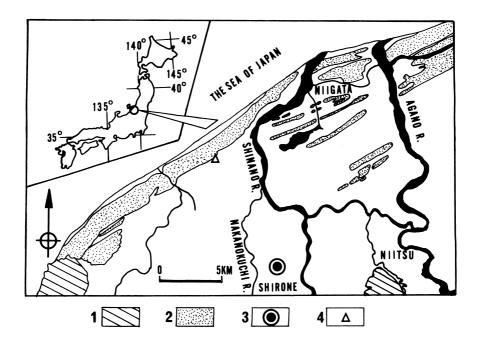
Holocene foraminiferal fauna and sedimentary environment in the Shirone area, Echigo Plain, central Japan

Satoshi YASUI*, Kikuo WATANABE**, Yukihiko KAMOI* and Iwao KOBAYASHI***

Abstract


Foraminiferal assemblages of a drilling core in the Shirone area, Echigo Plain, central Japan are analyzed, and the stratigraphical change of the Holocene sedimentary environment of this area is discussed on the basis of the change of lithological facies and the foraminiferal assemblages. The geologic profile of the core is divided into four sedimentary units, U-1 to U-N in descending order. Moreover, U-III is subdivided into SU-III-1 and -2. U-II, U-III and U-IV contain foraminifers. Foraminiferal fauna is divided into four divisions, Foraminiferal Divisin (F.D.)-A to -D. F.D. -A, -B, -C and -D correspond to U-II, SU-III-1, SU-III-2 and U-IV respectively. The F.D.-A consists of Ammonia beccarii Assemblage. The F.D.-B does mainly Ammonia beccarii-Quinqueloculina akneriana Assemblage. The F.D.-C does mainly Ammonia beccarii- Elphidium etigoense Assemblage. The F.D.-D does Ammonia beccarii Assemblage. Sedimentary environments have successively been changed oligohaline to mesohaline water of innermost bay in U-IV, polyhaline to mesohaline water of inner to outer bay in SU-III-2, and oligohaline to mesohaline water of lagoon in SU-III-1 to U-II, from 10,000 to 6,000 years ago. The sea expansion in the Echigo Plain corresponded to the age of Holocene transgression. And it is noticeable that a lagoonal environment had been took the place of bay's one, or that a lagoonal environment appeared about 7,000 years ago. It may be caused by the formation of sand barrier situated in the coastal area of the Echigo Plain.

Key words: Assemblage, foraminifera, holocene, sedimentary environment.

^{*} Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.

^{**} Watanabe Consulting Engineer Office, Honumakoshi, Niigata 950-0865, Japan.

^{***} Department of Geology, Faculty of Science, Niigata University, Niigata 950-2181, Japan. (Manuscript received 29 Novenber, 1999; accepted 17 January, 2000)

Fig.1. Location map of the Shirone 9-4 1. Mountain and hill, 2. Dune, 3. Location of the Shirone 9-4 core site, 4. Location of the Sakaiwa K-1 core site (Kobayashi et al., 1976) (Distribution of dunes is after Niigata Ancient Dune Reserch Group, 1974).

Introduction

The Echigo Plain is one of wide alluvial plains in the coastal area along the Sea of Japan. The maximum thickness of the latest Pleistocene and Holocene (Alluvium) in the Echigo Plain is more than 150m (Minato et al., 1967; Wada, 1972). The deposits yield rare marine fossils (Fukuda et al., 1966; Kobayashi et al., 1976; Niigata Diatom Research Group, 1976)

The Shirone area is situated on the inside of the Niigata dune along the sea coast (Fig. 1). Several stratigraphical and environmental studies have been carried out for the countermeasure of land subsidence (Hasegawa et al., 1967; Wada, 1972; Niigata Quaternary Research Group, 1972). Hasegawa et al. (1967) represented that thick fossiliferous clay beds were distributed 20 m to 30 m below the ground in the Shirone area. Wada (1972) suggested that these clay beds were formed under lagoonal environment which was caused by the Holocene transgression, so-called the Jomon transgression. In these reports, detailed analyses of fauna and sedimentary environment were not carried out.

The authors fortunately have a chance to study sedimentary facies and foraminifers of one

core which was drilled in the Shirone area. The core contains many molluscan fossils and microfossils such as foraminifers, ostracods and radiolarians. In this paper, the stratigraphical change of foraminiferal assemblages and Holocene sedimentary environments is discussed on the basis of the analysis of this core from the Shirone area.

Outline of geology

The alluvium in the Echigo Plain was stratigraphically divided into two formations, Shirone and Kurotori Formations by Aoki and Nakagawa (1980). Recently, the geologic section between Shirone and Niigata Cities and the ¹⁴C data were reported by Yasui et al. (1998). The ages of Shirone and Kurotori Formations were dated from 20,000 to 4,500 y.B.P., and younger than 4,500 y.B.P. respectively.

The geologic section from Niigata to Shirone Cities around the studied area is shown in Fig. 2. The alluvium in the Shirone area ranges from 100 m to 125 m in thickness, and unconformably overlies the Upper Pleistocene buried terrace gravels and firmed peats.

The lower part of the Shirone Formation is composed of massive silts and alternating beds of sand and silt, which were deposited in fresh water environment, because these beds contain vivianites and plant fragments. The middle part of the Shirone Formation consists of soft marine clay facies which changes to fine sand facies toward the north. The upper part of the Shirone Formation is composed of alternating beds of sand and silt which were deposited in marine or brackish water environment. The Kurotori Formation is composed of alternating beds of medium or fine sand, silt and humus, and these beds indicate fluvial strata. It ranges from 10 m to 15 m in thickness.

The unconformity between Pleistocene and Holocene strata has not be seen yet in the Shirone area.

Material and method

The drilling site (Shirone 9-4) is in Negishi, Shirone City, Niigata Prefecture (N37° 47' 29", E139° 2' 2"). The site is located in a coastal plain between Shinano and Nakanokuchi Rivers in the northern part of the Echigo Plain (Figs. 1 and 2). The depth of the drilling hole is 70.0 m, and the altitude is 0.2 m below the sea level.

Samples for foraminiferal analysis are prepared by the following process. The upper half of one meter core was taken by split spoon sampler, and the lower half was by double core tube. Clayey and silty sediments were cut every 10 cm intervals. The weight of one wet sample taken by split spoon sampler is 10 g to 30 g, and the weight by double core tube is 70 g to 100 g. The analyzed samples were picked up all in 18.5 m to 35.9 m, and each 20 cm to 30 cm interval in 35.9 m to 63.9 m. The samples were washed by the use of a sieve of 75μ m openings. The remained samples on the sieve were dried. Moreover, they were passed through a sieve of

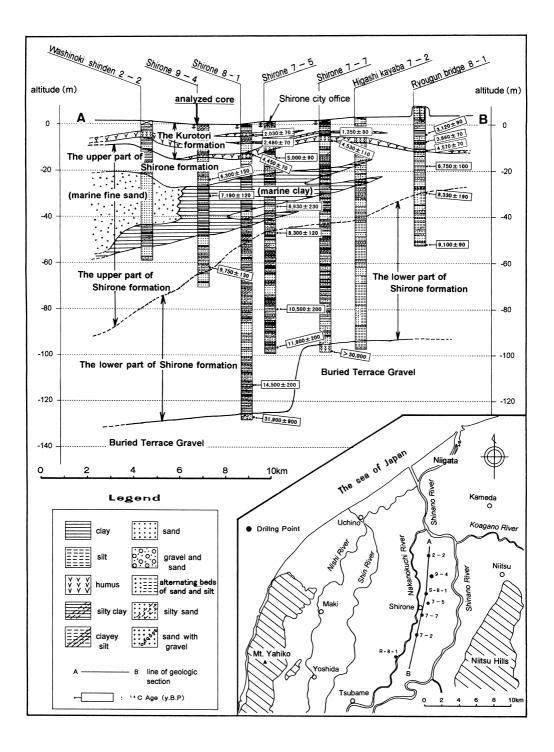


Fig. 2. The geologic section of Shirone area (modified from Yasui et al., 1998)

 $125 \,\mu$ m openings. The passed samples were used for foraminiferal analysis. Most of samples were divided by a splitter to get 200 odd individuals, and all specimens were picked up from each sample.

