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Chapter 1

Overview

The discovery of the iron-based superconductors [1] has triggered an intense research effort to investi-
gate their electronic state and superconducting mechanism. Numerous experiments and theories have
been reported and various issues remain under debate. In present chapter, we provide an overview of
the iron-based compounds. In Sec. 1.1, we explain experimental results of the iron-based supercon-
ductors. We introduce FeSe system in Sec. 1.1.5, which is helpful to read Chap. 3 and Chap. 4. In
Sec. 1.2, we illustrate theoretical studies on the superconducting states and the pairing mechanism
in iron-based superconductors.

1.1 Experiment

1.1.1 Phase diagram

Phase diagram for SmFeAsO1−xFx and SmFeAsO1−xHx determined by the resistibly measurements is
shown in the top panel of Fig. 1.1 [2]. Note F−(H−) substitution to the site of O2− ions indicates the
electron-doping. SmFeAsO on doping x = 0 shows the structural transition at Ts ∼ 150K, and stripe-
type antiferromagnetic order at TN ∼ 140K. For increase x, two transitions are gradually suppressed,
and vanished at x = 0.05. The superconductivity occurs in 0.03 < x < 0.46, and shows the maximum
transition temperature Tc ∼ 55K at x ∼ 0.2. For LaFeAsO, similar T versus x phase diagram is
observed in low doping region. Tc first increases for increasing x, and then decreases slightly before
rising again. The maximum Tc ∼ 36K is realized at x ∼ 0.3, having a double superconducting dome.
An antiferromagnetic phase is observed for x ≳ 0.50, and then the superconducting dome lies between
two antiferromagnetic phases.

1.1.2 Spin fluctuation

Ning et al. [4] using the nuclear magnetic resonance found that the spin relaxation rate 1/T1T
in Ba(Fe1−xCox)2As2 is enhanced toward TN (see left panel of Fig. 1.2), and the enhancement is
suppressed by the electron doping. The superconductivity is realized at x = 0.05, and Tc ∼ 22K
at x = 0.08. The spin fluctuation is indeed enhanced near the superconducting phase. However,
it did not grow at x = 0.14, where the superconductivity is vanished. It indicates that the spin
fluctuation has deeply influence on evolution of the superconductivity. When the superconducting
pairing is mediated by the spin fluctuation, it is known that the imaginary part of the dynamical
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4 CHAPTER 1. OVERVIEW

Figure 1.1: (top panel) Phase diagram for SmFeAsO1−xFx and SmFeAsO1−xHx determined by the
resistibly measurements [2]. (bottom panel) Phase diagram for LaFeAsO1−xFx and LaFeAsO1−xHx

determined by the resistibly and the nuclear magnetic resonance measurements [3].

spin susceptibility χs(q, ω)|q=Q (Q is the nesting vector) shows a prominent resonance peak. Indeed,
this peak is observed in the copper oxide superconductors and the heavy-electron superconductors
[5, 6, 7], which have been known to be the spin-fluctuation-mediated superconductors. It is shown in
the right panel of Fig. 1.2 that χs(q, ω)|q=(π,π) [q = (π, 0) for the Fe-Fe axis] has a hump peak at the
low energy state in the superconducting phase.

1.1.3 Orbital fluctuation

The ultrasonic measurement can observe charge or orbital fluctuations via the temperature depen-
dences of shear elastic constants. Fernandes et al. found that the shear elastic constant of C66

reveals considerable softening below the room temperature [9, 10, 11]. Generally, the shear elastic
constant associated with an elastic strain as an external field is defined as C66 = ρṽ2ac. Here, ρ
is density, ṽac is the velocity of renormalized acoustic phonon. The phenomenon “softening” is a
decrease in the velocity by decreasing temperature. When there is the electron-phonon interaction
−gac(k)Ôx2−y2(k)εθ(k) between the acoustic phonon inducing the orthorhombic strain and the elec-
tronic charge-quadrupole, comparing the Green’s function of the acoustic phonon and the quadrupole
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Figure 1.2: (left panel) Temperature dependence of the spin relaxation rate 1/T1T in
Ba(Fe1−xCox)2As2 [4]. (right panel) the dynamical spin susceptibility in BaFe1.85Co0.15As2 deter-
mined by the inelastic neutron scattering experiment [8].

susceptibility χx2−y2(k, ω), a inverse of the shear elastic constant is written as

C−1
66 = C−1

66,0[1 + lim
k→0

2g2ac(k)

ω0(k)
χx2−y2(k, 0)], (1.1)

where gac is the electron-phonon coupling constant, Ôx2−y2 is the quadrupole operator of x2 − y2

quadrupole, εθ is the external strain, χx2−y2 is the quadrupole susceptibility combined with the
acoustic phonon. Therefore, χx2−y2(k, ω)|ω=0,k→0 corresponds to the inverse of the shear elastic

constant C−1
66 .

Alternatively, Yoshizawa et al. [12] using the ultrasonic measurement for several doping rate found
that the softening of C66 toward the structural transition temperature Ts is suppressed by the carrier
doping, resulting in the appearance of the superconductivity (see left panel of Fig. 1.3). Note this
softening is observed even for x = 0.08 with Tc > 0K and Ts < 0K. This indicates that the fluctuation
same as the diverged orbital fluctuation toward the structural transition is also enhanced toward the
superconducting phase. Note the hardening behavior in the superconducting phase may be due to
the appearance of the energy gap on the Fermi surface. Moreover, Phonon softening near the Ts in
BaFe2As2 is observed by inelastic x-ray scattering [13] (see also an inelastic neutron scattering study
[14]).

1.1.4 Electronic correlation effect on single-particle state

In the potassium- (hole-) doped Ba1−xKxFe2As2 system, a large deviation between the angle-resolved
photoemission spectroscopy (ARPES) spectral intensity and LDA band dispersion was observed by
Ding et al. [15] (see Fig. 1.4). The ARPES spectral intensity could not be deduced from rescaling
the LDA band structure (the gray solid line in the right panel), since the outer-hole band shows the
significantly narrow spectral intensity. The estimated effective masses are m∗

β ∼ 9.0, m∗
α ∼ 4.8, and

m∗
γ,δ ∼ 1.3. Moreover, the heavily hole-doped superconductor KFe2As2 (Tc ∼ 3.5K), which shows

the huge Sommerfeld parameter for the electronic specific heat γ ∼ 103 mJ mol−1K−2, reveals the
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Figure 1.3: (left panel) Temperature dependence of the shear elastic constant C66 in
Ba(Fe1−xCox)2As2 [12]. (right panel) Dispersion of the transverse acoustic phonon at 300K, 140K,
130K, and 57K in BaFe2As2 [13].

emergence of the heavy-electron superconductivity. In turn, Yi et al. [16] pointed out using the
ARPES measurement in KxFe2−ySe2 (x = 0.76, y = 0.28) that the band mainly composed of the
dxy orbital component becomes to disappear by increasing temperature, which is understood as a
temperature-induced crossover from a metallic state at low temperature to an orbital-selective Mott
phase at high temperature. In the orbital-selective Mott phase, some orbitals are localized while
others remain itinerant.

These band (orbital) dependence of the quasiparticle renormalization might be caused by the
complexly tangled band structures of the strongly correlated Fe-3d electrons.

1.1.5 FeSe system

FeSe shows the structural transition Ts ∼ 90K from tetragonal (P4/nmm) to orthorhombic (Cmma)
as similar to another compound such as the 1111 systems and the 122 systems. The superconductivity
is stabilized in orthorhombic phase at Tc ∼ 9K without the carrier doping. One of the most intriguing
property is that the magnetic transition is absent down to the zero temperature. The strength of the
antiferromagnetic fluctuation is very weak above the Ts, revealed by the NMR experiment (see the
right panel of Fig. 1.6) [17]. The absence of the low energy spin fluctuation might be inconsistent
with the spin-nematic scenario recognized as a mechanism of a structural transition [9]. Below Ts, it
starts to increase toward Tc, and then the temperature dependence of 1/T1T seems to be consistent
with the spin fluctuation pairing.

Unusual correlation effects have been observed in FeSe [19]. In the high temperature above Ts,
α and β hole bands shallowly cross the Fermi level at Z point, while the ϵ electron band has the
large intensity at M point. these three bands have mainly dzx or dyz orbital character. Note the
degeneracy of the dzx and dyz orbitals are lifted by the spin-orbit interaction, and then only α hole
pocket was observed at Γ point as shown in Fig. 1.7 (g). The γ hole band, which consists of the dxy
orbital character, exists below the Fermi level ∼ −50meV at Z point. In stark contrast, this hole
band crosses the Fermi level in other iron-based superconductors. The effect of electronic correlations
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Figure 1.4: (left panel) Fermi surface in Ba0.6K0.4Fe2As2 obtained by the ARPES experiment [15].
(right panel) Energy spectrum of Ba0.6K0.4Fe2As2 [15]. The band dispersion of the LDA calculation
normalized by a factor of 2 is depicted as gray solid line.

Figure 1.5: Energy spectrum of KxFe2−ySe2. red solid line, green solid line, and blue solid line
represent dzx, dyz, and dxy orbital, respectively [16].

was estimated by comparing band calculations with the ARPES spectral intensity in the A-Z-A line.
The effective masses for α, β, and γ bands are ∼ 3.2, 2.1, and 8, respectively. In turn, the extremal
Fermi surface areas at the low temperature have been studied by quantum oscillation measurement
[19]. Four quantum oscillation frequencies lower than 1 kT was detected, which are smaller than the
one of other iron-based compounds. Two-dimensional natures of the frequencies in Fig. 1.7(e) are
consistent with the ARPES studies. Moreover, the F3 frequency predicts the existence of an electron
band in addition to the ϵ band observed in the ARPES measurement. Suzuki et al. [20] pointed
out as shown in Fig. 1.7(f)-(h) that the orbital order has momentum-dependent sign-inversion as
Eyz(Γ)− Ezx(Γ) ∼ −10 meV and Eyz(M)− Ezx(M) ∼ +50 meV.

Phase diagram as a function of pressure in FeSe determined by the resistibly measurements is
shown in Fig. 1.8 [21]. Ts is quickly suppressed by pressure up to P ∼ 1GPa, while Tm is stabilized
in a wide pressure region (1 < P < 6GPa) with a dome shape for ∼ 45K at P ∼ 4.8GPa. Tc can be
first enhanced by pressure, and then drops down slightly before arising again, and finally reaches to
∼ 37K at P ∼ 6.5GPa. Several issues remain under debate, for instance, the superconductivity and
the antiferromagnetic phase are in coexistence or not. The four-rotational symmetry of the crystalline
structure is broken in the antiferromagnetic phase in a low T at least.
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Figure 1.6: (left panel) Temperature evolution of the Raman nematic susceptibility determined by the
Raman scattering measurement in FeSe [18]. (right panel) Temperature dependence of the spin-lattice
relaxation rate 1/T1T in FeSe [17].

1.2 Theory

1.2.1 First-principles calculation

In this subsection, we provide an overview of the band structure derived from the first-principles band
calculation, which is essential for a discussion of the electronic state and the superconductivity.

All iron-based superconductors have the same conduction plane composed by irons-pnictogens
or irons-chalcogens layer. Thus, the electronic structure and the Fermi surface are roughly similar
to the other compounds [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. As shown in Fig. 1.9, the ten
conduction bands are composed of the iron 3d orbitals located near the Fermi level, and are tangled
intricately. Note there are two iron atoms in a unit cell. The valence bands below the conduction
bands have pnictogen or chalcogen p orbitals. Note the 1111 systems such as LaFePO and LaFeAsO
has twelve bands since the oxygen p orbitals contribute to the valence bands. The entanglement of
the conduction bands is attributable to the orbital degrees of freedom and the tetrahedral structure
of irons-pnictogens (-chalcogens) layer. In the tetrahedral structure, the crystalline electric field
effects at iron sites are comparably smaller than the perovskite structure, and then energy splitting
is considerably weak. In particular, the dxy, dzx, and dyz orbitals makes the bands at low energy
region, while d3z2−r2 and dx2−y2 has large component at high energy region in conduction bands.

