental domains over M0 and Slopes of
straight lines

Assume that Φ is generated by two motions {φ,ψ}. Let µ : (−∞,∞) →
N be an axis of φ. Then ψ ◦ µ is an axis of φ also. We may assume
that ψ ◦ µ ∈ W (µ). We take a simple curve c : [0, 1] → N in the strip
bounded by µ((−∞,∞)) and ψ ◦µ((−∞,∞)) such that c(0) ∈ µ((−∞,∞))
and c(1) = ψ(c(0)). Let ν : (−∞,∞) → N be a parametrization of a curve
∪∞
i=−∞ψ

i(c([0, 1])) such that ν(t) = ψi(c(s)) if t = i+ s, 0 ≤ s < 1, for some
integer i. We use this ν instead of any axis of ψ because of the fact (2) in
Remark 3.2.1. The domain bounded by µ, ψ ◦ µ, ν and φ ◦ ν is denoted
by N(0, 0). Obviously, N(0, 0) covers M0, i.e., π(N(0, 0)) = M0. If we set
N(i, j) = φi ◦ ψj(N(0, 0)), then N = ∪(i,j)∈Z2N(i, j).

ψ◦μ�c(1)=ψ�c(0)�

c(0)

N ��0 , 0��

μ
ν

N ��2 , 2��

N ��1 , 0��

N ��0 , 1��

Figure 4.2: Domains N(i, j).

Using this notation, if γ : (−∞,∞) → N is a straight line and γ(t) ∈
N(i(t), j(t)) for t ∈ (−∞,∞), we then have |i(t)| → ∞ or |j(t)| → ∞ as
t→ ±∞. Hereafter, we use the word “ray” in the following sense: a minimal
geodesic γ : [0,∞) → N (resp., (−∞, 0] → N) such that γ(t) ∈ N(i(t), j(t))
for all t is a ray if |i(t)| or |j(t)| goes to ∞ as t → ∞ (resp., −∞). The
half parts of axes and their co-rays are rays.

Let γ : (−∞, 0] → N be a ray. We define the slope A(γ) of γ by

A(γ) := lim inf
t→−∞

{
j(t)

i(t)

∣∣∣∣ γ(t) ∈ N(i(t), j(t))

}
.

We prove that “lim inf” is replaced by “lim” in Lemma 4.2.2.

Lemma 4.2.1. If γ : (−∞,∞) → N is an axis of τ = φm ◦ ψn ∈ Φ,
τ ̸= id., we then have A(γ) = n/m if m ̸= 0 and A(γ) = ∞ if m = 0.

24



Proof. Assume that p = γ(0) ∈ N(m0, n0) is a minimum point of dτ and
c = min dτ . Let L be the maximum of those numbers |m0 − i| and |n0 − j|
where N(i, j) intersects a c-ball with center p with respect to d(·, p). If
t = kc + r for some integer k and some number r with 0 ≤ r < c, then
γ(t) ∈ N(m0+km+m1, n0+kn+n1) for somem1 and n1 with 0 ≤ |m1| < L
and 0 ≤ |n1| < L. Hence we have

A(γ) = lim
t→−∞

n0 + kn+ n1
m0 + km+m1

=
n

m
.

All axes of τ and τ−1 have the same slope.

Lemma 4.2.2. Let γ : (−∞, 0] → N be a ray. We then have

A(γ) = lim
t→−∞

{
j

i

∣∣∣∣ γ(t) ∈ N(i, j)

}
.

Furthermore, for a straight line γ : (−∞,∞) → N , we have

A(γ) = lim
t→±∞

{
j

i

∣∣∣∣ γ(t) ∈ N(i, j)

}
.

Proof. Suppose for indirect proof that there exists a rational number n/m
such that

lim inf
t→−∞

{
j

i

∣∣∣∣ γ(t) ∈ N(i, j)

}
<

n

m
< lim sup

t→−∞

{
j

i

∣∣∣∣ γ(t) ∈ N(i, j)

}
.

Then there exists an axis of τ = φm ◦ ψn such that it intersects γ many
times. Since the axis and ray γ are minimal, this is impossible, proving this
lemma.

The second statement is proved in the same way.

Under a slightly different definition of slopes or rotation numbers, we see
the complete structure of all sets of all straight lines with slope h ∈ R when
N is the universal covering plane of a 2-torus with Riemannian or reversible
Finsler metric (cf. [3], [32]).

Instead of classifying the straight lines in N , we pay our attention to
a restricted set of straight lines with slope h ∈ R: Let Xh denote a set of
straight lines for h ∈ R:
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1. If h = n/m is a rational number, then Xh is the set of all axes of
τ = φm ◦ ψn in N for some (m,n) ∈ Z2 with m > 0.

2. If h is an irrational number, then Xh is the set of all straight lines
α such that there exists a sequence of axes in Xℓ converging to α as
ℓ→ h− 0 where ℓ are rational numbers.