Division of sedimentary unit

The profile of the core is divided into four sedimentary units, U- I to U-IV from sedimentary facies in descending order (Fig. 3).

U-I (0.7 m - 14.3 m) is composed of alternating beds of silt and very fine to fine sand, with two distinctive humus layers. Silt layers include abundant plant fragments.

U-II (14.3 m - 25.9 m) is composed of very fine to fine sands, and fine alternating beds of silt and very fine sand. The uppermost part consists of pumiceous sands. Shells of *Potamocorbula amurensis* and *Corbicula japonica* are found between 18.0 m and 20.0 m below the ground.

U-III (25.9 m - 47.7 m) is composed mainly of clays, and subdivided into two subunits by a slight difference of facies, namely SU-III-1 and SU-III-2. SU-III-1 (25.9 m - 32.9 m) is composed of dark greenish gray massive silty clays with many small molluscan shells. SU-III-2 (32.9 m - 47.7 m) is composed of dark gray to black laminated silty clays and intercalated sandy silts in two layers which contain abundant plant fragments in 32.9 m to 34.2 m and 35.9 m to 37.4 m below the ground.

U-IV (47.7 m -70.0 m) is composed of alternating beds of silt and very fine to fine sand at 0.2 m to 1m intervals with several layers of medium sands. Silt layers include abundant plant fragments. Fine alternating beds of sand and silt at intervals of 0.2 cm to 1cm are intercalated at several horizons. Shells of *Corbicula japonica* are found at 63.0 m below the ground.

U- I is corresponded to the Kurotori Formation and U- II to IV are correlated with the Shirone Formation. The ¹⁴C ages (Yasui et al., 1998) in Fig. 3 are dated in the Shirone 9-1 core which is located about 170 m away from the Shirone 9-4 core.

Characteristics of foraminiferal occurrence

The samples collected from 37 horizons of the Kurotori formation contain some radiolarians in several horizons, but no foraminifera. The occurrence of a few specimens of Thecamoebina (Testacea) is noticeable at 1.8 m to 1.9 m below the ground. The morphological feature of the family is similar to foraminifera. Thecamoebina is a fresh water species, but sometimes is found from shallow marine sediments which was deposited in marine bottoms under the influence of fresh water.

The samples collected from 142 horizons of the Shirone formation are analyzed, and 112 samples of them contain many fossils such as molluscs, foraminifers, radiolarians, ostracods and diatoms. The distributional chart of foraminifers in this formation is shown in Table 1. It

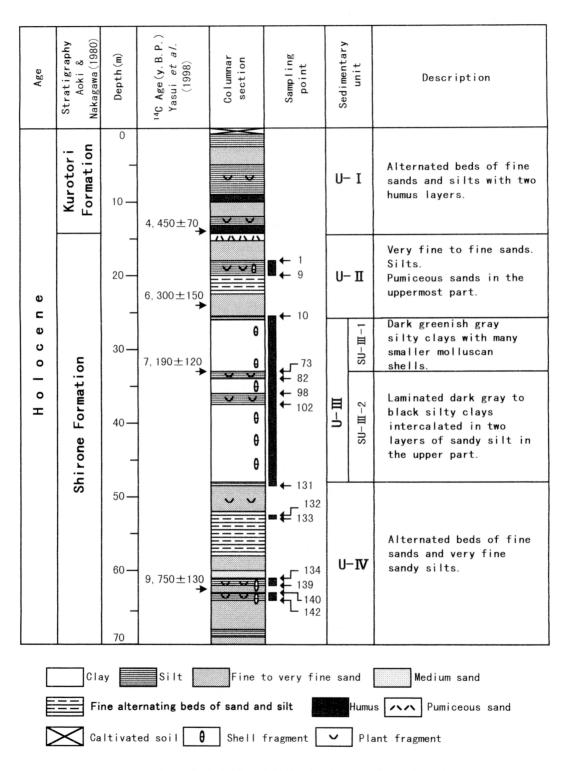


Fig. 3. The geological column of Shirone 9-4 core, and sampling points.