Miyake et al. [32] derived the low-energy d, dp (for the 122, 111, and 11 systems), dpp (for the 1111
systems) models by a combined constrained random-phase approximation (cRPA) and maximally
localized Wannier functions method. The extent of the Wannier functions are significantly large
values in the d model, ⟨r2⟩ − ⟨r⟩2 = 5.37Å2 for dx2−y2 orbital of LaFeAsO, for instance. Moreover,
the Wannier orbitals show strongly orbital-dependent spreads in the d models, the most extended
orbital is twice larger than the smallest one for LaFeAsO. All d orbitals for the d models contain
considerable pnictogen or chalcogen p orbital components, and then the hybridization makes the
Wannier functions delocalized and anisotropic. In stark contrast, the spread of Wannier orbitals
are efficiently suppressed in the dp or dpp models with the small orbital dependence. Moreover, the
constructions of Wannier orbitals are similar to the atomic orbitals. Next let us turn to the screened
Coulomb interaction of the dp or dpp models. Fig. 1.10 obtained by Miyake et al. [32] shows the
on-site screened Coulomb interaction U and screened exchange interaction J . The average of the
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Figure 1.7: ARPES spectral intensities and extracted band dispersion of FeSe along high symmetry
direction (a)-(b) A-Z-A and (c)-(d) Γ-M -Γ obtained by Watson et al. [19]. (e) Quantum oscillation
frequencies as a function of angle θ of applied magnetic field with respect to the c axis [19]. (f) Fermi
surface of FeSe in orthorhombic phase determined by ARPES study on detwinned single crystal
obtained by Suzuki et al. [20]. (g)-(h) Schematic band dispersions at T = 160K and 30K obtained
by ARPES study on detwinned single crystal [20].

intra-orbital terms Ū is smallest in the 1111 systems, and the value increases in the 111 and 11
systems. However, the ratio J̄/Ū is largest in the 1111 systems, and is considerably smaller in 122
and 11 systems, J̄/Ū = 0.134 for LaFeAsO and J̄/Ū = 0.0945 for FeSe, for instance. The orbital
dependences are smaller than the d models, and indicate the isotropic Coulomb matrices, namely
Ū = Ū ′ + 2J̄ approximately satisfied.

1.2.2 Pairing mechanism

Since the superconductivity was found in the proximity of the structural transition and the antiferro-
magnetic ordered phase in many of the iron-based superconductors, spin driven scenario [33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48] and orbital driven scenario [9, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58] have been proposed. The spin configuration indicates the stripe-type arrangement, and
is corresponding to the nesting wave vector QAF = (π, 0), (0, π) between the hole and electron Fermi
surface. The superconducting state is obtained by solving the gap equation, which is written by the
effective pairing interaction V (q). When the spin fluctuation with wave vector q ∼ QAF mediates
the pairing, V (q) is repulsive, and results in the sign change of the gap function. Mazin et al. [33]
immediately proposed this “s±-wave” pairing mediated by spin fluctuation, where the microscopic
calculation from first-principles band calculation on the s± state was presented by Kuroki et al. [34]
for the first time. In the case of spin fluctuation pairing, superconducting gap involves sign change
of the order parameter, and hence cannot gain the pairing interaction on a part of Fermi surface.
This yields a direct Tc decrease. However, when Fermi surface consists of disconnected pieces such
as iron-based superconductors, the sign change can take place without any nodes, and then high-Tc

pairing can be expected. This mechanism has been recognized in the early stage of high-Tc mech-
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Figure 1.8: Pressure versus temperature phase diagram in FeSe determined by the resistibly mea-
surements [21].

anism [59, 60]. Moreover, s± pairing is consistent with the measurement of low-energy excitation,
suggesting the node-less gap structure and the low-energy spin response. However, It seems to be
inconsistent with the impurity scattering experiment, since s± is fragile against the non-magnetic
impurity.

Alternatively, Yanagi et al. [52] found that the s±-pairing is mediated by the magnetic fluctuation
near the antiferromagnetic order for U > U ′ (here, U and U ′ is the intra- and inter-orbital Coulomb
interaction, respectively), while the s++-pairing is mediated by the orbital fluctuation near the ferro-
orbital order for U < U ′. Note the s++-pairing without the sign change of the gap function is robust
against the non-magnetic impurity, consistency with experiment. Although the region of U < U ′ is
unrealistic parameter, they considered the electron-phonon coupling g with the orthorhombic mode
[54], which directly coupled with the softening of C66 observed in ultrasonic experiment. The ferro-
orbital fluctuation for q ∼ 0 was found to be enhanced by this interaction g [54] and/or the mode-
coupling [51, 55], where the antiferro-orbital fluctuation for q ∼ QAF was also enhanced owing to
the nesting effect [54, 51, 55, 50, 53]. When V (q) < 0 for q ∼ QAF mediated by the antiferro-orbital
fluctuation overcomes the repulsive one by the antiferromagnetic fluctuation for the same wave vector,
the s++-wave pairing was found to be realized with the cooperation of V (q) < 0 for q ∼ 0 by the
ferro-orbital fluctuation [54, 51, 55, 50, 53]. At present, it is unclear which fluctuation is dominant for
q ∼ QAF, that is crucial in determining the s± or s++ pairing, since the antiferro-orbital fluctuation
has not been explicitly observed in experiments so far [61]. In either case, the antiferromagnetic and
the antiferro-orbital fluctuations compete in the pairing interaction, and hence result in a suppression
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of Tc as compared to the case with either fluctuation alone.
We proposed another mechanism of the ferro-orbital fluctuation enhancement [62] due to the

inter-site Coulomb interaction between Fe d and pnictogen p electrons. A recent experiment has
indeed provided evidence for strong coupling of Fe and pnictogen orbital polarizations (OPs) [63].
Then, we employ realistic 16 band d-p model which explicitly includes Fe 3d and As 4p orbitals
reproducing the band structure of LaFeAsO and has been extensively studied focusing on the effects
of the d-d interaction [64, 52] and/or the electron-phonon interaction [53, 54, 58]. The effect of the d-p
interaction has also been investigated and found to enhance the charge fluctuation which mediates
the s±- or the s++-wave pairing depending on the parameters [65]. However, the interaction between
the Fe and As OPs depending on relative direction of d and p orbitals has not been considered
there [see Fig. 1.11(A)]. We find that the d-p OP interaction enhances the ferro-orbital fluctuation
responsible for the C66 softening without enhancing the antiferro-orbital one resulting in the s±-
wave superconductivity in collaboration with the antiferromagnetic fluctuation enhanced by the d-d
interaction [see Fig. 1.11(B) and (C)]. In this case, the experimentally observed two fluctuations
cooperatively enhance Tc without any competition by virtue of the q-space segregation.
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Figure 1.9: Band structure of iron-based superconductors obtained by Miyake et al. [32].
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Figure 1.10: Effective Coulomb interaction at 3d orbitals on the same iron site in the dpp or dp model
(in eV) obtained by Miyake et al. [32].
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Figure 1.11: (A) The origin of the d-p orbital polarization interaction V ′ = (Vx′z,x′ − Vx′z,y′)/2 due
to the orbital dependence of Coulomb integrals between neighboring Fe and As sites with Vy′z,y′(=
Vx′z,x′) > Vy′z,x′(= Vx′z,y′), where x

′, y′ (x, y) refer to the direction along the nearest (second nearest)
Fe-Fe bonds. (B) The spin and charge-orbital Stoner factors αs (dotted lines) and αc (dashed lines)
for qmax (a), and the eigenvalue of the Eliashberg equation λ (b) for the d-d interaction reduction
factor fd = 0.37 (thick lines) and fd = 0.40 (thin lines) as functions of the d-p orbital polarization
interaction V ′. (C) The band representation of the gap function ∆̂(k, iπT ) for the 11th (a) and 12th
(b) (hole) bands and the 13th (c) and 14th (d) (electron) bands in the Brillouin zone corresponding
to two FeAs per unit cell for fd = 0.37 and V ′ = 0.345eV with λ = 1, where black solid and green
dotted lines represent the Fermi surfaces and the nodes of the gap functions, respectively. [62]



Chapter 2

Vertex correction and hole-s± state

In present chapter, we provide the detailed analysis of the five-orbital Hubbard model for iron-based
superconductors, using the dynamical mean-field theory combined with the Eliashberg equation to
clarify the local correlation effects on the electronic states and the superconductivity. In the specific
case where the antiferromagnetic and antiferro-orbital fluctuations are comparably enhanced, the
orbital dependence of the vertex function is significantly large, while that of the self-energy is small.
It is in contrast to the antiferromagnetic fluctuation-dominated case where the vertex function (the
self-energy) shows a small (large) orbital dependence. The orbital-dependent vertex function together
with the nesting between the inner and outer hole Fermi surfaces results in the enhancement of
the inter-orbital ferromagnetic fluctuation in addition to the antiferromagnetic and antiferro-orbital
fluctuations. In this case, the hole-s±-wave pairing with the sign change of the two-hole Fermi surfaces
is mediated by the coexisting three fluctuations as expected to be observed in the specific compound
LiFeAs.

The organization of this chapter is as follows. In Sec. 2.1, we overview a theoretical and experimen-
tal aspect in iron-pnictides. Present theoretical approach, called the DMFT+Eliashberg approach,
is formulated in Sec. 2.2. The five-orbital Hubbard model is also reviewed. We review our previous
study [66] about the spin or orbital fluctuation dominant case in Sec. 2.3 and 2.4, with additional
results. In Sec. 2.5, we provide numerical results such as renormalization factor (Sec. 2.5.1), ver-
tex function (Sec. 2.5.2), Stoner factor (Sec. 2.5.3), susceptibility (Sec. 2.5.4), and superconducting
gap function (Sec. 2.5.5). The characteristic properties of strongly correlated electronic system are
pointed out by means of multi-orbital physics in these subsections. Our main results are discussed
in Sec. 2.5.2 and Sec. 2.5.5. In Sec. 2.5.2, we find the imbalanced renormalization of vertex functions
with strong orbital dependence. In Sec. 2.5.5, we argue that these vertex function results in the novel
superconducting pairing symmetry, called hole-s± state. We summarize the present chapter with
some discussions in Sec. 2.6.

2.1 Introduction

Since the discovery of superconductivity with a high transition temperature in LaFeAsO1−xFx [1],
numerous investigations have been carried out for the iron-based superconductors categorized into four
families: the 1111 system such as LaFeAsO, the 122 system such as BaFe2As2, the 111 system such as
LiFeAs, and the 11 system such as FeSe [67, 68]. Most of the 1111 and 122 systems show the stripe-
type antiferromagnetic (AFM) transition at TN and the tetragonal-orthorhombic structural transition

15
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at Ts just above TN . Correspondingly, the AFM fluctuation diverges towards TN and the ferro-orbital
(FO) fluctuation responsible for the softening of the elastic constant C66 [9, 10, 12] diverges towards
Ts. Therefore, the AFM and the FO fluctuations have been discussed as key ingredients for the
pairing mechanisms.

In contrast to the systems mentioned above, the 111 system LiFeAs shows superconductivity
without any structural transitions and magnetic orders [69]. The absence of the structural transition
accompanied by elastic softening seems to be consistent with the above-mentioned FO fluctuation
mechanism since the As-p orbital weights on the FSs for LiFeAs are certainly smaller than those for
the other systems exhibiting the structural transitions. Although the magnetic order is absent, the
incommensurate magnetic fluctuation nearly to the AFM one was observed in the inelastic neutron
scattering experiments [70, 71], which is well accounted for by the nesting between the hole and elec-
tron FSs observed in the angle-resolved photoemission spectroscopy (ARPES) experiment [72]. In
addition, the FM fluctuation was also observed in the µSR measurement [73]. A recent NMR exper-
iment also revealed the FM fluctuation for the 122 systems over a wide doping range [74]. Therefore,
the existence of the FM fluctuation may be a common feature of iron-based superconductors, as pre-
dicted from the first-principles band calculation [33]. On the other hand, the existence of the AFO
fluctuation has been suggested since the AFO-fluctuation-mediated superconducting gap structure on
FSs is in good agreement with the experimental observations, while the AFM-fluctuation-mediated
one is not [75]. Although the AFO fluctuation has not been explicitly observed experimentally so far,
such fluctuation may be enhanced by electron-phonon coupling [50, 53] or mode coupling correction
[75]. Therefore, the theoretical study of the electron correlation caused by the coexistence of the
AFM and AFO fluctuations is important.

As a possible pairing symmetry of LiFeAs, the spin-triplet p-wave state with the nodes of the gap
function on the hole FS mediated by the FM fluctuation was proposed on the basis of the effective
three-orbital Hubbard model, where the FM fluctuation is largely enhanced relative to the AFM one
because of the poor nesting between the hole and electron FSs together with the flatness of the hole
band top, which yields the large density of states near the Fermi level responsible for the Stoner
enhancement of the magnetic susceptibility [76]. A more realistic five-orbital Hubbard model for
LiFeAs was investigated on the basis of the dynamical mean-field theory (DMFT), which includes
the local correlation effects sufficiently and found to show the orbital antiphase s±-wave pairing
mediated by the AFM fluctuation observed to be much larger than the FM one, in which the gap
function changes its sign between the hole FSs and has nodes on the electron FSs owing to the strong
repulsion between the dzx(yz) and dxy orbitals [77]. In addition, several authors have proposed the
hole-s±-wave pairing with the sign change between the hole FSs without any nodes mediated by the
AFM fluctuations with q ∼ (π, π) in addition to q ∼ (π, 0) [78] and by the AFO fluctuation, which
is enhanced comparably to the AFM one by taking into account the electron-phonon interaction or
the mode coupling effect [75].

