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Chapter 1 

Introduction
1.1 Introduction 

High speed trains are a fast transport system in many countries and is getting 

popular all over the world. With the development of railway technology, electric field 

trains have proven to have many advantages over other forms of transport systems, i.e. 

high energy efficiency, high specific installed power, low maintenance cost, more 

responsive control, no emissions in urban areas, and energy-saving by regeneration 

brake systems. However, it also has some drawbacks: high capital cost of providing 

the energy distribution, complex to operate in regions with different electrical supply 

standards and poor current collecting quality when running above the originally 

intended operational speed. Today, electrically powered trains are widely used on the 

main railway lines in many countries. [1,2,3] 

Fig 1.1 High Speed Train in Japan 
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Figure 1.1 shows a high-speed train with the pantograph and catenary system. 

The functions of pantograph is to collect the electric energy from the catenary and 

transfer it to the locomotives motors, so that they have enough energy to operate. The 

pantograph-catenary system is an elaborately-designed system which can keep a good 

quality of electricity transmission at relatively high speeds. The pantograph can 

automatically be raised from the folded position and work at a certain range of the 

height while sustaining a constant uplift force. The catenary is a well-suspended 

structure kept in a desired geometry. 

For high-speed trains, active control of the pantograph is crucial technology to 

collect electrical current from the overhead contact wire supported by vertical 

droppers, hangers and cantilevers. When the pantograph runs along the catenary, it is 

fluctuated due to aerodynamic force, propagation and reflection of the wave on the 

catenaries, changes in the dynamics characteristics of the catenary system depending 

on the position, etc. An excessively large contact force can damage both in the 

pantograph and the catenary or may cause a severe accident like contact wire breaking 

in the worst case. On the other hand, if the contact force is too small, the pantograph 

and catenary easily lose their contact state. The state the pantograph and catenary are 

in the non-contact state is called contact loss. 

If the dynamic interaction between pantograph and catenary is not constrained 

within an acceptable range, in some extreme cases, not only a high maintenance cost 

can be expected but also serious structural damage can appear. With the development 

of the railway technology in recent years, the operational speeds for most railway line 

have significantly been increased world-widely, so the pantograph-catenary becomes 

one of the key factors which decide the cost of infrastructure and maintenance, and 

limit the operational speed. Therefore, it is quite important for both engineers and 

researchers to investigate the dynamic behavior of the pantograph-catenary system to 

keep the contact tight and stable. The increase of the static contact force, which might 

be considered as a possible solution for this problem, is not an efficient way, because 

it increases mechanical abrasive wear and produces an excessive uplift of the contact 

wire. 

Therefore, maintaining the contact force in an admissible region is crucial for 

high speed trains and thus modeling and control of active pantograph-catenary 

systems have been taken much attention from many researchers. So far, some models 

and controllers for the systems have been proposed. For example, Arnold and Simeon 



Chapter 1 Introduction 

 3 

developed a rather rigorous model with PDEs and DAEs and then proposed a 

numerical solution method [4], Makino et al. developed a wing-shaped low-noise 

collector and proposed an H∞  controller with a disturbance observer [5], Yamashita 

et al. developed a low-noise active pantograph, and then applied a PID controller or 

an impedance control method [6], Chartter et al. proposed a controller based on the 

back-stepping method together with a high-gain observer [7], Allota, Pisano, et al. 

proposed higher order sliding mode controllers [8]-[10], Sanchez-Rebollo et al. 

proposed a hardware-in-the-loop strategy with a PID controller [11].  

In order to regulate the contact force, the authors and the Railway Technical 

Research Institute have developed an active pantograph using a pneumatic actuator, 

and presented modelling and a robust regulator with a rigid frame model. In this thesis, 

three different types of control strategies are introduced. The design and performance 

of an active pantograph which collects current for high-speed train are considered. A 

dynamic model of the pantograph/catenary system is described and control objectives 

are established. 

 

1.2 Objectives 
 

As mentioned above, the modelling and the study of the pantograph-catenary 

system enables the saving of time and cost. By modelling these elements, engineers 

can make modifications and test new implementation to improve the quality of real 

pantographs, making them more perfect. The main objectives of this project can be 

summarized as presented below: 

 Modelling the active pantograph with flexibility: to maintain the contact force 

in an admissible region 

 Analyzing the pantograph-catenary system 

 Applying different kinds of control theory to the controller design to regulate 

the more robust contact force  

 Developing the best control configuration and control strategy  
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1.3 Contributions 

This thesis investigates a dynamic behavior of the contact force variations of 

pantograph-catenary system based on numerical studies. There are three different 

types of controller together with an observer, which are introduced. They are 

(1) Linear state feedback controller with sliding mode observer, 

(2) Sliding mode servo controller with sliding mode observer and  

(3) Optimal servo system based on sliding mode control with sliding mode 

observer. Although the first two control methods of the active pantograph systems in 

this thesis only regulate the contact force under model uncertainty or disturbance, but 

the last controller, optimal servo system, can realize to track the reference signal 

optimally by making efficient use of the active force. 

The model of the pantograph was recovered from the work developed by the 

master student Shun Nagayoshi. Once the model has been obtained, the next stage is 

to investigate the dynamic properties both analytically from a systems-theory point of 

view and numerically. The system is studied with the computational tool Matlab / 

Simulink that enables knowing the response of the pantograph to the catenary’s action. 

1.4 Thesis Organization 

This thesis is organized into five chapters: 

Chapter 1 describes an introduction to all worked about the high speed train. 

In Chapter 2, a basic structure of the pantograph head and the contact wire 

(catenary system) is described. The mathematical model of the pantograph head and 

the catenary system are constructed. Furthermore, a mathematical model of the 

pantograph and catenary has integrated to get the contact state because the train is 

considered as moving state. The stiffness of the overhead contact wire in catenary 

system is a main source of the variation of the pantograph-catenary system. Hence, it 

is emphasized that the fluctuation of the equivalent stiffness between the pantograph 

head and the overhead contact wire, makes it difficult to control the contact state of 

the system. 

Chapter 3 proposes the linear state feedback controller together with the sliding 

mode observer, taking account of the flexibility of the articulated frame in our 
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pantograph. It is emphasized that one of the key points is to regulate the contact force 

in the nominal model without perturbation. A physical interpretation of the pole-zero 

cancellation in the transfer function is also given. 

Chapter 4 is composed of two different sections. In the first section, we propose a 

sliding mode controller together with the sliding mode observer, taking account of the 

flexibility of the articulated frame in the actual pantograph. An introduction to the 

variable structure system (VSS) is described. The condition to ensure the switching 

surface, so-called reachability condition, is also described. The reduced order sliding 

dynamics is formulated. The proposed controller achieves the robust output (contact 

force) by pole-zero cancellation during sliding mode. Secondly, we analyze the robust 

stability of the active pantograph system using Lyapunov method. 

Chapter 5 describes an optimal servo system based sliding mode controller 

together with a sliding mode observer. It is pointed out through our analysis of the 

plant and the closed-loop system using SRL (symmetric root locus) technique that 

pole-zero cancellations play an important role to control the contact force. 

Chapter 6 summarizes the contribution of the thesis and points out some key 

ideas proposed in this thesis. 
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Chapter 2 

Mathematical Model of the Pantograph and 
Problem Formulation 

2.1 Pantograph Catenary interaction 

Figure 2.1 shows a high-speed train with the overview of the pantograph and 

catenary system. The stationary system that consists of poles and the wires with the 

electric power supply is called catenary. The train is connected to the catenary system 

via pantograph which is mounted on the roof of the train. The catenary has two wires, 

the contact wire which is connected to the pantograph and the messenger wire above 

the contact wire is linked together over the droppers. The pantograph catenary is 

designated to transfer electric current to the train. As a contact pair is always moving, 

it is important to keep the contact between pantograph and catenary tight and stable. 

Fig 2.1 The train with pantograph and catenary system 

Dropper 

Cantilever 

Poles

Messenger 
wire Contact Wire 

Pantograph 
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2.1.1 Pantograph 

The aim of pantograph system is to collect electrical current from the catenary 

cable system. In order to collect the current and not to interfere with the passing 

non-electric train under the overhead lines, the main frame is fold-able and can 

vertically raise the pantograph head a significant distance. To achieve good current 

collection, the pantograph head is sprung and is pushed against the overhead line. The 

drive, usually operated by compressed air from the brake system, is used to power the 

system to raise or fall, and provides sufficient uplift force to keep the contact between 

overhead line and pantograph head. Nowadays, there are several types of pantographs 

existing, but the principles are nearly the same. [2] 

The pantograph consists of a part of body that come in contact with the overhead 

catenary and a frame that supports it. The frame is divided into upper frame and lower 

frame. The main spring acts to lift the entire pantograph upwards. For a passive 

pantograph, the only way to avoid the loss of contact at higher speed is to reduce both 

the mass of the pantograph head and the frame, but this is limited by the required 

current-carrying capacity of the pantograph. 

Fig 2.2 Pantograph 

2.1.1.1 Force exerted on the pantograph 

The pantograph suffers different types of forces which have different natures. 

They can be classified as static loads [12], dynamic loads and aerodynamic loads. The 

Main Spring 

Pantograph head 

Spring 
Upper frame 

Lower frame 

Articulated 
frame 
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application point of these forces is established in the contact point with the catenary 

wire. A summarized explanation of these forces is presented below: 

1. Static contact forces: These loads are exerted on the pantograph when it 

raised still. This force is applied on the point where the overhead’s strips 

contact with the catenary wire. A perfect pantograph should keep a constant 

static contact force across its route. 

2. Dynamic contact forces: This component of the force depends on the nature 

of the contact and on the speed of the train. 

3. Aerodynamic contact forces: This force must be differentiated from the 

aerodynamic force that opposes to the train’s course. This aerodynamic 

force is a vertical force and it opposite to the vertical movement of the 

pantograph as consequence of the aerodynamic effects. These aerodynamic 

effects increase with the train speed, therefore a proper design both of the 

train and the pantograph needs to take account to them. 

 

2.1.2 Active Pantograph 

 
As mentioned above, the pantograph doesn't control the variations of the contact 

force by itself. In order to control the contact force between the pantograph and the 

catenary, the active pantograph with the pneumatic actuator have been developed. It 

was found through some experiments that the frame had flexibility which could not be 

ignored to control the contact force.  

 
 

Fig 2.3 Active pantograph 

Actuator 
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2.1.3 Catenary 
 

The catenary mainly consists of the contact wire, a continuous conduction which 

transfers electric current to the moving train through the pantograph, and some other 

supporters to support the weight of the contact line and to keep the contact wire in a 

certain shape at certain positions. [3] The structure of the catenary shown in fig 2.4. In 

general, a catenary is composed of one or two wires that ensure the power 

transmission to the pantograph, and it also counts with one or two complementary 

wires that are charged of maintaining the horizontality of the contact wire, as 

observed in fig 2.4. 

 

 
 

Fig 2.4 Catenary system 

 

The upper wire is the messenger wire and the lower wire is the contact wire 

where the contact with the pantograph take places. The catenary is widely used in 

railways permitting operation at voltages above AC 1000V and DC 1500V, by which 

trains get sufficient power to run at a high speed. To achieve good current collection, 

it is necessary to keep the contact wire geometry within the definite limits. This is 

usually achieved by supporting the contact wire from above by a second wire known 

as catenary wire (or messenger wire).  

 

2.1.3.1 Types of catenaries 

 

1 (Tramway) Catenary 

It is the simplest catenary, it consist on a wire tended between two supports. 

It is used in low speed tracks. It greatest advantage is the presence of stiff points 

Utility Pole 

trolley 
Hanger 

Cantilever 

Messenger wire 

Contact wire 
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at the supports, what leads to the interruption of the contact between the 

pantograph and the catenary. 

 

2  AC Catenary 

When running at high speeds becomes, the use of tramway catenaries is no 

longer an option. This is due to the fact that catenaries start oscillating when the train 

starts to run at high speeds. This can be solved by using an additional wire which 

positioned over the contact wire with the mission of holding the latter. Two kinds of 

catenary can be used, AC (Alternative current) or DC (Direct current) catenaries. It is 

easier to boost the AC voltage than the DC voltage, so it is send more power with AC 

lines. As AC is easier to transmit over long distances, it is an ideal medium for 

electric railway’s supply. This catenary is the most used in long lines requiring from 

trains running at high speeds. 

 

3  DC Catenary 

DC catenary, is preferred in shorter lines, urban systems and tramways. As 

shorter line trains required less power, DC catenaries supply the enough power to 

the railway’s traction. It must be mentioned that corrosion is an important factor 

to be considered in DC systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 Mathematical Model of the Pantograph and Problem Formulation 

 11 

2.2 Mathematical Model of the System 
 
2.2.1 Mathematical model of the catenary system` 
 

 
 

 
Fig 2.5 Catenary model 

 

A catenary is a complex periodic structure. The catenary model described here is 

use a simplified spring, mass and damper model as shown in fig 2.5. The catenary 

mass and the damper are time-invariant elements and the spring is as the time-varying 

element tk . The equation of motion can be written as  

 

tctttttt fxkxcxm ξ++−−=   (2.1) 

 

where ttt xk∆=ξ  defines as the uncertainty/ disturbance due to the change of the 

equivalent stiffness tk  of the catenary system. The state equation can be expressed 

as 
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where t is taken as the short form of the trolley (Catenary). 
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2.2.2 Mathematical model of pantograph system 

 
Taking account of the flexibility in the frame, a three degree of freedom model is 

developed as shown in fig 2.6, where 21  and , ffs mmm  are masses of the pantograph 

head, the upper frame and lower frame, respectively, af  is static uplift force 

generated by the main spring which is denoted as the actuator force (the other 

variables are defined as shown below in table 2.1). In this research, the disturbance 

such as aerodynamic fore, static loads, etc… which are neglected. 