For two straight lines γ and α, we write γ > α when α is contained in
E(γ). The relation “>” is a partial order on the set of all straight lines in N .
Because all straight lines in Xh are mutually disjoint, the following lemma
is obvious.

Lemma 4.2.3. All geodesics in Xh are straight lines with slope h ∈ R and
Xh is Φ-invariant, i.e., τ ◦ γ ∈ Xh for any γ ∈ Xh and any τ ∈ Φ. The
set Xh is a totally ordered set. If α, γ ∈ Xh such that α < γ, then α is an
asymptote to γ−.

4.3 Level sets of Busemann functions

Let γ : (−∞,∞) → N be a straight line. Note that the boundary of
[Bγ > a] possibly contains sub-arcs of the boundary of N , and that [Bγ = a]
may be divided by a removed point if M is not complete.

Lemma 4.3.1. For all a ∈ R there exists the unique connected component
of [Bγ > a] whose boundary is unbounded in N .

Proof. Since γ([a + 1,∞)) ⊂ [Bγ > a], there exists at least one unbounded
connected component W1 of [Bγ > a]. Because of the topological structure
of N and Theorem 2.4.2 (The Jordan curve theorem), the boundary ofW1 is
unbounded. Suppose for indirect proof that there exists another unbounded
connected component W2 of [Bγ > a] such that the boundary of W2 is
unbounded. Then we have a compact set K in N such that N ∖ W1 ∪
W2 ∪ K has at least two unbounded connected components one of which
contains γ((−∞, a − 1]). If pk is a boundary point of W2 contained in
another unbounded connected component of N ∖W1 ∪W2 ∪ K such that
Bγ(pk) = a, then we have a co-ray αk : (−∞, ak] → N from pk = αk(ak)
to γ− such that αk(0) ∈ K. As pk goes to ∞, choosing a subsequence of αk
converging a straight line α, we have an asymptote α to γ−. However this
is impossible because Bγ(α(t)) is bounded above by a.
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Figure 4.3: Two connected components W1, W2 and compact set K.

Let Yγ(a) denote the boundary of the unbounded connected component
of [Bγ > a] containing γ([a + 1,∞]) for each a ∈ R in N . Obviously,
[Bγ = a]0 := Yγ(a) ∖ ∂N ⊂ [Bγ = a]. Furthermore, Yγ(a) divides N into
two connected components N+ and N− such that γ((a,∞)) ⊂ N+ and
γ((−∞, a)) ⊂ N−. If p ∈ N+, then p ∈ [Bγ > a]. If p ∈ [Bγ < a], then
p ∈ N−. In general, it follows that [Bγ > a] ∩N− ̸= ∅. The parameterized
curve Yγ(a)(t), t ∈ R, is assumed to cross the co-rays to γ− from left to
right.

Let γ ∈ Xh and let Xh(γ) denote a subset of Xh consisting of all straight
lines contained in E(γ). Then all straight lines α ∈ Xh(γ) are asymptotes to
γ− because of the definition ofXh (see Lemma 4.2.3). We use a parametriza-
tion of α ∈ Xh such that Bγ(α(t)) = t for all t ∈ (−∞,∞) if α < γ and
Bα(γ(t)) = t for all t ∈ (−∞,∞) if α > γ.

Lemma 4.3.2. If α ∈ Xh(γ), then Bα = Bγ on E(α).

Proof. If β is a co-ray from p ∈ E(α) to γ−, then β is a co-ray to α− as well,
since α is an asymptote to γ−. Conversely, a co-ray β to α− in E(α) is a
co-ray to γ−. Hence, Bγ −Bα is constant on E(α) because the distribution
of co-rays of γ− and α− in E(α) are identified. In particular, the gradient
vectors of Bγ and Bα are equal almost everywhere (see Section 4.1). We
have Bγ(p)−Bα(p) = Bγ(α(0))−Bα(α(0)) = 0.

From this lemma we can define a function Bh : N → R by Bh(p) =
Bα(p) for all p ∈ N where α is a straight line in Xh such that p ∈ E(α).

Lemma 4.3.3. Let h, k ∈ R with h ̸= k. If Yh(a)(t0) = Yk(b)(t1) =: p, then
Yh(a)((t0,∞)) ∩ Yk(b)((t1,∞))∖ ∂N = ∅.
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Proof. We may assume that h < k. Suppose for indirect proof that there
exist numbers s0 > t0 and s1 > t1 such that Yh(a)((t0, s0)) ∩ [Bh = a] ∩
Yk(b)((t1, s1)) ∩ [Bk = b] = ∅ and Yh(a)(s0) = Yk(b)(s1) =: q ∈ [Bh =
a] ∩ [Bk = b].