In our previous work [66], the five-orbital Hubbard model for iron-based superconductors was
studied using the DMFT combined with the Eliashberg equation, in which the effective pairing inter-
actions mediated by the spin, charge, and orbital fluctuations are obtained from the corresponding
DMFT susceptibilities, to discuss the superconductivity in the strong correlation regime where the
magnetic and/or orbital orders take place. We found that the s±-wave pairing is realized for U > U ′

where the magnetic fluctuation dominates over the orbital one, while the s++-wave pairing is realized
for U < U ′ where the orbital fluctuation dominates over the magnetic one. All of the critical inter-
actions towards the magnetic, orbital, and superconducting instabilities are suppressed as compared
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with the results of the random phase approximation (RPA), but the s++-wave phase is largely ex-
panded as compared with the RPA result in contrast to the s+−-wave phase, which is reduced owing
to the different renormalization effects between the spin and charge-orbital vertices.

In this Chapter, we investigate the five-orbital Hubbard model for iron-based superconductors
using the DMFT, focusing on the specific case with U ∼ U ′ where the AFM and AFO fluctuations
are comparably enhanced. Then, we discuss the pairing symmetry in the case with the cooperating
AFM and AFO fluctuations as expected to be realized in LiFeAs [75]. Although the case with
U ∼ U ′ is unrealistic, the AFO fluctuation is largely enhanced by the electron-phonon interaction
and possibly dominates over the AFM one even in the realistic case with U > U ′ [50, 53]. In fact,
a kink structure of the single-particle dispersion around the Γ point is observed experimentally in
LiFeAs and is considered to be due to the effect of the strong electron-phonon coupling [79]. Thus,
we expect that the present results with U ∼ U ′ are realized also for the realistic parameter with
U > U ′ by taking into account the suitable electron-phonon interaction, although it is found that the
electron-phonon coupling estimated from the first-principles band calculation for LaFeAsO is smaller
than the one that gives the strong enhancement of the AFO fluctuation ∼ −0.4 eV [80].

2.2 Model and Formulation

The five-orbital Hubbard model for iron pnictides is given by the Hamiltonian

H = H0 +Hint, (2.1)

where the kinetic part Ĥ0 is determined so as to reproduce the first-principles band structure and its
FSs for LaFeAsO [34], as shown in Fig. 2.1, where the weights of orbitals on the FSs are also plotted.
In Eq. (2.1), the Coulomb interaction part Hint includes the multi-orbital interaction on Fe sites: the
intra- and inter-orbital direct terms U and U ′, the Hund’s rule coupling J , and the pair transfer J ′,
and is explicitly given by

Hint =
1

2
U
∑
i

∑
l

∑
σ ̸=σ̄

d†ilσd
†
ilσ̄dilσ̄dilσ

+
1

2
U ′

∑
i

∑
l ̸=l̄

∑
σ,σ′

d†ilσd
†
il̄σ′dil̄σ′dilσ

+
1

2
J
∑
i

∑
l ̸=l̄

∑
σ,σ′

d†ilσd
†
il̄σ′dilσ′dil̄σ

+
1

2
J ′

∑
i

∑
l ̸=l̄

∑
σ ̸=σ̄

d†ilσd
†
ilσ̄dil̄σ̄dil̄σ, (2.2)

where dilσ is the annihilation operator for Fe-3d electrons with spin σ in the orbital l at the site i. In
this section, we set d3Z2−R2 , dZX , dY Z , dX2−Y 2 , and dXY orbitals as 1, 2, 3, 4, and 5, where the x, y
axes (X,Y axes) are along the nearest Fe-Fe (Fe-As) directions.

To solve the model Eq. (2.1), we use the DMFT [82] in which the lattice model is mapped
onto the impurity Anderson model embedded in an effective medium that may be described by the
frequency-dependent effective action. In the actual calculations with the DMFT, we solve the effective
five-orbital impurity Anderson model, where the Coulomb interaction at the impurity site is given by
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[81].
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the same form as Ĥint with the site i, and the kinetic energy responsible for the bare impurity Green’s
function Ĝ in the 5× 5 matrix representation is determined to satisfy the self-consistency condition.
We use the exact diagonalization (ED) method for a finite-size cluster as an impurity solver to obtain
the local quantities such as the self-energy Σ̂. To avoid CPU-time-consuming calculation, we employ
clusters with the site number Ns = 4 within a restricted Hilbert space, as used in our previous paper
[66], where we approximate the clusters with those of d3Z2−R2 and dXY orbitals by Ns = 2 since the
two orbitals are far from the Fermi energy in contrast to the other three orbitals. We have confirmed
that the results withNs = 4 are qualitatively consistent with those withNs = 2 [83] and quantitatively
improved especially for the intermediate interaction regime. Moreover, the studies using the slave-
spin mean field [16, 84, 85], the slave-boson mean field (Gutzwiller) [86] approximations, and also the
DMFT with the continuous-time quantum Monte Carlo method (CT-QMC) [87] give similar results
over our approach. Then, we expect that the present calculation is sufficiently accurate at least up
to the intermediate regime.

Within the DMFT, the spin (charge-orbital) susceptibility is given in the 25 × 25 matrix repre-
sentation as

χ̂s(c)(q) =
[
1− (+)χ̂0(q)Γ̂s(c)(iωn)

]−1
χ̂0(q), (2.3)

with χ̂0(q) = −(T/N)
∑

k Ĝ(k + q)Ĝ(k), where Ĝ(k) = [(iεm + µ)− Ĥ0(k)− Σ̂(iεm)]−1 is the lattice

Green’s function, Ĥ0(k) is the kinetic part of the Hamiltonian with the wave vector k, Σ̂(iεm) is the
lattice self-energy, which coincides with the impurity self-energy obtained in the impurity Anderson
model, and k = (k, iεm), q = (q, iωn). Here, εm = (2m + 1)πT and ωn = 2nπT are the fermionic
and bosonic Matsubara frequencies, respectively. In Eq. (2.3), Γ̂s(c)(iωn) is the local irreducible spin
(charge-orbital) vertex function in which only the external frequency (ωn) dependence is considered
as a simplified approximation [66, 88] and is explicitly given by

Γ̂s(c)(iωn) = −(+)
[
χ̂−1
s(c)(iωn)− χ̂−1

0 (iωn)
]
, (2.4)

with χ̂0(iωn) = −T
∑

εm
Ĝ(iεm + iωn)Ĝ(iεm), where χ̂s(c)(iωn) is the local part of spin (charge-

orbital) susceptibility. When the largest eigenvalue αs(q) [αc(q)] of (−)χ̂0(q)Γ̂s(c)(iωn) in Eq. (2.3)
for a wave vector q with iωn = 0 reaches unity, the instability towards the magnetic (charge-orbital)
order with the corresponding q takes place, and then αs(q) [αc(q)] is called the spin (charge-orbital)
Stoner factor. After the convergence of the DMFT self-consistent loop, the quantity χ̂s(c)(iωn) in
Eq. (2.4) is obtained using the continued fraction algorithm [82].

The effective pairing interaction mediated by the spin and charge-orbital fluctuations is written
using the spin (charge-orbital) susceptibility in Eq. (2.3) and the spin (charge-orbital) vertex in
Eq. (2.4), and is explicitly given for the spin-singlet state as

V̂ (q) =
3

2
Γ̂s(iωn)χ̂s(q)Γ̂s(iωn)−

1

2
Γ̂c(iωn)χ̂c(q)Γ̂c(iωn)

+
1

2

(
Γ̂(0)
s + Γ̂(0)

c

)
(2.5)

with the bare spin (charge-orbital) vertex: [Γ̂
(0)
s(c)]llll = U(U), [Γ̂

(0)
s(c)]ll′ll′ = U ′(−U ′ + 2J), [Γ̂

(0)
s(c)]lll′l′ =

J(2U ′ − J), and [Γ̂
(0)
s(c)]ll′l′l = J ′(J ′), where l′ ̸= l and the other matrix elements are 0. Substituting
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the effective pairing interaction in Eq. (2.5) into the linearized Eliashberg equation

λ∆ll′(k) = − T

N

∑
k′

∑
l1l2l3l4

Vll1,l2l′(k − k′)

×Gl3l1(−k′)∆l3l4(k
′)Gl4l2(k

′), (2.6)

we obtain the gap function ∆ll′(k) with the eigenvalue λ, which becomes unity at the superconducting
transition temperature T = Tc. To solve Eq. (2.6), we neglect the frequency dependence of the vertex
Γ̂s(c)(iωn) ≈ Γ̂s(c)(iωn = 0) for simplicity of the numerical calculations; however, the effect of the
frequency dependence will be discussed later. Note that Eq. (2.6) yields the RPA result of ∆ll′(k)

when we replace Γ̂s(c) with Γ̂
(0)
s and neglect Σ̂, and then, is a straightforward extension of the RPA

to include the vertex and the self-energy corrections within the DMFT [66].
All calculations are performed for the electron number n = 6.0 corresponding to the non-doped

case at T = 0.02 eV except for the ED calculation in the impurity Anderson model where we calculate
the self-energy at T = 0 as the explicit T -dependence is expected to be small at low temperature
T = 0.02 eV in the intermediate correlation regime with Z >∼ 0.5. We use 32× 32 k-point meshes and
1024 Matsubara frequencies in the numerical calculations with the fast Fourier transformation. Here
and hereafter, we measure the energy in units of eV.

2.3 Spin Fluctuation Dominant Case

In this section, we overview the our previous work [66], with a new data of the vertex functions. In
the previous RPA study [52], it was found that the s±-pairing is mediated by the magnetic fluctuation
near the AFM order for U > U ′, while the s++-pairing is mediated by the orbital fluctuation near
the FO order for U < U ′, where the superconductivity is investigated in the wide parameter space by
treating U , U ′, J and J ′ as independent parameters apart from the condition satisfied in the isolated
atom: U = U ′ + 2J and J = J ′. Correspondingly, we consider the two specific cases with U > U ′

and U < U ′ to elucidate the correlation effects beyond the RPA on the magnetic and orbital orders
and those fluctuations mediated superconductivity.

First, we consider the case with U > U ′, where the magnetic fluctuation dominates over the
orbital fluctuation. In Figs. 2.2, 2.3, and 2.4, several physical quantities are plotted as functions
of U with U = U ′ + 2J , J/U = 0.1 and J = J ′. Fig. 2.2(a) shows the renormalization factor

defined by: Zl =
[
1− dΣl(ε)

d(ε)

∣∣
ε→0

]−1
with orbital l = dXY , d3Z2−R2 , dZX , dY Z and dX2−Y 2 . When U

increases, all of Zl monotonically decrease with increasing the variance of Zl. We find that Zl for
l = dX2−Y 2 is the smallest for all U and finally becomes zero at Uc ∼ 5 while Zl for l ̸= dX2−Y 2 are
finite revealing the OSMT [89], as recently discussed in KxFe2−ySe2 [16] and KFe2As2 [86] where the
ARPES experiments are well accounted for by the slave-spin mean-field [16, 90] and the slave-boson
mean-field (Gutzwiller) [86] approximations yielding the OSMT with ZdX2−Y 2 → 0. We note that,
even in the intermediate correlation regime away from the OSMT, the large orbital dependence of
Zl results in the significant change in the band dispersion [89] which is consistent with the recent
high-resolution ARPES measurements for Ba0.6K0.4Fe2As2 [15]. Figs. 2.2(b) and (c) show the U
dependence of the largest eigenvalues αs and αc for several wave vectors q, where αs(c) shows a
maximum at q = qmax. When U increases, both αs and αc increase with αs > αc and αs becomes
unity at UAFM

c ∼ 2.40 where the magnetic susceptibility with q ∼ (π, 0) corresponding to the stripe-
type AFM diverges. The largest eigenvalue λ of the Eliashberg equation (2.6) is also plotted in
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Figure 2.2: (Color online) (a) The renormalization factor Zl with l = dXY , d3Z2−R2 , dZX , dY Z and
dX2−Y 2 (b) and (c) the largest eigenvalues αs and αc for several q and λ which reach unity towards
the magnetic, charge-orbital and superconducting instabilities, respectively, as functions of U with
U = U ′ + 2J , J/U = 0.1 and J = J ′ for n = 6.0 and T = 0.02. The RPA results of αs for qmax and
λ are also plotted by thin lines in (b) [66].

Fig. 2.2(b) and is found to increase with increasing αs and finally reaches unity at USC
c ∼ 2.34 where

the superconducting instability occurs. For comparison, we also plot the RPA results of αs for qmax

and λ in Fig. 2.2(b) and find that the critical interactions UAFM
c and USC

c from the DMFT are about
twice larger than those from the RPA [34] due to the correlation effects beyond the RPA and are
consistent with the values of the effective Coulomb interactions derived from the downfolding scheme
based on first-principles calculations [32].