		28.90-29.0						Γ							T		9330		с И И		Γ																		
R Base-28.70 Image: Constraint of the second secon	ຶ	28.80-28.9	Ð					\downarrow				\downarrow					20			~															_				-
Bit Book 2000 Image: Constraint of the const								1				1							-		1																		
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$																		-												\downarrow									
0.12840			_											_							Ľ																		
Balo-28.0 Image: Constraint of the second of t	34	28.40-28.5	50					Γ				J			ſ		ດ				Γ						_			Ι									
$ \begin{array}{ $	32	28.20-28.3	30					Т							I		_				Γ																		
$ \begin{array}{ $	31	28.10-28.2	20					Τ			-	T			I		538	2			Γ			_						T									
June 2010 June 2010 <t< td=""><td>8</td><td>27.90-28.0</td><td>00</td><td></td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td>Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	8	27.90-28.0	00					T										2			Γ																		
June 2010 June 2010 <t< td=""><td>29</td><td>27.80-27.9</td><td>90</td><td></td><td></td><td></td><td></td><td>Τ</td><td></td><td></td><td></td><td>T</td><td></td><td></td><td>T</td><td></td><td>414</td><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	29	27.80-27.9	90					Τ				T			T		414				F																		
Sample function Sample fun								Т				T			Τ		6	ŧ			Γ									T									
Sample number Sample n								T							T		8				T																		
Sample number Image of the second of the secon	26	27.50-27.0	60					t				1			T		4				4									1									
Jambe number Jambe num Jambe number Jambe number <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>T</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>ſ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								T				1			T					-	ſ									1									
Semple number Semple n			_					T							T		-			-	•																		
Sample function Sample function Sample function 28male function 2	23	26.90-27.0	00					T							T		46				Ι																		
Sample rundber and bestehrend within withi	22	26.80-26.9	90														48																						
Sample number Sample n	21	26.70-26.	B0					Τ									23		¢	°	Γ																		
Sample number 1 2 <th2< th=""> 2 2 <t< td=""><td></td><td>26.60-26.</td><td>70</td><td></td><td></td><td></td><td></td><td>Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></th2<>		26.60-26.	70					Γ										0																					
Sample number 1 2 <th2< th=""> 2 2 <t< td=""><td>19</td><td>26.50-26.</td><td>60</td><td></td><td></td><td></td><td></td><td>Γ</td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td></td><td>1010</td><td></td><td></td><td></td><td>15</td><td>2</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<></th2<>	19	26.50-26.	60					Γ				T					1010				15	2					-	-	-		-	-		-					
Sample Function Condition Condition <thcondition< th=""></thcondition<>	18	26.40-26.	50					t				1			T						T									1				-					•
Sample number and formed filteration Sample number (filteration) Construction (filteration) Sample number (filteration) Sample number n		26.30-26.4	40					t				1			t		4				T																		
Sample number and formed filteration Sample number (filteration) Construction (filteration) Sample number (filteration) Sample number n	16	26.20-26.3	30					t				1			t		161				T																		
Sample number Contigny Sample number	10							t				1			T		4				T	•	-																
Sample number 1 2 3 4 5 7 3 10 10 1 10 1 10 1 10 1 10 <th< td=""><td>14</td><td>25.90-26.</td><td>00</td><td></td><td></td><td></td><td></td><td>t</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>T</td><td></td><td>155</td><td></td><td>•</td><td>-</td><td>Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	14	25. 90 -26.	00					t				1			T		155		•	-	Γ																		
Sample number 1 2 3 6 7 3 8 8 8 9 9 6 1 <	13	25.80-25.9	90					T				T			T						٩	,																	
Sample number Sample n	12	25.70-25.	80					T							T		273	0	•	4 c	4																		
Sample number Sample n	Ξ	25. 60 -25.	70					T									192		- [6	T																		
Sample number 1 2 3 4 5 6 7 3 1 2 3 4 6 6 6 6 6 6 6 6 6 6 7 3 4 3 4 4 4 4 4 4 4 4 4 4 4 <	2	25.50-25.	60					T				1			I		126				Ľ	>																	-
Sample number 2 3 4 Capth(m) Dapth(m) 0 0 0 Misnet Chigmy 0 0 0 Misnet Contigmy 0 0 0 Misnet 0 0 0 0	9	19.60-19.	70					T									103	n																					
Sample number Sample number Sample number Sample number Depth(m) Depth(m) Misnet d'Orbigny Misnet Misnet Misnet a (Enternberg) Misnet a (Orbigny) Misnet a (Orbigny) Misnet a (Cothigny)	5	19.50-19.	60					T				1					<u>3</u>				Τ																		
Sample number Sample number 2 Depth(m) Depth(m) Depth(m) Depth(m) Ofbigny Misnet Misnet GOPIE 1 Misnet GOPIE 1 Misnet GOPIE 1 Misnet GOPIE 10 Misnet Misnet 10 Misnet GOPIE 10 Misnet GOPIE <td< td=""><td>4</td><td>18.90-19.</td><td>00</td><td></td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	4	18. 90 -19.	00					T																															
Sample number Sample number Depth(m) Depth(m) Misnet Orbigny Manuasi Orbigny Maruhasi Orbigny Misnet Orbigny Misnet Orbigny Maruhasi Orbigny Maruhasi Orbigny Maruhasi Orbigny Misnet Orbigny	~	18.7 0 -18.	80					T									თ																						
Sample number Depth(m) Depth(m) Depth(m) Misnet Misnet Misnet Stant Misnet	~	18. 60 18.	70					T									-				Ι																		
d'Orbigny Misnet S Blow Misnet S Blow Misnet a (Ethrenherg) a (Ethrenherg) a (Ethrenherg) a (Corbigny) a Cushman & Man C ma C a Cushman & Man C dersen & dersen & dersen a M dersen & M der	Ē		60														2				Γ																		
Species Species Antitoric foraminifiera Antitoric foraminifiera 1 Globigerine bulloides d'Orbigric 2 G. cf. brach Wisnet 3 G. cf. brach Wisnet 4 G. faconansis Blow 6 G. quinquelote Nation 1 Globigerinita glutinata (Ehren 6 G. quinquelote Nation 9 G. sp. A 9 G. pachiderma (Ehren 11 G. sp. A 12 Globigerinita glutinata (Ehren 13 Globoratalia glutinata 14 Annonia baccari forma I 11 G. sp. A 12 Globoratalia glutinata 13 Globoratalia glutinata 14 Annonia baccari forma I 12 Bosonica Hada 13 Bosonica Hada 14 Annonia forma I 15 A baccari forma I 16 A baconica Hada 17 A sponica Hada 18 Japonica Hada 19 Bosonica Hada	Sample number	Depth(m)	\int					Derg	2	_				лу)	62															(y u	ne (d'Orbigmy)			a & Maruhasi		(y i	lan	Asano	
		boles		tonic foraminifera 3/obigerina bulloides d'Orbigny			-				3. spp.	Globigerinita glutinata (Egger)	G spp.	Globigerinoides ruber (d'Orbigi	Gioborotalia ungulata Bermude	hic calcareous foraminifers	Ammonia beccanii (Linne)						محتديا	Bourvira spp.	b <i>uccella mena canaa</i> cusnim Bu <i>limina</i> spp.	3uliminidae? gen. et sp. indet.	<i>Bussella frigida</i> (Cushman)		Cassidulina sp.	Cibicides ungerianus (d'Orbign	Discopulvinulina cf. isabellean	D. sp.	Elphidium clavatum Cushman						
		ନ୍ତ୍ର 🖌			2 6	3 6	4	카		. 8	5	9	11	12	13	ent	<u>+</u>	12	2	2	Ì	2	20	17	23 6	24 E	25 4	26 4	27 6	28 (29 4	30 4	31 4	32 4	33 4	34 4	35 4	36 4	•

(ən
Contin
ation (
e forma
shirone
n the S
lers ir
l chart of foraminifers ir
of fc
chart
butional
). Distr
ble 1(2)
Table