Let α : (−∞,∞) → N (resp., β : (−∞,∞) → N) be a straight line in
Xh (resp., Xk) such that p, q ∈ E(α) (resp., p, q ∈ E(β)). We may assume
that the sequences of minimal geodesics T (α(t), p), T (β(t), p), T (α(t), q) and
T (β(t), q) converge to α1, β1, α2 and β2, respectively. Then α1 and β1 (resp.,
α2 and β2) are co-rays from p to α− and β−, respectively, (resp., from q to
α− and β−, respectively). Since h < k, the co-ray β1 intersects the co-ray
α2 at some point r ∈ N . (see Figure 4.4).

p

q

r

α
1

β
1

α
2

β
2

Figure 4.4: α1, β1, α2 and β2.

This means that

lim inf
t→−∞

(d(α(t), q) + d(β(t), p)− d(α(t), p)− d(β(t), q)) > 0,

since there exists a number δ > 0 such that

d(α(t), q) + d(β(t), p) = d(α(t), rt) + d(rt, q) + d(β(t), rt) + d(rt, p)

> d(α(t), p) + d(β(t), q) + δ

for any t < 0 with sufficiently large |t| and rt → r as t → −∞ where
rt = T (α(t), q) ∩ T (β(t), p). This contradicts the following equality.

0 = (Bh(q)−Bh(p))− (Bk(q)−Bk(p))

= lim
t→−∞

(d(α(t), q) + d(β(t), p)− d(α(t), p)− d(β(t), q)) .
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Lemma 4.3.4. Let τ ∈ Φ. Then the function fh(τ) = Bh ◦ τ − Bh is
constant on N . Moreover, fh : Φ → R is a homomorphism, i.e., fh(τ ◦σ) =
fh(τ) + fh(σ) for all τ, σ ∈ Φ. In particular, if τ = φm ◦ ψn ∈ Φ, we then
have fh(τ) = mfh(φ) + nfh(ψ).

Proof. For any points p, q ∈ N , let γ ∈ Xh be a straight line such that p
and q are in the right side of γ and τ−1 ◦ γ, i.e., p, q ∈ E(γ) ∩ E(τ−1 ◦ γ).
We then have

Bh(τ(p))−Bh(τ(q)) = lim
t→−∞

d(γ(t), τ(p))− d(γ(t), τ(q))

= lim
t→−∞

d(τ−1 ◦ γ(t), p)− d(τ−1 ◦ γ(t), q)

= Bh(p)−Bh(q).

From this we conclude that fh(τ) is constant on N .
Since

fh(τ ◦ σ)(p) = Bh(τ(σ(p)))−Bh(p)

= (Bh(τ(σ(p)))−Bh(σ(p))) + (Bh(σ(p))−Bh(p))

= fh(τ)(σ(p)) + fh(σ)(p)

for all p ∈ N , we have fh(τ ◦ σ) = fh(τ) + fh(σ).

Let Φ0(h) = Ker(fh) = {τ | fh(τ) = 0} for each slope h ∈ R. If τ ∈
Φ0(h), then τ(Yh(a)) = Yh(a) for all a ∈ R. There exists τ0 ∈ Φ0(h) such
that τ = τ0

k for any τ ∈ Φ0(h) and some k ∈ Z, as was seen in the proof
of Proposition 3.2.2. In fact, if c(t), t ∈ (−∞,∞), is a parametrization of
Yh(0) such that c(0) = γ(0) and c((0,∞)) is in the right side of γ in N and
t(τ) are the numbers such that τ(c(0)) = c(t(τ)) for any τ ∈ Φ0(h), then τ0
or τ0

−1 satisfies that t(τ0) = min{t(τ) > 0 | τ ∈ Φ0(h)∖ {id.}}.

Lemma 4.3.5. Let Φ0(h) be generated by τ0 = φm0 ◦ ψn0 ̸= id.. Then m0

and n0 are relatively prime and fh(ψ)/fh(φ) = −m0/n0 if fh(φ) ̸= 0, and
fh(φ)/fh(ψ) = −n0/m0 if fh(ψ) ̸= 0.

Proof. Suppose for indirect proof that m0 = km1 and n0 = kn1 for some
k ∈ Z with k ̸= 1. Hence, if τ1 = φm1 ◦ψn1 , then τ1(γ(0)) ̸∈ Yh(0), implying
that fh(τ1) ̸= 0. Then we get a contradiction; 0 = fh(τ0) = kfh(τ1) ̸= 0.

The second part of the theorem follows from 0 = fh(τ0) = m0fh(φ) +
n0fh(ψ).

Lemma 4.3.6. Let τ ∈ Φ0(h). If a straight line γ ∈ ∪k∈RXk is not any
axis of τ , then γ((−∞,∞)) intersects Yh(a) for all a ∈ R.
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Proof. We first assume that γ ∈ Xk for some rational number k ∈ R such
that it is an axis of τ1 ∈ Φ with fh(τ1) ̸= 0. Then |fh(τ1n)| = |nfh(τ1)| goes
to ∞ as n→ ±∞. This implies that |Bh(γ(t))| goes to ∞ as t→ ±∞.

