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Summary. Morphological studies have revealed neural
connections containing oxytocin (OXT) between the
hypothalamic paraventricular nucleus (PVN) and
medulla oblongata. Electrophysiologically, it has also
been shown that there is a functionally specific correla­
tion between the PVN and medullary neurons that are
related to the gastric function. Moreover, it was ob­
served that activation of oxytocinergic neurons in the
PVN caused by electrical stimulation or OXT applica­
tion strongly influences gastric acid secretion. The
inhibitory response in acid secretion is substantially
blocked by vagotomy or by an anticholinergic agent
applied onto the medullary gastric neuron and the
peripheral site.

Since OXT has been shown to be synthesized in the
PVN magnocellular nucleus and act locally within the
nucleus to control its activity, these findings suggest
that the activation of oxytocinergic neurons due to
intrinsic OXT within the PVN participates in the con­
trol of gastric acid secretion with a change in vagal
activity, and that a specific nucleus localized in the
medulla oblongata is involved in this system as a relay­
ing mechanism.

Introduction

Oxytocin (OXT) is a circulating peptide hormone
produced by hypothalamic magnocellular neurose­
cretory neurons and released from the posterior
pituitary. Recent studies utilizing immunohistochemi­
cal techniques have revealed a substantial network of
fibers containing OXT throughout the central nerv­
ous system, and shown that the neurons in the par­
aventricular nucleus (PVN) containing OXT project
not only to the neurohypophysis but also to the
medulla oblongata. 1

-
3

) The medulla oblongata
appears to be a major target of these fibers, and
independent neuroanatomical tracing studies have

89

shown a direct projection to it from the PVN.l,4) The
medulla oblongata is the site where the autonomic
function is controlled.

This paper introduces the role of the oxytocinergic
neurons in the PVN in the secretory function of the
stomach.

I. Gastric acid secretion associated with PVN acti­
vation

Electrical stimulation applied to the PVN produced a
reduction in gastric acid secretion5

) (Figs. 1 and 2).
The optimal electrical property for eliciting the
maximum inhibitory response in the acid output was
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Fig. 1. Changes in gastric acid output produced by
electrical stimulatin of the PVN. Sixty (0, n= 12) or 0(_,
n= 12) Hz stimulation was given. The arrow indicates the
time at which electrical stimulation was applied. Stimulus
intensity was 0.5 rnA. Values are the mean ± SEM. a; p <
0.01 vs. the time of the stimulation. b; p<O.OI vs. the value
for aHz 3 min after stimulation. Activation of the PVN
reduces gastric acid output.
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Fig. 2. Gastric acid outputs in response to paraventricular (I) and pituitary stalk (II)
stimulations. The acid outputs 3 min after 0, 5, 15, 30, 60, 90 and 120 Hz stimulations
are compared. Values are the mean ± SEM (n = 12). a; p<0.05 vs. 0 Hz (I). b; p<0.01
vs. 30 Hz (I). c; p< 0.05 vs. 30 Hz (I). d; p< 0.05 vs. 90 Hz (II). e; p<0.05 vs. 0 Hz (II).
The optimal frequency of 60 Hz for eliciting the maximum inhibitory response in the
acid output is in a range that causes full activation of neurosecretory cells and OXT
release.
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Fig. 3. Gastric acid outputs 6 min after OXT injection
into the PVN. Different concentrations of OXT (5 nM, II;
10 nM, III; 20 nM, IV; 40 nM, V) were injected. Ten nM
OXT with vagotomy at the subdiaphragmatic level (VI)
and 10 nM OXT with atropin sulfate (VII) are shown.
Saline was used as the control 0). Values are the mean
SEM (n=7). a-b; p<O.Ol vs. II. c; p<O.OI vs. III. The acid
response specific to OXT is mediated by vagal and
cholinergic fibers to the stomach.

in a range that caused full activation of neuro­
secretory PVN cells and OXT release. 6

,7) The pitui­
tary stalk stimulation also suppressed gastric acid
output. 5

) (Fig. 2). It is possible that the stalk stimula­
tion affected the PVN directly through axonal
branches, since magnocellular PVN cells have been
shown to have axons divergent to the neurohypo­
physis both by double labelling methods8

) and anti­
dromic activation techniques. 9

) The elimination of the
effect in the PVN -lesioned or the hypophysectomized
animals indicated that there was no current spread to
other areas of the hypothalamus. Activation of
specific PVN neurons identified as oxytocinergic
neurons provokes inhibitory secretion of gastric acid.