$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$					_					-																			
ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (fatewin) ac a formanti (formanti) ac a formanti (fatewin) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti) ac a formanti (formanti formanti formant	Ξ																												
cf. indomanta, (Custanum) cf. indomanta, (Custanum) correct area cf. indomanta, (Custanum) correct area correct area correct area <t< td=""><td>41 Eponides cf. procerus (Bredv)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	41 Eponides cf. procerus (Bredv)																												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	surina																												
ub e to: 1 1 4 1 4 1<	44 Glomospirella sp.								-	-				-	-					_					┝				
not a fagistion (Erek) 1 <td>45 Guttuline sp.</td> <td></td>	45 Guttuline sp.																												
Mole 8: A </td <td>46 Hauerine fragilissime (Brady)</td> <td></td>	46 Hauerine fragilissime (Brady)																												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	47 Melonis sp.																												
wynaka globae wllet: wynaka gl	48 Miliolinells spp.		_	_		-	_			_			4		_				_	_	_					-	_	_	
or es. <i>denomine prestructuri</i> (J Orkery) <i>denomine prestructuri</i> (J Orkery) <i>denomine prestructuri</i> <i>denomine armende</i> <i>formation</i> <i>formation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erritation</i> <i>erri</i>	49 Murraynella głobosa Millett																												
a e.e. dorincia / maintorai / activity is a second of charged in a second manual of charged in a second manual of charged in a second manual is a second manual in a	50 Nonion spp.																												
doronion gratework (Chcitery) doronion gratework (Chcitery) 1	51 Ooline sp.																												-
georgica Atenco decorate A	52 Pseudononion grateloupi (d'Orbigny)																												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	53 P. japonica Asano					-								-				-							-				
elongetate (Netlend) elongetate (Netlend) cf. hasimotic (Linnauus) cf. hasimotic (Satano satural (Linnauus) 1 sp. A sp. A state sp. A sp. A sp. A sp. A sp. A sp. A sp. A dots asside relations sp. A dot sp. A sp. A <td>54 Quinqueloculina akneriana d'Orbienv</td> <td></td> <td>┝</td> <td></td> <td></td> <td>-</td> <td>9</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>Ē</td> <td></td> <td>17</td> <td></td> <td>-</td> <td>2</td> <td>-</td> <td>1</td> <td></td>	54 Quinqueloculina akneriana d'Orbienv		┝			-	9			-								-	-		Ē		17		-	2	-	1	
cf. heatmachicit Alence cf. heatmachicit Alence structure (Linneaus) structure (Linneaus) structure (Contrigented Contrinent & Todd structure (Linneaus) distructure for contrigented (Linneaus) structure (Linneaus) distructure for contrigented (Linneaus) structure (Linneaus) distructure for structure structure (Linneaus) distructure for structure (Linneaus) structure (Linneaus) distructure (Linneaus) structure (Linneaus) distructure (Linneaus) structure (Linneaus) distructure (Linneaus) structure (Linneaus) structure (Linneaus) structure (Linneaus) structure (Linneaus) structure (Linneaus) structure (Linneaus) structure (Linneau	55 0 eloneste (Natland)						4	_													-								
solution (Intraeud) solution (Intraeud) 1 1 1 1 3 4 3 self sp. A sp. A sp. A 1 1 3 4 3 self station (Intraeud) sp. A sp. A 1 1 3 4 3 self station (Intraeud) station (Intraeud) station (Intraeud) 1 3 4 3 self station (Intraeud) station (Intraeud) 1 1 1 3 4 3 for constates Custman & Toold intercold intercold intercold intercold 1 1 1 3 4 3 dot constates Custman & Toold intercold intercold intercold intercold 1 1 1 1 3																													
Solution Lititation 2 1 15 10 1 3 4 3 Sp: sp: sp: sp: 10 1 3 4 3 self statistical Custman statistical Custman 10 1 3 4 3 self statistical Custman statistical Custman 10 1 3 4 3 dus statistical Custman statistical Custman 10 1 3 4 3 dus statistical Custman corruptical Custman 10 1 3 4 3 dus statistical Custman 1 1 1 1 3 4 3 dus statistical Custman 1 1 1 1 1 1 3 1									•														0						
Self BP A In the self and									-														0					_	
sele 90. 15 10 1 3 4 3 sele 40 10 1 3 4 3 4 3 sele asset Aseno Maxael Cushman & Todd 1 1 1 1 1 1 1 3 4 3 sesset Aseno Accumatic Cushman & Todd Accumatic Cushman & Todd 1 </td <td></td> <td></td> <td>+</td> <td>_</td> <td></td> <td>-</td> <td>+</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>┥</td> <td></td> <td></td> <td></td> <td>┥</td> <td>+</td> <td></td> <td></td> <td></td>			+	_		-	+			-				+						+	┥				┥	+			
seale actancice Cushman & Toda ser. seal sean seal sean seal sean seal sean seal sean due sea sean due sean							7						15						0		_		e			4			
Br. St. S	60 Reussella atlantica Cushman																												
<i>lus sasa</i> Naeno <i>becuina</i> of <i>commuis</i> Cushman & Told <i>cf. commuis</i> Cushman & Told <i>china trigenula</i> (Lamacci) <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i> <i>sp.</i>																													
Modulina of, communic Cushman & Todd Image: Cushman & To	62 Robulus sasai Asano																						-						
cf. corrugate Custman & Took cf. corrugate Custman & Took culine trigenule (Lamack) en evine exitencis h evine h evin h f	63 Spirotoculina cf. communis Cushman & Todd																												
cuira trigonula (Lamerch) en: en: en: en: en: en: en: en:	64 S. cf. corrugate Cushman & Todd		\vdash			╞				\vdash	_		T	┢	-				-						\vdash	-	-		
sp. sp. and instrantistic Astrono and instrantistic Astrono august intrinstad forminifieral formula	65 Triloculina trigonula (Lamarck)																												
errise exiteensis Aseno errise exiteensis Ase																													
auglutinated foraminifera polynagendides sp. A spp. spc. spc. spc. spc. spc. officer asp. A spc. spc. spc.	67 Uvigerina akitaensis Asano		-	_		-	_											-			_				-	_			
ophræmindes sp. keyn sp. sp. sp. sp. sp. oline sp. keyn sp. sp. sp. oline sp. keyn sp. sp. sp. sp. sp. oline sp. keyn sp. sp. sp.	Benthic agglutinated foraminifera		-							-				-											-	-			
Sp. willing sp. A harminia et. pygmaes Hoglund harminia et. pygmaes Hoglund Sp. Sp. Sp. Sp. harminia et. pygmaes Hoglund Sp.	68 Haplophragmoides sp. A																												
oviira sp. A hammina of <i>programme</i> Hoglund hammina of <i>programme</i> Hoglund sp. hammina of <i>programme</i> Hoglund sp. hammina of <i>programme</i> Hoglund sp. hammina of <i>programme</i> Hoglund sp. hoglund	69 H. spp.																												
fharmina of trygmae Hoglund tharmina of trygmae Hoglund spp. 11 1 9 11 302 105 151 151 161 4 20 20 6 13 283 353 151 151 161 4 20 20 8 46 2 1 129 38 418 180 583 1 5 161 1 20																													
spp. spp. ber 11 1 9 11 302 108 15 161 4 20 140 240 48 46 2 1 129 38 350 15 161 4 20 140 240 48 46 2 1 139 130 130 130 131 133 331 350 266 90 603 32 69 343 11 133 97 109 496 239 237 6 180 331 331 321 <td>71 Trochammina cf. pygmaea Hoglund</td> <td></td>	71 Trochammina cf. pygmaea Hoglund																												
ber 11 9 11 302 108 15 161 4 20 140 240 48 46 2 1 129 38 13 15 161 4 201 140 240 48 46 2 1 129 38 13 <t< td=""><td>72 T. spp.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>	72 T. spp.																	_								_			
Immber(/100g) 20 6 13 21 310 124 137 333 331 350 206 90 603 32 61 54 31 11 133 97 109 496 329 363 312 321 Number(/100g) 0		1 11	6	1 302			53 286	350	157	15 16			1044	140 2							3 418	180	583	-		178	6 14	0 231	
	Individual number(/100g)			-	124		33 331	350	206			69	3492	150 5		_		111		10	9 496	329	2370		18 1;		36 31,	2 321	
	Radiolaria		-			0			-			0				0	-		-		0		0	0		0		0	0
	Ostracod						0		0	0			5	-	~			0	0	0	0	0	0		0	0	-		0

ଜି 35.80–35. 90	-		
සි <u>35.70–35.80</u>	- 93	w w	66
\$35.60-35.70 - 4 - ∾ ∞ ∞	37 200	22 23	с æ 0
\$ 35.50-35.60	2 9 2 2	۵	- 4 -
35.35-35.45	3 4 4 2	19 2	∽ 2i
S 35.25-35.35	~ ~ ~		
\$ 34.90-35.00			
[∞] 34.80–34.90 [−] [−]	<u>8</u> 3 79	15 6	- 12 2
8 34.70-34.80		<u>م</u> م	
5 34.60–34.70	20 3		- 20
8 34.50-34.60	400	m	<u> </u>
없 34.30-34.40	- w	N	- 2
a 34.20–34.30	- a		~ ~ ~
≈ 34.20-54.50 ≈ 32.80-32.90			
► 32.80-32.90 ► 32.70-32.80	4-		
P 32.50-32.60	<u>↓</u>		
C 32.40-32.50	- ma	-	
© 32.20−32.30			
3 31.90-32.00	- ³ 4		
5 31.80-31.90 ~ ~	6 24 5 6 24 4	- 22	- a
ප 31.80 2 31.70–31.80	0 <u>6</u> 0 4 − 60	-	
© 31.60-31.70	33 8 6 33 8 8		- ~
₩ 31.50-31.60	2 0 2 2 2 2		
留 31.30-31.40	7 2 3		
8 31.20-31.30	~~~~~		
G 31.10–31.20			
\$ 30.90-31.00	2		
윤 30.80-30.90	ω		
3 30.70–30.80	ω	-	
²³ 30.60–30.70	7 - 7		
음 30.50-30.60	9 480 3 3 3	<u>6</u>	
To 30.35–30.45	0 4		
♀ 30.15-30.25	ð æ		
[₩] 29.90-30.00	145		
20.00 00.00			
₹ 29.80-29. 90	N		
[⊊] 29.70-29.80	°	13	
[₽] 29.60-29.70	271 10 7 2		
₹ 29.50-29.60	736		
¥ 29.30−29. 40			
₹ 29.10-29.20	3 33		
- 0 0 4 0 0 - 0 0 - 0		28 2 2 2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 8 8 3 3 3 5 3 8 3

