@article{oai:niigata-u.repo.nii.ac.jp:00004172, author = {田辺, 寛 and 渡辺, 健彦 and 阿部, 有希子 and 柳沢, 敦}, issue = {4}, journal = {溶接学会論文集, 溶接学会論文集}, month = {}, note = {This paper described an experimental study of the friction stir welding of dissimilar metals between commercially pure titanium (CPTi) and AZ31B magnesium alloy. Butt joints were produced by changing the joining parameters such as tool rotating speeds, offset distances of a probe and probe diameter. Evaluation of the joints was performed by the observation of the weld surface appearance, X-ray radiographic test, tensile test and SEM and EDX analysis. The main results obtained are as follows. Butt-joint welding of the CPTi plate to the Mg plate was easily and successfully achieved. The ignition of Mg occurred during welding at the tool rotation speeds over 1200rpm. The fragments of CPTi existed in a continuous form in Mg matrix. The tool rotation speed of 1200rpm and the offset distance of 0.2mm attained the maximum tensile strength of a joint, which was about 75% of that of Mg base metal. Fracture occurred at the weld interface in most joint. EDX analysis revealed that Al in the Mg diffused into CPTi through the weld interface. It was found that the decrease in Al concentration in the Mg around the weld interface caused the low tensile strength of the joints. Since the joints welded using the probe of 6mm diameter tended to cause the defects such as cracks and voids compared with the probe of 3mm diameter, the probe with 6mm diameter made the tensile strength of the joints decreased.}, pages = {350--356}, title = {回転プローブによる工業用純チタンとAZ31Bマグネシウム合金の固相接合 : 回転プローブによる異種金属の固相接合(第4報)}, volume = {24}, year = {2006} }