Although the gross methodological approach
involved stimulating the PVN with rather large can­
nulas, nanomolar quantities of OXT injected into the
PVN also evoked a reduction in gastric acid
secretion10

) (Figs. 3 and Activated neurons recep­
tive to OXT located in the PVN resulted in the
inhibitory acid response. OXT has been demonstrated
to act locally within the PVN magnocellular nuclei to
control their activity.]]) Chemically it has been con­
sidered that the normal concentration of OXT in the
PVN and neural lobe of the pituitary stalk which
would come from the PVN was at the nanomolar
level ;12) it is not easy, however to estimate the physio-
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Fig. 4. Dosage of OXT evoking a reduction in gastric
acid output after right jugular (RJV) or third ventricle
(TV) injection. Different doses of OXT (200 nM, I; 400 nM,
II; 800 nM, III) were injected. Values are the mean SEM
(n=7). a; p<0.05 vs. II. b; p<O.Ol vs. I. c; p<O.Ol vs. II.
Ten nM OXT inhibited acid output when injected into the
PVN, whereas no change in the acid output was seen
when 20 times larger doses of the peptide were injected
into the RJV or into the TV. The peptide leaking from the
brain tissue into the blood stream or cerebrospinal fluid is
not active in the response.

logically acting concentration of the peptide. If OXT
was released locally onto the PVN neurons and they
acted as neurotransmitters or neuromodulators, the
concentration of the peptide near the cell body might
be much higher. 10) The effective concentration of
OXT provoking inhibitory gastric acid secretion was
similar to that applied in the study of rat hip­
pocampal neurons and rat motoneurons. 13

,14) These
reports indicate a strong possibility that alterations
in intrinsic OXT influence the secretory function in
the stomach within the physiological range.

II. Signal pathway and relay nucleus

PVN activation resulted in a decrease in gastric acid
secretion, and the acid response was completely
blocked by lesion of the nucleus of the vagus nerve
(DMX) in the medulla oblongata. IO

) Electrophysio­
logically, it has been indicated that iontophoretic
application of OXT inhibits medullary neurons which
would relate to the gastric function. I5

) Morphological­
ly, oxytocinergic projections from PVN to the soli­
tary nucleus (NST) which is adjacent to the DMX,
have been established in many reports. I ,2,4,16) Because

RJV TV
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a

c

III. Signal transmission to the relay nucleus

Both PVN stimulation and OXT injections to the
PVN change the spontaneous activity of NST and
DMX neurons and influence gastric secretory activ­
ity. Whereas OXT antagonists can block some of the
gastric responses to PVN stimulation, it remains to
be determined whether the excitatory or inhibitory
effect of PVN stimulation on NST and DMX neurons
is mediated by OXT.l7) With regard to the possible
mechanism for this, PVN stimulation and medullary
OXT injections may influence the gastric function by
altering the activity of NST and therefore its targets,
including the vagal efferent cell bodies in the DMX.

there are fibers connecting the DMX to the NST, it is
possible that PVN signals affecting the gastric func­
tion make a neural circuit among these nuclei. Sup­
port for such a suggestion comes from a study in­
dicating that PVN inhibitory effects on acid output
were blocked by a lesion of the NST or DMX.5

)

Magnocellular PVN cells have been shown to have
divergent axons projecting to the neurohypophysis
and to these medullary nuclei.9

) The secretory system
in the stomach associated with oxytocinergic PVN
neurons involves these specific nuclei as relay media.

Neurons in the relay nucleus are responsive to
OXT. Micropressure injection of OXT altered the
basal firing rates of neurons in the DMX that were
specifically related to gastric function. Because the
predominant response to OXT was an increase in
spontaneous activity, OXT may activate neurons
that project to inhibitory circuits in the enteric ner­
vous system to reduce gastric function. 17

) Half of the
NST neurons that received gastric mechanoreceptor
information were activated by this peptide. With
reference to electrophysiological criteria, a large
majority of the cells that were identified as gastric­
related neurons in the NST and DMX were also
found to be excited by OXT.l7) However, it should
be remembered that OXT affects other, non-gastric,
neurons in the DMX. Some of these neurons are
linked to the regulation of the cardiovascular
system. 17

)

There exists a functional correlation between the
PVN and relay nucleus. Gastric acid secretion was
inhibited by OXT injection into the DMX in the
medulla oblongata. 10

) There was also an additive
decrease in the acid secretion when OXT was applied
onto the PVN and DMX simultaneously (Fig. 5). This
type of gastric acid secretion is characteristic of the
activation of the PVN and DMX, either separately or
together.
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Fig. 5. Gastric acid output following OXT injection into two different regions of
the brain. Twenty nM OXT was injected into the PVN (.), into the DMX (0) and
into both these regions simultaneously (e). Values are the mean SEM (n=7). a;
p<O.Ol vs. the value just before injection. b; p<O.Ol vs. •. c; p<O.Ol vs. •. There
is an additive interaction between the PVN and DMX.

