Synthetic Study of Pentalenolactone F

Shota Sato

Doctoral Program in Advanced Materials Science and Technology
Graduate School of Science and Technology
Niigata University

Abbreviations	
Ac	acetyl
acac	acetylacetonyl
AIBN	2,2'-azo bisisobutyronitrile
aq.	aqueous
AZADO	azaadamantane N -oxyl
Bn	benzyl
Bu	butyl
Bz	benzoyl
CSA	camphorsulfonic acid
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	dicyclohexylcarbodiimide
DCE	1,1-dichloroethane
DET	Diethyl tartrate
DIBAL	diisobutylaluminum hydride
DMAP	N, N-4-dimethylaminopyridine
DME	dimethyl ether
DMF	N,N-dimethylformamide
DMPU	N, N-dimethyl propylene urea
DMSO	dimethylsulfoxide
d.p.	desired product
Et	ethyl
eq.	equivalent
FPP	Farnesyl diphosphate
HMPT	hexamethylphosphorous triamide
LDA	lithium diispropylamide
m-CPBA	meta chloroperbenzoic acid
Me	methyl

MOM	methoxymethyl
MPM(PMB)	p-methoxybenzyl
Ms	mesyl(methanesulfonyl)
MS	molecular sieves
NaHMDS	sodium bis(trimethylsilyl)amide
NMO	N-methylmorpholine oxide
NMR	nuclear magnetic resonance
NOE	nuclear overhauser effect
NOESY	nuclear overhauser effect spectroscopy
PCC	pyridinium chlorochlomate
PDC	pyridinium dichromate
Ph	phenyl
PPTS	pyridinium p-toluenesulfonate
Pr	propyl
rec.s.m.	recycle starting material
r.t.	room temperature
TBAF	tetra- n-butylammonium fluoride
TBDPS	t-butyldiphenylsilyl
TBHP	t-butyl hydroperoxide
TBS(TBDMS)	t-butyldimethylsilyl
TEA	triethylamine
Tf	trifluoromethanesulfonyl
THF	tetrahydrofuran
TMS	trimethylsilyl
TPAP	tetra- n-propylammonium perruthenate
Ts	p-toluenesulfonyl
TSA	toluenesulfonic acid

Table of Contents

Chapter 1 Introduction p6-12
1-1: Angular Triquinane Group Comprised in Sesquiterpene
1-2 : Constructive Method for Angular Triquinane Framework
1-3: Previous Reports1-3-1 : Methodology by Dauben's Group
1-3-2 : Methodology by Paquette's Group
Reference
Chapter 2 Synthesis of the Triquinane System p13-27
2-1: Eu(OTf) ${ }_{3}$ Mediated 5-exo Cyclization of Epoxymalonate
2-2 : Synthetic Strategy
2-3: Transformation of Bicyclic Lactone into Diquinane Framework
2-4: Construction of the Angular Triquinane Framework
Experimental Section
Reference
Chapter 3 Total Synthesis of Pentalenolactone F p28-87
3-1: Introduction
3-2: Previous Reports
3-2-1 : Methodology by Ohtsuka's Group
3-2-2 : Methodology by Cane's Group
3-3: Synthetic Strategy
3-4 : Construction of the Bicyclic Lactone by 5-exo Cyclization
3-5 : Transformation of Bicyclic Lactone into Diquinane Framework
3-6 : Construction of the Angular Triqinane Framework
3-7 : Application of Baeyer-Villiger Oxidation to Construct δ-Lactone Ring
3-7-1 : Dihydroxylation and Selective Protection
3-7-2 : Baeyer-Villiger Oxidation for Construction of δ Lactone Framework
$3-8$: New Approach to Construct α-Epoxide
3-8-1 : Installation of exo-Olefine
3-8-2 : α-Selective Dihydroxylation
3-9 : Total Synthesis of Pentalenolactone F Methyl Ester3-9-1 : Installation of One Carbone Atom3-9-2 : Modification of A Ring and Construction of EpoxideExperimental SectionReference
Chapter 4 Application to Optically Active Compound p88-96
4-1 : Introduction
$4-2$: Synthetic Study as the Optically Active Form
Experimental Section
Reference
Acknowledgment
Spectral Data

Chapter 1

Introduction

1-1 : Angular Triquinane Group Comprised in Sesquiterpene

Sesquiterpenes, which go through farnesyl diphosphate (FPP) consisting of three isoprene units as a common precursor, are one of the isoprenoids produced by biosynthetic conversion. Various cyclization patterns provide a lot of sesquiterpene frameworks such as mono, di and tricyclic skeletons, and they are regarded as important biochemical intermediates or bioactive natural products. These ideas have driven new methodology and strategy to develop over last four decades. Among sesquiterpenes, a polyquinane family which possesses carbocyclic framework composed of fused five membered rings has been regarded as an important class of natural products, and have been in nature since olden days and revealed to chemical scientists only in the second half of 20th century. Firstly, the isolation and structural determination were accomplished with hirsutic acid $(\mathbf{1})^{1)}$. Since then, many polyquinane natural products were found out from plant, marine and microbial sources. Among the polyquinane family, triquinane framework is more abundant natural product skeleton (Figure 1). According to some literatures, nearly eighty such types have been discovered. Based on the type of ring fusion, they can be broadly classified into three types: linear ${ }^{2)}$, propellane ${ }^{3)}$, and angular ${ }^{4)}$.