If the slope k of γ is irrational, then there exist a sequence of rational
numbers kj with kj < k converging to k and a sequence of axes γj with
slopes kj converging to γ. Since all axes γj intersect Yh(a), γ intersects
Yh(a) for all a ∈ R.

Let ℓh = inf{fh(τ) | τ ∈ Φ∖ Φ0(h) such that fh(τ) > 0}. Since

ℓh = inf{|mfh(φ) + nfh(ψ)| | (m,n) ∈ Z2 such that fh(φ
m ◦ ψn) ̸= 0},

if fh(ψ)/fh(φ) or fh(φ)/fh(ψ) is an irrational number, we then have ℓh = 0
(cf. [1], [24]). Assume that fh(ψ)/fh(φ) = i/j where i and j are relatively
prime integers. Then we have

fh(φ
m ◦ ψn) = mj + ni

j
fh(φ).

Since i and j are relatively prime integers, there exist integers m and n such
that mi+ nj = 1. Therefore, we see that

ℓh = min

{∣∣∣∣fh(φ)j

∣∣∣∣ , ∣∣∣∣fh(ψ)i

∣∣∣∣} .
Note that |fh(φ)| ≤ min dφ and |fh(ψ)| ≤ min dψ. If one of the denominators
i and j in the above estimate of ℓh is greater thanQ := max{min dφ,min dψ}/ε
for a number ε > 0, we then have ℓh < ε.

Lemma 4.3.7. For any ε > 0 the number of slopes h ∈ R such that ℓh > ε
is finite.

Proof. Assume that ℓh > ε. Then there exists a τ1 ∈ Φ such that fh(τ1) =
ℓh. Here we write τ1 = φm1 ◦ ψn1 . Since fh(Φ) is a subgroup generated by
ℓh, there exists an integer k1 such that fh(φ) = k1fh(τ1). Hence, we then
have (k1m1−1)fh(φ)+k1n1fh(ψ) = 0. We assume that k1m1−1 = km0 and
k1n1 = kn0 for some integer k where the integers m0 and n0 are relatively
prime. Set τ0 = φm0 ◦ ψn0 . Then τ0 is a generator of Φ0(h). It follows from
the argument just before Lemma 4.3.7 and Lemma 4.3.5 that both |m0| and
|n0| are less than Q. Thus we have at most finitely many τ0 = φm0 ◦ ψn0

such that fh(τ0) = 0 even if there exist infinitely many τ1 ∈ Φ such that
fh(τ1) = ℓh. Furthermore, how to choose m0 and n0 depends only on Q
which does not depend on the slope h. From Lemma 4.3.3, there exists at
most one slope h ∈ R such that fh(τ0) = 0 for each τ0. This implies that
the number of the slopes h with ℓh > ε is finite.
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Chapter 5

The asymptotic behavior of
geodesic circles in M

5.1 A domain consisting of slices covering M0

Let h ∈ R be a slope and γ : (−∞,∞) → N a straight line in N such
that γ ∈ Xh. Take an isometry τ ∈ Φ such that τ ◦ γ ̸= γ. Let □(i, j;u, v)
denote the rectangle bounded by Yγ(−ifh(τ)), Yγ(−jfh(τ)), τu◦γ and τv◦γ.

Lemma 5.1.1. Under the notation above, we have

τ s(□(i, j;u, v)) = □(i− s, j − s;u+ s, v + s).

Proof. This lemma follows from the fact that τ s ◦ Yγ(a) = Yγ(a + sfh(τ))
and τ s ◦ τu = τ s+u.

Let Φ(τ) denote the infinite cyclic subgroup of Φ generated by τ . Then
N1 = N/Φ(τ) is topologically a cylinder with disks and points removed. If
ρ1 : N → N1 is the quotient map, then ρ1◦γ may not be a minimal geodesic
in N1. By the way, ρ1(Yγ(0)) is a curve like a helix contained in N1 with
pitch |fh(τ)| if |fh(τ)| ̸= 0. In particular, we note that ρ1(Yγ(0)) is not a
level set of the Busemann function Bρ1◦γ in N1 even if ρ1 ◦ γ is a straight
line in N1.

We may assume that min{Bh(x) |x ∈ N(0, 0)} = 0 (see Section 4.2 for
the definition of N(i, j)). Let b > max{a ∈ R |Yγ(a) ∩N(0, 0) ̸= ∅}. Hence,
N(0, 0) is contained in the strip bounded by Yγ(0) and Yγ(b). It does not
imply that Bh(x) ≤ b for all x ∈ N(0, 0), although 0 ≤ Bh(x) are true for all
x ∈ N(0, 0). Furthermore, when fh(τ) < 0, we may assume that the domain
bounded by γ, Yγ(0), τ ◦ γ and Yγ(b) contains N(0, 0), i.e., N(0, 0) ⊂ E(γ)
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and N(0, 0) ⊂ W (τ ◦ γ). If b > |fh(τ)|, we have an integer k such that
k|fh(τ)| ≥ b, i.e., N(0, 0) ⊂ □(0, k; 0, 1). In particular, M0 = π(□(0, k; 0, 1))
where π : N →M0 is the covering map.