Next, we discuss the spin and charge-orbital irreducible vertex functions with the lowest Matsubara

frequency iωn = 0, Γ
s(c)
l1l2l3l4

≡ [Γ̂s(c)(iωn = 0)]l1l2l3l4 , where the orbital-diagonal components Γs
llll and

the orbital-off-diagonal components Γs
ll′ll′ (l ̸= l′) are compared with the corresponding nonzero

components of the bare vertices [Γ̂
(0)
s(c)]llll and [Γ̂

(0)
s(c)]ll′ll′ defined in the text below Eq. (2.5). Figures

2.3(a) and 2.3(b) show the spin vertex functions Γs
llll and Γs

ll′ll′ for various l and l′( ̸= l) values together

with the corresponding bare vertices [Γ̂
(0)
s ]llll = U and [Γ̂

(0)
s ]ll′ll′ = U ′, respectively. We find that Γ̂s is

renormalized as U increases owing to the correlation effect and shows a orbital dependence slightly. As
shown in Fig. 2.3(a), the orbital-diagonal components Γs

llll for l = X2−Y 2, ZX/Y Z are considerably
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reduced, while those for l = XY, 3Z2 − R2 are less reduced. This is considered to be due to the
difference between the weights of each d orbital at the FSs: those are large for l = X2−Y 2, ZX/Y Z,
while small for l = XY, 3Z2 − R2, as shown in Figs. 2.1(c)–2.1(f). However, these reduction is less
crucial than that of Zl, and this is strike contrast to the spin and orbital fluctuations-competing
case, as will be discussed in the Sec. 2.5. The moderately reduction of the spin vertex together with
strong correction of Zl for l = X2 − Y 2, ZX/Y Z with the large orbital weights at the FSs may
result in the suppression of the magnetic order due to the correlation effect, as shown in Fig. 2.2. In
contrast to those of the spin vertex, the orbital-diagonal components of the charge vertex Γc

llll become

larger than those of the corresponding bare vertex [Γ̂
(0)
c ]llll = U , as shown in Fig. 2.3(a), resulting

in the suppression of the charge susceptibility due to the correlation effect. On the other hand, the
orbital-off-diagonal components of the charge vertex Γc

ll′ll′ are reduced, as shown in Fig. 2.3(b). The
significant increase of the spin vertices for U > 2.4 may attributable to the proximity of a Mott phase,
although the long-range magnetic order and the superconductivity have taken place ∼ 2.40, and then
this vertex correction cannot contribute to these instabilities.

2.4 Orbital Fluctuation Dominant Case

Next, we consider the case with U < U ′, where the orbital fluctuation dominates over the magnetic
fluctuation. Figs. 2.5 (a)-(c) show the renormalization factor Zl and the largest eigenvalues αs, αc
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and λ as functions of U ′ with U = 0.25U ′ + 2J , J/U = 0.1 and J = J ′. When U ′ increases, Zl for
all l monotonically decrease with keeping the smallest value for l = dX2−Y 2 , similar to the case of
Fig. 2.2 (a). When U ′ increases, both αs and αc increase with αs < αc and αc becomes unity at
UFO
c ∼ 2.28 where the orbital susceptibility with q ∼ (0, 0) corresponding to the FO diverges. We

note that qmax = (0, π/4) just below UFO
c with αc = 0.98 and qmax = (0, 0) just above UFO

c with
αc = 1.03, while it is difficult to determine qmax precisely at UFO

c with αc = 1 within the present
numerical resolution as χc diverges almost simultaneously for q ∼ (0, 0) and then we call the FO in
a broad sense. With increasing αc, λ increases and finally reaches unity at USC

c ∼ 1.54 where the
superconducting instability occurs. For comparison, we also plot the RPA results of αc for qmax and
λ in Fig. 2.5 (c), and find that UFO

c and USC
c from the DMFT are larger than those from the RPA due

to the correlation effects beyond the RPA. Remarkably, the DMFT result of the s++-pairing phase
with USC

c < U < UFO
c is largely expanded as compared to the RPA result, in contrast to the case

with the s±-pairing phase which is reduced [see Fig. 2.2 (b)].

2.5 Spin and Orbital Fluctuations-competing Case)

In the previous section, we investigated the model Eq. (2.1) using the DMFT combined with the
Eliashberg equation as mentioned in Sec. 2.2, and found that the s±-wave pairing is realized for
U > U ′ where the magnetic fluctuation dominates over the orbital one, while the s++-wave pairing is
realized for U < U ′ where the orbital fluctuation dominates over the magnetic one. In this section, we
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focus on the typical parameter with U ∼ U ′ and vary U while keeping U = U ′−0.2 and J = J ′ = 0.15
to simulate the specific case where the magnetic and orbital fluctuations are comparably enhanced in
the intermediate region of U > U ′ and U < U ′.

2.5.1 Renormalization factor

First, we discuss the self-energy correction. Figure 2.8 shows Zl as a function of U . Zl is almost
independent of l and gradually decreases with increasing U . As previously discussed by several
authors [91, 92, 85], the orbital dependence of Zl becomes large in the case with a large J and/or
U/U ′, where the magnetic fluctuation is dominated over the orbital one, and the orbital selective
Mott transition, in which Zl with a specific l exclusively becomes zero, may occur. More generally,
the imbalance between the magnetic and orbital fluctuations is considered to be critical for enhancing
the orbital dependence of Zl. Actually, the exclusively small Zl with l = X2−Y 2 was found for both
sides of the magnetic-fluctuation-dominated case with U > U ′ and the orbital-fluctuation-dominated
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Figure 2.6: (Color online) Spin vertex functions for the orbital-diagonal components Γs
llll (a) and the

orbital-off-diagonal components Γs
ll′ll′ (b) as functions of U ′ with U = 0.25U ′ + 2J , J/U = 0.1 and

J = J ′ for n = 6.0 and T = 0.02. The bare vertices are also plotted by thin dotted lines [66].

case with U < U ′ [66]. This is a striking contrast to the present case with U ∼ U ′, where the magnetic
and orbital fluctuations compete with each other, resulting in the almost orbital-independent Zl, as
shown in Fig. 2.8.

2.5.2 Vertex function

Figures 2.9(a) and 2.9(b) show the spin vertex functions Γs
llll and Γs

ll′ll′ for various l and l′(̸= l)
values, respectively, where the zeroth-order contribution of the vertex is depicted as thin-dot lines.
We reveal that Γ̂s is strongly renormalized as U increases owing to a characteristic correlation effect
and shows a significant orbital dependence. We show in Fig. 2.9(a) that, as with the spin fluctuation
dominant case, the orbital-diagonal components Γs

llll for l = X2 − Y 2, ZX/Y Z are largely reduced,
while those for l = XY, 3Z2 − R2 are less reduced. The strong reduction of the spin vertex for
l = X2 − Y 2, ZX/Y Z with the large orbital weights at the FSs may result in the suppression of the
magnetic order due to the correlation effect, which will be discussed in the next subsection.

Γc
llll is enhanced by the correlation effect [Fig. 2.9(a)] which makes the charge fluctuation smaller.

The enhancement is qualitatively consistent with the single-orbital DMFT+ED study [93]. On the
other hands, Γc

ll′ll′ is strongly renormalized similar to the case of the spin vertex [Fig. 2.10 (b)],
resulting in the suppression of the orbital order due to the correlation effect, which is similar to
that of the magnetic order but is relatively smaller than the latter, as explicitly shown in the next
subsection.
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Figure 2.7: (Color online) Charge-orbital vertex functions for the orbital-diagonal components Γc
llll (a)

and the orbital-off-diagonal components Γc
ll′ll′ (b) as functions of U

′ with U = 0.25U ′+2J , J/U = 0.1
and J = J ′ for n = 6.0 and T = 0.02. The bare vertices are also plotted by thin dotted lines [66].

The opposite renormalization effects between the spin and charge vertices were previously dis-
cussed in the single-orbital Hubbard model on the basis of the DMFT [93] and the self-consistent
fluctuation theory [94], including the correlation effects beyond the RPA. It was found that Γs <
Γ(0) < Γc, resulting in the suppression of both the spin and charge susceptibilities, consistent with
the present results for the orbital-diagonal components of the spin and charge-orbital vertices. The
orbital-off-diagonal components as well as the orbital dependence of the vertices, however, could not
considered in the single-orbital model and are firstly discussed in this thesis. Note that the large
orbital dependence of the vertex [see Figs. 2.9 and 2.10] together with the small orbital dependence
of the renormalization factor [see Fig. 2.8] is a specific feature of the present case with U ∼ U ′, where
the AFM and the AFO fluctuations are comparably enhanced. This is a striking contrast to the
case with U > U ′ (U < U ′), where the AFM (AFO) fluctuation dominates over the AFO (AFM)
one, and the small orbital dependence of the vertex together with the large orbital dependence of the
renormalization factor responsible for the orbital selective Mott transition in the strong correlation
regime is observed [66].

2.5.3 Spin and charge-orbital Stoner factors

Figures 2.11(a) and 2.11(b) show the U -dependences of the spin and charge-orbital Stoner factors
αs(q) and αc(q), respectively, for the wave vectors q = (π, 0), (0, 0), and (π, π). The critical value
towards the magnetic instability is found to be Uc ∼ 4.9 and is largely suppressed as compared with
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the RPA result URPA
c ∼ 0.8 due to the self-energy and the vertex corrections within the DMFT. For

small U , the stripe-type AFM and AFO fluctuations with q = (π, 0) are dominant over the other
fluctuations. However, when U increases, the FM fluctuation with q = (0, 0) becomes competitive
with the AFM and AFO fluctuations, and finally overcomes those just below Uc, where the FM
instability takes place. The FM fluctuation originates from the q ∼ (0, 0) nesting between the inner-
hole FS1 with the large ZX/Y Z orbital weights [see Fig. 2.1(c)] and the outer-hole FS2 with the
large XY orbital weight [see Fig. 2.1(d)], and is enhanced by the inter-orbital Coulomb interaction
between the ZX/Y Z and the XY orbitals. This enhancement becomes significant for a large U as the
renormalization of the dZX/Y Z-dXY orbital-off-diagonal spin vertex is relatively smaller than that of
the dX2−Y 2 and dZX/Y Z orbital-diagonal spin (charge-orbital) vertices [see Figs. 2.9 and 2.10], which
enhance the AFM (AFO) fluctuation as shown in the next subsection.

To clarify the effects of the vertex corrections on the magnetic and orbital fluctuations more
explicitly, we estimate the spin and charge-orbital Stoner factors using the approximate vertex in
stead of the full DMFT vertex Γ̂s(c) in Eq. (2.3) as follows (see Table 2.1): (i) When we approximately

use the bare vertex Γ̂s(c) ≈ Γ̂
(0)
s(c), the AFM fluctuation is exclusively enhanced similar to the case

with the RPA. (ii) When we average over the orbital as Γ̂s(c) ≈ ⟨Γ̂s(c)⟩, the AFO fluctuation is
enhanced comparably to the AFM one owing to the different renormalization between the spin and
charge-orbital vertices, but the enhancement of the FM fluctuation is relatively small as the orbital
dependence of the spin vertex, which is crucial for the FM fluctuation enhancement as mentioned
above, is neglected. (iii) When we use the full DMFT vertices Γ̂s(c), the AFM, FM, and AFO
fluctuations are comparably enhanced owing to the orbital dependence of the vertices together with
the difference in renormalization between the spin and the charge-orbital vertices.

2.5.4 Susceptibility and effective pairing interaction

Figures 2.12(a) and 2.12(b) show the orbital-diagonal and orbital-off-diagonal components of the spin
susceptibilities χs

l,l;m,m and χs
l,m;l,m as a function of the wave vector q with the lowest Matsubara

frequency iωn = 0 for U = 4.5, where the spin Stoner factor is αs = 0.958. The dX2−Y 2 intra-orbital
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Figure 2.9: Spin vertex functions for the orbital-diagonal components Γs
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ll′ll′ (b) as functions of U . The bare vertices are also plotted by thin dotted

lines [81].

spin susceptibility χs
4,4;4,4 is largely enhanced around q ∼ (π, 0) [see Fig. 2.12(a)] owing to the effect of

the intra-orbital nesting between the hole FS3 and the electron FS, where the weight of the dX2−Y 2

component is large in both FSs, as shown in Figs. 2.1(e) and 2.1(f). Then, the dX2−Y 2 orbital is
mainly responsible for the spin susceptibility

∑
l,m χs

l,l;m,m around q ∼ (π, 0). Note that the inter-
orbital spin susceptibility χs

2,4;2,4 is also enhanced for q ∼ (π, 0) [see Fig. 2.12(b)] owing to the effect
of the inter-orbital (dZX/Y Z-dX2−Y 2) nesting between the hole FS2 and the electron FS.

In addition to the intra- and inter-orbital spin susceptibilities with q ∼ (π, 0), the inter-orbital
spin susceptibility χs

2,5;2,5 around q ∼ (0, 0) is largely enhanced owing to the inter-orbital (dZX/Y Z-
dXY ) nesting between the inner (FS1) and the outer (FS2) hole FSs, as shown in Fig. 2.12(b). As
mentioned earlier, the orbital-dependent spin vertex with a relatively large value of the dZX/Y Z-dXY

orbital-off-diagonal component is crucial for the FM fluctuation enhancement, which is a remarkable
correlation effect beyond the RPA.

Figure 2.12(c) shows several components of the charge-orbital susceptibility as functions of q with
the lowest Matsubara frequency iωn = 0 for U = 4.5, where the charge-orbital Stoner factor is αc =
0.958. As with the spin susceptibility, both the intra- and inter-orbital charge-orbital susceptibilities
are largely enhanced around q ∼ (π, 0) owing to the intra- and inter-orbital nesting effects. In the
present case, one observes χc

4,4;4,4 ≈ χc
2,4;2,4 for q ∼ (π, 0).

