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Summary. Fiber type distributions of the fast-twitch
extensor digitorum longus muscle in rats were examined
after exposure to hypobaric-hypoxia for 5 weeks from
the postnatal age of 5 weeks or for 10 weeks from the
postnatal age of 10 weeks. Muscle fibers were classified
into fast-twitch oxidative glycolytic (FOG), fast-twitch
glycolytic (FG), or slow-twitch oxidative (SO). The
percentage of FOG fibers was increased and that of FG
fibers was decreased in the hypoxic rats at 10 weeks of
age, while there was no difference in the percentage of
SO fibers between the normoxic and hypoxic rats. There
was no difference in the fiber type distribution between
the normoxic and hypoxic rats at 20 weeks of age. These
results indicate an age-specific response of hypobaric-
hypoxia on the fiber types of the rat extensor digitorum
longus muscle.
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INTRODUCTION

Previous studies,*™®??® have demonstrated the
adaptability of capillary density, myoglobin concen-
tration, and oxidative enzyme activity in skeletal
muscles by short- or long-term hypoxia, or chronic
hypoxic exposures. In addition, our recent
studies®!®'® revealed the adaptation of histochemical
fiber types in the slow-twitch muscle after exposure
to hypoxia and found an increased percentage of
oxidative (fast-twitch oxidative glycolytic) fibers in
the soleus muscle of the developing rat following
exposure to hypoxia.
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On the other hand, a few investigationg’!'®%2?
carried out on the adaptation of histochemical fiber
types in the fast-twitch muscle after exposure to
hypoxia and conflicting interpretations have been
given for the results obtained. Therefore, this study
examined the fiber type distribution of the fast-
twitch extensor digitorum longus muscle in rats after
exposure to hypobaric-hypoxia. The rats were
exposed to hypobaric-hypoxia for 5 weeks from 5
weeks of age (developmental stage) or for 10 weeks
from 10 weeks of age (adult stage) for comparisons
with our previous results using the rat slow-twitch
soleus muscle.'»!®

MATERIALS AND METHODS

Animals and hypobaric-hypoxic exposure

Thirty male Sprague-Dawley rats were assigned to
the normoxic (n=18) and hypoxic (n=12) groups. The
rats in the hypoxic group were housed in a hypobaric-
hypoxic chamber and exposed to hypobaric-hypoxia
of 463 torr, equivalent to an altitude of 4,000 m. The
rats at 5 weeks of age were exposed to hypobaric-
hypoxia for 5 weeks (developmental stage, n=6) and
those at 10 weeks of age for 10 weeks (adult stage,
n=6). The pressure in the hypobaric-hypoxic cham-
ber was returned to sea level atmospheric pressure
for 1 h three times a week, during which time body
weight was measured, the chamber was cleaned, and
food and water were replaced. The air flow in the
hypobaric-hypoxic chamber was maintained at 20 1.
min~'. The rats in the normoxic group were housed
at sea level atmospheric pressure and used as con-
trols at 5 weeks (n=6), 10 weeks (n=6), or 20 weeks
(n=6). All animals were housed in a controlled envi-
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ronment with a constant dark-light cycle (dark time
0700-1900) and maintained at a temperature of 22+
2°C. Standard food and water were provided ad
libitum. All experiments were approved by the Labo-
ratory Animal Care Committee of Kyoto University,
Japan.

Histochemistry

The rats were anesthetized with an intraperitoneal
injection of sodium pentobarbital (50 mg - kg™!). After
being weighed, the extensor digitorum longus muscle
was removed and immediately frozen in isopentane
cooled in a mixture of dry ice and acetone. Serial
transverse sections, 10 gm thick, of the widest por-
tion of the muscle midbelly were cut on a cryostat
at —20°C. The sections were stained for adenosine
triphosphatase following alkaline and acid preincuba-
tions, succinate dehydrogenase, and a-glycero-
phosphate dehydrogenase activities. The muscle
fibers were classified into fast-twitch oxidative gly-
colytic (FOG), fast-twitch glycolytic (FG), or slow-
twitch oxidative (SO) as described previously (Fig.
1).22 The fiber type distribution was calculated by
counting the number of each type of fiber in the
entire transverse section of the muscle.

Statistics

Values were expressed as mean =+ standard devia-
tion. Student’s /-test was used to determine any
significant differences between the normoxic and

hypoxic groups.

RESULTS

Body weight and muscle weight

The body weight, extensor digitorum longus muscle
weight, and relative muscle weight in the normoxic
group at b weeks of age were 1563+8g, 0.08+0.01 g,
and 0.054+0.005 g/100 g body weight, respectively.

At 10 weeks of age, the body weight was lower in
the hypoxic group than in the normoxic group (nor-
moxia, 332+17 g; hypoxia, 255+23 g, p<0.001). The
muscle weight was lower in the hypoxic group than in
the normoxic group (normoxia, 0.17 +0.01 g; hypoxia,
0.13+0.02 g, p<0.001), while there was no difference
in the relative muscle weight between the normoxic
and hypoxic groups (normoxia, 0.0514+0.004 g/100 g
body weight; hypoxia, 0.051+0.003¢/100g body
weight).

These results were similar for rats at 20 weeks of

age. The body weight was lower in the hypoxic group
than in the normoxic group (normoxia, 496+34 g;
hypoxia, 410+28 g, p<0.001). The muscle weight was
lower in the hypoxic group than in the normoxic
group (normoxia, 0.224+0.03 g; hypoxia, 0.18+0.01 g,
p<0.05), while there was no difference in the relative
muscle weight between the normoxic and hypoxic
groups (normoxia, 0.044+0.006 g/100 g body weight;
hypoxia, 0.045+0.003 g/100 g body weight).

