ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "ed341e3a-2e7b-4967-993b-bd2f9746ae81"}, "_deposit": {"id": "2182", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "2182"}, "status": "published"}, "_oai": {"id": "oai:niigata-u.repo.nii.ac.jp:00002182", "sets": ["454", "489"]}, "item_5_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2003", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "2", "bibliographicPageEnd": "195", "bibliographicPageStart": "179", "bibliographicVolumeNumber": "14", "bibliographic_titles": [{"bibliographic_title": "Nihonkai Mathematical Journal"}, {"bibliographic_title": "Nihonkai Mathematical Journal", "bibliographic_titleLang": "en"}]}]}, "item_5_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Let K be a finite Galois extension over an algebraic number field k with Galois group G. We call a modulus m of K Scholz admissible when the Schur multiplier of G is isomorphic to the number knot of K/k modulo m. This paper develops a systematic treatment for Scholz admissibility. We first reduce the problem to the local case, in particular, to the strongly rami-fied case, and study this case in detail. A main object of local Scholz admissi-bility is H^\u003c-1\u003e(G,U^(s)_k) in the strongly ramified case. In the case where K/k is totally strongly ramified of prime power degree p^n, we prove that the natural homomorphism: H^\u003c-1\u003e(G,U^(r+s)_k)→H^\u003c-1\u003e(G,U^(s)_k) is trivial for s ≥ 1, where r denotes the last ramification number, This result describes a basic situation for vanishing of H^\u003c-1\u003e(G,U^(s)_k). Using this result for a Galois tower K⊃L⊃k with a totally strongly ramified cyclic extension L/k we prove a relationship between Scholz admissible moduli of K/L and K/k. This gives a way to estimate for Scholz conductor of K/k from the ramification in K/k. As an application of this result we give an alternative proof of a result of Frohlich.", "subitem_description_type": "Abstract"}]}, "item_5_publisher_7": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "新潟大学"}]}, "item_5_select_19": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_5_source_id_11": {"attribute_name": "書誌レコードID", "attribute_value_mlt": [{"subitem_source_identifier": "AA10800960", "subitem_source_identifier_type": "NCID"}]}, "item_5_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "13419951", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Takeuchi, Teruo"}], "nameIdentifiers": [{"nameIdentifier": "7408", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-07-29"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "5_0015.pdf", "filesize": [{"value": "2.8 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2800000.0, "url": {"label": "5_0015.pdf", "url": "https://niigata-u.repo.nii.ac.jp/record/2182/files/5_0015.pdf"}, "version_id": "7458a23c-9e77-4f8b-8036-e8db3c3bdfb6"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Scholz admissible moduli of finite Galois extensions of algebraic number fields", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Scholz admissible moduli of finite Galois extensions of algebraic number fields"}, {"subitem_title": "Scholz admissible moduli of finite Galois extensions of algebraic number fields", "subitem_title_language": "en"}]}, "item_type_id": "5", "owner": "1", "path": ["454", "489"], "permalink_uri": "http://hdl.handle.net/10191/5666", "pubdate": {"attribute_name": "公開日", "attribute_value": "2008-04-08"}, "publish_date": "2008-04-08", "publish_status": "0", "recid": "2182", "relation": {}, "relation_version_is_last": true, "title": ["Scholz admissible moduli of finite Galois extensions of algebraic number fields"], "weko_shared_id": null}
  1. 050 理学部
  2. 10 学術雑誌論文
  3. 10 査読済論文
  1. 0 資料タイプ別
  2. 01 学術雑誌論文

Scholz admissible moduli of finite Galois extensions of algebraic number fields

http://hdl.handle.net/10191/5666
http://hdl.handle.net/10191/5666
364aa225-bec1-4623-987a-91a63efb82b1
名前 / ファイル ライセンス アクション
5_0015.pdf 5_0015.pdf (2.8 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2008-04-08
タイトル
タイトル Scholz admissible moduli of finite Galois extensions of algebraic number fields
タイトル
言語 en
タイトル Scholz admissible moduli of finite Galois extensions of algebraic number fields
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
著者 Takeuchi, Teruo

× Takeuchi, Teruo

WEKO 7408

Takeuchi, Teruo

Search repository
抄録
内容記述タイプ Abstract
内容記述 Let K be a finite Galois extension over an algebraic number field k with Galois group G. We call a modulus m of K Scholz admissible when the Schur multiplier of G is isomorphic to the number knot of K/k modulo m. This paper develops a systematic treatment for Scholz admissibility. We first reduce the problem to the local case, in particular, to the strongly rami-fied case, and study this case in detail. A main object of local Scholz admissi-bility is H^<-1>(G,U^(s)_k) in the strongly ramified case. In the case where K/k is totally strongly ramified of prime power degree p^n, we prove that the natural homomorphism: H^<-1>(G,U^(r+s)_k)→H^<-1>(G,U^(s)_k) is trivial for s ≥ 1, where r denotes the last ramification number, This result describes a basic situation for vanishing of H^<-1>(G,U^(s)_k). Using this result for a Galois tower K⊃L⊃k with a totally strongly ramified cyclic extension L/k we prove a relationship between Scholz admissible moduli of K/L and K/k. This gives a way to estimate for Scholz conductor of K/k from the ramification in K/k. As an application of this result we give an alternative proof of a result of Frohlich.
書誌情報 Nihonkai Mathematical Journal
en : Nihonkai Mathematical Journal

巻 14, 号 2, p. 179-195, 発行日 2003
出版者
出版者 新潟大学
ISSN
収録物識別子タイプ ISSN
収録物識別子 13419951
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA10800960
著者版フラグ
値 publisher
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 20:43:15.779781
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3