Lemma 5.1.2. Assume that fh(τ) < 0 and b > |fh(τ)|. Let k be an integer
such that k|fh(τ)| > b. We then have □(0, k; 0, 1) ⊂ ∪k−1

i=0□(i, i+1;−i, k− i)
and π(□(i, i+ 1;−i, k − i)) =M0 for each i = 0, · · · , k − 1.

Proof. The first part of the statement follows from the definition.
We prove the second part. Since τ−i(□(0, 1; i, i + 1)) = □(i, i + 1; 0, 1),

we have

□(0, k; 0, 1) = ∪k−1
i=0□(i, i+ 1; 0, 1)

= ∪k−1
i=0 τ

−i(□(0, 1; i, i+ 1)).

Therefore, we have

π((□(0, 1; 0, k)) = π(∪k−1
i=0□(0, 1; i, i+ 1)

= π(∪k−1
i=0 τ

−i(□(0, 1; i, i+ 1)))

= π(□(0, k; 0, 1)) =M0.

Since □(i, i+ 1;−i, k − i) = τ−i(□(0, 1; 0, k)), we have

π(□(i, i+ 1;−i, k − i)) = π(□(0, 1; 0, k)) =M0.

γ(t)

τ(γ(t))

τ-1(γ(t))

D

γ(0)

τ(γ(0))

τ2(γ(0))

Y (0)γ

|f
h
(τ)|

τ-2(γ(t))

τ3(γ(t))

τ2(γ(t))

τ-3(γ(t))

τ4(γ(t))

τ3(γ(0))

τ4(γ(0))

τ5(γ(t))

Figure 5.1: The domain covered M0.
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5.2 The asymptotic behavior of distance circles

We start preparing the notations which are used in the proof of Theorem
2.4.4. For any ε > 0 we choose a slope h ∈ R and a straight line γ ∈ Xh

such that N(0, 0) lies between Yγ(0) and Yγ(b), ℓh < ε, and then choose an
isometry τ ∈ Φ such that −ε < fh(τ) < 0. The integer k1 is defined to
satisfy k1|fh(τ)| ≥ b.

Let γ1 ∈ Xh be a straight line and let α be a ψ-invariant curve such
that α intersects γ1 and ψ ◦γ1 exactly once, respectively. Then the domains
Q(j) bounded by φj ◦ α, φj+1 ◦ α, γ1 and ψ ◦ γ1 cover M0 for all integers
j ∈ Z. Therefore, for any point p ∈ N , there exists a sequence of points
pj ∈ Q(j) such that π(pj) = π(p), i.e., τj(p) = pj for some τj ∈ Φ. Since
−∞ < h < ∞ and the perimeters of ψi(Q(j)) equal for all i, j ∈ Z, there
exists a number K1 such that d(pj , pj+1) < K1 for all j ∈ Z (as was seen
in the proof of Lemma 7.1 in [23], p.356 ). Let L be a number such that
L > max{b,K1} and k, k2 integers such that k|fh(τ)| > L, k = k1 + k2. We
change the parameterization of γ such that γ̃(s) = γ(s+ (k2 − 1)fh(τ)).

After those preparations, using γ̃, we construct a domain

D := ∪k−1
i=0□(i, i+ 1;−i+ k2, k − i)

each of whose slices covers M0, i.e., π(□(i, i + 1;−i + k2, k − i)) = M0 for
each i = 0, · · · , k − 1. We may assume that γ1 ∈ Xh satisfies D ⊂ E(γ1).

Lemma 5.2.1 (cf. [23], Assertion 7.2). There exists an integer j1 such that

d(pj , γ1(0)) < d(pj+1, γ1(L))

for all integers j < j1.