 
 

Fig 2.6 Pantograph model 
 

The equation of motion of the system can be written as 
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Hence the following linear and time-invariant of the state space representation was 

derived to 
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where p is used as the short form of the pantograph model. The physical parameters 

used here are shown in Table 2.1. 
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Table 2.1 Physical parameters 

Catenary 

stiffness 

 
tk  

 
[N/m] 

Catenary damping  
tc  

 
[Ns/m] 

Mass of catenary  
tm  

 
[kg] 

   

Shoe-upper 

frame stiffness 

 
sk  

 
[N/m] 

Shoe-upper frame 

damping 
sc  [Ns/m] 

Mass of shoe sm  [kg] Mass of upper frame 1fm  [kg] 

Upper 

frame-lower 

frame stiffness 

 

1fk  

 

[N/m] 

Upper frame-lower 

frame damping 
1fc  [Ns/m] 

Mass of lower 

frame 
2fm  [kg] Lower frame damping 2fc  [Ns/m] 

Contact force cf  [N] Axis force af  [N] 

Displacement of 

contact 

wire/shoe 

 

tsx  

 

[m] 

Displacement of upper 

frame 
1fx  [m] 

Displacement of 

lower frame 

 
2fx  

 
[m] 

Uncertainty/disturbance 

due to catenary’s 

stiffness variation 

 

tξ  

 

[N] 

 

2.2.3 Composite model of pantograph and catenary 
 

Consider the train situation is always moving, it is desired to control the contact 

force variations and not to get the contact losses between the pantograph and catenary 

system, the overhead contact wire and pantograph have to keep in contact with each 

other. Therefore, it is determined to combine the catenary model which described in 

fig 2.5 and pantograph model which described in fig 2.6. Figure 2.7 shows the 

combine model when the contact wire and the pantograph are in contact state. 

Assuming that the overhead contact wire and the shoe on the pantograph head are 

connected all the time, the state vectors can be redefined as 

tsst xxx ==  (2.5) 
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Fig 2.7 pantograph-catenary model 

 
The origin in the coordinates is the equilibrium point, the equations of motion of the 

masses are given by 

 

tfsfstssttssttsst xkxcxkkxccxmm ξ++++−+−−=+ 11)()()(   (2.6) 

2121111111 )()( ffffffsffstsstssff xkxcxkkxccxkxcxm +++−+−+=   (2.7) 

afffffffffff fxkxccxkxcxm +−+−+= 21221111122 )(   (2.8) 

 
Taking the state vector as, 
 

[ ]Tfffftsts xxxxxx 2211 =x  (2.9) 
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The state equation is 
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(2.10) 

 

Since the contact force includes inertial force of the overhead contact wire and 

pantograph head, in order to obtain an expression of the contact force, we need the 

following equations of motion with respect to each mass independently. 

 

ttctttttt xkfxkxcxm ∆−+−−=   (2.11) 

cfssfssss fxxkxxcxm −−−−−= )()( 11  (2.12) 

 

From these equations, it follows the contact force equation can be represented by 
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The contact force state equation can be given by 

 

[ ]

t

t
st

s

stststststst
st

c

d
mm

m

cmkmcmmckmmk
mm

f

ξ

ξ

+=
+

−

−−
+

=

cx

x

    

                                                                              

001

 

 

(2.14) 

 

2.2.4 Stiffness variations of the catenary 
 
Figure 2.8 shows the diagram of the catenary stiffness, when the train speed is 

360km/h. The distance between two poles is set to 50meters. The wire length is 

usually from 1 km to 1.5 km, depending on the temperature ranges. When the 

pantograph moves along the overhead wire, its stiffness variation produces a periodic 

excitation which leads to the vibration of the pantograph and the fluctuation of the 

contact force. A main source of vibration is the stiffness variation of the contact wire 

along the span. The stiffness of the overhead wire is the minimum at the middle of the 

span and it is the maximum at the around the support tower, which means that the 

catenary stiffness tk  is always change with the time. In this thesis, the variations of 

the catenary stiffness is treated as the disturbance. And then consider the fluctuation 

range of the contact force due to the changes of the stiffness variations. The catenary 

stiffness tk  varies between 

 

2000200 ≤≤ tk  (2.15) 
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2.3 System analysis of the open loop control system 
 

In this section, we do analyze the state equation of the pantograph catenary 

system (eq 2.10) and the output equation (eq 2.13). The parameters are set according 

to the values from Table (2.2) and d stands for the disturbance input to the 

pantograph-catenary model. From the identification experiments of these parameters, 

the equivalent stiffness coefficient of the catenary, tk  is defined as a time varying 

parameters. But in this thesis, we take mNkt /1100=  as for the nominal case. 

 

Table (2.2) Designated parameter values 

tm  kg100  sm
 

kg13.2  1fm
 

kg6  2fm
 

kg10  

tk  mN /200  sk  mN /3800  1fk  mN /19218
 

  

tc  mNs /100
 

sc  mNs /60  1fc  0 2fc
 

mNs /80  

 

Design on the open loop control system of the pantograph-catenary system, we can 

consider the control system in two different ways as follow; 

(1) Control analysis from disturbance input d to the output y and  

(2) Control analysis from control input u to the output y. 

 

2.3.1 From Disturbance input to Output  
 

The equation of the open loop gain from the disturbance input to contact force 

(output of the system) can be written as  

 

)()()()( 1 dssG −+−−= − DAIc  (2.16) 
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From (eq 2.16), the poles and zeros of the transfer function from the disturbance 

input to the contact force are obtained as follows 

[ ]iiipdy 05.176.039.3685.327.10217.5 ±−±−±−=

[ ]043.40.6493.153.15794.18 −±−±−= iizdy

Figure 2.9 shows the bode diagram of the transfer function from the disturbance 

input to the contact force. 

Fig 2.9 Bode plot for the open loop transfer function from the disturbance input to the 

contact force output 

According to this diagram, it can be seem that the gain continues to decrease in 

the low frequency until it reaches to the zero point of the origin because of the direct 

term which we mentioned in (eq 2.14). It also should be noted that the relative degree 

between the uncertainty/ disturbance tξ  and the contact force cf  is zero because 

the uncertainty tξ  appears in the output equation (eq 2.14). 
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2.3.2 From Control input to Contact force 
 

The equation of the open loop gain from the control input to contact force (output 

of the system) can be written as  

 

bAsc 1)()( −−= IsG  (2.17) 

 

From (eq 2.17), the poles and zeros of the transfer function from the control input 

to the contact force are obtained as follows 

 

[ ]iiipuy 05.176.039.3685.327.10217.5 ±−±−±−=  

[ ]izuy 32.150.033.633 ±−−=  

 

Figure 2.10 shows the bode diagram of the transfer function from the disturbance 

input to the contact force. 

 
Fig 2.10 Bode plot for the open loop transfer function from the control input to the 

contact force output 
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ffssttt kscksckscsm
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++++=
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c

bIA
(2.18) 

where 01 =fc  from our identification experiments, and thus the zeros of the transfer 

function are obtained as follows 

t

tttt

s

s

m
kmcc

c
k

s
2

4
,

2 −±−
−= (2.19) 

It should be noted that two complex zeros of the transfer function are the same as 

the poles of the nominal catenary subsystem given by (eq 2.11), and that the relative 

degree is three. If 01 ≠fc , the relative degree would be four. On the other hand, the 

relative degree of the transfer function from the disturbance tξ  to the contact force is 

zero as mentioned above. In general output regulation or disturbance rejection 

problems, the relative degree and pole-zero cancellation play an important role in 

controller design. That is, from the above observations, we can see that it is 

impossible to reject the disturbance completely in our system, because the relative 

degree of the transfer function from the control input to the contact force is less than 

that of the transfer function of the disturbance. Furthermore, in order to reduce the 

effect of the disturbance on the contact force, some of the closed-loop poles should be 

assigned in exactly the same location as the catenary poles, yielding pole-zero 

cancellation.  
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2.4 Problem formulation 

The main reason of the implementation of an active control system is the 

reduction of the standard deviation of the contact force between the pantograph and 

catenary, hence reducing the contact variation and holding the contact force as 

constant as possible. The disturbances are mainly caused by the droppers and poles. 

In control theory, the disturbance is normally considered in the way as shown in 

fig 2.11. As the exact input of the disturbance into the pantograph-catenary model is 

known from section (2.2.3). 

Fig 2.11 Closed loop control system with the disturbance added to the output signal 

The active pantograph control system is mainly used closed-loop feedback 

control, in which it is difficult to keep the contact force constant. Because of the 

comprise between the stability and the performance of a feedback control system. For 

an active pantograph, different control strategies will lead to different results. Here in 

this thesis, we introduce three different types of control strategies. They are 

(1) Linear state feedback controller with sliding mode observer, 

(2) Sliding mode servo controller with sliding mode observer and  

(3) Optimal servo system based on sliding mode control with sliding mode 

observer. 

Each of them above gives a good performance of the pantograph catenary 

interaction which will be discussed in chapter 3, 4 and 5.  

r K(s) P(s) u 

d 
y +

−  
e
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2.5 Summary 

In this chapter, a basic structure of the pantograph head and the contact wire 

(catenary system) is described. The mathematical model of the pantograph head and 

the catenary system are constructed. Furthermore, a mathematical model of the 

pantograph and catenary has integrated to get the contact state because the train is 

considered as moving state. The stiffness of the overhead contact wire in catenary 

system is a main source of the variation of the pantograph. Hence, the fluctuation of 

the equivalent stiffness between the pantograph head and the overhead contact wire, 

make it happen a problem to control the contact state of the system. In section 2.3, a 

problem formulation of the pantograph-catenary system proposed and then a 

numerical analysis of the open-loop pantograph-catenary system has described. 

Moreover, the relative degree of the transfer function and the pole-zero cancellation 

plays as an important role from the viewpoint of output system are also discussed. 



Chapter 3 Linear State Feedback Controller Design 

24 

Chapter 3 

Linear State Feedback Controller Design 

3.1 Introduction 

The performance of the high speed trains depend critically on the quality of the 

contact in the pantograph-catenary interaction. Maintaining a constant contact force 

needs taking special measures and one of the methods is to utilize active control to 

optimize the contact force. Therefore, maintaining the control of the contact force 

becomes the main problem for the high-speed train transportation system. The force 

exerted by the pantograph on the contact wire oscillates, such oscillations can cause 

contact losses, electric arc formations that damage the structure of the pantograph and 

reduce the system performance. 

In order to regulate the contact force, we have been developing an active 

pantograph with a pneumatic actuator which described in chapter (2). Based on that 

model design, an optimal control strategy with the aim of maintaining the constant 

contact force are investigated in this chapter. The active pantograph using optimal 

strategy can resist the disturbances because of the optimal control force is derived 

from feedback, and achieves the best theoretical performance.  

In this chapter, a design of the linear state feedback controller for the 

pantograph-catenary system and a sliding mode observer are mainly discussed. First, 

design an optimal type 1 servo system by full state feedback where the controlled 

variable is the contact force cf  between the pantograph overhead and the contact 

wire, and then design a sliding mode observer is proposed to regulate the contact 

force in the presence of variation with respect to the equivalent stiffness of the 

catenary system. 
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The overall block diagram of the control design will be discussed. In section 3.3, 

the function of the optimal control theory by full state feedback law will be introduced. 

In section 3.5, a sliding mode observer design will be discussed. Numerical 

simulation is carried out and the output reduction will be discussed in section 3.8.  

 

3.2 Overall control design 
 

 
 

Fig 3.1 Overall block diagram of the control system 

 

First we design an optimal servo controller and then design a sliding mode 

observer to regulate the contact force. Figure 3.1 shows the overall block diagram of 

the control system of pantograph-catenary system, where r  is the reference contact 

force and u  is the control input. At first, assuming that all the state variables are 

available, we design an optimal controller and then design a sliding mode observer to 

estimate the state. 