The possibility that OXT acts on interneurons that
project to NST and DMX neurons cannot be ruled
out. However, with the in vitro slice preparation, it
was demonstrated that the excitatory effect of OXT
on DMX neurons persists under conditions of
synaptic blockade. 18) OXT may be acting directly on
vagal neurons that are related to the gastric function.

The origin of the OXT-containing neurons in the
DMX is in the PVN. OXT can be released from these
neurons by depolarizing medullary slices l9) or by elec­
trically stimulating the PVN.20) The released OXT is
thought to alter the firing rate by binding to the high
affinity OXT receptors that exist in the DMX.18,21)
OXT receptor antagonists were effective in blocking
the enhanced firing of DMX neurons22)and the gastric
response evoked by medullary injections of OXT,23)
indicating that these responses were elicited by a
specific action on OXT receptors. These findings
indicate a role for OXT as a putative neurotransmit­
ter in this system.

OXT was potent in modulating the firing rate of
medullary neurons when a femtomolar amount of
OXT was injected. 24) In the oxytocinergic cells that
were tested with multiple doses, there was a dose­
response relationship. The latency to respond to
OXT tended to be long (range, 10s-2.5 min). This may
be a result of diffusion of the peptide and/or the
activation of a second messenger system.24) The acid
response to OXT was often long lasting lO) i.e. several

minutes, which is consistent with the suggestion that
OXT is activating a second messenger cascade.

IV. Relay nucleus and vagally mediated acid secre­
tion

The inhibitory response in gastric acid secretion to
electrical stimulation of the PVN or OXT injection
into the DMX was eliminated by vagotomy at the
subdiaphragmatic level and by atropin sulfate (Fig.
3), suggesting that the response was mainly mediated
by vagal and cholinergic fibers to the stomach.5,lO)
OXT activates vagal neurons that project to inhibi­
tory circuits in the enteric nervous system to reduce
the gastric secretory function.

V. Relationship between motor and secretory func­
tions

Electrical stimulation applied to the PVN produced a
reduction in intragastric pressure,26) and the optimal
electrical stimulation to elicit the maximum response
in pressure was in the range to cause specific activa­
tion of OXT release.6

,7) PVN activation resulted in an
inhibitory response in both motor and secretory func­
tions of the stomach.5,lO,26) However, there were dif­
ferences between the two functional responses in
latent periods, and the threshold of stimulation was
different in motility from that in acid secretion. This
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Fig. 7. Percent changes in gastric acid output evoked by
OXT injection in different stages of the estrus cycle.
Twenty nM OXT was injected into the PVN in rats at
different estrus stages (P, proestrus; 0, oestrus; M, meto­
estrus; D, diestrus). Values are the mean ± SEM (n=6). a;
p<O.Ol vs. P and O. The acid response is lowest in rats
showing signs of oestrus.
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Fig. 6. Relationship between glucose concentration in
the blood (X) and percent changes in gastric acid outputs
(Y) caused by OXT injection into the PVN. Percent
changes in acid outputs were calculated from values
before and 3 min after OXT (20 nM) injection. The regres­
sion line is Y = - 22.764 X +105.709 and its coefficient
(r = - 0.776) is significant, p < 0.05. Increasing the concen­
tration of glucose consistently diminishes gastric acid
response with OXT.

implies that the action of OXT on motor and secre­
tory functions was differentially determined at the
PVN level.

There are two kinds of PVN neurons. It has been
shown that certain experimental treatments adminis­
tered to rats that evoke nausea, satiety, or cellular
dehydration activate both magnocellular and parvo­
cellular neurons and inhibit the gastric motor func­
tion. 28

-
30) Although the inhibition of feeding was

correlated with the peak elevation in the plasma
OXT concentration, the gastric motor dysfunction
was not mediated by circulating OXT released from
the posterior pituitary.27) This could mean that the
magnocellular oxytocinergic neurons projecting to
the pituitary were co-activated with parvocellular
oxytocinergic neurons projecting to the DMX which
exclusively participates in the regulation of gastric
motility. The increase in plasma OXT concentrations
and the inhibition of the gastric motor function can
be explained by the co-activation of magnocellular
and parvocellular OXT-containing neurons.