(Continue)
formation
e Shirone
nifers in th
thart of foraminit
J
chart o
utional
. Distrib
; 1(4).
Table

		T T						1-	12	
- Anna				9				5	\$	10
		5	2 30	9				375 161	9 2	0
		-							279	0
		e e	e.	-	e.			146 100	46 1947 138 2799 240	0
		80 N	16		9 1			46	547	
			<u> </u>					5	Ē	0
			-					~		
			2				-			1~
	-	~	6		-			44 161	66 846	0
					-			4		\sim
-	2		2		с О			131	224	0
	-		8	8	Ξ			16 221 131	176 342 224	ō
		······································	-		-			16	26	Ĕ
		-	-					6	57 1	
				_				5	24 5	IV
			8							IV
			<u> </u>					-1	36	10
								-	16	0
			5					15	62	0
								-	=	0
				7		-	-	28	12	
		~ ~	37 26		= -		ى م		4	0
					-			84 243	838 223 504 112	0
	-			5	1 2		o →	_	3 22	0
	-		16		w –			30 294	835	0
							6 1 6		84	1
								2 100	352	0
								~	10	0
								-	6	
	e				5			1	29	0
								5	8	
									6	0
			8							0
							2	ω	02	0
		2	14	-	10			554	584	0
								n	69	
			-					4	475	
,			15					160		
				18					0 29	\vdash
								339	8 5346 1324 3718 6780 2963	0
			62 4	36	9			792	718	
			10 4 0	16				315 792	43	0
									132	0
			54		12			2 818	5346	
								~	8	0
			~					39	179	
		1	I		59 60 62 63		68 69 7 7 70		-	0

_											
142											-
139	61.70-61.80				-						
137	61.30-61.40				16						
136	61.10-61.20				3						-
134	60.60-60.70				=						4
129	46.60-46.70				8		2				
128	46.20-46.30				-					-	
127	45.90-46.00				87	8					-
126	45.20-45.30						-				
125	44.80-44.90				S		-			-	
124	44.50-44.60				16		e			1	5
123	44.20-44.30										
122					11	4 8	5	19	-	4	8 4
121					109	6 26	12	60	5	8	09 ⁶
120	43.20-43.30	-			74	13 2	9	9		8	24 13
119	42.80-42.90				8		-				
118		-			99	2		36	· · · · · · · · · · · · · · · · · · ·	64	26 18
E	42.20-42.30				33				-	-	
116	41.80-41.90				45		e	2		113	51
115	41.50-41.60	1		1 2	100	e		12	-	1 26	13 6 21
11	41.20-41.30				35	4		-		~	- v
113	40.70-40.80				24						
112	40.40-40.50				108		3			1 2	3 3-
E	39.90-40.00		5	1	64	4	3	2 1	- 3	1 53	თ
110	39.40-39.50				222	-	5	4		- 4	8
109	38.80-38. 90	9			414	ოთ	2	70		165	0 CI
8	38.50-38. 60				28	с с		-			œ
10					35	- 6	e.	2		33	
19					38	10	12	9		32	17 2
105	37.70-37.80				80	e	2	-		130	9
₫	37.60-37.70				108	5	40	12		490	7 10 4
103	37.50-37. 60				31		4	9		35	9
102					16		6			5	
ē	36.90-37.00				-						
8		-			50	6			3 7	15 1 2	7 13 3
66		3			110	12	15	2	1 2	1 24	1 12 6
86	36.20-36.30				58	9					
F		0.4 0.0 -	6 8 10	12 13	15	17	19 20	23 23	24 25 26 26 27 28	29 31 33 33	34 35 36 37 38
	A construction of the second										

(Continue)
formation
the Shirone
hart of foraminifers in th
nal cl
). Distribution
Table 1(6).

			r					1			
					-						0
			13								9
			<u> </u>						29		
											10
									15	202	lo
									83	99	3
	4				-				٢	- 9	2
			5	152	4				256	1391	
					-				~	1-	
		·····								-	
-			-		-					-	
									4	4 54	
											0
	с о 		8	6	19				209	239	0
	-		32	51					460	1029	
	5	-	8 -		₽			· · · · · ·	385	5	
					-				4		
		2									0
			43		=					287	0
									37		
			70 3		10				327		
	- 0	8	22 8	6	9	-	-		255	659	
			e	-	e		-	-	- 55	ş	0
	2			4					S.		0
			36	28	2 2			-	195	214	
	-	ନ	2		=				207		
- 6			е	-	-				2 2 25.2	451 4	0
			4 54							-	-
			ŝ						737		
	ю 			9	-				4 64	į	
			9		5				8	1.63	
	2			1 2	e			ų	2 2 142	237 180	0
					-	~		L	0 158	2 6	
			19		~	-					
			-		-				84 678	25 705	ば
		m	~		-			c	° [₹	15	
										12	0
			-		6		5			ļ	0
-									1 245 124	19	
-	-	1 1 2	6 ~	7	3		~	•	245	257 4712 192 108 1516	0
					1				2	٦,	0
4 4 4 4 6 8		52 2 2 4 8 2 2 2 1 2 4 8	+ 10	0 0 0		- 0 0	* 10 10 10	8627		÷	44

also shows the individual number of foraminifers in each dry 100g material with the occurrence of radiolarians and ostracods.

34 genera and 58 species are identified and they are composed of 11 species of planktons and 47 of benthos. Individual number, species number and frequency of several distinct species are shown in Fig. 4. The most of fauna is composed of benthic calcareous species, while planktonic and agglutinated species are rare. Individual number of a 100g material is diversified from 4 to 6,780 specimens and is largely fluctuating between 25.5 m and 35.8 m below the ground. Planktonic species occur 2.4 % to 5.1 % and 0.6 % to 3.8 %, at 31.8 m to 32.0 m (SU-III-1) and 34.3 m to 43.3 m (SU-III-2) below the ground respectively.

Foraminiferal assemblage

Five benthic foraminiferal assemblages are discriminated, namely Ammonia beccarii, Ammonia beccarii - Quinqueloculina akneriana and Ammonia beccarii - Haplophragmoides spp., and Ammonia beccarii - Elphidium etigoense and Elphidium etigoense - Trochammina cf. pygmaea Assemblages. The three former assemblages are characterized by the combination of Ammonia, Quinqueloculina and Haplophragmoides. The two latter assemblages are by the combination of Ammonia, Elphidium and Trochammina.

In this chapter, the species composition and environment of each assemblage are described as the following. Distribution data of living foraminifers in an inner bay (Hada, 1939; Ishiwada, 1958; Matoba, 1970; Inoue, 1980; Kosugi et al., 1991; Nomura and Seto, 1992) and fossil assemblages in Japanese Neogene to Quaternary strata (Chiji, 1984; Inoue, 1989; Matoba, 1990) are mainly referred in order to determine environments of several assemblages.

(1) Ammonia beccarii Assemblage (Ab As.): Ammonia beccarii occupies about 100 %. Some subordinate species over 2 % to 3 % is Quinqueloculina spp.. This assemblage is characterized by Ammonia beccarii as an indicator of innermost bay, and indicates oligohaline to mesohaline water environment of innermost bay.