This controller design can divided into two parts, a nominal controller plant and 

an observer. A nominal controller plant is designed with the optimal control theory 

and an observer is designed with sliding mode theory. The state error is used as an 

input to the system in closed-loop system. Because of the main reason is that the 

disturbance or uncertainty, which is directly effect to the contact force, output of the 

system which make the system much more difficult.  
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3.3 Theoretical background of linear optimal controller 
 
This is the short summary on optimal full-state feedback control theory. [14] The 

plant for the linear time invariant system to be written in the controllable state-space 

form represented by 

 

( ) ( ) )(tButAxtx +=  (3.1) 

 

and that all of the n states x are available for the controller. The feedback gain is a 

matrix k, represented as  

 

))(ˆ)(( txtxKu −−=  (3.2) 

 

The system dynamics of the closed loop system are written as 

 

)(ˆ)()()( txBKtxBKAtx +−=  (3.3) 

 

x̂  represented the vector of the closed loop system, and serves as the external input 

to the closed loop system. As the system is controllable, the closed-loop poles can be 

allocated to any desired location by appropriate choice of K . The schematic diagram 

of the full-state feedback controller is as shown in fig 3.2. 

 

 
 

Fig 3.2 Schematic design of full-state feedback controller 
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In order to design an optimal controller for the pantograph-catenary system, the 

linear quadratic regulator (LQR) is used in this chapter. This method depends on 

minimizing criteria using the feedback )(tKxu −= . The performance index that is 

used for minimizing both the control effort and the states is given as 

 

[ ]dttRututQxtxJ TT∫
∞

+=
0

)()()()(
2
1  

 

(3.4) 

 

)()( txtxx T=  and x is an 1×n  state vector. The given norm that depends on the 

state can be used as a measure of the system response. The index also includes u input 

to control the system. The Q and R matrices in J are called the weight matrix. The 

weight matrix allow to define the effect of each state and control input in the 

controller response when the feedback is used for designing the controller. The Q and 

R are positive definite symmetric matrices and design parameter R is designed as a 

scalar which is greater than 0.  

According to the eq (3.1) and (3.4), the required optimal solution for the feedback 

gain is calculated by 

 

)()( 1 tPxBRtu T−−=  (3.5) 

 

where P(t) is the positive semidefinite solution of the matrix differential Riccati 

equation 

 

01 =+−+ − QPBPBRAPAP TT  (3.6) 
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3.4 Design of Linear Optimal Controller 
 

First, we design an optimal type I servo system by full state feedback where the 

controlled variable is the contact force cf . An optimal servo controller is designed 

with integral action which shown in the overall block diagram fig (3.1). Considering 

the optimal controller, we assume all the state variables for the controller design, the 

parameter K  is the integral gain and F  is the feedback gain. 

The plant to be controlled is given by 

 

ttdtutt ξ++= )()()( bAxx  (3.7) 

tdtxy ξ+= )(c  (3.8) 

 

where 66×ℜ∈A . This controller design is denoted as a (SISO) system, the input is the 

reference signal r and the output is the contact force cf . 

In order to apply the linear quadratic regulator (LQR) technique to the tracking 

problem, we consider the deviation system from the steady state to the contact 

reference signal. Then the time derivative of the control input is given by 
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(3.9) 

 

In order to formulate the tracking problem to LQR, the state vector of the linear 

servo system is defined as [ ]ux . Using the above equation, we can derive the 

deviation system from the steady state for the linear servo system as follows; 
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[ ] td
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y ξ+
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(3.11) 

Letting E as; 
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Assuming that both the reference signal and the disturbance are constant in the 

steady state 0 , 0 == ux , the equilibrium point can be obtained as follows: 
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Substituting eq (3.13) into eq (3.14) 
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Define the new state and output, which are perturbations from the equilibrium. 
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Defining ex  and eu  as the deviation of the state and the control, respectively, 

and taking [ ]Teew uxx =  as the augmented state vector. The augmented deviation 

system can be represented by 
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For this controller design,we neglected the effect of the disturbance, the 

perturbation term from the plant system and consider as a nominal 

pantograph-catenary system. Removing the disturbance yields  
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where e  is the tracking error, and euv =  which can be seen as the control input in 

the regulator given in eq (3.19). Thus, for this plant, the following state feedback is 

employed. 
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(3.21) 

 

To obtain the optimal regulator gain eF , the following performance index is used. 

 

{ }

[ ] dtRvv
u

W
u

dtRvvWeeJ

T

e

e
T

T
e

T
e

TT

∫

∫

∞

∞













+















=

+=

0

0

0
    

x
0

0cc
x

 

 

 

(3.22) 

 

The design parameters are the weighting matrices RW ,  on the tracking error. The 

optimal regulator gain eF  can be obtained with ‘LQR’ function in Matlab, then it 

changed to the original state equation as follows: 
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(3.23) 

 

Finally, the actual optimal gain is given by 
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3.5 Sliding Mode Observer 
 

An observer is a system that provides an estimate of the internal state driven by 

the input of the system and a signal representing discrepancy between the estimated 

and the actual states. In most practical cases, the state of the real system cannot be 

determined by direct observation, therefore, the internal state is observed from the 

system outputs instead. The sliding mode observer, based on the same idea of sliding 

mode control, employs a switching function of the sliding variable to steer the system 

trajectory to the sliding manifold and maintain the motion on the manifold thereafter. 

[16,17,18] The ideal sliding motion is shown in fig (3.3). 

The sliding mode observer uses non-linear high-gain feedback to force estimated 

states to reach a predetermined surface, which is called sliding surface (Hyper-surface) 

where there is no difference between the estimated output to the measured output. 

When the states reach on the switching surface, observer trajectories slide along the 

origin where the estimated output matches the measured output that means the sliding 

variable is chosen to ensure the observed states converge to the actual stages. [16-18] 

 

 
 

Fig 3.3 Ideal sliding motion 
 

The main problem of the sliding mode observer is the chattering which makes the 

high frequency variations output. Chattering effects in the sliding motion which is 

described in fig (3.4). 
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Fig 3.4 Chattering effect on sliding mode 
 

In such a case, we can design to add various control theories, such as boundary 

layer, adaptive switching function and low pass filtering. Among the various solutions 

to reduce chattering: the boundary layer control is the most popular approach.  

 

 
 

Fig 3.5 Boundary layer control 
 

In a boundary layer design, a smooth continuous function is used to approximate 

the discontinuous sign function in a region called the boundary layer around the 

sliding surface. By using the sign of the error to drive the sliding mode observer, the 
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observer trajectories become insensitive to many forms of noise. Once the sliding 

mode is achieved, the sliding mode observer can reject certain external disturbances 

and internal parameter uncertainties. [16,17,18]  

 

3.5.1 Theoretical background of a sliding mode observer 
 

This is the short summary on sling mode observer design using variable structure 

control system [13]. Sliding mode observer can be used in the design of state observer. 

The nonlinear high-gain observers have the ability to bring coordinates of the 

estimation error dynamics to zero in finite time. The plant for the linear time invariant 

system to be written in the controllable state -space form represented by 

 

)()(
)()()(

tcxty
tButAxtx

=
+=

 
 

(3.25) 

 

where pmn cBA ℜ∈ℜ∈ℜ∈ ,, and the system is observable. A schematic diagram of 

the controller with an observer is shown below 

 

 
 

Fig 3.6 Schematic diagram of the controller with an observer 
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Based on the diagram, the dynamics of the state estimate are described by 

changing the new coordinate system as follows: 

 

LvtuBtxAtxAtx +++= )()(ˆ)(ˆ)(ˆ 12121111
  (3.26) 

vtuBtyAtxAty −++= )()(ˆ)(ˆ)(ˆ 222121
  (3.27) 

 

where L is the observer feedback gain and the vector v is defined by 

 

)ˆsgn( yyMv −=  (3.28) 

 

where +ℜ∈M . Representing the mismatch in the process by state reconstruction 

error  

 

111 ˆ xxe −=  (3.29) 

yyey −= ˆ  (3.30) 

 

The following error dynamic is obtained 

 

LvteAteAte y ++= )()()( 121111  (3.31) 

vteAteAte yy −+= )()()( 22121  (3.32) 

 

If the original plant system is observable, the pair ),( 1211 AA  is also observable. After 

that change the coordinates dependent on L and let Lyee += 11
~ . The error system 

with respect to the new coordinates can be written as 

 

)(~)(~~)(~
121111 teAteAte y+=  (3.33) 

vteAteAte yy −+= )(~)(~)( 22121  (3.34) 

 

where LAAALALAAALAAA 21222211221212211111
~ and ~~ ,~

−=−+=+= . With an 

appropriate 1
~   , eL  decays exponentially and observer stage converge to the actual 
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stages. Therefore, the goal of state reconstruction using sliding mode is achieved. An 

ideal sliding motion will take place on the surface 

( ){ } 0    :,  1 == yyo eeeS
 

 

(3.35) 

 

In this research, we consider the problem of designing sliding mode observer 

using Variable Structure Control (VSS) system. Variable structure control system 

comprise feedback control and a decision rule. Depending on the states of the system, 

the decision rule, often termed the switching function, determines which of the control 

law. The dynamical behavior of the system when confined the surface is described as 

the ideal sliding motion. The latter property of invariance towards so-called matched 

uncertainty makes the methodology as an attractive one for designing robust 

controller for uncertain systems. The advantages of obtaining such a motion are 

twofold: firstly, there is a reduction in order and secondly the sliding motion is 

insensitive to parameters variations. [13,15,16,17] 

 

3.6 Design of Sliding Mode observer 
 
In this thesis, we introduce a sliding mode observer using variable structure 

control (VSS) system. A variable structure system (VSS) of a nonlinear uncertain 

system is well known for its robust property and simplicity of control law. In this 

section, the problem of designing an observer of state estimation using variable 

structure system (VSS) is discussed. The state equation of the pantograph-catenary 

plant system is given by 

 

ttu ξdbAxx ++=  (3.36) 

 

There are six state variables in the plant system which described in eq. (2.9). To 

estimate the state variables for the observer system, we could not estimate the full 

state of the system. In general servo systems, the controlled variables are used for the 

observer. However, the contact force is not appropriate for the observer, because it is 

directly influenced by the uncertainty as seen from eq (2.14). Taking account of 

robustness against the uncertainty and the existence of the sliding mode, we use two 
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parameter measurements, tsx  the velocity of the pantograph head and 2fx  the 

displacement of the lower frame, for the observer design.  

 

xxcy 
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010000
000010

2  
 

(3.37) 

 

To simplify the design procedure, the state vector is redefined for the observer 

design as 

[ ]tsffffts xxxxxx  2211
~ =x

 
 

(3.38) 

 

where the last two variables are available for the observer (only change of the order). 

With this new state vector, the system equation eq. (2.10) can be written by 
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(3.39) 
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Furthermore, the system matrix is partitioned as follows: 
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where )()(
11

mnmn −×−ℜ∈A , n  is the number of the system states and m  is the 

number of the measured states. If there are any invariant zeros present in the system 

then they must appear in matrix 11
~A . It can be partitioned accordingly, so that the 

sub-block has the structure as; 
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(3.41) 
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11   ,    ,  ,    ,  , ××××× ℜ∈ℜ∈ℜ∈ℜ∈ℜ∈ AAAAA   

 

The pair )~,~( 2122 AA  is completely observable. The output equation with respect 

to the measurements for the observer is give by 
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(3.42) 

 

where 22×ℜ∈I . 

 

In this research, we design a variable structure system (VSS) of sliding mode 

observer based on the Walcott-Zak observer theory. Figure 3.7 shows a block diagram 

of the Variable structure system (VSS) observer. 
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Fig 3.7 Schematic diagram of the VSS observer 
 

The (VSS) sliding mode observer is designed as  

 

vGeGbxAx nylu +−+= ~~̂~~̂  (3.43) 

xCy ~̂~~̂ =  (3.44) 

.parametersdesign   theare  and 

  ,~~̂  where,
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The third term of the eq (3.43) is the linear observer term and the last term is the 

nonlinear observer term, where, ye  is an error and it is used as a switching function 

of the observer. Therefore, when system is enter to the sliding mode control, the error 

( ye ) becomes zero. 
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3.6.1 Design of a linear observer gain 
 

In order to design the linear optimal observer gain for the system, the optimal 

observer theory (Kalman filter) is used. To consider the parameter of the linear 

observer gain lG , the nonlinear term from the observer state equation eq (3.43) is 

excluded. Therefore, the observer state equation can be rewritten as 

 

ylu eGbxAx −+= ~~̂~~̂  (3.45) 

 

By using the optimal observer theory (Kalman filter), the optimal observer gain 

lG  is calculated as 

 
1~ −= RCPG T

l  (3.46) 

 

where P  is the positive semidefinite solution of the matrix differential Riccati 

equation 

 

0~~~~ 1 =+−+Α −
ll

TT QPCRCPPAP  (3.47) 

 

To find the optimal observer gain, we consider the system as dual system. It 

means that the output feedback is used as the system input to the observer design. The 

state equation of the dual system is given by 

 

)(~)(~~~ tt TT uCxAx +=  (3.48) 

 

The performance index that is used for minimizing both the system error and the 

states is given as 
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The index includes u  input to control the system. The RQ  and  matrices in J  

are called the weight matrix. From eq (3.48) and eq (3.49), the required optimal 

solution to calculate the observer gain lG  is achieved. The optimal observer gain 

matrix is 

 
T

l FG ~=  (3.50) 

 

The weight matrix in the Riccati equation is defined as follows: 
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3.6.2. Design of a nonlinear observer gain 
 

In this observer, the nonlinear term on the right hand side from eq (3.43) is a 

discontinuous function to bring about the sliding mode. In order to analyze the error 

dynamics of the system, the state equation of the estimation error is defining as, 
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(3.51) 

 

where an error dynamics is divided into two error states, 1e  is the unmeasured state 

vector which is not sensed by an observer and ye  is the measured state vector which 

is sensed by an observer. The state equation of the estimation error dynamics for the 

sliding mode observer is designed as  
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(3.52) 

 

where 22
2

24
1   and  ×× ℜ∈ℜ∈ ll GG . As seem from the eq (3.52), one of the points to 

determine the design parameter nG  is that if d~  belongs to the range space of nG , 

i.e. the matching condition holds, then the estimation error dynamics during sliding 

mode is insensitive to the uncertainty. Although this requirement can be easily 

fulfilled, there is another obstacle such as the existence of the sliding mode, which is 

highly depend on nG  but also on the linear gain lG  as another design parameter. 