In Fig. 2.12(d), several components of the effective pairing interaction V̂ (q) are plotted as functions
of q with the lowest Matsubara frequency iωn = 0 for U = 4.5. The inter-orbital component V2,5;2,5

becomes very large around q ∼ (0, 0) owing to the inter-orbital FM fluctuation [see Fig. 2.12(b)].
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Various components of V̂ (q) show peaks at q ∼ (π, 0), where the AFM-fluctuation-mediated repulsive
pairing interaction is partially canceled by the AFO-fluctuation-mediated attractive one, as seen from
the 1st and 2nd terms of r.h.s. in Eq. (2.5), resulting in the moderate peak of V̂ (q) at q ∼ (π, 0) in
contrast to the large peak at q ∼ (0, 0) where the FO fluctuation is not so enhanced [see Fig. 2.12(c)]
and such a cancellation effect is small.

2.5.5 Superconducting gap function

Finally, we discuss the superconductivity when the FM, AFM, and AFO fluctuations are comparably
enhanced. In Figs. 2.13(a)-2.13(c), we show the gap functions ∆s(k) in the band representation for
the band s = 2 − 4 with the lowest Matsubara frequency iεm = iπT for U = 4.5. We observe a
specific hole-s±-wave pairing, where the gap function changes its sign between the inner-hole FS1
and the outer-hole FS2 owing to the large repulsive pairing interaction V2,5;2,5 around q ∼ (0, 0)
mediated by the FM fluctuation, and also changes between the inner-hole FS1 and the electron
FS owing to the moderate repulsive pairing interaction around q ∼ (π, 0) mediated by the AFM
fluctuation [see Fig. 2.12(d)]. Note that we also observe the sign change of the gap function in the
orbital representation between the ZX/Y Z and XY orbitals (not shown). The obtained hole-s±-wave
state has the same sign between the hole FS2, hole FS3, and electron FS, and the sign of the gap
function of each FS is summarized as (∆h1,∆h2,∆h3,∆e) = (−,+,+,+), which is different from the
pairing states previously proposed for LiFeAs with (∆h1,∆h2,∆h3,∆e) = (+,+,−,+), (−,+,−,+),
(+,+,−,−) [77, 75, 78], where the correlation-induced FM fluctuation, which is crucial for the present
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vertex αAFM
s αFM

s αAFO
c αFO

c

(i) bare 1.000 0.498 0.727 0.586
(ii) orbital-averaged 1.000 0.766 0.966 0.785
(iii) full DMFT 1.000 1.003 1.001 0.863

Table 2.1: Spin and charge-orbital Stoner factors, αs(q) and αc(q), respectively, for q = (π, 0)

and q = (0, 0), in the cases with (i) the bare vertex Γ̂s(c) ≈ Γ̂
(0)
s(c), (ii) the orbital-averaged vertex

Γ̂s(c) ≈ ⟨Γ̂s(c)⟩, and (iii) the full DMFT vertex Γ̂s(c), where we set (i) U = 0.76, (ii) U = 2.66, and

(iii) U = 5.05 so as to fix αAFM
s = 1 in all cases [81].
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frequency iωn = 0 for U = 4.5, where αs = 0.958 and αc = 0.958 [81].

result, is not taken into account.

In general, the FM fluctuation is considered to mediate the spin-triplet pairing. As for iron pnic-
tides, Brydon et al. discussed the spin-triplet p-wave pairing mediated by the nearly FM fluctuation
within the RPA for the three-orbital Hubbard model [76]. Thus, let us discuss the possibility of the
spin-triplet pairing in the present model Eq. (2.1) on the basis of the DMFT combined with the
Eliashberg equation, where the effective pairing interaction for the spin-triplet state:

V̂ (q) =− 1

2
Γ̂s(iωn)χ̂s(q)Γ̂s(iωn)−

1

2
Γ̂c(iωn)χ̂c(q)Γ̂c(iωn)

+
1

2

(
Γ̂(0)
s + Γ̂(0)

c

)
, (2.7)

is substituted into Eq. (2.6) instead of that for the spin-singlet state given in Eq. (2.5). Here, we
consider only the px-wave state, because the present model is symmetric under rotation in spin space,
and all p-wave states are degenerate in principle. The largest eigenvalues of the Eliashberg equation
λ for the singlet and triplet states are plotted in Fig. 2.14. When U increases, λ for the triplet state
increases with increasing FM fluctuation as expected, but is always smaller than λ for the singlet
state, which is a specific feature of the present multi-orbital model in the case with competing FM,
AFM, and AFO fluctuations. Thus, we conclude that the expected pairing state is the spin-singlet
hole-s±-wave.
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2.6 Summary and Discussion

In summary, we have investigated the electronic states and the superconductivity in the five-orbital
Hubbard model for iron-based superconductors by using the DMFT combined with the Eliashberg
equation to clarify the strong correlation effects, especially focusing on the specific case with U being
slightly smaller than U ′ where the AFM and AFO fluctuations are comparably enhanced. When U
increases, the renormalization factor Zl obtained from the self-energy monotonically decreases almost
independently of the orbital l even for a large U in contrast to the previously discussed case with
U > U ′ (U < U ′), where the AFM (AFO) fluctuation dominates over the AFO (AFM) one and the
large l-dependence of Zl responsible for the orbital selective Mott transition for large U is observed
[66]. On the other hand, the l-dependences of the spin and charge-orbital vertices are large in contrast
to the previous case where they are small [66]. The renormalization of the dZX/Y Z-dXY orbital-off-
diagonal spin vertex responsible for the FM fluctuation enhancement is relatively smaller than that
of the dX2−Y 2 and dZX/Y Z orbital-diagonal spin (charge-orbital) vertices responsible for the AFM
(AFO) fluctuation enhancement. Therefore, the FM fluctuation is largely enhanced than the AFM
and AFO ones and finally overcomes those for large U , where the FM instability takes place at Uc

just below the AFM and AFO instabilities. In this case, the effective pairing interaction V̂ (q) shows
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a large repulsion at q ∼ (0, 0) and a small one at q ∼ (π, 0), where the effects of the AFM and AFO
fluctuations compete with each other, resulting in a remarkable hole-s±-wave pairing with the sign
change of the gap function between the inner and the outer hole FSs.

Previously, several authors [77, 75, 78] proposed the orbital antiphase s±-wave and hole-s±-wave
symmetries as promising pairing states for LiFeAs, but the relative signs of the gap function on the
FSs are different from the present result. The most significant difference between the previous and
present hole-s±-wave states is the pairing mechanism: the most dominant pairing interaction in the
present theory is a repulsive interaction between the inner and the outer hole FSs at q ∼ (0, 0)
mediated by the largely enhanced FM fluctuation, which was not taken into account in the previous
theories but was observed in the µSR experiment [73]. The nodeless gap structure in LiFeAs observed
in the ARPES experiment [79] seems to be consistent with the hole-s±-wave states as well as with
the other s-wave states such as the s±- and s++-wave states, but it is difficult to distinguish between
the various s-wave states immediately because of the difficulty in determining the relative sign of the
gap function on the different FSs [95, 96, 97].

The enhanced FM fluctuation was previously obtained in the three-orbital Hubbard model for
LiFeAs, where the flatness of the hole band top yields a large density of states near the Fermi level
responsible for the Stoner enhancement of the magnetic susceptibility within the RPA, and was
considered to mediate the spin-triplet p-wave pairing with nodes of the gap function on the hole band
[76]. This is in striking contrast to the present theory where the strong correlation effect is crucial
for enhancing the orbital-off-diagonal FM fluctuation, which mediates the spin-singlet hole-s±-wave
pairing without nodes consistent with the ARPES experiment [79] mentioned above. In addition,
the NMR measurements for LiFeAs [98, 99, 100], where the Knight shift decreases with decreasing T
below Tc, also seems to be consistent with the spin-singlet pairing.

Finally, we briefly discuss the frequency dependence of the vertex functions, including the re-
tardation effect of the pairing interaction, which is known to enhance the superconducting transi-
tion temperature [101, 102]. Although the frequency dependence of the vertex functions was ne-
glected to solve the linearized Eliashberg equation in this section, we have also made some prelimi-
nary calculations with the frequency-dependent vertex functions, which are largely renormalized as
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Γ̂s(c)(iωn) ∼ Γ̂s(c)(0) for a small ωn while the vertex functions are approximately given by the bare

vertices as Γ̂s(c)(iωn) ∼ Γ̂
(0)
s(c) for a large ωn, and have found that the obtained λ is indeed enhanced

as compared with the results without the frequency dependence. To be more conclusive, we need to
obtain precise vertex functions depending on not only the external frequency but also the internal
ones, which were not taken into account in this thesis but are considered to play important roles
especially in the strong correlation regime [93], and is an important issue to calculate their frequency
dependence.



Chapter 3

Electronic state of FeSe in ambient
pressure

In present chapter, we address the electronic state on FeSe in ambient pressure. Recently, the angular
resolved photoemission spectroscopy (ARPES) and the quantum oscillations (QO) study of FeSe single
crystals revealed that hole pocket around the Γ point due to the dxy orbital is pushed downward under
the Fermi energy. To address this issue, we investigate the correlation effects on the self-energy, the
magnetic and orbital fluctuations and its derived superconductivity in 16-band d-p model on FeSe
within the dynamical mean-field theory. We find that the dissipation of a shallow hole pocket occurs
by on-site Coulomb interaction, which corresponds to the orbital-dependent band lifting observed by
the recent ARPES and the QO experiments. Furthermore, inter-site orbital-polarization Coulomb
interaction between iron d orbital and selenium p orbital drives an electric orbital order in absence
of the low-energy commensurate spin response. We also calculate the superconducting gap structure
in orbital ordered phase by using the linearized Eliashberg equation, and find that s±-wave pairing
is realized where the dzx(yz) orbital component of spin fluctuation is the cause of superconductivity.

3.1 Introduction

Understanding the interplay of strongly interacting electrons and phase transition is one of the main
targets for high-Tc superconducting materials theory. Mott transition, spin density wave (SDW),
charge density wave (CDW) and orbital order often occur with on-site or long-range Coulomb inter-
action in strongly correlated electron materials. The SDW appears in the two-dimensional Hubbard
model and relates to Mott-insulating state which can be described in terms of local correlations.
The phase separation has been observed also in the Hubbard model by introducing the non-local
correlations or the inter-site Coulomb interaction. On the other hands, it has been clarified that the
properties of these important electronic phenomena strongly depend on the lattice structure. If elec-
tronic system has holelike and electronlike Fermi surfaces, interaction between hole and electron in the
Fermi surfaces tends to induce SDW or CDW with wave vector q which spans the FS nesting vector.
In addition, the FS nesting between different orbital components may drives the orbital-dependent
SDW, CDW, and orbital ordering. Thus, the consistency between the effective tight-binding model
and the experimental electronic picture is highly desired.

The surprising phase diagram of FeSe has attracted much attention to investigate the origin of

35
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superconductivity and nematicity in iron-based superconductors. This material shows a structural
transition at Ts ∼ 90K and the superconducting transition at Tc ∼ 9K without long-range mag-
netic order. Ts (Tc) is decreased (increased) by isovalent doping in both Fe(SexS1−x) [103, 104] and
Fe(SexTe1−x) [105] or by applying pressure [106], while both Ts and Tc are suppressed by nonmagnetic
impurity (Co) doping [107]. Toward Ts, the softening of share modulus C66 [11] and the enhancement
of Raman nematic susceptibility χx2−y2 [18] are observed. These results clearly indicate the existence
of ferro-orbital fluctuation and electronic ferro-orbital order, as is recognized in other materials of
the iron-based superconductors, both theoretically [9, 55, 54, 62] and experimentally [10, 12, 108].
The most remarkable feature of FeSe is observed in the temperature dependence of the spin-lattice
relaxation rate 1/T1T in NMR experiment [17, 109]. With decreasing temperature, 1/T1T decreases
and reaches to the minimum at T ∼ Ts. With further decreasing temperature, 1/T1T becomes to
increase toward the superconducting temperature. The temperature dependence of 1/T1T together
with NMR Knight shift is interpreted by the low-energy properties of the effective tight-binding model
derived in Ref. [110], using a priori information of recent angular-resolved photoemission spectroscopy
(ARPES) and quantum oscillation (QO) measurements. As mentioned in Ref. [110], the spin-nematic
picture for FeSe may be unclear without the strong low-energy spin fluctuation.

Above Ts, the recent ARPES experiment [111, 19, 112, 20] found that the hole FS consists of
two small pockets of mainly dzx and dyz character around the Γ-Z line. The narrow dxy hole band
exists in about 50 meV below the Fermi level. Orbital-dependent mass enhancement is estimated
as dzx/yz ∼ 3 and dxy ∼ 8. The ARPES study also found a small electron FS at the M point of
mainly dzx and dyz character. Unfortunately, it is difficult to observe the dxy band in ARPES at
the M point. However, the QO measurement [19] performed at low temperature detects a presence
of the dxy electron pocket. Below Ts, ARPES observed the large band splitting of ∼50 meV at the
M point, which corresponds to orbital order breaking the degeneracy of the dzx and dyz orbitals.
By using the detwinned crystal [20], the orbital order has momentum-dependent sign-inversion as
Eyz(Γ) − Ezx(Γ) ∼ −10 meV and Eyz(M) − Ezx(M) ∼ +50 meV that is interpreted by the orbital
order scenario [113, 114] of Aslamazov-Larkin vertex corrections.