(2) Ammonia beccarii - Quinqueloculina akneriana Assemblage (A-Q As.) : Ammonia beccarii is abundant and occupies about 90 %, accompanying commonly with 5 % to 10 % Quinqueloculina spp., Q. akneriana, Q. seminula and Q. elongata. This assemblage contains Quinqueloculina spp. as an indicator of inner bay. It shows mesohaline water environment of inner bay.

(3) Ammonia beccarii - Haplophragmoides spp. Assemblage (A-H As.) : This assemblage is composed of the same specific composition to the A-Q As., but characteristically including 2 % to 30 % Haplophragmoides spp. and Trochammina spp.. They are agglutinated genera of innermost bay. Therefore, this assemblage indicates oligohaline to mesohaline water environment of inner to innermost bay.

(4) Ammonia beccarii - Elphidium etigoense Assemblage (A-E As.) : This assemblage is composed of 25 % to 80 % Ammonia beccarii, 10 % to 50 % Elphidium, such as E. etigoense,

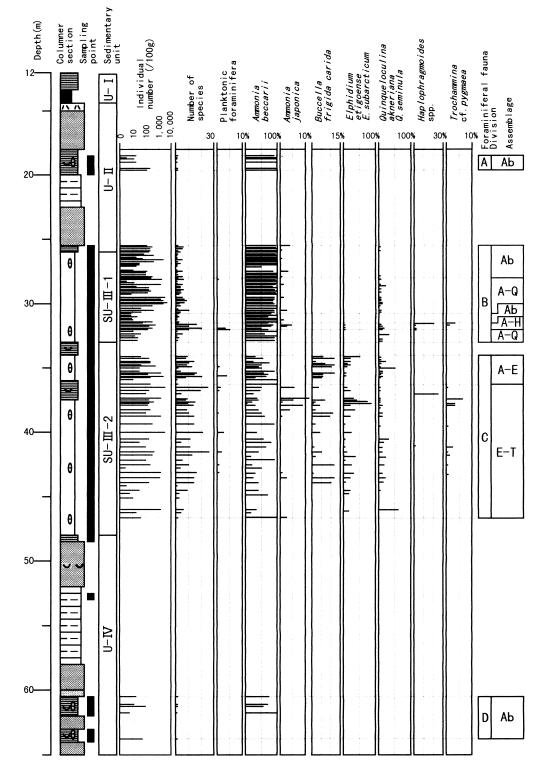


Fig. 4. Stratigraphic distribution of individual number, number of species and frequency of some distinctive species. Captions of columner section are explained in Fig. 2. Assemblage, Ab: Ammonia beccarii, A-Q: Ammonia beccarii- Quinqueloculina akneriana, A-H: Ammonia beccarii- Haplophragmoides spp., A-E: Ammonia beccarii- Elphidium etigoense, E-T: Elphidium etigoense- Trochammina cf. pygmaea.

E. subarcticum and *E. cf. subgranulosum*. In some samples, *Elphidium* is abundant, occupying 61 %. *Buccella fridiga carida*, *Quinqueloculina akneriana* and *Q. seminula* are accompanied. This assemblage contains *Elphidium* as an indicator of inner bay, and *Buccella frigida carida*, indicating polyhaline water of inner to outer bay. Therefore, this assemblage indicates polyhaline water environment of inner to outer bay.

(5) Elphidium etigoense - Trochammina cf. pygmaea Assemblage (E-T As.): The specific composition of this assemblage is similar to the A-E As., but including 1 % to 7 % Trochammina cf. pygmaea. This assemblage indicates mesohaline to polyhaline water environment of inner to outer bay.

The stratigraphical change of foraminiferal fauna

On the basis of above-mentioned assemblages, the change of foraminiferal fauna in the Shirone 9-4 core is mainly divided into four divisions, Foraminiferal Division-A, -B,-C and -D in descending order (Fig. 4).

(1) Foraminiferal Division A (18.5 m to 19.7 m, sample nos. 1 to 6) is composed of Ab As.. It corresponds to a part of the U- II. This division indicates oligohaline to mesohaline water environment of innermost bay by Ab As..

(2) Foraminiferal Division B (25.5 m to 32.9 m, sample nos. 10 to 72) is composed of Ab As. in 25.5 m to 28.0 m and 30.7 m to 31.5 m, A-Q As. in 28.0 m to 30.7 m and 32.0 m to 32.9 m, and A-H As. in 31.5 m to 32.0 m. Planktonic species such as *Globigerinoides ruber* are occurred in 31.5 m to 32.0 m. This division corresponds to SU-III-1. In this division, *Ammonia* and *Quinqueloculina* is dominated, indicating oligohaline to mesohaline water environment of innermost to inner bay. But, Ab As. and A-Q As. are occurred repeatedly. Therefore, the fluctuation of salinity may have been larger. The occurrence of planctonic species also suggests that warm surface water flowed temporarily.

(3) Foraminiferal Division C (34.2 m to 46.7 m, sample nos. 84 to 129) is composed of A-E As. in 34.2 m to 36.3 m, and E-T As. in 36.3 m to 46.7 m respectively. Planktonic species, *Globigerinoides ruber* and *Globigerina* cf. *brady* yield at several horizons. This division corresponds to SU-III-2. The assemblages indicate polyhaline to mesohaline water of inner to outer bay. The occurrence of planktonic species suggests that warm surface water flowed sporadically.

(4) Foraminiferal Division D (60.6 m to 63.9 m, sample nos. 134 to 142) is composed of Ab As.. It corresponds to a part of the U-IV. Ab As. indicates oligohaline to mesohaline water environment of innermost bay.

Sedimentary environment

The foraminiferal fauna of the Shirone 9-4 core is characterized by species whose environment indicated oligohaline to polyhaline brackish water. On the basis of sedimentary facies and foraminiferal assemblages, the environmental change of strata is inferred in ascending order as follows (Fig. 5).

(1) Unit IV (10,000 to 8,000 years ago)

U-IV which consists of alternating beds of silt and sand yields foraminifers from silty layers with *Corbicula japonica*, of brackish water mollusca, and correspond to Foraminiferal Division D which is characterized by Ab As.. It is probable that this unit was mainly deposited under brackish, oligohaline to mesohaline, water environment.

(2) Unit III

U-Ⅲ is subdivided into two subunits, SU-Ⅲ-2 and SU-Ⅲ-1 in ascending order.

① Subunit- III -2 (8,000 to 7,000 years ago)

This subdivision consists of dark gray to black laminated silty clays, and corresponds to Foraminiferal Division C which is characterized by A-E and E-T Ass.. They indicate polyhaline to mesohaline water of inner to outer bay. Therefore, this subunit was deposited under polyhaline to mesohaline water environment. And the occurrence of *Globigerinoides ruber* and *Globigerina* cf. *brady* in several horizons may indicate the flowing of warm water in the surface of sea into an inlet or a bay sporadically.

② Subunit- II-1 (7,000 to 6,000 years ago)

This subdivision consists of dark greenish gray massive or laminated silty clays with many small molluscan shells, and corresponds to Foraminiferal Division B which is characterized by Ab, A-Q and A-H Ass.. These assemblages are characterized by *Ammonia* and *Quinqueloculina*, indicate oligohaline to mesohaline water of inner to innermost bay. It is noticeable that the main faunal change took place at the horizon between SU-III-1 and SU-III-2. In SU-III-1, polyhaline to mesohaline water elements such as *Elphidium* and *Buccella* were very rare. The fluctuation of individual number in SU-III-1 was larger than in SU-III-2. As mentioned after, the paleogeographical feature was inferred to be a lagoon rather than an embayment. The occurrence of *Globigerinoides ruber* suggests that warm water in the surface of sea flowed into again temporarily.