Taking the matching condition into account, firstly nG  is parameterized as 
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(3.53) 

where 1422   ,  ×× ℜ∈ℜ∈ olP  . 

It should be noted that the last column in nG  is taken for d~  to belong to the range 

space of nG . 

As the error dynamics are divided into two states, then we convert the control 

variables to the regular form and divide it into two states also, which are Null space 

and Range space. In order to change the error dynamics eq (3.53) into a regular form, 

using the linear transformation as 
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The transformation matrix lT  is defined as 
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And the inverse form of the transformation matrix is as follows: 
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After applying a change of the state, the state equation for the error dynamics can 

be rewritten as 
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The estimation error dynamics of the measure state vector in the change state is 

yy ee = . Then, It follows: 
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(3.57) 

 

where the element )11( ×  of the eq (3.57) is 
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Parametrization; 
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According to eq (3.60) and eq (3.61), It can be seen that the disturbance/ 

uncertainty term dT ~
l  is satisfied with the Range space of the nonlinear term nlGT . 

This condition is defined as the matching condition. Consequently, it follows the null 

space dynamics and range space dynamics, 
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(3.63) 

 

The null space dynamics eq (3.62) is insensitive to the uncertainty because of the 

matching condition, and thus the estimation error dynamics during sliding mode, 

0== yy ee  , is governed by, 

 

1211111 )~~( eAlAe o+=  (3.64) 
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where 11
~A  and 211

~A  are the design parameters of the system and ol  is the design 

parameter which can be determined the sliding mode poles. The other parameter must 

be determined to guarantee the existence of the sliding mode. Then, the positive 

definite matrix oP  is designed to satisfy with 
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(3.65) 

 

which means oP  satisfies with a Lyapunov matrix for )~( 222 lGA − . 
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Considering the existence of the sliding mode, taking the positive definite matrix 

oP , such that 

 

oo ηαρ +≥ 2
~dP  (3.66) 

 

where ρ  is the relay gain for the switching function. If the value of the relay gain 

ρ  is large, the effect of the disturbance can not appeared. However, to ξαη >>   , 0 , 

oη  is a small positive number, which means that α takes a larger value than the 

magnitude of the perturbation force. 

The relationship between oP  and 2
~d  is calculated as 
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Therefore, the relay gain to be calculated as 
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3.7 System Analysis 
 

In this section, we apply the SRL (Symmetric Root locus) method, which gives 

the locus of the optimal poles with respect to the parameter W  under the 

performance index eq (3.22), to analyze the optimal servo system designed in the 

section (3.4). By increasing the weighting factor W , the fluctuation of the contact 

force between pantograph and catenary can be reduced. The optimal poles are the 

stable roots in the left half plane of the SRL equation 

 

0)()(1 =−+ sGsG ooρ  (3.69) 

 

where )(sGo  is the transfer function of the control input to the contact force, 

 

bAIc 1)()( −−= ssGo  (3.70) 

 

The symmetric root locus obtained for 101 10~10−=W  is shown in fig (3.8)., where 

a portion around the origin in the left figure is zoomed in the right figure. 

  
 

(a) Overall 
 

(b) around the origin 
 

Fig 3.8 Root locus of linear optimal feedback poles 
 

According to this figure, the stable roots converge to the zero of )(sGo  as W  

increases. As described in chapter 2, the order of the relative degree from disturbance 

to contact force is smaller than the order of the relative degree from control input to 

the contact force, which means perfect output zeroing can not be achieved easily. In 
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this research, the weighting factor is set to 710=W , the poles and zeros in the 

transfer function from the reference signal to the contact force are obtained as 

follows: 

 

[ ]

[ ]40.16028.350.063.14020.10711.18253.7zeros

10.11328.350.056.8579.9025.14229.34poles
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iii
 

 

It should be noted that a pair of poles approximately cancel out a pair of zeros at 

i28.350.0 ±−  which is the mode of the catenary subsystem given by eq (2.19). 

Taking these poles into account, the observer poles ol  during sliding mode were 

determined as  

 

[ ]ii 10501070 polesObserver ±−±−=  

 

after some trial and errors. According to this fact, perfect output zeroing can be 

achieved by exact pole-zero cancellations which make an unobservable subspace in 

the state space. From a physical point of view, in addition, these close-loop poles will 

make it possible that the pantograph head is following the catenary wire motion not to 

prevent its free motion, yielding a good regulation of the contact force. 

According that the uncertainty tξ  is an independent external disturbance, the 

frequency response from the disturbance tξ  to the contact force cf  can be obtained 

as shown in fig (3.9) where the blue line is passive case (open loop) and the green line 

is the active (close loop). It can be expected from this figure that the active 

pantograph probably achieves the regulation of the contact force better than the 

passive pantograph, because the gain of the active pantograph is lower than the gain 

of the passive pantograph, in almost all frequencies especially at the disturbance 

frequency ) 4( rad/sπ  without any resonances (much more stable). 

In the rest of the simulation, the reference signal is given as follows: 
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to make sure the transient response. 

 
Fig 3.9 Bode diagram of the transfer function from the disturbance to the contact 

force 

 

3.8 Simulation Results 
 

In order to investigate the performance of the proposed linear state feedback 

controller, numerical simulation has carried out. Numerical simulation results are 

performed to confirm the effectiveness of the controller design. The parameter values 

of the pantograph-catenary system are shown in Table (2.2), where the parameter 

values of the pantograph are the estimates by identification experiments, and those of 

the catenary system are determined based on some references. The parameter values 

of the pantograph-catenary system as shown in this section obtained from the joint 

research with the Railway Technical Research Institute  

When the train speed is 360 km/h and the span length of each cantilever is about 

50 m, the catenary equivalent stiffness can be assumed to change periodically with 

2Hz as shown in fig (3.10). 
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Fig 3.10 Catenary stiffness 

 

Because the proposed controller achieved a good performance as expected for the 

simulation result, we carried out some simulations in more realistic situation. That is, 

although we neglected the actuator dynamics when designing the controller and 

observer, we inserted the following dynamic model of the pneumatic actuator 

 

se
s

sG 002.0

1013.0
1)( −

+
=  

 
(3.71) 

 

which had been obtained by some experiments. Furthermore, it was assumed that 

three measurements for the controller and observer were corrupted by white Gaussian 

noises whose maximum magnitude and some important parameters are as shown 

below:  

 

Contact force: N4±  

Catenary equivalent stiffness: 2Hz 

Displacement of the lower frame: m4101 −×±  

Velocity of the contact wire/shoe head: sm /101 4−×±  

Nominal value of stiffness fluctuation: mNkt /1100=  

 

The design parameters in the controller and observer were determined taking 

account of the above situation.  
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Fig 3.11 Perturbation force 

 

Figure (3.12) and (3.13) shows the estimation errors, ye , used in the observer eq 

(3.43) and eq (3.44), where the true state variables are used for control to evaluate 

only the observer performance. Figure (3.12) shows the simulation result of the 

estimation error of the linear optimal observer and Fig (3.13. a,b) shows the 

simulation result of the sliding mode observer. It can be seen from the chattering 

around the origin as shown in fig (3.12, a) that the quasi sliding mode takes place, and 

that the estimation accuracy is better than that of the linear optimal observer shown in 

fig (3.12). 

 
 

Fig 3.12 Estimation error, ye  for Linear optimal observer 
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Fig 3.13 (a) Estimation error, ye  for Sliding mode observer (Without actuator) 

 
Fig 3.13 (b) Estimation error, ye  for sliding mode observer (With actuator) 

 
Fig 3.14 Control input 
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Fig 3.15 Control input in transient response 

 
Fig 3.16 Contact force in steady state 

 
Fig 3.17 Step response of the contact force 
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Furthermore, it is assumed that the measurement of the contact force with a load 

cell is corrupted by a band limited white noise. It can be seen from fig 3.13 (b) that 

the quasi sliding mode takes place in spite of the existence of the actuator dynamics. 

Figure (3.14) and (3.15) show the simulation results of the control input with actuator 

control dynamics and the without actuator control dynamics. The simulation result of 

those two are almost the same, which means that the designed controller is 

appropriate for the actuator dynamics.  

Figure (3.16) shows the contact force in the steady state in comparison with the 

passive case where the static uplift force is provided. It is clear that the active 

pantograph achieves much better regulation performance than the passive one. Figure 

(3.17) shows the step response of the contact force, from which it can be seen that the 

transient response is also good. 

3.9 Summary 

In this chapter, we proposed the linear state feedback controller together with the 

sliding mode observer, taking account of the flexibility of the articulated frame in our 

pantograph. It has emphasized that one of the key points to regulate the contact force 

in the nominal model without perturbation. A physical interpretation of this pole-zero 

cancellation is also given, that is, the pantograph head can follow the catenary motion 

not to prevent it free motion by assigning some of the closed loop poles on the 

catenary mode. Because it is found out through many simulation results that the 

observer plays a key role in the control performance, we are still under investigation 

on which physical variables to use for the observer and how to measure them 

precisely in severe environments. 
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Chapter 4 

Sliding Mode Servo Controller Design 

4.1 Introduction 

Previous chapter was developed the linear state feedback controller together with 

a sliding mode observer and it can proved that the system have good performance 

according to the simulation results. However, It is always required to design a more 

robust controller for an active pantograph. Therefore, a sliding mode controller 

together with a sliding mode observer is proposed in order to regulate the robust 

contact force in the presence of variation with respect to the equivalent stiffness of the 

catenary system in this chapter. To regulate the robust contact force, we have 

developing an active pantograph with a pneumatic actuator, which described in 

chapter (2). Based on the same model design, sliding mode control strategy with the 

aim of achieving the robust contact force are investigated in this chapter. 

As we mentioned above, the control system is developed with a sliding mode 

controller together with a sliding mode observer, is based on the same mathematical 

model of the pantograph. Figure (4.1) shows the overall block diagram of the control 

system where the reference r  is the reference contact force, the contact force cf  is 

the control output,σ  is the switching function of sliding mode control and u is the 

control input to the system. We use sliding mode control theory for both controller 

and observer design to regulate the robust contact force. At first, assuming that all the 

state variables are available, we design a sliding mode control law, and then design 

sliding mode observer to estimate the state. 

The two different sections discuss in this chapter. The first section is how to 

design the sliding mode controller together with sliding mode observer and next 
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section is the stability analysis of the system. A design of the sliding mode controller 

for the pantograph-catenary system is mainly discussed even though a sliding mode 

observer is combined with the controller in the control system. Because we used the 

same design of sliding mode observer, which described in chapter (3). And the 

stability of the closed loop control system is proved by using Lyapunov method. In 

the design of sliding mode controller, the controlled variable is the contact force cf  
between the pantograph and the catenary. 

 

 
 

Fig 4.1 Overall block diagram of the control system 

 

In section 4.2, a basic concept of the variable structure system with sliding mode 

control is introduced. Section 4.3 is devoted to the design of a sliding mode controller 

and section 4.4 is presented the stability analysis of the closed loop control system. 

Numerical simulation is carried out and the output reduction is discussed in section 

4.5.  

 

 

 

 

 

 

 

 

 
 

 
  

 Observer 

Nominal 
plant 

  
 

 

 

  

 



Chapter 4. Sliding Mode Servo Controller Design 

 56 

4.2 Variable Structure Control 
 

The concepts of variable structure system originated in the Soviet literature in 

1955 and got much attention in 1977 when Utkin published his famous paper in 

English. The variable structure control systems include a feedback control law which 

employs a discontinuous control action and decision rule. [15] The decision rule is 

often based upon the behavior of the switching function and determines which of the 

control law is activated at any instant times. 

The basic idea of control systems are designed to drive the system state trajectory 

onto a specified surface in the state space, named sliding or switching surface and 

keep the system state on this manifold for all the subsequent times. In order to achieve 

the control objective, the control input must be designed with a sufficient to overcome 

the uncertainties and the disturbances acting on the system. [15, 16, 17, 18] There are 

two main advantages of sliding mode control approach. First, while the system is on 

the sliding manifold it behaves as a reduced order system with respect to the original 

plant. In the nonlinear systems, an appropriate selection of switching function may 

render the reduced order motion to be linear or almost linear. Secondly, the close loop 

response becomes totally insensitive to some particular uncertainties and disturbances, 

so called matched uncertainty. 

