WEKO3
アイテム
{"_buckets": {"deposit": "2e1ce631-3ba6-4ce5-bea8-c25ef2f03b5c"}, "_deposit": {"id": "2188", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "2188"}, "status": "published"}, "_oai": {"id": "oai:niigata-u.repo.nii.ac.jp:00002188", "sets": ["454", "489"]}, "item_5_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2000", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "2", "bibliographicPageEnd": "135", "bibliographicPageStart": "103", "bibliographicVolumeNumber": "11", "bibliographic_titles": [{"bibliographic_title": "Nihonkai Mathematical Journal"}, {"bibliographic_title": "Nihonkai Mathematical Journal", "bibliographic_titleLang": "en"}]}]}, "item_5_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "In exterior domains of R^3, we consider the differential operator △+(k×x)・▽ with Dirichlet boundary condition, where k stands for the angular velocity of a rotating obstacle. We show, among others, a certain smoothing property together with estimates near t=0 of the generated semigroup (it is not an analytic one) in the space L^2. The result is not trivial because the coefficient k×x is unbounded at infinity. The proof is mainly based on a cut-off technique. The equation ∂_\u003ciu\u003e=△u+(k×x)・▽u can be taken as a model problem for a linearized form of the Navier-Stokes equations in a domain exterior to a rotating obstacle. This paper is a step toward an analysis of the Navier-Stokes flow in such a domain.", "subitem_description_type": "Abstract"}]}, "item_5_publisher_7": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "新潟大学"}]}, "item_5_select_19": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_5_source_id_11": {"attribute_name": "書誌レコードID", "attribute_value_mlt": [{"subitem_source_identifier": "AA10800960", "subitem_source_identifier_type": "NCID"}]}, "item_5_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "13419951", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Hishida, Toshiaki"}], "nameIdentifiers": [{"nameIdentifier": "7418", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-07-29"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "5_0008.pdf", "filesize": [{"value": "3.9 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 3900000.0, "url": {"label": "5_0008.pdf", "url": "https://niigata-u.repo.nii.ac.jp/record/2188/files/5_0008.pdf"}, "version_id": "71722f3f-5a3a-4db5-b742-27ec2851660f"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "L² theory for the operator Δ+(κ×χ)・∇ in exterior domains", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "L² theory for the operator Δ+(κ×χ)・∇ in exterior domains"}, {"subitem_title": "L² theory for the operator Δ+(κ×χ)・∇ in exterior domains", "subitem_title_language": "en"}]}, "item_type_id": "5", "owner": "1", "path": ["454", "489"], "permalink_uri": "http://hdl.handle.net/10191/5655", "pubdate": {"attribute_name": "公開日", "attribute_value": "2008-04-08"}, "publish_date": "2008-04-08", "publish_status": "0", "recid": "2188", "relation": {}, "relation_version_is_last": true, "title": ["L² theory for the operator Δ+(κ×χ)・∇ in exterior domains"], "weko_shared_id": null}
L² theory for the operator Δ+(κ×χ)・∇ in exterior domains
http://hdl.handle.net/10191/5655
http://hdl.handle.net/10191/5655214205c4-50a1-45af-ae07-56cddcb47d90
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2008-04-08 | |||||
タイトル | ||||||
タイトル | L² theory for the operator Δ+(κ×χ)・∇ in exterior domains | |||||
タイトル | ||||||
言語 | en | |||||
タイトル | L² theory for the operator Δ+(κ×χ)・∇ in exterior domains | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
著者 |
Hishida, Toshiaki
× Hishida, Toshiaki |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | In exterior domains of R^3, we consider the differential operator △+(k×x)・▽ with Dirichlet boundary condition, where k stands for the angular velocity of a rotating obstacle. We show, among others, a certain smoothing property together with estimates near t=0 of the generated semigroup (it is not an analytic one) in the space L^2. The result is not trivial because the coefficient k×x is unbounded at infinity. The proof is mainly based on a cut-off technique. The equation ∂_<iu>=△u+(k×x)・▽u can be taken as a model problem for a linearized form of the Navier-Stokes equations in a domain exterior to a rotating obstacle. This paper is a step toward an analysis of the Navier-Stokes flow in such a domain. | |||||
書誌情報 |
Nihonkai Mathematical Journal en : Nihonkai Mathematical Journal 巻 11, 号 2, p. 103-135, 発行日 2000 |
|||||
出版者 | ||||||
出版者 | 新潟大学 | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13419951 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA10800960 | |||||
著者版フラグ | ||||||
値 | publisher |