@article{oai:niigata-u.repo.nii.ac.jp:00002576, author = {今泉, 洋 and 高橋, 静香 and 斎藤, 正明 and 山口, 貢 and 福井, 聡 and 佐藤, 孝雄}, issue = {3}, journal = {Radioisotopes, Radioisotopes}, month = {Mar}, note = {環境水などのトリチウム濃度の測定には, 一般に液体シンチレーション法が用いられている。この場合, 次の二とおりが一般的である: (1) 試料水を大きなバイアルで長時間, 低バックグラウンド液体シンチレーション計数器を用いて直接測定する; (2) 電気分解法を用いて, 試料水のトリチウム濃度を上げ, それを一般の液体シンチレーション計数器で測定する。しかし, 固体高分子電解質膜を用いた電解法 (SPE電解法) による濃縮では, トリチウム分離係数 (βa) があまり大きくなく, 6前後である。このβaを上げることは, 環境水などのトリチウム濃度の確度を上げることになるため重要である。そこで, 電解に及ぼす強磁場の影響に着目し, SPE電解法に基づく電解装置を磁場発生装置中に設置し, 種々の強磁場下での電解を試みた (0-3T) 。電解装置は, 磁場に対する電解電流の向きが (a) 直角, (b) 向流, (c) 逆流, の3条件になるよう設置した。その結果, 次の三ρが得られた: (a) では, 2T程度までは, βaの上昇が見られたが, 以後は下降傾向になった; (b) では, 3Tまでは, βaの単調上昇が認められ, 特に2T-3T以上では, 指数関数的に上昇した; (c) では, 0-3Tの範囲において, βaに若干の上昇傾向が見られた程度であった。以上から, 次の二つが明らかとなった。 (1) 電解に及ぼす磁場の影響は, 条件によってはかなり大きい, (2) この条件を設定することで, 大きなβaを得ることができる。, In general, a liquid scintillation method can be applied to determine the tritium concentration in an environmental water such as rain water and river one. In this case, the followings are generally carried out:(1)a sample solution is directly measured in a large vial for long time (about several days) by using a low-back liquid scintillation counter;(2)after the sample solution is enriched by applying the electrolysis method, the solution thus enriched is measured with a normal liquid scintillation counter. However, the tritium separation factor (βa) in the solution obtained by the electrolysis-apparatus having a film of solid polymer electrolyte by applying the electrolysis method (SPE electrolysis method) is not so large (about 6). Increasingβa in the solution is an important matter since it leads to an increase in the accuracy of tritium concentration in an environmental water. We then considered the effect of a high magnetic field on the electrolysis, the electrolysis-apparatus based on the SPE electrolysis method was set in the field, and the electrolysis was carried out under each high magnetic field in the range of 0-3 T. The electrolysis-apparatus was set as follows: the direction of the electrolysis current was at (a) right angle, (b) counter current, (c) reverse current, to the magnetic field. Consequently, the following three were obtained : in the case of(a), βa increased with increasing the magnetic field between 0 and 2 T (0-2 T), but decreased with increasing one (2-3 T) ;in that of(b) , a increased with increasing the magnetic field (0-3 T), and especially, exponentially increased (2-3 T) ;in (c), βa slightly increased (0-3 T). From the above-mentioned, the following two matters were clarified : (1) the effect of the magnetic field on the electrolysis is fairly large under a certain condition ;(2)a large βa can be obtained when an appropriate condition is chosen.}, pages = {101--108}, title = {強磁場下でのトリチウム電解濃縮の有用性}, volume = {51}, year = {2002} }