Figure 1

Linear

Propellane

Angular

Hirsutic acid (1)

Among them, the angular triquinane type, which has unique structure composed of three cyclopentane rings sharing a quaternary carbon, is the most abundant in nature. For example, pentalenene $(\mathbf{2})^{5}$, isocomene $(\mathbf{3})^{6)}$, silphinene $(4)^{7)}$, arnicenone $(\mathbf{5})^{8)}$ and pentalenic acid (6) ${ }^{9)}$ have a common angular triquinane framework (Figure 2). Many scientists have been considered this type as attractive ring structure consisting of significant interests and promising bioactivity. Therefore, a lot of investigations have been done by many scientists.

Figure 2

Pentalenene (2) Isocomene (3)

Silphinene (4)

Arnicenone (5)

Pentalenic acid (6)

1-2 : Constructive Method for Angular Triqinane Framework

Skeletal construction methods of the angular triquinane framework have been reported by many scientists (Figure 3): for example, Hudlicky's report ${ }^{10)}$ by [4+1] cyclopentene annulation, Wender's report ${ }^{11)}$ by photochemical arene-alkene meta cycloaddition followed by [3+2] cycloaddition, Lee's report ${ }^{12)}$ by intramolecular Michael addition, Snider's report ${ }^{13)}$ by intramolecular ketene cycloaddition followed by Caroll rearrangement and Grieco's report ${ }^{14)}$ by intramolecular cationic [5+2] cycloaddition. In this research, it is the most important and fascinating task to install the quaternary carbon for construction of the angular triquinane framework.

Figure 3

1-3 : Previous Reports

1-3-1 Methodology by Dauben's group ${ }^{\text {6c) }}$

In synthetic study of Isocomene (1981), construction procedure of angular triquinane framework was reported by Dauben and co-workers (Scheme 1). At the outset, they achieved the synthesis of 9 composed of diquinane framework by condensation with 1,2-diketone (7), which was obtained from ethylene dithiotosylate and 2,4-pentanedione, and 2 equiv of dimethyl 1,3-acetonedicarboxylate (8). Subsequently, resultant 9 was hydrolyzed and decarboxylated in refluxing aqueous acid to give 10. A crucial step, differentiation of the two carbonyls in diketone $\mathbf{1 0}$ was achieved by the following sequence; 1) protection of both carbonyl groups with 3,3-dimethyl propane-1,3-diol, 2) partial hydrolysis of the result diacetal. Wolff-Kishner reduction of $\mathbf{1 1}$ followed by deprotection of ketal gave 12. Finally, p-TSA mediated intramolecular cyclization accomplished the construction of the desired angular triquinane framework 13.

Scheme 1

10

12 p-TSA mediated intramolecular cyclization

13

11

1-3-2 Methodology by Paquette's group ${ }^{\text {6b) }}$

In synthetic study of Isocomene (1979), construction method of the angular triquinane framework was reported by Paquette and co-workers (Scheme 2). In the beggining, they carried out Michael addition with silyl enol ether $\mathbf{1 4}$ prepared from 2-methyl cyclopentanone to nitroolefine $\mathbf{1 5}$ obtained by an aldol-type condensation of formaldehyde and 2-nitro-1-butene, to give $\mathbf{1 7}$. The reaction proceeded via nitronic acid intermediate 16. Subsequently, construction of diquinane $\mathbf{1 8}$ was achieved by intramolecular aldol cyclization with KOH in aqueous EtOH under reflux condition. Conjugate addition of Grignard reagent prepared from β-bromopropionaldehyde ethylene ketal in the presence of the cuprous bromide dimethyl sulfide complex gave 19. 1,2-Addition of Grignard reagent followed by dehydration afforded 20. Finally, deprotection of the ketal followed by intramolecular cyclization in the presence of acetic acid accomplished the construction of the desired angular triquinane framework $\mathbf{2 1}$.