VI. Factors affecting control of acid secretion by
PVN

Glycemic condition: Electrical stimulation of the
PVN evoking specific activation of OXT release or
OXT applied to the PVN brought a reduction in
gastric acid secretion associated with insulin-hypo­
glycemia.5,IO) The magnitude of these responses
varied according to the glycemic condition of the
animals, and it was noted that hyperglycemia
masked the acid response accompanying the PVN
activation (Fig. 6). Inhibition of gastric acid secretion
by glycemia3

l) has been shown to be determined at
the hepatic portaPZ,33) or medullary34) level, and the
medulla oblongata has been thought to be the site
where the interaction between OXT and glucose
takes place. However, there remains much scope to
investigate concerning the interaction between OXT
and glucose at the PVN level, especially since a
mechanism receptive to glucose has been demonstrat­
ed in the PVN and the formed microcircuit.35)

Estrogen: Gastric acid response to OXT injection
into the PVN was reproducible at the same magni­
tude in male rats regardless of the experimental day.
However, there was a cyclical response in female
rats according to the estrus cycle; this response being
greatest on the day showing the lowest concentration
of estrogen (Fig. 7). The changes in the estrogen
concentration in the blood influence the function of
the alimentary canal has been well documented;
estrogen causes the suppression of food and water
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intake by stimulating the estrogen-sensitive areas in
the brain.36,37) In humans, it has been shown that there
is a great difference between males and females in
the secretory function of the stomach.38) Indeed, in
women, the levels of acid secretion and the estradiol
concentration vary with the menstrual cycle,39) and
the sites of estrogen-sensitive areas have been iden­
tified in specific nuclei in the hypothalamic
regions. 4o,41) The OXT effect on gastric acid secretion
seemed to be modulated cyclically by sex hormone
estrogen at the hypothalamic level.

VII. Action of peptides co-existing in the PVN

Gastrin: Neurohypophyseal gastrin is a prominent
feature of the mammarian pituitary, because it occur­
red in all species examined in concentrations of the
same magnitude. 42 ,43) Although the pituitary gastrin
concentrations are low in comparison with concentra­
tions in the antral mucosa, the consistent occurrence

PVN
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Fig. 8. Summary of the system for oxytocinergic control
of gastric acid secretion. Oxytocinergic neurons respond
to local OXT synthetized in the PVN. There are direct
monosynaptic projections between the PVN neuron and
preganglionic gastric neuron in the medulla oblongata
(MO), and through which the cholinergic vagal fiber ter­
minating the stomach is activated. Dotted lines show the
efferent neural pathway.

in constant amounts suggests that the hypothalamo­
hypophyseal gastrin is significant. It is of particular
interest that gastrin is synthesized in hypothalamo­
hypophyseal neurons. 44 ) In contrast to gastrin, the
pituitary occurrence of cholecystokinin (CCK) varied
among species and pituitary lobes. The concentra­
tions were higher than those in other regions of the
central nervous system.44) Gastrin-17 has been shown
to stimulate gastric acid secretion when injected into
the PVN .45) The gut hormones gastrin and CCK have
been shown to possess a common origin and a com­
mon COOH terminals, which constitute their active
site,44) however, CCK-8 had no effect on the acid
secretion. Gastrin in the PVN may serve to control
gastric acid secretion.

TRlf: Thyrotropin-releasing hormone (TRH) is
contained in terminals in the NST and DMX,46) and
also influences the vagal control of the gastric
function.l7) The response of brain stem vagal neurons
to OXT is in contrast with that observed for TRH.
Although DMX neural activity was increased by
either TRH 17) or OXT,17,22) TRH appeared to over­
ride incoming sensory signals by inhibiting spontane­
ous NST activity.l7) These two neuropeptides act in a
fundamentally different manner to modulate the
vagal function of the stomach.

Conclusion

Because OXT and vasopressin peptides seem to
occur together with gastrin and CCK, it has been
speculated that OXT and gastrin might be part of a
large multihormonal precursor. 47) It now remains to
be shown whether the pituitary cells translate the
same precursor. Paraventricular magnocellular neu­
rons contain not only OXT but also others such as
vasopressin, all of which contain, in addition, any of
a number of other peptides including met-enkephalin
and dynorphin.8,48) Small cells are also present in the
PVN and contain a corticotropin releasing factor and
a variety of other peptides. 49) Our findings suggest
that the PVN neurons receptive to these peptides
have a secretory function in the stomach. Thus, when
several peptidergic neurons in the PVN are activated
simultaneously with multiple-barrelled micro-ionto­
phoretical application,50) the results obtained may
give us a qualitative picture of peptidergic PVN
control of the gastric function (Fig. 8). Further study
in this field is necessary.
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