Proof. The sequences of minimal geodesics T (pj , γ1(0)) and T (pj+1, γ1(L))
converge to sub-rays of γ1 as j → −∞, so there exists a sequence of points
rj+1 ∈ T (pj+1, γ1(L)) converging to γ1(0) as j → −∞. Therefore, there
exists an integer j1 such that

d(pj+1, γ1(L))− d(pj , γ1(0))

= d(pj+1, rj+1) + d(rj+1, γ1(L))− d(pj , γ1(0))

> −(d(pj , pj+1) + d(rj+1, γ1(0))) + d(rj+1, γ1(L))

> −K1 + L+ d(rj+1, γ1(0))− d(γ1(0), rj+1) > 0

for all j < j1, since d(pj , pj+1) < K1 < L and d(rj+1, γ1(0)) → 0, d(γ1(0), rj+1)
→ 0 as j → −∞.
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Let aj = d(pj , γ1(0)) and bj = d(pj , γ1(L)). Then, for any t ∈ [aj , bj ],
there exists a point xt ∈ γ1([0, L]) such that d(pj , xt) = t. Since d(pj , γ1(0)) →
∞ as j → −∞, there exists an integer j0 with j0 < j1 such that aj < bj and
d(pj0 , γ1(0)) ≤ d(pj , γ1(0)) for all integers j < j0. Hence, when R1 := aj0 ,
we have R1 = min{aj | j ≤ j0}.

Lemma 5.2.2 (cf. [23], Assertion 7.3). For any t > R1, there exist a point
xt ∈ γ1([0, L]) and an integer j < j0 such that d(pj , xt) = t.

Proof. Let Kj = ∪j0i=j [ai, bi] for j < j0. We prove that Kj is connected for
all j ≤ j0. Suppose for indirect proof that Ki0 is connected but not Ki0−1.
From the definition of R1, we have Ki0 = [R1, bj2 ] for some j2 < j0. Since
Ki0−1 is not connected and R1 ≤ ai0−1, we have bj2 < ai0−1. On the other
hand, we have bi0 > ai0−1 because of Lemma 5.2.1. Since bi0 ≤ bj2 , we have
ai0−1 ≤ bj2 , a contradiction. Since d(pj , γ1(0)) → ∞ as j → −∞, we have

∪j0i>−∞[ai, bi] = [R1,∞).
For any t > R1, if we choose an integer j such that t ∈ [aj , bj ], then

there exists a point xt ∈ γ1([0, L]) such that d(pj , xt) = t.

Lemma 5.2.3 (cf. [23], Lemma 6.1). Let ε > 0, γ1, L, D, p ∈ N and
pj ∈ Φ(p) be as above. Then there exists an integer j0 = j0(D, ε) > 0 such
that

Bh
−1(Bh(x)) ∩D ⊂ B(SdN (pj , d(pj , x)), ε)

for all points x ∈ γ1([0, L]) and all integers j < j0. In particular, for any
point q ∈ Bh

−1(Bh(x)) ∩D, we have B(q, ε) ∩ S(pj , d(pj , x)) ̸= ∅.

Proof. Since g(z, t) = d(γ1(t), z) + t is monotone increasing for t < 0 and
converges to Bh(z) uniformly on any compact set contained inD as t→ −∞,
there exists a number T < 0 such that 0 ≤ g(z, t)−Bh(z) < ε/3 for all z ∈ D
and t < T .

If q ∈ Bh
−1(Bh(x)) ∩D for a point x ∈ γ1([0, L]), we then have

0 ≤ d(γ1(t), q)− d(γ1(t), x) < ε/3 (5.1)

for any number t < T , because

0 ≤ d(γ1(t), q)− d(γ1(t), x)

= (d(γ1(t), q) + t)− (d(γ1(t), x) + t)

= g(q, t)−Bh(x)

= g(q, t)−Bh(q) <
ε

3
.
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Set A = (Bh
−1(Bh(x)) ∩ D) ∖ B(x, ε/2). Since γ1 is an asymptote to

(ψ ◦ γ1)−, there exists a positive integer j0 = j0(D, ε) such that, for all
integers j < j0, a minimal geodesic segment T (pj , x) from pj to the point
x ∈ γ1([0, L]) (resp., any point q ∈ A) passes through B(γ1(T + 1), ε/3)
(resp., intersects γ1 at γ1(tj) with some tj < T ).

If p′ ∈ T (pj , x) satisfies max{d(p′, γ1(T +1)), d(γ1(T +1), p′)} < ε/3, we
then have, from (5.1) (see Figure 5.2),

0 < d(γ1(tj), q)− d(γ1(tj), x)

= d(pj , q)− d(pj , γ1(tj))− d(γ1(tj), x)

≤ d(pj , q)− d(pj , x)

≤ d(p′, q) + d(pj , p
′)− d(pj , x)

= d(p′, q)− d(p′, x)

< (d(γ1(T + 1), q) + ε/3)− (d(γ1(T + 1), x)− ε/3)

< ε

for all q ∈ A. Therefore, we have

d(pj , x) < d(pj , q) < d(pj , x) + ε.
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j
,x))

p
j

[B=B
h
(x)]

q

ψ(γ
1
(t))

γ
1
(t

j
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1
(T+1)
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1
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Figure 5.2: The asymptotic behavior of the geodesic from pj .

If yj(q) is a point at which T (pj , q) and SdN (pj , d(pj , x)) intersect, we
then have q ∈ B(yj(q), ε) and, therefore, q ∈ B(SdN (pj , d(pj , x)), ε).