Total fiber number

The total fiber number in the entire transverse sec-
tion of the extensor digitorum longus muscle in the
normoxic group at 5 weeks of age was 2825+ 90.

There was no difference in the total fiber number
of the muscle between the normoxic and hypoxic
groups at 10 weeks (normoxia, 2850+154; hypoxia,
2854+ 277) or at 20 weeks of age (normoxia, 2717+
218; hypoxia, 2702 +466).

Fiber type distribution

The percentages of FOG, FG, and SO fibers of the
extensor digitorum longus muscle in the normoxic
group at 5 weeks of age were 48.2+2.1, 48.9+2.0, and
2.9+1.1, respectively.

The percentage of FOG fibers was significantly
higher and that of FG fibers was significantly lower
in the hypoxic group than in the normoxic group at
10 weeks of age, while there was no difference in the
percentage of SO fibers between the normoxic and
hypoxic groups (Fig. 2). On the other hand, there was
no difference in the fiber type distribution between
the normoxic and hypoxic groups at 20 weeks of age
(Fig. 2).

DISCUSSION

It is widely accepted that hypoxia markedly in-
creases capillarization, mitochondrial density, myo-
globin concentration, and oxidative enzyme activity
in the skeletal muscle to maintain adequate levels of
tissue oxygenation.?>"22" Spinal motoneurons in-
nervating the skeletal muscle also exhibit increased
oxidative enzyme activity in adaptation to hypo-
Xia.g,ZB)

Our previous®!®* studies have shown the altera-
tion of histochemical fiber types in the slow-twitch
soleus muscle following exposure to hypoxia and
found an increased percentage of oxidative (fast-
twitch oxidative glycolytic) fibers. In those papers,
we concluded that hypoxia inhibited the growth-
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Fig. 1. Serial transverse sections of the extensor digitorum longus muscle in normoxic (/eft) and hypoxic (#ight)
rats at 10 weeks of age. The sections are stained for adenosine triphosphatase activities following alkaline
(A and B) and acid (C and D) preincubations, and for succinate dehydrogenase (E and F) and a-glycerophos-
phate dehydrogenase (G and H) activities. 1, slow-twitch oxidative; 2, fast-twitch oxidative glycolytic; 3,
fast-twitch glycolytic. Bar indicates 100 um for all panels.
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Percentages of fibers of each type in the extensor digitorum longus muscle in

normoxic and hypoxic rats. The hypoxic rats were exposed to hypobaric-hypoxia for 5
weeks from the postnatal age of 5 weeks (fop) or for 10 weeks from the postnatal age
of 10 weeks (boftom). Values are meanststandard deviations. FOG, fast-twitch
oxidative glycolytic; FG, fast-twitch glycolytic; SO, slow-twitch oxidative; N, normo-
xia; H, hypoxia. *p<0.001 compared with the value in the normoxic group.

related type shift of muscle fibers from FOG to SO in
the soleus muscle, which occurs during postnatal
growth.'®?® In addition, we reported that this inhibi-
tion was induced by hypoxia, irrespective of the age
and the duration at which the animals were exposed
to hypoxia.''"'® Therefore, it is still uncertain
whether the increased percentage of oxidative fibers
found in the rat soleus muscle following hypoxia is an
adaptive change.

A few investigations have been carried out on the
response of histochemical fiber types in the fast-
twitch extensor digitorum longus muscle after expo-
sure to hypoxia, with conflicting interpretations
given for the results obtained. Bigard et al.”’ observed
a higher proportion of type Ilab (this type is classified
into the intermediate type between high-oxidative Ila
and low-oxidative IIb) fibers in the extensor digitor-
um longus muscle in rats after 14 weeks of hypoxic
exposure (the pressure was gradually reduced to an
equivalent altitude of 4,000 m), indicating that an
increased proportion of type Ilab fibers reflects a

tendency toward the enhancement of high-glycolytic
fibers (shift of fiber types from Ila to IIab and IIb). In
contrast, Ledn-Velarde et al'® observed that the
extensor digitorum longus muscle in Andean coots
living at high altitude (4,200 m) has a higher propor-
tion of high-oxidative type [ fibers and a lower
proportion of high-glycolytic type IIb fibers. A recent
study,'® however reported that there was no differ-
ence in the fiber type distribution of the extensor
digitorum longus muscle in rats following 56 days of
hypoxic exposure, equivalent to an altitude between
2,250 m and 2,250 m.

This study found an increased percentage of high-
oxidative FOG fibers in the extensor digitorum lon-
gus muscle in the hypoxic rats at 10 weeks of age.
The type shift of muscle fibers with growth does not
occur in the rat extensor digitorum longus muscle
after mononeuronal innervation from the single
motoneuron to its muscle unit is completed.!"'#2® [n
fact, this study showed no difference in the fiber type
distribution of the extensor digitorum longus muscle



among the normoxic rats at 5 weeks, 10 weeks, and
20 weeks of age. Therefore, it is concluded that
hypoxia induced the type shift of fibers from low-
oxidative FG to high-oxidative FOG in the extensor
digitorum longus muscle of developing rats. It is
expected that the increased percentage of FOG fibers
causes a facilitation of oxygen transport and an
improvement in the diffusion of oxygen from capil-
laries to muscle fibers under hypoxic conditions.

On the other hand, the type shift of fibers in the
extensor digitorum longus muscle was not found in
the hypoxic rats at 20 weeks of age although any gain
in body and muscle weights during postnatal growth
was inhibited by hypoxia. Older rats may have lower
adaptations to hypoxia on the fiber type distribution
of the fast-twitch muscle. However, further studies
will be needed to elucidate the muscle type- and
age-specific responses of hypoxia.
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