For a variable structure control system with sliding mode control, the dynamical 

behavior of the system state is divided in to two stages. Firstly, the phase is to drives 

the states to the surface. During the motion, the system is effected by any unmatched 

disturbances present. Secondly, seek to maintain the states on the switching surface 

for the remaining period where it is insensitive to all the matched uncertainty. 

In this thesis, linear uncertain systems of the following form are considered, 

 

)()()()( ttutt tξgbAxx ++=  (4.1) 

 

where     and  mnnn ×× ℜ∈ℜ∈ bA are plant model matrices where n and m are the 

number of states of x , input u and tξ  is considered to represent any uncertainty and 

disturbances in the system. The control input is discontinuous across the manifold 

0=σ . The function of the control input is defined as 
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)sgn()( σγ−=tu  (4.2) 

 

where γ  is the relay gain and )sgn(σ  is denoted as signum function and indicates 

the positive and negative sign changes depending on the switching function, that is; 

 





<
>−

=
0  
0  

)(
σγ
σγ

for
for

tu  
 

(4.3) 

 

where the switching function is defined by 
 

Sx(t)σ(t) =  (4.4) 

 
where nmS ×ℜ∈  and the system trajectories lie on  

{ }0)(: =ℜ∈= xsxS n
 

 

(4.5) 

 

The controller can be considered as a discontinuous at 0=s , due to the effects of 

sampling, switching and delays in the device. It is natural to choose the control action 

and the switching strategy such that sliding takes place on the switching surface S and 

remain on the surface S. It can be clearly understood by the following figure. 

 

 
 

Fig 4.2 Sliding mode technique 
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In practice, an ideal sliding motion may not be attained due to the effects of 

imperfections such as delays, hysteresis and unmodelled dynamics and become the 

high frequency motion which called chattering effect. Chattering, which is a 

dangerous high frequency variations of an controlled system that become the main 

problem for sliding mode control. 

 

 
Fig 4.3 Chattering effect on the control switching line 

 

Figure (4.3) show how delays can cause chattering. The chattering can be 

eliminated by replacing the discontinuity in the control law. 

 

 
Fig 4.4 Boundary layer control 
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In such a case, we can design to add various control theories, such as boundary 

layer, adaptive switching function and low pass filtering. Among the various solutions 

to reduce the chattering: the boundary layer control is the most popular approach. 

Figure (4.4) shown the diagram of the boundary layer design. In a boundary layer 

design, a smooth continuous function is used to approximate the discontinuous sign 

function in a region called the boundary layer around the sliding surface. 

 

4.2.1 Method of equivalent control 
 

This section described a method of establishing the nominal control function 

required to maintain a sliding motion remain on the switching function S  and the 

equations representing the dynamic behavior of the states, named ‘equivalent 

dynamics’. In describing the method of equivalent control, it will initially be assumed 

that the uncertain function in eq (4.1) is identically zero. Therefore, equation (4.1) can 

be rewritten as 

 

bu(t)Ax(t)(t)x +=  (4.6) 

 

At time stt =  the system output reaches the switching function S  and an ideal 

sliding motion is attained. This can be expressed mathematically as 0)( =tSx  and 

0)()( == txSts   for all stt ≥ . Substituting for )(tx  from eq (4.6) gives 

 

Sbu(t)SAx(t)(t)xSσ +==   (4.7) 

 

The equivalent control associated with the nominal system eq (4.6), written as equ   

 

SAx(t)(Sb)(t)ueq
1−−=  (4.8) 

 

This shown that the matrix Sb  is required to be the matrix of invertible if an 

‘equivalent control equ ’ is exist. The ideal sliding mode dynamics may be given by 

substituting the equivalent control equ  into eq (4.6), which results in free motion 
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0)( and         )())(()(  
1 =≥−= −

ssn tSxttallfortAxSSbbItx  (4.9) 

 

Define the linear projection operator is , 

 

))(( 1 SSbbIP ns
−−=  (4.10) 

 

which satisfies 

 

0and0 == bPSP ss  (4.11) 

 

The system matrix governing the sliding motion APs , which is belongs to the )(sN  

and consequently the sliding motion is a reduced order dynamic. Hence, the system 

can be decomposed into two sub-dynamics. One is called the Range space dynamics 

)(sR  and Null space dynamic )(sN . The stability and the invariance properties of 

the range space is explained in next section.[13, 16, 17] 

 

4.2.2. Invariance properties of VSS 

 

To consider the invariance properties of the range space, eq (4.1) is used 

)()()()( ttutt tξgbAxx ++=  

where tξ  is considered to represent any uncertainty and disturbances in the system. 

Suppose a controller exists which induces a sliding motion on the surface S , then the 

equivalent equation can be represented as 

 

steq tttttu ≥+−= − for            ))()(()()( 1 ξSgSAxSb  (4.12) 

 

Substituting eq (4.12) into the uncertain system in eq (4.1) yields the sliding motion 

 

0)(  and   allfor              )()()(  =≥+= sstss tSxtttPtPt ξgAxx  (4.13) 
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where sP  is the projection operator defined in eq (4.10). Suppose )()( bRgR ⊂  

then there exist a matrix 1×ℜ∈ mR  such that bRg = . This leads to 0=gPs  and 

0=bPs  which described previous section. The reduced order motion as given in eq 

(4.13) reduces to 

 

0)(  and   allfor                )()( =≥= sss tSxtttPt Axx  (4.14) 

 

where the function tξ  does not effect the motion. The reduce order dynamics are 

insensitive to any disturbances occurring in the Range space )(bR . This class of 

uncertainty is called matched uncertainty. The invariance properties with respect to 

the matched uncertainty makes the ‘VSS’ a powerful tool for controlling uncertainties 

system. 

 

4.2.3 Condition on the existence of sliding mode 

 

According to the sliding mode control law, it is clear that the neighborhood of 

switching surface S  must be directed towards to the sliding surface. The sliding 

surface is locally stable. Using Lyapunov approach, a sufficient condition for 

existence of a sliding motion is described. [13, 16, 17]. Lypunov approach is 

described in section (4.4). To consider the sliding reachability region, first, it is 

necessary to establish sufficient conditions which guarantee that an ideal sliding 

motion will take place. The sliding surface must be locally attractive, which may be 

expressed as 

 

0lim      and     0lim
-00

><
→→ +

σσ
σσ

  (4.15) 

 

which can be clearly expressed as 

 
0=σσ  (4.16) 

 

The expressions in eq (4.15) and eq (4.16) are termed as reachability conditions. 

However, the eq (4.15) and (4.16) do not guarantee the existence of the ideal sliding 
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motion. For guaranteeing an ideal sliding motion, a stronger condition of η

-reachability is given by 

 

sησσ −≤  (4.17) 

 

where η  is a strictly positive constant. The relay gain is generated by using η

-reachability conditions which shown in fig (4.5). 

 

 
Fig 4.5 Reachability region 

 

According to this facts, eq (4.17) is guarantee the system state to arrive the 

sliding surface at the finite time. Thus, the relay gain for the sliding mode is obtained 
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(4.18) 

 

Substitute eq (4.18) to eq (4.17), 
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(4.19) 

 

Relay gain satisfies above equation. As mentioned above, chattering is the main 

problem of the sliding mode control. To reduced the chattering effect in this research, 

the boundary layer design is used. Therefore, in order to eliminate the influence of the 

chattering effects and suppress the influence of the uncertainty or disturbances, the 

saturation function using boundary layer δ  is applied which shown in fig (4.6). The 

width of the boundary layer is completely depends on the relay gain. If the relay gain 

increases, the boundary layer become narrow and the system will be fast. If the relay 

gain decreases, the boundary layer become expense and the system will be slow. It is 

decided as the trial error so that a sliding mode occurs. 

 

 
Fig 4.6 Boundary layer design with relay gain 

 

4.2.4. Structure of control law 

 

Based on the variable structure system with sliding mode control, the control law 

composed with two parts. This is given as 
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21 uuu +=  (4.20) 

[ ]

Sx
u

gvrxASSbu t

=
−=

−−−= −

σ
σγ

ξ
)sgn(

~̂)(

2

1
1  

 

 

(4.21) 

 

where 1u  is so-called the equivalent control of the system which is obtained by 

letting 0=σ , and 2u  is the relay input to bring about the sliding motion. And σ  

is defined as the switching function of the system. It will precisely defined in 

controller section.  

 

4.2.5 Regular form 

 

For variable structure control design problem, a particular canonical form, the 

so-called regular form, is most useful for analysis. The system has considered as the 

matrices ),,( cbA  to be controllable and observable. The configuration of eq (4.1) 

and eq (4.7) is expressed in regular form 

 

)()()( 2121111 txAtxAtx +=  (4.22) 

)()()()( 22221212 tubtxAtxAtx ++=  (4.23) 

 

with the switching surface is defined by 

 

)()()( 21 txStxSts RN +=  (4.24) 

 

where the change of coordinates is defined by an orthogonal matrix rT  as 

 

)()(~ txTtx r=  (4.25) 

 

With a non-singular transformation nn
rT ×ℜ∈  exists, the plant matrices ),,( cbA  

have the following form. The system state matrix can be written as 
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
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(4.26) 

 
 

where )()(
11

mnmn −×−ℜ∈A , n  is the number of the system states and m  is the 

number of the measured states. The input matrix has the form 
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(4.27) 

 

where mmb ×ℜ∈  and is non-singular. The matrix of the switching function written as  

 

[ ]RN SSS =  (4.28) 

 

During sliding motion, the switching function )(ts  will be identically zero. Thus 

 

0)()( 21 =+ txStxS RN  (4.29) 

as defined is   where
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(4.30) 

NR SSM 1−=  (4.31) 

 

Therefore, the reduce order dynamics is governed by eq (4.20) and eq (4.28) as 

 

)()(         
))(()()(

11211

1121111

txMAA
tMxAtxAtx

−=
−−=

 
(4.32) 

 

In particular, the reduce order dynamics eq (4.30) makes the system maximally robust 

to system uncertainty which occurs within the system has the effect of rendering the 

sliding mode dynamics minimally sensitive to the unmatched uncertainty in the 

system. 
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4.3 Design of Sliding Mode Controller 
 

For the control system, we use sliding mode control theory for both controller and 

observer design to regulate the robust contact force. The overall block diagram shown 

in fig (4.1). Since an optimal type I servo system is designed, the system takes the 

error integration of the output where the controlled variable is the contact force cf . 

The augmented state vector is defined as 

[ ]2211 fffftstsa xxxxxxyrx ∫ −=
 

 

(4.33) 

 

The augmented state equation is expressed as 
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From these equations, it follows the contact force equation is represented by 
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(4.35) 

 

From eq (4.34) and eq (4.35), the disturbance coefficient vector ad  does not 

satisfy the matching condition with the input vector b , which is )( aa Range bd ∉ . 

To get a good control performance, we design a sliding mode controller. First, we 

design a sliding mode control law eq (4.18), the switching function can be defined as 

 

aSx=σ  (4.36) 

 

The first part, equivalent control law 1u  for this control design can be derived using 

eq (4.34) and eq (4.36) as 
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(4.37) 

 

For this controller design,we neglected the effect of the disturbance, the 

perturbation term from the plant system and consider as a nominal 

pantograph-catenary system. Removing the disturbance yields; 

 

)()(~ 1 ru aaaaeq jxASSb +−= −  (4.38) 
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Recall the second part, relay gain is )sgn(2 σγ−=u . The control law of sliding mode 

control can be written as 

 

)sgn()()( 1 σγ−+−= − ru aaaa jxASSb  (4.39) 

 

4.3.1 Switching Surface design for the plant 

 
It is very important how to determine the switching function σ  for a sliding 

mode controller design, because the sliding motion is prescribed by the switching 

function; an ideal sliding motion can be represented by 0== σσ  . To simplify the 

switching function design, the so-called regular form which described in section 

(4.2.5) is employed because this special form makes it possible to avoid the 

calculation of the 0=σ . 

According to the regular form technique, the system can be decomposed into two 

sub-dynamics. One is called the Range space dynamics and the another is Null space 

dynamic. To this end, the state equation eq (4.34) can be written with the divided state 

vector, partitioned system matrix, and coefficient vectors as follows: 
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(4.40) 

 

where N  is denoted for Null space and R  is for Range space. The switching 

function is also partitioned as 
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When system entering the sliding motion, the switching function can be written as 

 

0)()( =+ txSt RRNN xS  (4.42) 

)()( 1 tStx NNRR xS−−=  (4.43) 
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Since 0=σ , during ideal sliding motion, the dynamics of the sliding motion is given 

from eq (4.40) and eq (4.41) by 

 

rS NtNNNRNNN jdxSaAx ++−= − ξ)( 1
21  (4.44) 

 

The coefficient vector of the switching function is determined by applying the 

LQR theory. In order to design an optimal switching function, the following quadratic 

minimization performance index is used 
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where Q  is weight matrix and is both symmetric and positive definite and st  is the 

time which the sliding motion starts. To transform the performance index into the one 

used in the standard LQR problem, where the control effort is inclined, the matrix Q  

from eq (4.43) is partitioned as 
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where T
NR 21 qq = . Because of the plant system is used the regular form technique, the 

weight matrix also need to change with this conversation matrix to the regular form. 