For q ∈ (Bh
−1(Bh(x))∩D)∩B(x, ε/2), we have q ∈ B(SdN (pj , d(pj , x)), ε),

since x ∈ SdN (pj , d(pj , x)) and d(x, q) < ε/2.

Lemma 5.2.3 states that we can find a distance sphere SdN (pj , d(pj , x))
meeting the ε-ball B(q, ε) for any point q ∈ D with Bh(q) = Bh(x). From
Lemma 5.2.2, any point q ∈ (∪x∈γ1([0,L])Yγ1(Bh(x))∖ ∂N) ∩D satisfies this
condition. We have to treat another case, q ̸∈ Yγ1(a) ∖ ∂N for any a ∈ R,
in order to complete the proof of Theorem 2.4.4.
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Proof of Theorem 1.0.1 and 2.4.4. We prove Theorem 2.4.4 which is suf-
ficient for Theorem 1.0.1. Let p, q and ε be as in Theorem 2.4.4. If
q ∈ (Yγ1(0)∖ ∂N) ∩D for a suitable parametrization of γ1, then it follows
from Lemmas 5.2.1, 5.2.2 and 5.2.3 that for any t > R1 there exist sequences
of points pj ∈ Φ(p) and qj ∈ D ∩ Φ(q) such that SdN (pj , t) ∩B(qj , ε) ̸= ∅.

In case q ̸∈ Yγ1(a) ∖ ∂N for any a ∈ R, we find a point q1 ∈ D ∩ Φ(q)
in a strip bounded by Yγ1(0) and Yγ1(|fh(τ)|). Assume that a sequence
of minimal geodesics from pj to q1 converges to a co-ray α : (−∞, 0] → N
from q1 to γ1

− and r1 = α(−d(Yγ1(0), q1)). Then the sequence of intersection
points rj = T (pj , q1) ∩ Yγ1(0) converges to r1 ∈ Yγ1(0) as j → −∞. This
implies that for any t > R1 + d(r1, q1) we have SdN (pj , t) ∩ B(qj , ε) ̸= ∅ for
some pj ∈ Φ(p) and qj ∈ D ∩ Φ(q1).

Remark 5.2.4. In the above argument, if pj = τj(p) and qj = τ ′j(q) for
τj , τ

′
j ∈ Φ, we then have SdN (pj , t)∩B(τj

−1◦τ ′j(q), ε) = SdN (pj , t)∩B(qj , ε) ̸=
∅.

For any ε > 0 and any points p, q ∈ M , let p̃ (resp., q̃k ∈ Φ(D)) be the
lifts of p (resp., q). Then it follows from the above consequence that the
geodesic circle with center p̃ meets the union of B(q̃k, ε)’s for any t > R on
N . Combining with Lemma 2.4.3, we can see the asymptotic behavior of
the distance circles emanating from p̃ in N (see Figure 5.3).

p

D

~ q
k

~

Figure 5.3: The geodesic circle with center p̃ in N .

Proof of Corollary 1.0.5. We work in M0 instead of M . Let n > 0 be an
integer and ε > 0. Let p̃ ∈ N be chosen so that π(p̃) = p. From Lemma
4.3.7, there exists slopes hi, i = 1, · · ·n, such that hi ̸= hk for i ̸= k and
ℓhi < ε for all i. As was seen in the proof of Theorem 1.0.1, for each slope
hi we can find domains Di and numbers Ri satisfying the following; for
any t > Ri there exist sequences of points pij ∈ N and qij ∈ Di such that
π(pij) = p, π(qij) = q and SM0(pij , t) ∩ B(qij , ε) ̸= ∅. Let τij ∈ Φ be such
that τij(pij) = p̃. The sequence of minimal geodesics T (p̃, τij(qij)) from p̃ to
τij(qij) converges to a ray with slope hi as j → −∞ for each i = 1, · · · , n.
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Chapter 6

Appendix : Finsler manifolds
and geodesics

We define a Finsler metric and induce the Euler-Lagrange equation
of piecewise smooth curves and define a geodesic in a Finsler manifold.
Let M be an n-dimensional manifold and TM its tangent bundle. Let
(x1, x2, · · · , xn, y1, y2, · · · , yn) be a local coordinate system in TM where
(x1, x2 · · · , xn) is a local coordinate system in M and yi’s are coefficients
of y = yi ∂

∂xi
|x ∈ TxM . A continuous function F : TM → [0,∞) is Finsler

metric of M if F satisfies the following properties:

1. Regularity : F is smooth on TM ∖ {0}.

2. Positive homogeneity : F (x, λy) = λF (x, y) for all λ > 0.

3. Strong convexity : The Hessian matrix

(gij) :=

([
1

2
F 2(x, y)

]
yiyj

)
is positive-definite at every point in TM ∖ {0}. Here (gij) is a sym-
metric n× n matrix and is called a fundamental tensor.

