ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "a3d29b97-98e1-4c94-8c7c-55663dfa454d"}, "_deposit": {"id": "2828", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "2828"}, "status": "published"}, "_oai": {"id": "oai:niigata-u.repo.nii.ac.jp:00002828", "sets": ["454", "470"]}, "item_5_alternative_title_1": {"attribute_name": "その他のタイトル", "attribute_value_mlt": [{"subitem_alternative_title": "Wavelet-weighted Gauss quadrature formula for reduction of computational work in wavelet BEM"}]}, "item_5_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2001-08", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "136", "bibliographicPageStart": "127", "bibliographicVolumeNumber": "4", "bibliographic_titles": [{"bibliographic_title": "応用力学論文集"}, {"bibliographic_title": "応用力学論文集", "bibliographic_titleLang": "en"}]}]}, "item_5_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "A wavelet-weighted Gauss quadrature formula is developed to reduce computational work in wavelet BEM. The non-orthogonal wavelet constructed by the authors is used as the basis. This wavelet is defined as a spline, which requires us to divide an interval into several subintervals in calculation of integrals corresponding to the basis. Besides, the number of the subintervals increases in propotion to the order of vanishing moments. The computational work for generating matrices thus is expensive, in particular, in application of numerical integration. The present formula enables us to carry out numerical integrations without division of the interval, since the wavelet is also employed as a weighting function of the formula. The number of integration points is determined a priori based on estimation of the integration error and a prescribed accuracy. In wavelet BEM, the error tolerance can be given by a threshold for matrix compression. Through numerical experiments, availability of the present method is verified.", "subitem_description_type": "Abstract"}]}, "item_5_full_name_3": {"attribute_name": "著者別名", "attribute_value_mlt": [{"nameIdentifiers": [{"nameIdentifier": "39311", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Koro, Kazuhiro"}]}, {"nameIdentifiers": [{"nameIdentifier": "39312", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Abe, Kazuhisa"}]}, {"nameIdentifiers": [{"nameIdentifier": "39313", "nameIdentifierScheme": "WEKO"}], "names": [{"name": "Hirabayashi, Hideyuki"}]}]}, "item_5_publisher_7": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "土木学会"}]}, "item_5_select_19": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_5_source_id_11": {"attribute_name": "書誌レコードID", "attribute_value_mlt": [{"subitem_source_identifier": "AA11311063", "subitem_source_identifier_type": "NCID"}]}, "item_5_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "13459139", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "紅露, 一寛"}], "nameIdentifiers": [{"nameIdentifier": "39308", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "阿部, 和久"}], "nameIdentifiers": [{"nameIdentifier": "39309", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "平林, 秀之"}], "nameIdentifiers": [{"nameIdentifier": "39310", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-07-30"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "jsceam2001.pdf", "filesize": [{"value": "462.6 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 462600.0, "url": {"label": "jsceam2001.pdf", "url": "https://niigata-u.repo.nii.ac.jp/record/2828/files/jsceam2001.pdf"}, "version_id": "f42a20dd-f4a0-4dab-b0b7-e94170a1951e"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "wavelet BEM", "subitem_subject_scheme": "Other"}, {"subitem_subject": "non-orthogonal spline wavelet", "subitem_subject_scheme": "Other"}, {"subitem_subject": "weighted Gauss quadrature formula", "subitem_subject_scheme": "Other"}, {"subitem_subject": "numerical integration", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Wavelet 基底を用いた境界要素解析の効率化のためのwavelet 重み付き Gauss 積分公式", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Wavelet 基底を用いた境界要素解析の効率化のためのwavelet 重み付き Gauss 積分公式"}, {"subitem_title": "Wavelet 基底を用いた境界要素解析の効率化のためのwavelet 重み付き Gauss 積分公式", "subitem_title_language": "en"}]}, "item_type_id": "5", "owner": "1", "path": ["454", "470"], "permalink_uri": "http://hdl.handle.net/10191/4880", "pubdate": {"attribute_name": "公開日", "attribute_value": "2007-06-21"}, "publish_date": "2007-06-21", "publish_status": "0", "recid": "2828", "relation": {}, "relation_version_is_last": true, "title": ["Wavelet 基底を用いた境界要素解析の効率化のためのwavelet 重み付き Gauss 積分公式"], "weko_shared_id": null}
  1. 0 資料タイプ別
  2. 01 学術雑誌論文
  1. 230 大学院自然科学研究科
  2. 10 学術雑誌論文
  3. 10 査読済論文

Wavelet 基底を用いた境界要素解析の効率化のためのwavelet 重み付き Gauss 積分公式

http://hdl.handle.net/10191/4880
http://hdl.handle.net/10191/4880
04b62fb6-9098-4575-85c2-b29a34ce1953
名前 / ファイル ライセンス アクション
jsceam2001.pdf jsceam2001.pdf (462.6 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2007-06-21
タイトル
タイトル Wavelet 基底を用いた境界要素解析の効率化のためのwavelet 重み付き Gauss 積分公式
タイトル
言語 en
タイトル Wavelet 基底を用いた境界要素解析の効率化のためのwavelet 重み付き Gauss 積分公式
言語
言語 jpn
キーワード
主題Scheme Other
主題 wavelet BEM
キーワード
主題Scheme Other
主題 non-orthogonal spline wavelet
キーワード
主題Scheme Other
主題 weighted Gauss quadrature formula
キーワード
主題Scheme Other
主題 numerical integration
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
その他のタイトル
その他のタイトル Wavelet-weighted Gauss quadrature formula for reduction of computational work in wavelet BEM
著者 紅露, 一寛

× 紅露, 一寛

WEKO 39308

紅露, 一寛

Search repository
阿部, 和久

× 阿部, 和久

WEKO 39309

阿部, 和久

Search repository
平林, 秀之

× 平林, 秀之

WEKO 39310

平林, 秀之

Search repository
著者別名
識別子 39311
識別子Scheme WEKO
姓名 Koro, Kazuhiro
著者別名
識別子 39312
識別子Scheme WEKO
姓名 Abe, Kazuhisa
著者別名
識別子 39313
識別子Scheme WEKO
姓名 Hirabayashi, Hideyuki
抄録
内容記述タイプ Abstract
内容記述 A wavelet-weighted Gauss quadrature formula is developed to reduce computational work in wavelet BEM. The non-orthogonal wavelet constructed by the authors is used as the basis. This wavelet is defined as a spline, which requires us to divide an interval into several subintervals in calculation of integrals corresponding to the basis. Besides, the number of the subintervals increases in propotion to the order of vanishing moments. The computational work for generating matrices thus is expensive, in particular, in application of numerical integration. The present formula enables us to carry out numerical integrations without division of the interval, since the wavelet is also employed as a weighting function of the formula. The number of integration points is determined a priori based on estimation of the integration error and a prescribed accuracy. In wavelet BEM, the error tolerance can be given by a threshold for matrix compression. Through numerical experiments, availability of the present method is verified.
書誌情報 応用力学論文集
en : 応用力学論文集

巻 4, p. 127-136, 発行日 2001-08
出版者
出版者 土木学会
ISSN
収録物識別子タイプ ISSN
収録物識別子 13459139
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11311063
著者版フラグ
値 publisher
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 20:23:53.398780
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3