To elucidate the electronic correlation effects on FeSe, theoretical studies have been performed
intensively [115, 116, 117, 32, 118]. The constrained random phase approximation (cRPA) [32] com-
bined with the ab initio calculation scheme indicates that correlation strength plays important rules
to understand the material dependence of the iron-based superconductors. The Coulomb interaction
of Fe d orbital of FeSe is larger than that of LaFeAsO. Thus, the detail of electronic structure together
with the Coulomb interaction parameter are the key information in the iron-based materials. How-
ever, DMFT studies [116, 117] found that three hole FS at the Γ point as well as the first-principles
band calculation whereas ARPES found the two hole FS.

In this chapter, we use the model of FeSe in ambient pressure derived from the first-principles
and solve this model using the DMFT to investigate the unusual correlation. We show how dxy
hole band exists below the Fermi level predicted by several experiments, and elucidate the origin of
orbital-energy shift. The orbital-energy shift is characterized by the orbital dependence of screened
Coulomb interaction, which is estimated from first-principles. Consequently, the spin fluctuation due
to the xy orbital is clearly suppressed. Moreover, we show the orbital fluctuation enhancement by
introducing an “orbital polarization d-p Coulomb interaction” [62], which is not attributable to the
spin degrees of freedom.
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Figure 3.1: Band structures of FeSe (a). Green dash lines and red dotted lines represent the data
obtained from the density functional calculation and the derived tight-binding Hamiltonian, respec-
tively. Fermi surface of FeSe (b)-(f).

3.2 Model and Method

In this section, we illustrate a DMFT+Eliashberg approach for multi-orbital d-p model on FeSe
system.

First, we introduce a 16-band d-p model including the multi-orbital Coulomb interaction Hdd

between 3d electrons on Fe site, Hpp between 4p electrons on Se site, and the inter-site Coulomb
interaction Hdp between 3d and 4p electrons

H = H0 +Hdd +Hpp +Hdp. (3.1)

H0 is the tight-binding Hamiltonian derived from first-principles using maximally localized Wannier
functions [119, 120, 121, 122]. The electronic structure is described by the density functional theory
using the wien2k code [123, 124]. Diagonalizing H0, we obtain the non-interacting band structure
and the Fermi surface shown in Fig. 3.1. A large density of the xy orbital on inner hole Fermi surface
[red lines in Fig. 3.1(b)-(f)] indicates that the antiferromagnetic spin fluctuation of the xy orbital is
strongly enhanced in RPA as will be shown in Fig. 3.3(a).
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The on-site Coulomb interaction part on Fe site is given as

Hdd =
∑
i

∑
l

Ulld
†
il↑d

†
il↓dil↓dil↑

+
∑
i

∑
l>l′

∑
σ,σ′

U ′
ll′d

†
ilσd

†
il′σ′dil′σ′dilσ

+
∑
i

∑
l>l′

∑
σ,σ′

Jll′d
†
ilσd

†
il′σ′dilσ′dil′σ

+
∑
i

∑
l>l′

∑
σ ̸=σ′

J ′
ll′d

†
ilσd

†
ilσ′dil′σ′dil′σ, (3.2)

where d
(†)
ilσ is the annihilation (creation) operator of 3d electron with orbital l spin σ on site i,

and Ull, U
′
ll′ , Jll′ , J

′
ll′ are the Coulomb interaction matrix of the intra- and inter-orbital direct terms,

the Hund’s rule coupling, and the pair transfer, respectively. From the first principles downfolding
scheme given by the constrained-random phase approximation (cRPA) method, Ref. [32] revealed
that Ull, U

′
ll′ , Jll′ , J

′
ll′ in Hdd are orbital dependent and the average of Ull is Ūd = 7.2 eV for FeSe.

The on-site Coulomb interaction part on Se site is given as

Hpp =
∑
i

∑
m

Ummp†im↑p
†
im↓pim↓pim↑

+
∑
i

∑
m>m′
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†
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†
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+
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∑
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†
imσp

†
imσ′pim′σ′pim′σ, (3.3)

where p
(†)
imσ is the annihilation (creation) operator of 4p electron with orbital m spin σ on site i, and

Umm, U ′
mm′ , Jmm′ , J ′

mm′ are the Coulomb interaction matrix. Ūp = 4.7 eV was estimated from cRPA
study [32] for FeSe. Unfortunately, explicit orbital dependence was not detected so far. Hence, we
assume (Umm, U ′

mm′ , Jmm′ , J ′
mm′) = (Up, U

′
p, Jp, J

′
p), Up = U ′

p + 2Jp, Jp = J ′
p, and Jp/Up = 0.1.

The intersite Coulomb interaction part is written as

Hdp = V
∑
⟨i,j⟩

ndinpj + V ′
∑
⟨i,j⟩

(ndizx − ndiyz)(npjx − npjy), (3.4)

where ndil (npjm) is the number operator of a d (p) electron with orbital l (m) on site i (j), ndi =∑
l ndil (npj =

∑
m npjm), and ⟨i, j⟩ represents the summation of nearest-neighbor Fe and Se sites.

In Eq. (3.4), V ′ is the d-p orbital polarization interaction found to enhance the orbital fluctuation as
discussed for the iron-pnictides, originating from the the orbital dependence of the Coulomb integrals
Vlm between Fe d orbitals and Se p orbitals: V ′ = (Vzx,x − Vzx,y)/2 [62].

In our DMFT with a sublattice degrees of freedom, called two-sublattice DMFT, the original
site is mapped onto the effective impurity system for each sublattice. Hence one needs to solve
the impurity problem twice on two adjacent sites of the original lattice. Note that the d orbital
for the five or ten-orbital model contains considerable selenium p orbital component, and then the
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hybridization makes a Wannier function delocalized and anisotropic. This indicates the d-p model
is good starting point of DMFT rather than the d model. In the d-p model, since the Coulomb
interaction parameters are almost isotropic, the double counting of the correlation effect considered
in local density approximation is expected to be very simple. Hence, we argue that the orbital
dependence of the double counting is negligibly small. The self-energy due to the inter-site d-p
Coulomb interaction is omitted in present approximation. To consider this effect efficiently, the
cluster approximation or the dual fermion approach is needed and will be discussed later.

The spin (charge-orbital) susceptibility in d-p model is given by

χ̂s(c)(q) = χ̂0(q)
[
1̂− (+)Γ̂s(c)(q)χ̂0(q)

]−1
, (3.5)

where q = (q, iωn) with the wave vector q and bosonic Matsubara frequency ωn = 2nπT . Γ̂s(c) is

the spin (charge-orbital) vertex, which is given as Γ̂s(c) = Γ
s(c)
l1l2l3l4

(iωn)+Γ
s(c)
m1m2m3m4(iωn)+ Γ̂c,0

llmm(q).

Here, Γ
s(c)
l1l2l3l4

(iωn) is consistent with Eq. (2.4) in Sec. 2.2. The matrix elements in the d-p submatrix

are Γc,0
llmm(q)=2(V + V ′

±)ϕ(q), where [l,m] = [zx(yz), x(y)] for V ′
± = V ′, [l,m] = [zx(yz), y(x)] for

V ′
± = −V ′, and otherwise V ′

± = 0. ϕ(q) =
∑

⟨i,j⟩ e
iq(Ri−Rj) represents the q dependent factor due

to intersite Fe-Se contributions, where Ri −Rj denote the lattice vector [62]. Here, we ignored the
ladder-type Feynman diagrams for V ′ in Γ̂c,0(q). In Eq. (3.5), the irreducible susceptibility χ̂0(q)
have been defined in Sec. 2.2.

To examine the superconductivity, we solve the linearized Eliashberg equation [see Eq. (2.6) in
Sec. 2.2], and obtain the superconducting gap function ∆̂(k) with the eigenvalue λ which becomes
unity at the superconducting transition temperature Tc, where the effective pairing interaction for
the spin-singlet state is given as

V̂ (q) =
3

2
Γ̂s(iωn)χ̂

s(q)Γ̂s(iωn)−
1

2
Γ̂c(q)χ̂c(q)Γ̂c(q)

+
1

2

(
Γ̂s,0 + Γ̂c,0(q)

)
(3.6)

where the bare vertex is Γ
s(c),0
llll = Ull (Ull), Γ

s(c),0
ll′ll′ = U ′

ll′ (−U ′
ll′ + 2Jll′), Γ

s(c),0
lll′l′ = Jll′ (2U

′
ll′ − Jll′),

Γ
s(c),0
ll′l′l = J ′

ll′ (J
′
ll′), Γ

s(c),0
mmmm = Up (Up), Γ

s(c),0
mm′mm′ = U ′

p (−U ′
p + 2Jp), Γ

s(c),0
mmm′m′ = Jp (2U ′

p − Jp), and

Γ
s(c),0
mm′m′m = J ′

p (J ′
p) in the Fe and Se submatrix. We set temperature T = 0.03 eV. We discuss the

Coulomb interaction parameters by multiplying a reduction factor fd(p) so as to suppress the strong
spin fluctuation due to the two-dimensionality. For the double-counting correction, we used the fully
localized-limit formula [125].

3.3 Results

We first show results of DMFT calculation with the on-site Coulomb interaction fd(p) = 0.75, that
is Uxy = 5.32 eV, Uzx/yz = 5.44 eV, and Up = 3.5 eV. Note that the the renormalization factor

defined by Zl =
[
1− dΣl(ε)

d(ε)

∣∣
ε→0

]−1
shows Zxy = 0.57 and Zx = 0.97. Hence it is the intermediate

correlation regime, although we find Zxy = 0.16 for fd = 1. We show in Fig. 3.2(a) orbital-averaged,
(b) xy orbital, and (c) zx/yz orbital components of the spectral function, which is obtained by the
numerical analytic continuation to iωn → ω + iδ using Padé approximation, along high-symmetry
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Figure 3.2: Spectral function A(k, ω) for orbital-averaged components (a), xy orbital components
(b), and zx, yz orbital components (c). The interpolated-band dispersion with derived tight-binding
Hamiltonian is depicted as red solid lines.

directions. The overall renormalizations of quasiparticle bands are observed, even in selenium p
bands. We find that a hole Fermi surface of xy orbital character around Γ point is pushed downward
below Fermi level Exy(Γ) ∼ −50meV. This band structure could not be deduced from rescaling the
non-interacting band structure, and is consistent with the experiment. The deviation of the Coulomb
repulsion yields the orbital dependence of the self-energy in the real part, resulting in the crystal fields
splitting owing to the electronic correlation. Notice that FeTe indicates the larger U of xy orbital
than zx/yz orbital due to the weak covalency in contrast to FeSe. Since the fully localized-limit
formula omits the orbital-dependent double counting [125], we examined the calculation using the
orbital-dependent subtraction of the Hartree-Fock form, but reliable results were not obtained. We
confirmed that antiferromagnetic spin susceptibility of xy orbital character is significantly reduced,
whereas it is dominantly enhanced in the RPA [Fig. 3.3]. It is recognized that the spin susceptibility
is weak within the RPA [110] when the abinitio tight-binding model is reconstructed to suit the
ARPES and the QO results, and the spin-lattice relaxation rate is weak above Ts, consistency with
experiments. From our results, this behaver is confirmed from first-principles.

Next, we address the effect of the inter-site Coulomb interaction. In our DMFT, the non-local
correlation is considered within the RPA, since the inter-site self-energy correlation is expected to
be negligibly small. We show in Fig. 3.4 that the ferro-orbital (nematic) susceptibility defined as

χc
x2−y2(0, 0) =

∑
l1,l2,l3,l4

ol1l2
x2−y2

χc
l1,l2;l3,l4

(0, 0)ol4l3
x2−y2

with ozx,zx
x2−y2

= −oyz,yz
x2−y2

= −(
√
3/2)o3z

2−r2,x2−y2

x2−y2
=

1 [51] is enhanced by the orbital polarization interaction V ′ for fd = 0. Moreover, V ′ and fd coop-
eratively enhance χc. Note that the Hund’s coupling always suppresses the orbital fluctuation. The
raito between the Hund’s and Coulomb interaction is J̄d/Ūd = 0.0945 in FeSe and J̄d/Ūd = 0.134
in LaFeAsO. The smallness of J̄d/Ūd yields that the χc enhancement in FeSe is larger than that of
LaFeAsO.

Fig. 3.5 show the superconducting gap function ∆ on Fermi surface at kz = 0 and iε = iπT
for fd = 0.5, V ′ = 0, and λ = 0.859 in the four-fold symmetry. The nodal-like s±-wave is realized
owing to the antiferromagnetic fluctuation. The outer electron Fermi surface consists of the xy orbital
component, and hence indicates nodal-gap behavior in Γ-M direction.
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χsxy
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Figure 3.3: Orbital-resolved spin susceptibility in qx-qy plane for RPA (a) and DMFT (b) at qz = 0
and iωn = 0. Here, fd = 0.3 and αs = 0.936 for RPA, and fd = 0.5 and αs = 0.953 for DMFT.