(3) Unit II (6,000 to 5,000 years ago)

U- II consists of alternating beds of silt and sand. Foraminifers occur from silty layers with brackish water molluscs such as *Corbicula japonica* and *Potamocorbula amurensis*. U- II corresponds to Foraminiferal Division A which is characterized by Ab As.. It is probable that this unit was mainly deposited under the environment of brackish, oligohaline to mesohaline, water environment.

(4) Unit I (younger than 4,500 years ago)

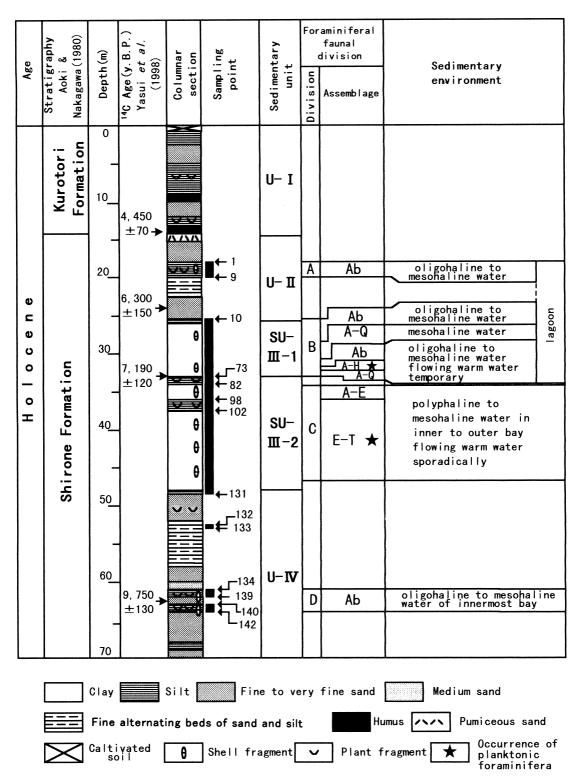


Fig. 5. Change of inferred sedimentary environment

U- I consists of alternating beds of silt and sand with humus layers. Foraminifers are absent, indicating that this unit may have been mainly formed under fresh water condition.

Holocene transgression of the Echigo Plain

Foraminiferal assemblages have significantly changed in composition between SU-III -2 and SU-III -1. The fluctuation of individual number in SU-III -1 was larger than in SU-III -2. Moreover, the color of sediments changs from dark greenish gray to black colors upwards. It indicates that the marine environment was changed about 7,000 years ago. There is a large possibility that a lagoonal environment with a sand barrier in the northern area appeared instead of paleo-bay at that time. The sand body consists of well compacted fine sands (N value ≥ 50) and was buried under Niigata City (Fig. 2). It may be related with the appearance of lagoonal environment in the Shirone area.

As a result, it is inferred that the sedimentary environment in the Shirone area was changed from innermost bay with oligohaline to mesohaline water ($U-\mathbb{N}$) and with polyhaline to mesohaline water ($SU-\mathbb{II}-2$), to a lagoon with oligohaline to mesohaline water ($SU-\mathbb{II}-1$) and again with oligohaline to mesohaline water ($U-\mathbb{II}$) upwards. Considering the ¹⁴C data (Yasui et al., 1998) of U- II to U-N, this sea expansion was caused by Holocene transgression.

The sedimentary environment of thick clayey sediments in the Shirone area has been considered to be a brackish lagoon on the basis of sedimentary facies and some marine diatoms (Wada, 1972; Niigata Quaternary Research Group, 1972). They argued that the absence of distinctive marine fauna and flora in the Holocene transgression age was caused to be closed by sand barriers or dunes existed in a bay mouth. But, the occurrence of polyhaline water fauna in SU- Π -2 suggests that the marine condition had been spread temporalily in the Shirone area, and the appearance of lagoonal environment may be took place about 7,000 years ago.

Kobayashi et al. (1976) analyzed the Sakaiwa K-1 core (Fig. 1) which was drilled in the coastal area apart from 10 km northwest of the Shirone 9-4 core. The clayey bed of 105 m to 114 m below the ground, dated $8,020 \pm 115$ y.B.P., contains abundant Ammonia beccarii. The silty bed of 30.5 m to 83.1 m is also characterized by the predomination of Ammonia japonica and Pseudorotalia gaimardii, with Elphidium subincertum, Buccella frigida and Nonion manpukujiense. Some planktonic species were detected from the silty bed. Therefore, outer bay or coastal environment was estimated by them. It is considered that the silty bed of 30.5 m to 83.1 m below the ground of the Sakaiwa K-1 core corresponds to that of Unit II at the Shirone 9-4 core, which is corresponded to about 8,000 to 6,500 years ago. At that time, the site of Sakaiwa K-1 core was coastal marine, probably outside of the sand body.

Conclusion

The findings of this study support the following conclusions:

(1) The Shirone area of the Echigo Plain is underlain by marine strata in 18 m to 65 m below the ground, which contained many foraminifers. By the ¹⁴C data of this strata, the marine deposits were formed by the Holocene transgression.

(2) Poor evidence of marine condition has been shown in the Shirone area, inside of the Echigo Plain by several previous studies. But, by the analysis in detail, polyhaline water foraminiferal assemblage is found in 35 m to 48 m below the ground. This suggests that the distinctive marine condition had been spread at first in the Shirone area at 7,000 to 8,000 years ago.

(3) The embaymental environment had been situated at the first stage of the Holocene transgression. The appearance of lagoonal environment with a sand barrier may be took place about 7,000 years ago. In the lagoonal condition, the fluctuation of salinity by influence of sea water or fresh water was larger than in embaymental one.

Acknowledgements

The authors wish to express our gratitude to Shirone City and Kowa Co., Ltd. for offering materials, and would like to express our thanks for Dr. Y. Inoue for helpful advises.

