WEKO3
アイテム
L² theory for the operator Δ+(κ×χ)・∇ in exterior domains
http://hdl.handle.net/10191/5655
http://hdl.handle.net/10191/5655214205c4-50a1-45af-ae07-56cddcb47d90
名前 / ファイル | ライセンス | アクション |
---|---|---|
5_0008.pdf (3.9 MB)
|
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2008-04-08 | |||||
タイトル | ||||||
タイトル | L² theory for the operator Δ+(κ×χ)・∇ in exterior domains | |||||
タイトル | ||||||
タイトル | L² theory for the operator Δ+(κ×χ)・∇ in exterior domains | |||||
言語 | en | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
著者 |
Hishida, Toshiaki
× Hishida, Toshiaki |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | In exterior domains of R^3, we consider the differential operator △+(k×x)・▽ with Dirichlet boundary condition, where k stands for the angular velocity of a rotating obstacle. We show, among others, a certain smoothing property together with estimates near t=0 of the generated semigroup (it is not an analytic one) in the space L^2. The result is not trivial because the coefficient k×x is unbounded at infinity. The proof is mainly based on a cut-off technique. The equation ∂_<iu>=△u+(k×x)・▽u can be taken as a model problem for a linearized form of the Navier-Stokes equations in a domain exterior to a rotating obstacle. This paper is a step toward an analysis of the Navier-Stokes flow in such a domain. | |||||
書誌情報 |
Nihonkai Mathematical Journal en : Nihonkai Mathematical Journal 巻 11, 号 2, p. 103-135, 発行日 2000 |
|||||
出版者 | ||||||
出版者 | 新潟大学 | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13419951 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA10800960 | |||||
著者版フラグ | ||||||
値 | publisher |