However, pantograph-catenary system is originally the regular form, therefore, there 

is no need to change any situation. Consider the derivation of the optimal switching 

function in the sliding mode control state for the optimal control design of pantograph 

overhead system, the state equation where removing the disturbances yields can be 

written as  

 

RNNNN xaxAx 21 +=  (4.47) 

 

The situation of eq (4.47) can be regarded as a virtual control system, which will be 

discussed in next chapter. Then, the eq (4.47) can be seen as the similar as a general 

state equation 
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ubAxx +=  (4.48) 

 

From eq (4.45) and eq (4.46), the quadratic performance index can be rewritten as 
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After some algebraic manipulations on eq (4.47) and eq (4.49), Riccati equation to 

give the optimal solution is obtained by 
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where P  is the unique positive definite and the following equation is obtained 
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2 tqtx NN
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From eq (4.41) and eq (4.51), the optimal switching function vector can be given by 
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NRNR qSS Pa 2
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1 −− =  (4.52) 

 

where RS , the range space of the switching function does not directly effect the 

sliding mode state. In this controller design, let RS  is equal to the one. And the 

weight matrix Q  from eq (4.46) is determined as follows 
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Note: Sliding mode observer design described in chapter (3). 
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4.4 Stability Analysis 

 

The purpose of switching control law is to drive the system state trajectory onto a 

specified surface in the state space, named sliding or switching surface and keep the 

system state on this manifold for all the subsequent times. The most important task is 

to design a switched control that will drive the system state to the switching surface 

and maintain it on the manifold. A Lyapunov approach is used to characterize this 

task. Since the invariant property of the sliding mode observer which is described in 

chapter (3), we investigate the stability of ideal sliding motion given by eq (4.42). 

Deleting the reference signal from eq (4.42), it follows; 
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(4.53) 

 

Lyapunov method is used to determine the stability properties of an equilibrium 

point without solving the state equation. Let )(xV  be a continuously differentiable 

scalar function defined in a domain that contain in the origin. A function )(xV  is 

said to be positive definite for x. 0)(  and  0)0( if >= xVV  It is said to be negative 

definite for x. 0)( and 0)0( if >= xVV  Lyapunov method is to assure that the 

function is positive definite when the function is negative definite if is possible. Using 

this analogy, the stability is assured.  

A Lyapunov function candidate can be taken as 

 

N
T
NV Pxx=  (4.54) 

 

where the matrix nn×ℜ∈P is symmetric positive definite. It is well known that smA  

has stable eigenvalues or smA  is Hurwitz, there exists a unique positive definite 

matrix P  satisfying the following Lyapunov equation 

 

QPAPA −=+ T
smsm  (4.55) 
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Thus, any stable linear system is quadratically stable. A symmetric positive definite 

matrix P  satisfying eq (4.53) will be referred to as a Lyapunov matrix for the matrix 

smA . The pair of positive definite matrices ),( QP  satisfy the Lyapunov equation, eq 

(4.53) and can be defined as 
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(4.56) 

 

and the uncertain function is satisfied  

 

Nt xµξ
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(4.57) 

 

Then, the system state of the plant system, eq (4.51) is stable. The derivate along the 

trajectories using a Lyapunov equation, eq (4.52) satisfies 
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(4.58) 

 

where the Cauchy-Schwarz inequality has been used to obtain the last inequality from 

eq (4.56) is 

 

NNN
T
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22
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2 λλ =≤=  (4.59) 

 

And the Rayleigh principle has been used to get the first inequality from eq (4.56) 

 
2

min )( NN
T
N xQQxx λ−≤−  (4.60) 

 

With the above three equations, eq (4.56), eq (4.57) and eq (4.58), the time 

derivative of V  along the state trajectory satisfies the boundedness. 
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where δ  is defined as 

 

)(2 max PdPd T
NNλδ =  (4.62) 

 

From eq (4.59), if the following inequality holds 
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(4.63) 

 

then the system state in this thesis during sliding motion is asymptotically stable 

(sometime referred to as quadratically stable).  

This result is a special case of the one Patel and Toda [22] obtained for general 

linear time invariant systems subject to linear growth uncertainty, where the 

uncertainty was represented by an n-th dimensional vector; ttN ξξ →d . In their case, 

δ  becomes )(2 max Pλ  and the condition on the uncertainty for the perturbed system 

to be asymptotically stable is given by 
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(4.64) 

 

Furthermore, their research shows that the coefficient on the right hand side in eq 

(4.62) is maximized when IQ = . Although the condition given by eq (4.62) is 

clearly more conservative than the one by eq (4.61). In this research, we assume 

IQ =  to simplify further analysis. 

Substituting the perturbation term in the present study 

 

tsttst xkxt ∆=),(ξ  (4.65) 

 



Chapter 4. Sliding Mode Servo Controller Design 

 74 

into eq (4.62), then it follows: 

 

Ntst xk x
δ
1

<∆  
(4.66) 

 

Therefore, if 
δ
1

<∆ tk , this inequality holds for the system. For example, we 

obtained 85≅δ  for some sliding mode controller. In this pantograph-catenary 

system, the actual fluctuation of the catenary stiffness is terribly large when the train 

speed is hkm /360  and the span length of each cantilever is about 50 m that can be 

seen in fig (4.7). 

 
Fig 4.7 Catenary stiffness 

 

Even if the values of the nominal stiffness tk , was taken as mN /100,1 , when 

the maximum perturbation is about 900. Therefore, eq (4.64) gives a sufficient 

condition for asymptotically stability of the closed loop system of the system, this also 

implies that the control system that we have designed would not be asymptotically 

stable even if the design parameters are adjusted by some means. However, it might 

be able to guarantee ultimate stability and boundedness by making use of the 

periodicity of the perturbation. 
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4.5 Simulation Results 
 

In order to investigate the performance of the proposed controller, numerical 

simulation has been carried out. The parameter values of the pantograph-catenary 

system are shown in Table 1, where the parameter values of the pantograph are 

estimated by identification experiments, and those of the catenary system are 

determined based on some references, e.g. Kobayashi et al. [20]. The design 

parameters in the controller were determined taking account of this situation so that 

sliding mode would take place. Because chattering may result in wear and tear on the 

actuator components, it is very important to reduce the chattering from the control 

system. To reduce chattering due to the relay component of the control law, we used 

saturation function with a boundary layer instead of the relay. 

In this section, the numerical analysis of the sliding mode controller is performed. 

The transfer from the reference input r  to the contact force cf  is 

 

8727364456

872734
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The design parameters in the controllers are as follows: 
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With these parameters, the poles and zeros in the transfer function from the 

reference signal to the contact force are obtained as follows: 

 

[ ]izzeros ry 27.35.06330 ±−−==  

[ ]iiiPPoles ry 27.35.049.3597.4414.10507.210 ±−±−±−==  

 

where ry represents the output value y and input reference value r. Hence, the 

sliding mode controller is used in this system, the zero eigenvalues are present. It 
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should be noted that a pair of poles approximately cancel out a pair of zeros at 

i27.35.0 ±−  which is the mode of the catenary subsystem given by eq (2.19) from 

chapter 2. Therefore, a perfect output zeroing can be achieved by exact pole-zero 

cancellations which make an unobservable subspace in the state space of the control 

system. From a physical point of view, in addition, these closed-loop poles will make 

it possible that the pantograph head is following the catenary wire motion not to 

prevent its free motion, yielding a good regulation of the contact force. 

Because the proposed controller achieved a good performance as expected for the 

simulation result, we carried out some simulations in more realistic situation. That is, 

although we neglected the actuator dynamics when designing the controller and 

observer, we inserted the following dynamic model of the pneumatic actuator 

 

se
s

sG 002.0

1013.0
1)( −

+
=  

 
(4.67) 

 

which had been obtained by some experiments. Furthermore, it was assumed that 

three measurements for the controller and observer were corrupted by white Gaussian 

noises whose maximum magnitude and some important parameters are as shown 

below:  

 

Contact force: N4±  

Catenary equivalent stiffness: 2Hz 

Displacement of the lower frame: m4101 −×±  

Velocity of the contact wire/shoe head: sm /101 4−×±  

Nominal value of stiffness fluctuation: mNkt /1100=  

 

The design parameters in the controller and observer were determined taking 

account of the above situation. Figure (4.8) shows the switching function,σ , where 

the switching function stays within the boundary layer that can prove that 

quasi-sliding mode exists. Figure (4.9) and fig (4.10) show the estimation errors of 

sliding mode observer, ye , used in the observer eq (3.43) and eq (3.44) which 

described in chapter (3), where the true state variables are used for control to evaluate 

only the observer performance. Figure (4.9) shows the simulation result of the 
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estimation error without actuator dynamic and fig (4.10) shows the simulation result 

of the estimation error with actuator dynamic. It can be seen from the chattering 

around the origin as shown in fig (4.10) that the quasi sliding mode takes place in 

spite of the existence of the actuator dynamics. 

 
Fig 4.8 Switching function 

 
Fig 4.9 Estimation error, ye  without actuator 

 

Figure (4.11) shows the simulation results of the steady state response of the 

control input with actuator control and the without actuator control. The simulation 

result of those two are almost the same, which means that the designed controller is 

appropriate for the actuator dynamics.  
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Fig 4.10 Estimation error ye , with actuator 

 
Fig 4.11 Control input 

 

Figure (4.12 a,b) shows the steady state response of the contact force and the 

catenary displacement. Figure (4.12.a) shows the contact force in the steady state in 

comparison with the passive case where the static uplift force is provided. It is clear 

that the active pantograph achieves much better regulation performance than the 

passive one. Figure (4.13), fig (4.14) and fig (4.15) show the simulation result of the 

step response of the control input, contact force and catenary displacement, from 

which it can be seen that the transient response is also good. 
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Fig 4.12. (a) Steady state response of Contact force 

 
Fig 4.12. (b) Steady state response of Catenary displacement 

 
Fig 4.13 Control input in transient response 
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Fig 4.14 Contact force in transient response 

Fig 4.15 Catenary displacement in transient response 
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system where the true value and estimated value is the almost the same. It is clear 

from this figure that the pantograph head is following the catenary wire motion not to 

prevent its free motion. 

4.6 Conclusions 

In this chapter, we discussed two different section of pantograph-catenary system. 

In the first section, we proposed a sliding mode controller together with the sliding 

mode observer, taking account of the flexibility of the articulated frame in the actual 

pantograph. An introduction to the variable structure system (VSS) is described. The 

condition to ensure the switching surface, so-called reachability condition, is also 

described. The reduce order sliding dynamics is formulated. Here, it is also discussed 

about how to avoid the chattering effects of the system using boundary layer. The 

proposed controller achieves the robust output (contact force) by pole-zero 

cancellation during sliding mode. A physical interpretation of this pole-zero 

cancellation is also given, that is, the pantograph head follow the catenary mode 

without preventing its free motion. 

Secondly, we analyzed the robust stability of the active pantograph system using 

Lyapunov method. Although one sufficient condition for asymptotic stability has been 

derived, but it is too conservative. Therefore, other methods to prove more practical 

stability such as the ultimate boundness of the system is still under investigation. 
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Chapter 5 

Optimal Sliding Mode Servo Controller 
Design 

5.1 Introduction 

This work reported herein is a continuation of our early study which investigates 

the control of the contact force of an active pantograph. As an extension of chapter (4), 

in this chapter, we mainly discuss a design method of optimal servo systems based on 

sliding mode for an active pantograph with flexibility subject to the stiffness variation 

of the catenary. Uncertainties in dynamical and control systems are ineluctable. 

Robust controls represent a class of methods to handle uncertainties. In fact, the 

sliding mode control is a powerful robust nonlinear control technique for the systems 

with uncertainties. Therefore, an optimal sliding mode servo controller together with 

the sliding mode observer is proposed in order to regulate more robust contact force 

of an active pantograph. 

The points for controller design in this research can be summarized as follows: 

“ If the contact force can be used as a switching function in the sliding mode 

controller, the contact force would be regulate very well because sliding mode takes 

place when the switching function is forced to be zero by a relay control. In such a 

case, however, it is impossible to guarantee the existence of sliding mode because of 

the relative degree between the control input and the contact force, which must be one 

for the existence. In order to get around this problem, the switching function was 

constructed just to “approximate” the contact force by introducing a design 

parameter.” 
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In order to regulate the contact force, we have been developing an active 

pantograph with a pneumatic actuator which described in chapter (2). After that, 

however, it was found through some experiments that the frame had flexibility which 

could not be ignored to control the contact force. This flexibility increase not only the 

freedom of motion but also the relative degree mentioned above. 

We employ sliding mode theory both controller and observer. The overall block 

diagram is shown in fig (5.1) where the reference r  is the reference contact force, 

the contact force cf  is the control output,σ  is the switching function of sliding 

mode control and u is the control input to the system. To compensate the tracking 

error in steady state, integral action with respect to the tracking error is used, although 

the tracking error cannot be kept zero due to the uncertainty as mentioned above. At 

first, assuming all the state variables are available for control, we design an optimal 

sliding mode control law applying a design method of optimal linear tracking system, 

and then design a sliding mode observer to estimate the state. 