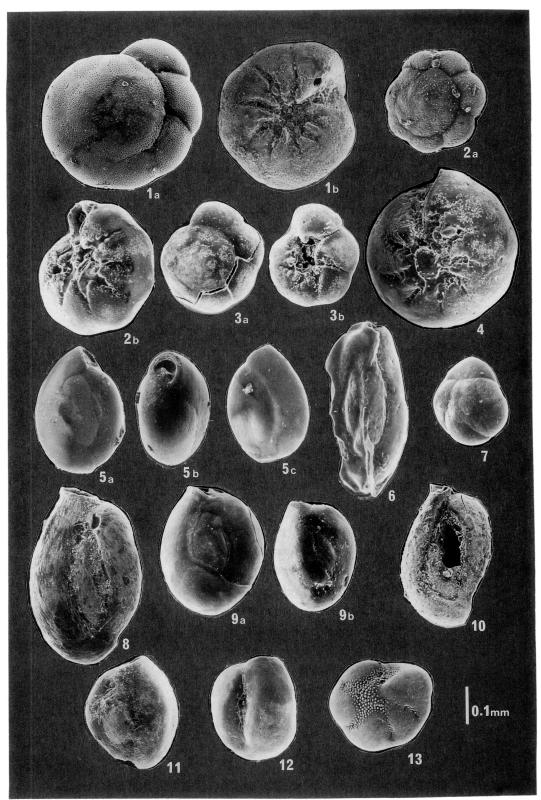
References

- Aoki, S. and Nakagawa T., 1980, On the Late Quaternary deposits and ground geology in the Niigata Plain, Northeast Japan. Ann. Rep. Saigai-ken, Niigata Univ., no.2, 25-40. (in Japanese)
- Chiji, M., 1984, Detailed Survey on Fossil Foraminifera of the Submarine Strata at the Kansai International Airport in Osaka Bay, Central Japan. Report of the Calamity Science Institute, "Geological Survey of the Submarine Strata at the Kansai International Airport in Osaka Bay, Central Japan", 29-36. (in Japanese)
- Fukuda, O., Akutsu, J. and Tokunaga, S., 1966, Geology of deep wells in Niigata area. Special Report Geol. Surv. Japan, no.3, 76-83. (in Japanese)
- Hada, Y., 1939, Studies on the foraminifera of brackish waters : IV, the foraminifera of Nakanoumi. Zool. Mag., 51, 135-140. (in Japanese)
- Hasagawa, K., Minato, M., Oya, S., Shibazaki, T., Suyama, K., Takahashi, Y. and Wada, M., 1967, Absolute age of subsurface Late Quaternary deposits in the Niigata lowland. *Quat. Res*, **6**, 79-84. (in Japanese)
- Inoue, Y., 1980, Distribution of Recent benthic foraminifera in the adjacent sea of Japan (Part 1 and 2). *Spec. Rep. Tech. Lab., Japan Petrol. Explor. Co.*, no. 41-1,2, 1-114, 1-307. (in Japanese)
- Inoue, Y., 1989, Northwest Pacific foraminifera as paleoenvironmental indicators. Sci. Rep. Inst. Geosci. Univ. Tsukuba. Ser.B, 10, 57-162.
- Ishiwada, Y., 1958, Studies on the brackish water: III, Recent foraminifera from the brackish

lake Hamana-ko. Rep. Geol. Surv. Japan, no. 180, 1-19. (in Japanese)

- Kobayashi, I., Aoki, S., Watanabe, K., Fujita, T., Nitobe, T., Ishibashi, T., Hirai, A., Fukuyama, E. and Omori, M., 1976, On the geology at the Sakaiwa K-1 observation well of landsubsidence in Midorigaoka area of Niigata City. Ann. Rep. Jibansaigai-Ken, Niigata Univ., no.2, 37-54. (in Japanese)
- Kosugi, M., Kataoka, H. and Hasegawa, S., 1991, Classification of foraminifer communities as indicators of environments in an inner bay and its application to reconstruction of paleoenvironments. *Fossils*, no.50, 37-55. (in Japanese)
- Matoba, Y., 1970, Distribution of recent shallow water foraminifera of Matsushima Bay, Miyagi Prefecture, Northeast Japan. Tohoku Univ., Sci. Rep., 2nd ser. (Geol.), 42, 1-85.
- Matoba, Y., 1990, Neogene and Quarternary Sedimentary Sequences in the Oga Peninsula. Guidebook for trip TRIP, no.2, 1-54.
- Minato, M., Suyama, K., Hasegawa, K., Oya, S. Takahashi, Y., Nakagawa, K, Wada, N. and Shibazaki, T., 1967, Absolute Age of Subsurface Late Quaternary Deposits in the Niigata lowland. *Jour. Fac. Sci. Hokkaido Univ. Ser. IV, Geol. & Miner.*, **12**, 401-406.
- Niigata Ancient Dune Research Group, 1974, Niigata sand dunes and archaeological relics- The geohistory of the formation of Niigata Sand Dunes, part I. Quat. Res, 13, 57-65. (in Japanese)
- Niigata Diatom Research Group, 1976, Diatom Thanatocoenoses of Alluvial Sediments in Niigata Plain. Rep. Earth Sci., Geol. & Mineral., Fac. Sci., Niigata Univ., no.4, 35-41. (in Japanese)
- Niigata Quaternary Research Group, 1972, Studies on the Biostratigraphic Division and Sedimentary Environments of the Alluvium in the Tokyo Lowland and the Niigata Plain, Central Japan. *Memoirs Geol. Soc. Japan.* no.7, 213-233. (in Japanese)
- Nomura, R. and Seto, K., 1992, Benthic foraminifera from brackish lake Nakanoumi, San-in district, Southwestern Honshu, Japan. Ishizaki, K. and Saito T. eds., Centenary of Japanese Micropaleontology, 227-240.
- Wada, M., 1972. Late Quaternary History of Niigata Lowland. *Memoirs Geol. Soc. Japan.* no.7, 77-89. (in Japanese)
- Yasui, S., Kamoi, Y., Otani, M., Sekiya K., Konno, K. and Kobayashi, I., 1998, Stratigraphy, Sedimentary environments and Geotechnical properties of "Alluvium deposites" in the Echigo Plain. Symposium on Geotechnology and Sedimentary Environment, Jap. Geotec. Soc., 93-98. (in Japanese)

Explanation of Plates


Plate 1

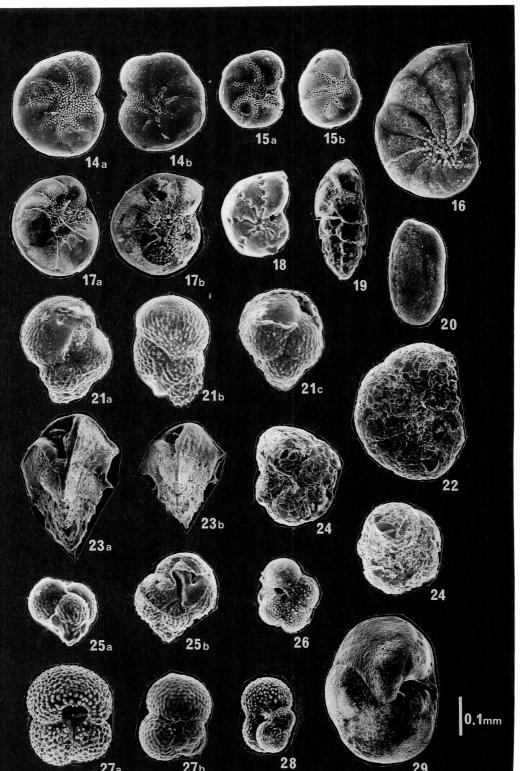

1a,b: Ammonia beccarii (Linne)
2a,b: Ammonia beccarii forma B
3a,b: Ammonia beccarii forma L
4a,b: Ammonia beccarii forma C
5a,b,c: Quinqueloculina akneriana d'Orbigny
6: Quinqueloculina elongata (Natland)
7: Epistominella tamana (Kuwano)
8: Quinqueloculina cf. hasimotoi Asano
9a,b: Quinqueloculina sp. A
10: Spiroloculina cf. corrugata Cushman & Todd
11: Triloculina trigonula (Lamarck)
12: Miliolinella sp.
13: Buccella frigida carida Cushman & Uchio

Plate 2

14a,b: Elphidium cf. subgranulosum Asano 15a.b: Elphidium etigoense Husezima & Maruhasi 16: Pseudononion grateloupi (d'Orbigny) 17a,b: Elphidium clavatum Cushman 18: Elphidium cf. hanzawai Asano 19: Bolivina sp. 20: Sigmoilina sp. A 21a,b,c: Buliminidae? gen. et sp. indet. 22: Haplophragmoides sp. A 23a,b: Reussella atlantica Cushman 24a,b: Trochammina cf. pygmaea Hoglund 25a,b: Globigerina cf. brady Wisnet 26: Globigerina pachiderma (Ehrenberg) 27a,b: Globigerinoides ruber (d'Orbigny) 28: Globigerina bulloides d'Orbigny 29: Globorotalia ungulata Bermudez

27a

27b

Plate 2

29