3.4 Summary and Discussion

In the present chapter, we investigate 16-band d-p model on FeSe in ambient pressure within the
dynamical mean-field theory. The correlation effect on the self-energy, the magnetic and orbital
fluctuations and its derived superconductivity are revealed. We find that the dissipation of a shallow
hole pocket occurs by on-site Coulomb interaction which corresponds to the orbital depend band lifting
observed by the recent ARPES and the QO experiments. Furthermore, inter-site orbital-polarization
Coulomb interaction between iron d orbital and selenium p orbital drives an electric orbital order
in absence of the low-energy commensurate spin response. We also calculate the superconducting
gap structure in orbital ordered phase by using the linearized Eliashberg equation, and find that
s±-wave pairing is realized where the zx/yz orbital component of the spin fluctuation is the cause of
superconductivity.
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Figure 3.4: Ferro-orbital (nematic) susceptibility for RPA (a) and DMFT (b) at q = (0, 0, 0) and
iωn = 0. In DMFT, non-local self energy is omitted as mentioned in the text. Thus, the RPA data
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Figure 3.5: (a) Superconducting gap function on Fermi surface at kz = 0 and iε = iπT for fd = 0.5,
V ′ = 0, and λ = 0.859. (B) Interacting Fermi surface at kz = 0.



Chapter 4

Electronic state of FeSe under pressure

Recent experiments have observed that a structural transition temperature Ts is suppressed by apply-
ing pressure, whereas a antiferromagnetic transition temperature Tm becomes finite. The antiferro-
magnetic dome is stabilized in the wide pressure region, partially coexisting with the superconducting
temperature at the maximum Tc ∼ 37K. In order to understand the pressure dependence of Ts, Tm,
and Tc in bulk FeSe, this chapter gives the investigation of realistic low-energy models at ambient and
under pressure. The model at ambient pressure reproduces experimental Fermi surface. We reveal
that pressure effect on lattice structure from first-principles clearly shows that the height of Se, which
is key parameter for the mixing of xy orbital, arise from Fe plane by applying pressure. As a result, a
hole Fermi surface, which primarily consists of xy orbital, supersedes the zx/yz hole Fermi surfaces.
A hybridization of zx/yz orbital on the Fermi surface affects Ts, so that Ts decrease with pressure,
consistently with experiments, where zx/yz orbital fluctuation enhancement is governed by the d-p
orbital polarization interaction. The hybridization of xy orbital strengthens the antiferromagnetic
fluctuation from low pressure region. Thus, the origin of the opposite pressure dependence between Ts

and Tm is clarified from the topological change of hole Fermi surface derived by the lattice parameter.
The enhancement of spin fluctuation and the spread of total bandwidth affect Tc, resulting in the
double-dome pressure dependence of eigenvalue λ in the Eliashberg equation.

The organization of this chapter is as follows. Sec. 4.1 gives a review of FeSe under pressure.
Sec. 4.2 studies the specific electronic structure from first-principles band calculation. The effective
low-energy tight-binding model is derived in this section. Sec. 4.3 gives a calculation result of the
RPA in tetragonal and orthorhombic phase. This section gives our main results that experimentally
observed temperature/pressure phase diagram is almost perfectly described. Summarization of the
present chapter is in Sec. 4.4.

4.1 Introduction

The discovery of iron-based superconductors [1] is one of the highlights of condensed matter physics
and offer us a place to understand fundamental phenomena of electronic properties. In most iron-
based superconductors, the superconductivity is found in the proximity of a magnetic ordered state.
Just above the magnetic ordered state (in the 1111 systems such as LaFeAsO and 122 system such
as BaFe2As2), a structural (nematic) transition from the tetragonal to the orthorhombic is realized,
that spontaneously breaks the four-fold symmetry C4. The relation between the structural transition
and the magnetic ordered phase has been a controversial issue, whose understanding may provide

43
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the insights into the pairing mechanisms and symmetries [33, 34, 39, 126, 127, 51, 54]. To elucidate
the origin of the structural transition above the magnetic order, the spin-nematic theory [9, 49] and
the orbital order theory [128, 55] has been proposed intensively. The microscopic pictures of these
theories are the spin-quadrupole order induced by the spin fluctuation [9] and the orbital-spin mode-
coupling characterized by the Aslamazov-Larkin vertex correction [55]. On the other hand, another
candidate of the orbital order mechanism was suggested in Ref. [62] by taking into account an orbital
polarization interaction, which is derived from the orbital dependence of the intersite d-p Coulomb
integrals between Fe dzx/yz orbitals and As px/y orbitals.

FeSe is a curious material among the iron-based superconductors, that give us a remarkable
phase diagram as a function of pressure. The early powder sample study [106] shows that the
superconducting transition temperature Tc ∼ 9K at ambient pressure can be enhanced by Tc ∼
37K at the pressure ∼ 9GPa. The polycrystalline sample of FeSe1−x was investigated in the early
NMR measurements and the muon-spin rotation (µSR) experiments [129, 130, 131]. According to
these results, the spin fluctuation is enhanced by pressure up to ∼2.2GPa [129] and a pressure-
induced antiferromagnetic ordered state is stabilized above ∼1GPa [130, 131]. More recent studies on
single crystals revealed comprehensive and complex T -P phase diagram from macro- and microscopic
measurements under high pressure [132, 21, 133, 134, 135, 136]. There is a consensus on the pressure-
induced magnetic transition temperature in transport measurements [132, 21]. Although the deviation
of transition temperature Tm is observed between µSR and resistivity, the discrepancy is explained
by a local magnetic volume fraction [132]. Remarkably, a non-magnetic structural transition Ts is
quickly suppressed by pressure up to P ∼ 1GPa [133] and the antiferromagnetic ordered state is
stabilized in a wide pressure region (1 < P < 6GPa) with a dome shape at the maximum value of
Tm ∼ 45K (P ∼ 4.8GPa) [21]. Thus, the superconductivity meets three quantum critical points
with increasing P . One is nematic quantum critical point, the others are magnetic one accompanied
by the enhancement of Tc. It is noteworthy that the stripe-type antiferromagnetic order breaks not
only time-reversal symmetry but C4 symmetry. Simultaneous first-order magnetic and structural
transitions was observed in recent transport measurement [134].

In contrast to the 1111 and 122 systems, FeSe at ambient pressure shows a very weak antiferro-
magnetic fluctuation above Ts. The absence of the low-energy spin response seems to be consistent
with orbital polarization interaction mechanism[62] which merely relies on the orbital degrees of free-
dom in principle, as mentioned above. In this mechanism, the ferro-orbital fluctuation mediates an
attractive pairing within each of an electron- and a hole-Fermi surfaces almost independently of each
other, while the antiferromagnetic fluctuation causes the pair scattering between the electron and
hole Fermi surfaces resulting in the s±-wave pairing. Then, the antiferromagnetic and ferro-orbital
fluctuations cooperatively enhance Tc without any competition by the q-space segregation of the two
fluctuations. Furthermore, the average value of the intersite Coulomb integrals are large for the FeSe
relative to those for the 1111 and the 122 systems[32]. Thus, by considering suitable intersite d-p
Coulomb integrals, the FeSe is expected to have larger orbital polarization interaction than the 1111
and 122 systems.

4.2 Construction of the d-p model under pressure

In this section, we present a detailed analysis of pressure dependence of FeSe in paramagnetic phase.
To predict accurately the electronic structure from the first principles, we employ a downfolding
scheme in the following. We construct the global band structure using the density functional theory
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Figure 4.1: Experimental [106, 137] and optimized structural parameters. The optimization is done
for internal coordinates hSe and c/a ratio with constant unit-cell volume.

within the generalized gradient approximation [123, 124]. To minimize the lattice energy from first
principles, we start with the structural optimization on internal coordinates hSe and c/a ratio in
each pressure with the space group P4/nmm and experimental crystal parameters of FeSe [106, 137].
Figure 4.1 shows the optimized and the experimental crystal parameters. We have optimized the
structure requiring Se atomic force to be less than 0.5mRy/bohr. The optimized lattice parameter
a is 2% smaller (and c is 2% larger) than these in experiments at ambient pressure. The pressure
dependence of these parameters is qualitatively consistent with experiments. We construct a tight-
binding Hamiltonian exploiting the maximally localized Wannier functions including Fe-3d orbitals
and Se-4p orbitals using the wannier90 code [121] through the wien2wannier interface [122]. From
the angular resolved photoemission spectroscopy (ARPES) and the quantum oscillation experiments
at ambient pressure [19], the quasi two-dimensional hole pocket with zx/yz character and two electron
pockets with zx/yz and xy character was observed. Since the experimentally observed Fermi surfaces
even at ambient pressure give the deviation with the band calculation of FeSe, we introduce the addi-
tional hopping shift δtl for l = zx/yz and xy orbitals as (δεzx/yz, δt

nn
zx/yz, δt

nnn
zx/yz) = (0,−0.03,−0.03)

and (δεxy, δt
nn
xy , δt

nnn
xy ) = (−0.025,+0.0125,−0.06625) [eV] in order to reproduce the Fermi surfaces

[113, 110, 138]. Since the experimental Fermi surface under pressure has not been detected clearly,
we introduce the same δtl for each pressure as a simplified approximation.
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Figure 4.2 shows the band structures together with orbital weight at P = 0.0, 1.5, 3.0, and 4.5GPa.
The low-energy band structure of P = 0.0GPa is in good agreement with the ARPES results above
Ts [19]. It seems that the band structure of 4.5GPa resembles that of 0.0GPa, but total bandwidth is
widen ∼1 eV by usual pressure effect. Furthermore, by comparing the band structure near the Fermi
level at Γ point [see Fig. 4.2(e)], one sees a characteristic orbital energy shift. Namely, a hole band of
mainly xy orbital character at EΓ ∼ −50meV is pushed upward to ∼25meV and two-degenerated hole
bands of mainly zx/yz orbital character at EΓ ∼ 60meV are pushed downward to ∼−25meV, which
indicates topological transition induced by pressure effect from the first-principles band calculation.
It is worth noting that the consequences of transfer integrals between xy orbitals together with the
Se height are significant for orbital energy shift[37] and this will be discussed later in detail. To get
more insight about the low energy property, the Fermi surfaces at P = 0.0, 1.5, 3.0, and 4.5GPa with
zx/yz and xy orbital weights are shown in Fig. 4.3. The Fermi surfaces at 0.0GPa which consist of
two-hole and two electron pockets are consistent with experiment at ambient pressure. In this case,
the electron(zx/yz)-hole(zx/yz) Fermi surface nesting with wave vector q = (π, π) is most important.
By applying pressure, one can see that the two small hole pockets deform and shrink, and then new
hole pocket of mainly xy orbital character arises, while two electron pockets slightly change the shape.
In the configuration of P = 3.0 and 4.5GPa, the electron(xy)-hole(xy) Fermi surface nesting with
wave vector q = (π, π) is most important in contrast to that of 0.0GPa.

Now let us turn to discuss why the hole band of xy orbital character pushed upward by increasing
pressure. This is attributable to the lattice parameter of Se height obtained from first principles
[see also Fig. 4.1(b) and 4.4(d)] which tend to increase as P increase. This has been recognized
from an early stage of the study on the 1111 system, that the lattice parameter of the pnictogen
hight determines the mixture of xy orbital contribution, and in turn, the construction of the hole
Fermi surface at Γ point[37]. To examine this effect on FeSe under pressure, Figure 4.4(a)-(c) show
the pressure dependences of intra-orbital hopping integrals tl and tlm between the lattice vector
illustrated in the inset of the Figure 4.4(a)-(c) for (l,m) = (zx/xy, x). These hopping integrals tend
to upward with increasing P owing to the decrease in unit-cell volume. The xy hopping integrals has
considerably large pressure dependence than the zx one. The difference increases as P increases in
the low pressure region, and for further increasing P , it becomes to diminish for P > 3.5GPa.

4.3 RPA calculation of spin and orbital fluctuation and supercon-
ductivity

4.3.1 Calculation method

Next, we address the interacting part of the Hamiltonian Hint which consists of the multi-orbital
Coulomb interaction Hdd between 3d electrons on Fe site and the inter-site Coulomb interaction Hdp

between Fe and Se sites

Hint = Hdd +Hpp +Hdp (4.1)

which have been defined in the previous Chapter [see Eqs. (3.2)-(3.4) in Sec. 3.2]. We apply random
phase approximation (RPA) to each model where the self energy correction was neglected. The spin
(charge-orbital) susceptibility in RPA is given by

χ̂s(c)(q) = χ̂0(q)
[
1̂− (+)Γ̂s(c)(q)χ̂0(q)

]−1
, (4.2)
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where q = (q, iωn) with the wave vector q and bosonic Matsubara frequency ωn = 2nπT . Γ̂s(c)(q) =
Γ̂s(c),0(q) is the spin (charge-orbital) vertex. The bare vertex Γ̂s(c),0 has been defined in Sec. 3.2. In
Eq. (4.2), the irreducible susceptibility χ̂0(q) has been defined in Sec. 2.2.