 

 
 

Fig 5.1 Overall block diagram 
 

In this research, therefore, we present a design method of an optimal servo 

systems based on sliding mode taking account of the flexibility. Although most of the 

active pantograph systems in literature only regulate the contact force under model 

Uncertainty 

 

  

 

 

 
 

  Nominal 
Plant  

 

Observer 

 

 

 
  

 

Equivalent 
control 

  

 

Integral compensator 

 

 



Chapter 5. Optimal Sliding Mode Servo Controller Design 

 84 

uncertainty or disturbances, servo system should be realized by making efficient use 

of active force. 

For example, the desired contact force might be changed due to some trouble in 

the catenary. In such a situation, transient response to a step command would be very 

important. LQR (Linear Quadratic Regulator) technique has been successively applied 

to not only linear servo systems but also sliding mode control systems. To our best 

knowledge, however, the reference signal must be assumed to be zero to treat it as a 

regulator design problem in the optimal design methods for sliding mode servo 

controllers [22, 23]. As a results, transient response such as step response cannot be 

taken into account explicitly. On the other hand, Takeda and Kitamori proposed a 

design method of linear optimal servo systems without such an assumption . We apply 

their method to design a sliding mode servo controller, which makes it possible to 

take the transient response into account and gives an important guidelines for 

controller design. Finally, we combine the controller with a sliding mode observer 

which described in chapter (3) [23, 24]. 

As an extension of the early chapter, here, we mainly discuss the design of the 

controller in which switching function, optimal linear gain and virtual plant system 

are include. Theoretical background which was explained in chapter (3) and chapter 

(4), therefore, here we mainly point out how to design the optimal based servo sliding 

mode controller. The main advantages of this optimal sliding mode servo control is 

that they can provide a more robust optimal control to the system. The optimal sliding 

mode control system works as follows: 

 If the control system is dominated in the region of nominal part, the system 

behavior is mainly governed by optimal control. 

 If the control system is dominated in the region of perturbations, sliding 

mode control will take over the main control task. 

In section (5.2) describes the main controller design of the active pantograph system. 

Analysis of the optimal servo system is described in section (5.3). Finally, Numerical 

simulation results of the proposed controller is given. 
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5.2 Design of the controller 
 

We employ the (VSS) sliding mode theory to design the controller. There are two 

main task in a variable structure control system with sliding mode control. The first 

one is that the phase is to drives the states to the surface. During the motion, the 

system is effected by any unmatched disturbances present. Secondly, seek to maintain 

the states on the switching surface for the remaining period where it is insensitive to 

all the matched uncertainty. To design the controller, the plant to be controlled is 

 

ttu ξdbAxx ++=  (5.1) 

tdy ξ+= cx  (5.2) 

 

where     and 6166 ×× ℜ∈ℜ∈ bA are plant model matrices where n and m are the 

number of states of x , input u and tξ  is considered to represent any uncertainty and 

disturbances in the system. Recall the state vector to be controlled which described in 

chapter (2) is 

[ ]2211 fffftsts xxxxxx  =x
 

 

(5.3) 

 

Having introduced the integral action, the augmented state vector is defined as 

[ ]2211 fffftsts xxxxxxyr ∫ −=z
 

 

(5.4) 

 

Rewrite the state equation of the augmented system for the pant system is 

expressed as 

 



Chapter 5. Optimal Sliding Mode Servo Controller Design 

 86 

tt

t

tst

st

s

f
f

ff

f

f

f

f

f

f

f

f

f

f

f

fs

f

fs

f

s

f

s

st

s

st

s

st

st

st

st

st

st

st

st

st

stst

st

stst

ru

d
ruz

mm

mm
m

ru

mm
cc

m
k

m
c

m
k

m
c

m
k

m
cc

m
kk

m
c

m
k

mm
c

mm
k

mm
cc

mm
kk

mm
cm

mm
km

mm
cmmc

mm
kmmk

ξ

ξ

ξ

dvbzA

d0bA0
c

z

z

+++=









+








+








+








=

































+

+
−

+





























+































+

















+
−−

−−



















+
−

+
−

+
−

+
−

+
+

−
+
+

−

+
−

+
−

+
−

−
+
−

−

=

   

10-0
   

0
0
0
0

1
0

0
0
0
0
0
0
1

1
0
0
0
0
0
0

10

00
00
00
00

                   

000

00000

0

10000

0
00100

0

2
2

21

2

1

1

1

1

1

2

1

2

1

1

1

1

1

11



 

 

 

 

 

 

 

 

 

 

 

 

(5.5) 

 

The output equation is expressed as 
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From eq (5.5) and eq (5.6), the disturbance coefficient vector td  does not satisfy 

the matching condition with the input vector b , which is )(bd Ranget ∉ . To get a 

good control performance, we design a sliding mode controller law. 

 

5.2.1 Control law of the controller 

 

Based on the standard sliding mode control theory, the control input u  is 

composed of two components as follows: 

 

21 uuu +=  (5.7) 

 

where 1u  is the so-called equivalent control and 2u  is the relay input to bring about 

the sliding motion. Th equivalent control 1u  which is obtained by solving the 

switching equation shows in eq (5.8). 

 

0== zSσ  (5.8) 

 

Equation (5.5) substitutes to eq (5.8) for the control u  is  
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(5.9) 

 

For this controller design,we neglected the effect of the disturbance, the perturbation 

term from the plant system and consider as a nominal pantograph-catenary system. 

Removing the disturbance yields; 
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)()( 1
1 ru vzASbS +−= −  (5.10) 

 

The relay input 2u  is defined as 

 

)sgn()( 1
2 σρ−= bSu  (5.11) 

 

The control law of the controller, eq (5.7) is rewritten as 

 

)sgn()()()( 11 σρ−− ++−= bSzASbS rvu  (5.12) 

 

5.2.2 Switching surface design 
 

As mentioned chapter (4), It is very important how to determine the switching 

function σ  for the sliding mode controller because the sliding motion is prescribed 

by the switching function; an ideal sliding motion can be obtained from 0== σσ  . 

To simplified the switching function design, the so called regular form is employed 

because this special form makes it possible to use of complicated equivalent control to 

represent the dynamics during ideal sliding mode. To apply the regular form 

technique, the state equation eq (5.5) is divided into two subsystems, i.e. two 

sub-states Nz  and Rz , which are sometimes referred to as “Null space dynamics” 

and “Range space dynamics” respectively. 
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(5.13) 

tNNRNNNN rz ξdvazAz +++= 21  (5.14) 

ubzaz rRRNRR ++= 21za  (5.15) 

 

where 16×ℜ∈Nz , 1ℜ∈Rz , 66
1

×ℜ∈NA , 16
2

×ℜ∈Na , 61
1

×ℜ∈Ra , 1
2 ℜ∈Ra , 

16×ℜ∈Nv , 1ℜ∈rb  and 16×ℜ∈Nd . 

The output equation in regular form is given as 
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[ ] tNNt
R

N
Nc dd

z
f ξξ +=+








= zc

z
c 0  

(5.16) 

where 61×ℜ∈Nc  and 1ℜ∈d . 

The coefficient of the switching function is also partitioned corresponding to the 

subsystem as 

 

[ ] [ ] 







==

R

N
NN z

z
SzS 11σ  

 

(5.17) 

 

where the last element in S  is assumed to be 1 without any loss of generality 

because the switching function from the range space region does not directly effect 

the sliding mode state. Since 0=σ  and the system order is reduced by one during 

ideal sliding mode, the dynamics of the sliding mode is represented by eq (5.14) and 

and 0=σ  with eq (5.17) instead of the range space dynamics eq (5.15) as 

 

NNRz zS−=  (5.18) 

 

During ideal sliding motion, the dynamics of the sliding motion is given from eq 

(5.14) and eq (5.18) by 

 

tNNNNNNN r ξdvzSaAz ++−= )( 21  (5.19) 

 

One of the advantages of this form is that Rz  can be though of as virtual linear 

state feedback control for the Null space eq (5.14) which will be discussed in next 

section, and thus the coefficient of the switching function, NS  can be determined by 

linear control theory as a feedback gain vector.  

 

5.2.3 Design of a Linear feedback gain 

 

The coefficient vector of the switching function is determined by applying the 

LQR theory. In order to design an optimal switching function, the following quadratic 

minimization performance index is used 
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∫
∞

=
ts

T dtJ  
2
1 Qzz  

(5.20) 

 

where Q  is weight matrix and is both symmetric and positive definite. To transform 

the performance index into the one used in the standard LQR problem, where the 

control effort is inclined, the matrix Q  from eq (5.20) is partitioned as 

 


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
==

2212

1211
21 ...

q
qqqdiag n q

qQ
Q  

 

(5.21) 

 

where 66
11

×ℜ∈Q , 61
12

×ℜ∈q )( 2112
Tqq =  and 1

22 ℜ∈q . After some algebraic 

manipulations eq (5.20) is seen 

 

dtqJ N
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T
N )ˆ(

2
1 2

22 vzQz += ∫
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(5.22) 

where 
Tq 1212

1
2211

ˆ qqQQ −−=  

 
 

(5.23) 

N
T

R qzv zq12
1

22
−+=  (5.24) 

 

To simplify the analysis, letting Q  be diagonal, so that 
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(5.25) 

 

Yielding, 11
ˆ QQ = , Rzv = . Finally, the quadratic performance index is 
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(5.26) 
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Using Riccati equation to give the optimal solution is obtained by 

 

011222211 =+−+ QPaaPPAAP N
T
NNN

T
N

T
NNN q  (5.27) 

 

where P  is the unique positive definite and the following equation is obtained 

 

NN
T
NR qz zPa 2

1
22
−−=  (5.28) 

 

The optimal switching function vector can be given by 

 

NN
T
NN q zPaS 2

1
22
−=  (5.29) 

 

5.2.4 Design of Virtual Linear State Feedback Control 
 

As we mentioned above, the advantage of the optimal servo sliding mode form is 

that Rz  can be thought of as virtual linear state feedback control for the Null space 

dynamics. Figure 5.2 shows the system block diagram of the virtual linear servo 

system.  

 

 

 

 

 

 

 

 

 

 

 

Fig 5.2 Virtual linear servo system equivalent to ideal sliding mode 
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In this research, therefore, we divide the Null space dynamics further into two 

subsystems. The state equation of the sliding mode dynamics eq (5.5) for Null space 

region is partitioned as 
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(5.30) 

 

The system state matrix is divided as 
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where 1NA  is divided as, 
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The output equation is  
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where 1
1 ℜ∈Nz , 15

2
×ℜ∈Nz , 15

2ˆ ×ℜ=Na , 51ˆ ×ℜ=Nc  and 55
1

ˆ ×ℜ∈NA . According 

to above calculation, the state vector of the virtual plant system is almost the same as 

the augmented state vector equation which described in eq (5.5) without 

disturbance/uncertainties . The virtual state matrix 1NA  can be defined as 
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(5.32) 

 

The switching function is also partitioned as 

 

[ ]21 NNN S SS =  (5.33) 

 

where 51
2

1
1  , ×ℜ∈ℜ∈ NNS S . Where we use Nĉ  in 1NA  noting that the first row in 

A  given in eq (5.5) originally contains the coefficient of the output in eq (5.6). Using 

these matrices and assuming 0=tξ  to get a nominal model for controller design. 

And then, equation (5.14) is rewritten as 
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(5.34) 

RNNNN z2212 ˆˆ azAz +=  (5.35) 
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(5.36) 
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which is easily derived from eq (5.16) under the assumption 0=tξ . In a similar way 

the virtual control eq (5.18) can be rewritten as 

 

∫ −−−=

−−=
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221

2211

)(     

     

NNcN

NNNN

NNR

dfrS

zS

z

zS
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(5.37) 

 

Equation (5.34) and (5.37) are represented by the block diagram of the virtual linear 

servo system which shown in fig (5.2), from which it turns out that the coefficient of 

the switching function can be though of as a feedback gain vector for the virtual plant 

eq (5.35) with an integral compensator by eq (5.34) and eq (5.37). 

 

5.2.5 Design of an Optimal Switching function for the virtual plant 
 

In order to determine an optimal switching function for the virtual plant, we apply 

the design method of optimal linear tracking systems proposed by Takeda and 

Kitamori. There are two features in their approach. One of them is to use the control 

input instead of the output of the integral compensator as a state variable, i.e. Rz  

instead of 1Nz  in the equivalent system shown in fig (5.2). Another one is use to a 

deviation system from the steady state under the assumption the reference signal is a 

step function or constant. As a result, the tracking error, cfr − , can be thought of as 

the system output, and it can be weighted in the quadratic performance function as 

below. 