The pair (M,F ) is called a Finsler manifold. We give some example of
Finsler metrics.

Example 6.0.1. Let x ∈M and gx(·, ·) a Riemannian metric on TxM . We
consider a norm induced by the Riemannian metric. For y ∈ TxM ,

F (x, y) :=
√
gx(y, y).

F is a Finsler metric on M and reversible. It is said to be Riemannian.
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The Finsler metric F may be not reversible and satisfies the triangle
inequality

F (x, u+ v) ≤ F (x, u) + F (x, v)

for u, v ∈ TxM . We can express the strong convexity in index free from.
Namely, for y ∈ TxM ∖ {0}, u, v ∈ TxM ,

gy(u, v) =
1

2

∂2

∂s∂t
[F 2(y + su+ tv)]

∣∣∣∣
s=t=0

.

The strong convexity gives an inner product on Finsler manifolds.
For a piecewise smooth curve c : [a, b] →M , we define the length of the

curve c by

L(c) :=

∫ b

a
F (c(t), ċ(t))dt.

This length function L induces a function d :M ×M → R as

d(p, q) := inf
c
L(c)

where the infimum is taken over all piecewise smooth curves c : [a, b] → M
with c(a) = p, c(b) = q. The function d(·, ·) is called an intrinsic distance
induced by the Finsler metric F . The intrinsic distance d(·, ·) satisfies the
triangle inequality

d(p, q) ≤ d(p, r) + d(r, q)

for any p, q, r ∈ M . If a geodesic is reversible, then the intrinsic distance
may not be symmetric. However, the Finsler metric F is reversible if and
only if the intrinsic distance is symmetric.

We begin to define a geodesic in Finsler manifolds. Let λ > 0 and
c : [a, b] → M a constant speed piecewise smooth curve with F (c, c′) = λ.
By definition, there is a partition of [a, b], a = t0 < t1 < · · · < tk−1 < tk = b
such that c is smooth in each [ti−1, ti]. Fix this partition, then we consider a
piecewise smooth map H : (−ε, ε)×[a, b] →M with the following properties:

1. H is continuous on (−ε, ε)× [a, b],

2. H is smooth in each (−ε, ε)× [ti−1, ti], i = 1, · · · , k,

3. c(t) = H(0, t) for a ≤ t ≤ b.

Set cu(t) := H(u, t) for each u ∈ (−ε, ε). H(u, t) is called a variation of
a piecewise smooth curve c and a length of the variation curve cu is given by

L(u) =

∫ b

a
F

(
H(u, t),

∂H

∂t
(u, t)

)
dt
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If c is an extremal of the length function L, then L̇(0) = 0. We then have
the following equation which is called the Euler-Lagrange equation:

∂L

∂xi
− d

dt

∂L

∂yi
= 0, i = 1, · · · , n.

Set Gi(y) := 1
4g
il(x, y){[F 2(x, y)]xkyly

k − [F 2(x, y)]xl} where (gij) is the
inverse matrix of (gij). Then the geodesic curvature of c at c(t) is defined
by

κ(t) :=
1

F (c, ċ)2
{c̈i + 2Gi(ċ)} ∂

∂xi

∣∣∣∣
c(t)

.

If c has minimal length, then L̇(0) = 0 for any variation H of c fixing
endpoints (see Figure 6.1). If the curve c is smooth, then κ(t) = 0. Thus
a constant speed smooth shortest curve satisfies κ(t) = 0. Therefore, we
define a geodesic in (M,F ) as follows. A smooth curve c is a geodesic in
(M,F ) if c has constant speed and its geodesic curvature κ = 0.

H(u,t)

H(0,t)=c(t)

p

q

Figure 6.1: The variation H of c fixing endpoints.

Example 6.0.2. Let F be a Finsler metric. We decompose F into the
symmetric part A and the skew-symmetric part B by setting for y ∈ TxM∖
{0},

F (x, y) = A(x, y) +B(x, y)

where A(x, y) := 1
2(F (x, y) + F (x,−y)), B(x, y) := 1

2(F (x, y) − F (x,−y)).
Then, all geodesics in (M,A) are reversible. Let t = t(s) a reversed change
of parameter for s ∈ R, i.e., t′(s) < 0. As the relation between geodesics γ
in (M,F ) and geodesics in (M,A), we see that if α(s) = γ(t(s)), then γ is
reversible in (M,F ) if and only if it is a geodesic in (M,A). Furthermore,
we set G := 2A. Let dG be an intrinsic distance induced by G and (M,F )
a complete Finsler manifold. Then, m = dG if and only if a metric space
(M,m) is Menger convex, i.e.,if for any p, q ∈ X with p ̸= q, there exists a
point r ∈ X such that r ̸= p, r ̸= q and d(p, r) + d(r, q) = d(p, q) (cf. [20]).
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