To examine the superconductivity, we solve the linearized Eliashberg equation [see Eq. (2.6) in
Sec. 2.2], and obtain the superconducting gap function ∆̂(k) with the eigenvalue λ which becomes
unity at the superconducting transition temperature Tc, where the effective pairing interaction for
the spin-singlet state is given as

V̂ (q) =
3

2
Γ̂sχ̂s(q)Γ̂s − 1

2
Γ̂c(q)χ̂c(q)Γ̂c(q)

+
1

2

(̂
Γs+Γ̂c(q)

)
. (4.3)

We perform RPA calculations for each model with fixed temperature T = 0.03 eV. We employ
the Coulomb interaction parameters on Fe site Ull, U

′
ll′ , andJll′ = J ′

ll′ obtained from cRPA method
[32] by multiplying a reduction factor fd = 0.279 (Ūd = 2.0 eV), since the RPA overestimates the
magnetic fluctuation and the magnetic ordered state. We introduce V ′ = 0.464 eV, which was found
to be smaller than Upd = 1.7 eV from Ref. [32], and slightly larger than V ′ of Ref. [62]. V ′ is
just a parameter to adjust the orbital fluctuation strength, which was determined to reproduce
the experimental observations at ambient pressure, i.e. to satisfy the condition that the orbital
fluctuation is larger than the spin fluctuation. We use 32 × 32 k-meshes and 512 Matsubara fre-
quencies. Hereafter, we mainly discuss the total spin susceptibility χs(q, 0) =

∑
l,l′ χ

s
l,l;l′,l′(q, 0)

at Fe site, and the orbital susceptibility χc
x2−y2(q, 0) =

∑
l1,l2,l3,l4

ol1l2
x2−y2

χc
l1,l2;l3,l4

(q, 0)ol4l3
x2−y2

with

ozx,zx
x2−y2

= −oyz,yz
x2−y2

= −(
√
3/2)o3z

2−r2,x2−y2

x2−y2
= 1 [51]. The spin (charge) Stoner factor αs(c) is given by

the maximum eigenvalue of Γ̂s(c)(q)χ̂0(q, 0), which is taken as a measure of Tm(s). In a previous study
of Ref. [139], the RPA was adopted in the five-orbital model, where both αs and the eigenvalue of
the Eliashberg equation was found to be monotonically diminished by applying pressure which does
not agree with the experimental observations. Also, the pressure dependence of αc was not clarified.

4.3.2 Spin and orbital fluctuation in tetragonal state

Figure 4.5(a) and 4.5(b) show the q dependences of the orbital and spin susceptibility χc
x2−y2 and χs,

respectively, for P = 0.0, 0.5, 1.5, 2.5, 3.5, and 4.5GPa. One observes that the orbital susceptibility
for q = (0, 0) is enhanced owing to the d-p orbital polarization interaction at ambient pressure. It
decreases as P increases, since the shrink of the two hole Fermi surfaces yields the reduction of zx/yz
orbital contribution on the Fermi energy. Conversely, the spin susceptibility for q = (π, π) is strongly
enhanced by applying pressure for P < 3.5GPa, and drops down moderately for P > 3.5GPa.

In order to understand this behavior, we study the orbital resolved spin susceptibility. In low P ,
the total spin fluctuation χs is composed of mainly χs

l,l;l,l of l = zx/yz, while the one of l = xy is very
weak. This is due to the Fermi surface nesting of the zx/yz orbitals with the wave vector q = (π, π).
However, the spin fluctuation is not so strong owing to the smallness of Fermi surfaces. In high P , the
hole Fermi surface, which primarily consists of xy orbital, supersedes the zx/yz hole Fermi surfaces,
and then the xy orbital component of χs

l,l;l,l is dominant, which originates from the xy intra-orbital
nesting between the electron and hole Fermi surfaces. In contrast to χs, χc

x2−y2 is primary composed

of χc
l,l;l′,l′ of (l, l′) = (zx/yz, zx/yz) with q = (0, 0) in all pressure. This component does not rely

on the electron-hole Fermi surface nesting of zx/yz orbital with q = (π, π) and also the xy orbital
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contribution on Fermi surface. In other words, the d-p orbital polarization interaction only enhances
the ferro-orbital fluctuation owing to the the zx/yz orbital contribution on Fermi surfaces. Note
that the charge susceptibility

∑
l,l′ χ

c
l,l;l′,l′ with q = (0, 0) is also enhanced owing to the d-p Coulomb

interaction V .
Figure 4.5(c) shows the spin and charge Stoner factors αs and αc as a function of pressure.

Similarity to the spin and orbital susceptibility, in low pressure region up to 3.5GPa, αs largely
increases while αc is diminished, leading to remarkable opposite pressure dependence between the
spin and orbital fluctuations due to the reasons as mentioned above. In high pressure region, both
αs and αc are diminished and αs exhibits a single-dome shape at 3.5GPa. These results are in good
agreement with the experimental phase diagram of Ts(m) vs P in Ref. [21] [shown in Fig. 4.5(d)].

4.3.3 Superconductivity in orthorhombic state

In this subsection, we address the pressure-induced superconductivity mediated by the pressure-
induced spin fluctuation in orthorhombic phase. We study uniform orbital order and k-dependent
orbital order states proposed so far. In the latter case, we assume δΣzx(yz) = −(+)14(δE

Γ
nem+δEM

nem)+

(−)18(δE
M
nem − δEΓ

nem)(cos kx + cos ky), namely a sign reversing orbital splitting, which is observed
in ARPES study. Here, δEnem is the orbital energy splitting Ezx − Eyz at the Γ and M point. We
set δEΓ

nem = −0.05 eV and δEM
nem = 0.15 eV. This orbital order yields a good nesting of the Fermi

surface for the yz and xy orbital components, but ill nesting for zx component. Therefore, The yz
and xy spin fluctuation is enhanced. Thus, the eigenvalue λ of the Eliashberg equation exhibits broad
enhancement with a double-dome shape [see Figure 4.6(a)]. The acute peak at P = 3.5GPa is due to
the proximity to the antiferromagnetic order. Indeed, this peak shifts to low pressure as fd increases
[see Fig. 4.6(b)]. The non-monotonous increase such as double-dome λ is in good agreement with
the experimental Tc. The nodal-like s±-wave pairing is stabilized, and then indicates the consistency
with the STM and the ARPES experiments.

4.4 Summary and Discussion

In summary, we have investigated the spin-charge-orbital fluctuation under pressure in the 16-band
d-p Hubbard model for iron-based superconductor FeSe in paramagnetic tetragonal phase by using the
random phase approximation with respect to the Fe 3d Coulomb interaction and Fe and Se d-p orbital
polarization interaction. A pressure effect on electronic states was derived from first principles band
calculation by optimizing the experimental lattice parameters. It has been found that the optimized
lattice parameters are qualitatively consistent with these in experiments as a function of pressure.
The Fermi surfaces obtained from the effective tight-binding model clearly indicates the signature
of the topological transition with increasing pressure. Furthermore, we have explained the spin and
orbital orders in bulk FeSe under pressure. The ferro-orbital order is monotonically suppressed with
pressure and the antiferromagnetic order is robustly realized with a dome shape at 3.5GPa, in good
agreement with experiments.
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Figure 4.2: Band structures of FeSe at P = 0.0, 1.5, 3.0, and 4.5GPa obtained by effective tight-
binding models, where orbital weights are plotted as 3z2 − r2 (red), zx (green), yz (cyan), xy (blue),
x2 − y2 (pink), x (light-green), y (light-blue), z (light-goldenrod).
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Figure 4.6: (a) Pressure dependence of the superconducting eigenvalue for fd = 0.237 in tetragonal,
orbital order, and k-dependent orbital order states. (b) Pressure dependence of the superconducting
eigenvalue for several fd values in k-dependent orbital order states





Chapter 5

Conclusion

This thesis reported some theoretical studies on iron-based superconductors.

In Chap. 1, we reviewed basic properties of iron-based superconductors. The recently discov-
ered iron-based superconductors LaFeAsO1−xFx exhibits the antiferromagnetic transition and the
structural transition at low temperature. The iron-based compounds are multi-orbital system of a
semimetal phase, differently from the copper oxide superconductors. The spin fluctuation and the
orbital fluctuation are enhanced toward two transition temperatures, and hence two distinct pairing
mechanisms: (I) the s±-wave mediated by the spin fluctuation and (II) the s++-wave mediated by the
orbital fluctuation were proposed. Moreover, the distinct phase diagramss are one of the characteris-
tic feature of the iron-based superconductors. Hence it is also an important issue why the iron-based
family shows such remarkable material dependence, despite having the analogous crystal structure.
For instance, FeSe shows a structural transition at ∼ 90K and the superconducting transition at
∼ 9K without long-range magnetic order. Phase diagram as a function of pressure in FeSe shows that
the structural transition is quickly suppressed by pressure, while the antiferromagnetic transition is
stabilized in a wide pressure region with a dome shape. The superconducting transition temperature
can be first enhanced by pressure, and then drops down slightly before arising again, and finally
reaches to ∼ 37K at pressure ∼ 6.5GPa.

Chap. 2 presented the analysis of electronic state coexisting the spin and orbital fluctuations
in the five-orbital Hubbard model for iron-pnictides. We pointed out the vertex function is largely
renormalized with significant orbital dependence, owing to the competition of the spin and orbital
fluctuations. Solving the linearized Eliashberg equation with the derived effective pairing interaction,
the gap function with the sign change between two-hole Fermi surfaces, in addition to the sign change
between a hole and an electron ones, namely “hole-s±-wave”, is stabilized. Comparing the hole-s±-
wave with experimental results, it was explained that the hole-s±-wave may occur in such specific
compound as LiFeAs. Several authors [77, 75, 78] proposed the orbital antiphase s±-wave and hole-
s±-wave symmetries as promising pairing states for LiFeAs, but the relative signs of the gap function
on the FSs are different from the present result. The most significant difference between the previous
and present hole-s±-wave states was the pairing mechanism: the most dominant pairing interaction
in the present theory is between the inner and the outer hole FSs at q ∼ (0, 0) mediated by the
largely enhanced FM fluctuation, which was not taken into account in the previous theories but was
observed in the µSR experiment [73].

Chap. 3 gave a detailed analysis of 16 band d-p model for FeSe. One-particle spectral function
was derived from the dynamical mean-filed theory, including the Fe-3d Coulomb interaction together

55
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with the Se-4p Coulomb interaction. The spectral function of xy orbital exhibits the deviation from
first-principles calculation, owing to the orbital dependence of the 3d Coulomb interaction. The
absence of a hole band composed of xy orbital agrees with the experiments with the ARPES and the
quantum oscillation. The experimental results of the NMR spin-relaxation rate, in which the spin
fluctuation is very weak above the structural transition, was verified by calculating spin susceptibility.
Furthermore, we have studied the effect of the inter-site Coulomb interaction between Fe-d orbital
and Se-p orbital within the random phase approximation, and the orbital fluctuation was found to be
enhanced owing to the orbital-dependent interaction. The enhancement explains the elastic constants
in the ultrasonic experiments and the susceptibility in the Raman scattering experiments. These
results not only reproduce the key properties in FeSe well, but also provide a helpful perspective to
investigate the strongly correlated multi-orbital system, that is the evidence of the orbital-dependent
Coulomb interaction.

The theme of Chap. 4 was about the issue, what state is stabilized by applying pressure on
FeSe, where the electronic state in the ambient pressure was revealed in Chap. 3. The pressure
dependences of several physical quantities are clarified by analyzing the effective model derived from
the first-principles calculation, using lattice parameters under pressure. The results show that the hole
Fermi surface originating from xy orbital is induced by pressure, and the spin fluctuation is strongly
enhanced owing to the nesting between that and electron Fermi surface. It is elucidated that Se atoms
height (distance from the Fe plane) is crucial for these pressure effects. Moreover, superconducting
eigenvalue in orbital ordered state shows double-dome shape as a function of pressure, consistent
with the experimental phase diagram. Here, the nodal-like s±-wave pairing is stabilized, and is
consistent with the STM and the ARPES experiments. As mentioned above, this study explains
pressure/temperature phase diagram by means of the spin and orbital fluctuation theory.

Finally, we briefly comment on a evaluation of the orbital polarization interaction. Our estimation
with the use of hydrogenlike atomic wave functions yields a considerably large value of the orbital
polarization interaction ∼ 0.3− 0.5 eV. However, other estimation using the realistic Wannier orbital
indicates a small value ∼ 0.1 eV at most [140]. Considerably small value of the orbital polarization
interaction cannot enhance the orbital fluctuation sufficiently than the spin fluctuation, but vertex
correction for this interaction is neglected in this thesis. Thus, to get more conclusive evidence, we
need to obtain the vertex functions with precise k-dependence beyond the single-site DMFT, and
these treatment remains an open and very challenging problem.
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