Recall the virtual linear equation to be controlled; 

cNNN frrz −=−= 21  , ˆ zc  

221 )( NNcNR dfrSz zS−−−= ∫ τ  

In order to formulate the tracking problem to LQR, the state vector of the virtual 

linear servo system is defined as [ ]RN z2z . Using the above equation, we can derive 

the deviation system from the steady state for the virtual linear servo system as 

follows; 
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(5.38) 
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(5.39) 

 

Assuming the both reference signal and the disturbance are constant in the steady 

state, the equilibrium point can be obtained as follows: 
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(5.40) 
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(5.41) 

 

Define the new state and output for the tracking problem, which are perturbations 

from the equilibrium. 
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(5.42) 

 

 

Defining eN 2z  and Rez  as the deviation of the state and the control, 

respectively, and taking [ ]TeNwN zRe22 zz =  as the augmented state vector. The 

augmented deviation system can be represented by 
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(5.43) 

where, 
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Define the matrix ef  as; 
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(5.45) 

The tracking error is defined as; 
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(5.46) 

 

Equation (5.43) can be though of as a plant to be controlled with the control input 

ω  which is linear state feedback eq (5.44) and eq (5.46) can be thought of as the 

output equation. Because the feedback gain ef  includes the coefficient vector of the 

switching function in eq (5.45), it is given by 
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once ef  is obtained. The matrix on the right-hand side in eq (5.47) is non-singular 

because the virtual plants eq (5.35), eq (5.36) does not have any zeros at the origin as 

the original plant eq (5.1), eq (5.2). Finally, applying the LQR technique with the 

performance index 
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(5.48) 

 

The optimal feedback gain ef  is obtained by solving the standard Riccati equation. 

 

0ˆˆˆˆ
2211 =+−+ qN

T
NNNN

T
NNN PaaPPAAP ω  (5.49) 

 

It should be noted here that the tracking error is directly weighted by q , and the 

virtual control input is 2Re fxz  ==ω . That is, the optimal control obtained under the 

performance index achieves the trade-off between the tracking error and the 

acceleration of the lower frame. However, evaluating the acceleration of the lower 

frame means to penalize the use of control effort implicitly, because the equation of 

motion eq (2.8) which described in chapter (2), implies that it is highly depend on the 

control force af . 
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5.3 Analysis of the Optimal Servo System 
 

In this section, we will apply the SRL (Symmetric Root Locus) method, which 

gives the locus of the optimal poles with respect to the parameter q  under the 

performance index eq (5.48), to analyze the optimal servo system designed in the 

previous subsection. The optimal poles are the stable roots in the left half plane of the 

SRL equation, 

 

0)()(1 =−+ sGsG NNρ  (5.50) 

 

where )(sGN  is the transfer function of the virtual control input ω  to the tracking 

error e , 
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The symmetric root locus is obtained for 52 10~10−=q  is shown in fig (5.3), 

where a portion around the origin in the left figure is zoomed in the right figure. 

  
 

(a) Overall 
 

(b) around the origin 
 

Fig 5.3 Root locus of optimal sliding mode poles 
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As shown in this figure, the stable roots converge to the zeros of )(sGN  as ρ  

increases, which is the same property as normal roots. In this research, the weighting 

factor is set to 710=W , the poles and zeros in the transfer function from the 

reference signal to the contact force are obtained as follows: 
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Noting that these zeros are identical to those of the virtual plant in fig (5.2), they must 

satisfy the determinant equation with respect to s  
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On the other hand, the determinant equation for the zeros of the original plant eq 

(2.18) which described in chapter (2) can be written by expending the determinant 

with respect to the last column as 
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(5.53) 

 

where ija  is an element of A , ib  is an element of b , and ic  is an element of c . 

It can be seen from eqs (5.52), (5.53) that the optimal poles converge to the zeros of 
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the original plant eq (2.19) which described in chapter (2). As mentioned below eq 

(2.19), the complex zeros near the origin are identical to the poles of the nominal 

catenary system eq (2.11). The asymptotic property reveals that two optimal poles 

converge to the catenary poles as ρ  increases so that pole-zeros cancellation are 

approximately brought about. This analytical result is very sound from a physical 

point of view, because the pantograph should follow the catenary motion to reduce the 

contact force variation. 

 

5.4 Simulation results 
 

In this section, the numerical analysis of the optimal servo system based sliding 

mode controller is performed. The transfer from the reference input r  to the contact 

force cf  is 

 

9828364456
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In order to investigate the performance of the proposed controller, numerical 

simulation has been carried out. The parameter values of the pantograph-catenary 

system are shown in Table 1, where the parameter values of the pantograph are the 

estimates by identification experiments, and those of the catenary system are 

determined based on some references, e.g. Kobayashi et al. [13]. The designed 

parameters in the in the controller is as follows: 

 

[ ]

0.05  :layer boundary 
  100  :gain relay 

1286.200262.6998.185143.7068.3851  :function  switching
1  :factor weighting

±
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ρ
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With these parameters, the poles and zeros in the transfer function from the reference 

signal to the contact force are obtained as follows: 

 

[ ]3.28i0.5-633.33-  zeros ±=  
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[ ]iii 28.35.009.4654.7569.11989.29poles ±−±−±−=  

It should be noted that a pair of poles approximately cancel out a pair of zeros at 

i28.35.0 ±−  which is the mode of the catenary subsystem given by eq (2.19) from 

chapter 2. Therefore, a perfect output zeroing can be achieved by exact pole-zero 

cancellations which make an unobservable subspace in the state space of the control 

system. From a physical point of view, in addition, these closed-loop will make it 

possible that the pantograph head is following the catenary wire motion not to prevent 

its free motion, yielding a good regulation of the contact force. 

Because the proposed controller achieved a good performance as expected for the 

simulation result, we carried out some simulations in more realistic situation. That is, 

although we neglected the actuator dynamics when designing the controller and 

observer, we inserted the following dynamic model of the pneumatic actuator 

 

se
s

sG 002.0

1013.0
1)( −

+
=  

 
(5.54) 

 

which had been obtained by some experiments. Furthermore, it was assumed that 

three measurements for the controller and observer were corrupted by white Gaussian 

noises whose maximum magnitude and some important parameters are as shown 

below:  

 

Contact force: N4±  

Catenary equivalent stiffness: 2Hz 

Displacement of the lower frame: m4101 −×±  

Velocity of the contact wire/shoe head: sm /101 4−×±  

Nominal value of stiffness fluctuation: mNkt /1100=  

 

The design parameters in the controller and observer were determined taking 

account of the above situation. Figure (5.4) shows the switching function,σ , in the 

controller and observer in steady state. It can be seen from fig (5.4, a) that the 

switching function in the controller stays within the small boundary layer, which can 

prove that quasi-sliding mode takes place in spite of the existence of the actuator 

dynamics eq (5.54). It can be seen from fig (5.4, b) that the estimation errors, ye , 
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which is the switching function vector as well, contains high frequency components 

due to the sensor noise but quite small, yielding the sliding mode. 

 

 
Fig 5.4 (a) Switching function in steady state: In controller 

 
Fig 5.4 (b) Switching function in steady state : In observer 

 

Figure (5.5) shows the simulation result of the steady state response. As shown in 

fig (5.5, a), two control inputs, one is with the actuator and the other is without 

actuator, are almost the same, which means that the controller demands appropriate 
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control force for the actuator dynamics. Consequently, as shown in figs (5.5, b) and 

(5.5, c), the active pantograph regulates the contact force much better than the passive 

case, where the static uplift force is provided, by keeping the variation of the catenary 

displacement very small with the highly accurate estimates by the observer. 

 

 
Fig 5.5 (a) Steady state response: For control input 

 
Fig 5.5 (b) steady state response: For contact force 
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Fig 5.5 (c) Steady state response: for catenary displacement 
 

Figure (5.6) shows the step response of the catenary displacement and contact 

force, from which it can be seen that the transient response is also good with small 

rise time and no overshoot expect for that due to the steady variation. 

 

 
Fig 5.6 (a) Step response: For catenary displacement 
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Fig 5.6 (b) Step response: For contact force 

 

5.5 Conclusion 
 

In this chapter, we proposed a sliding mode controller using optimal servo control 

theory and sliding mode observer, taking account of the flexibility of the articulated 

frame in the actual pantograph. It has been pointed out through our analysis of the 

plant and the closed-loop system using SRL (symmetric root locus) technique that 

pole-zero cancellations play an important role to control the contact force. A physical 

interpretation of the pole-zero cancellations is that the pantograph head should follow 

the catenary motion to reduce the variation of the contact force. The simulation results 

has confined the good performance and robustness of the proposed control system in 

the presence of variation of the catenary stiffness. 

Although the measurements for the observer which described in section (3.6) of 

chapter(3), were assumed to be the velocity of the contact-wire/shoe and the 

displacement of the lower frame, other choices should be investigated taking more 

practical situations such as noise level into account. Much more rigorous analysis of 

the closed-loop stability dealing the plant as a time-varying system which described in 

section (4.4) of chapter (4) is still under investigation. 
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Chapter 6 

Conclusion 

6.1 Summary of Study 

The main objective of this thesis is to investigate the robust contact force of an 

active pantograph for high speed trains. The work includes the studies on the 

structures and the dynamics behavior of the active pantograph-catenary system. Three 

different control strategies have proposed, taking account of the flexibility of the 

articulated frame in the actual pantograph. Firstly, the development of the contact 

force control of an active pantograph using a linear state feedback controller together 

with the sliding mode observer has been considered and secondly, the development of 

an active pantograph using sliding mode controller together with the sliding mode 

observer has been improved where the disturbances and uncertainties were neglected. 

Finally, the development of a robust contact force control of an active pantograph 

using optimal servo system based sliding mode controller together with the sliding 

mode observer has been developed. It has been pointed out through our analysis that 

the pole-zero cancellations play an important role to control the contact force. 

In chapter 2, the construction of mathematical model of the pantograph head and 

the catenary system is described. An active pantograph using pneumatic actuator is 

developed in this chapter, which is considered for the entire thesis. It is very important 

to control the contact force between the pantograph head and the overhead contact 

wire because the active pantograph system for the high speed train in this research is 

considered as moving state. After that, however, it was found through some 

experiments that the frame had flexibility which could not be ignored to control the 

contact force. The stiffness of the overhead contact wire in catenary system is a main 
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source of the variation of the pantograph. Hence, the fluctuation of the equivalent 

stiffness between the pantograph head and the overhead contact wire, make it happen 

a problem to control the contact state of the system. The important measurements 

which are used in this thesis is also described. The problem formulation of the 

pantograph-catenary system is proposed. 

Chapter 3 has mainly discussed the design of a linear state feedback controller 

together with the sliding mode observer. The main objective of this controller design 

is that the active pantograph can resist the disturbances/ uncertainties using optimal 

force, which is derived from the feedback state and can achieved the best theoretical 

performance. The theoretical background for both controller and observer are 

discussed with the figures. LQR (linear quadratic regulator) technique has been 

successively applied to the linear servo system. The problem of designing the sliding 

mode observer using VSS (variable structure control system) is considered. It has 

been emphasized that one of the key points to regulate the contact force is pole-zero 

cancellation in the nominal model without perturbation. Finally, the simulation results 

of the controller and observer, which is described with good performance results. 

Chapter 4 has discussed two different sections: the sliding mode controller design 

and the stability of the system. Firstly, a sliding mode controller together with the 

sliding mode observer is proposed, taking account of the flexibility of the articulated 

frame in the actual pantograph. An introduction to the variable structure control 

system with sliding mode control is described. The reduce order sliding dynamics is 

formulated. It is also discussed the use of boundary layer design to avoid the 

chattering effects. The proposed controller achieves the robust output (contact force) 

by pole-zero cancellation during sliding mode. A physical interpretation of this 

pole-zero cancellation is also given, that is, the pantograph head follow the catenary 

mode without preventing its free motion. Then, the robust stability approach for the 

active pantographs system is analyzed. Lyapunov theory for stability analysis is used. 

One sufficient condition for asymptotic stability has been derived but still need other 

methods to prove more practical stability. 

Chapter 5 has proposed a sliding mode controller using optimal servo control 

theory and sliding mode observer. The design of the controller in which switching 

function is mainly discussed, optimal linear gain and virtual plant system are included. 

LQR (linear quadratic regulator) technique has been successively applied to not only 

linear servo systems but also sliding mode control systems. The main advantages of 
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this optimal sliding mode servo control is that they can provide a more robust optimal 

control to the system.  The function of an optimal sliding mode control system is as 

follows: if the control system is dominated in the region of nominal part, the system 

behavior is mainly governed by optimal control. If the control system is dominated in 

the region of perturbations, sliding mode control will take over the main control task. 

A physical interpretation of this pole-zero cancellation is also given, that is, the 

pantograph head can follow the catenary motion not to prevent its free motion by 

assigning some of the closed loop poles on the catenary mode. The simulation results 

has confined the good performance and robustness of the proposed control system in 

the presence of variation of the catenary stiffness. 

6.2 Future Work 

There are some subjects to investigate in the future as follows: 

1. To make sure of the effectiveness of the proposed controllers with some

experimental setup such as HILS.

2. To choose more appropriate measurements (output variables) for the observer

taking practical situations such as noise level into account.

3. To analyze the closed-loop stability much more rigorously dealing the plant as a

time-varying system.
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