Scheme 2

17

20
Deprotection
then Cyclization

21
isocomene (3)

1,4-addition with cuprate

18
19

$$
\xrightarrow[\begin{array}{c}
\text { then } \\
\text { dehydration }
\end{array}]{\substack{\text { 1,2-addition } \\
\text { with Grignard }}}
$$

Reference

(1) (a) Heatley, N. G.; Jennings, M. A.; Florey, H. W. Br. J. Exp. Pathol. 1947, 28, 35; (b) Comer, F. W.; Trotter, J. J. Chem. Soc. B. 1996, 11-18; (c) Banwell, M. G.; Austin, K. A. B.; Willis, A. C. Tetrahedron. 2007, 63, 6388-6403.
(2) (a) Singh, V.; Thomas, B. Tetrahedron. 1988, 54, 3647-3692. (b) Veretenov, A. L.; Koltun, D. O.; Smit, W. A. Tetrahedron Lett. 1995, 36, 4651-4654; (c) Srikrishna, A.; Beeraiah, B. Tetrahedron: Asymmetry. 2008, 19, 884-890.
(3) Kotha, S.; Ali, R.; Chinnam, A. K. Tetrahedron Lett. 2014, 55, 4492-4495.
(4) (a) Enholm, E. J.; Jia, Z. J. Tetrahedron Lett. 1996, 37, 1177-1178; (b) Pierre, M. C.; Tenaglia, A.; Maurice, S. Tetrahedron. 1998, 54, 14803-14810. (c) Srikrishna, A.; Gowri, V. Tetrahedron: Asymmetry. 2011, 22, 1553-1559.
(5) (a) Seto, H.; Yonehara, H.; J. Antibiot. 1980, 33, 92; (b) Hatanaka, M.; Ueno, F.; Ueda, I.; Tetrahedron Lett. 1996, 37, 89-90; (c) Miesch, M.; Gross, L.; Neumann, M. Tetrahedron. 1997, 53, 2111-2118; (d) Ishii, S.; Zhao, S.; Mehta, G.; Knors, C. J.; Helquist, P. J. Org. Chem. 2001, 66, 3449-3458; (e) Pallera, M. K.; Fox, J. M. Org. Lett. 2007, 9, 5625-5628.
(6) (a) Kaneda, M.; Takahashi, R.; Iitaka, Y.; Shibata, S. Tetrahedron Lett. 1972, 13, 4609-4611; (b) Paquette, L. A.; Han, Y, K.; J. Org. Chem. 1979, 44, 4014-4016; (c) Dauben, W. G.; Walker, D. M. J. Org. Chem. 1981, 46, 1103-1108.
(7) (a) Bohlmann, F.; Jakupovic, J. Phytochemistry. 1980, 19, 259; (b) Paquette, L. A.; Bay, A. J. Am. Chem. Soc. 1983, 105, 7352-7358; (c) Sternbach, D. D.; Hughes, J. W.; Burdi, D. F.; Banks, B. A. J. Am. Chem. Soc. 1985, 107, 2149-2153.
(8) (a) Schmitz, R.; Frahm, A. W.; Kating, H. Phytochemistry. 1980, 19, 1477; (b) Iura, Y.; Sugahara, T.; Ogasawara, K. Org. Lett. 2001, 3, 291-293.
(9) (a) Seto, H.; Sasaki, T.; Uzawa, J.; Takeuchi, S.; Yonehara, H. Tetrahedron Lett. 1978, 4411; (b) Crimmins, M. T.; Deloach, J. A. J. Org. Chem. 1984, 49, 2076-2077; (c) Agnel, G.; Negishi, E. J. Am. Chem. Soc. 1991, 113, 7424-7426.
(10) Ranu, B. C.; Kavka, M.; Higgs, L. A.; Hudlickyl, T. Tetrahedron. 1984, 25, 2447-2450.
(11) Paul, A. Wender.; Geoffrey, B. Dreyer.; Tetrahedron. 1981, 37, 4445.
(12) H. M, Lee.; J. H, Lee.; I. C, Lee. Bull Korean. Chem. Soc. 1991, 12, 392.
(13) B. B, Snider.; R. B, Beal. J. Org. Chem. 1988, 53, 4508.
(14) P. A, Grieco.; J. K, Walker. Tetrahedron. 1997, 53, 8975.

Chapter 2

Synthesis of the Triquinane System

2-1 : Eu(OTf) ${ }_{3}$ Mediated 5-exo-Cyclization of Epoxy Malonate

In polyquinane natural products which were encountered among plant, marine and microbial sources, angular triquinane compounds has unique structure composed of three cyclopentane rings around one carbon and promising bioactivity (Scheme 1). These features have received adequate attention from many scientists and a lot of investigations have been done by them.

Figure 1

In association with synthetic study of the angular triquinane framework, our laboratory have developed intramolecular addition of malonate anion to epoxide by addition of $\mathrm{Eu}(\mathrm{OTf})_{3}$ in the past several years (Scheme 1). This reaction proceeds via $\mathrm{S}_{\mathrm{N}} 2$ and modes to give the intermediate $\mathbf{5}$, which successively lactonized to afford bicyclic lactone 6, in which three consecutive chiral centers were introduced. In the first step, the presence of $\mathrm{Eu}(\mathrm{OTf})_{3}$ plays an important role to obtain higher reactivity and excellent yield. In the second step, lactonization of intermediate $\mathbf{5}$ proceeds stereoselectively by means of more stable cis-5, 5-system. As a result, a prochiral quaternary carbon in intermediate $\mathbf{5}$ was converted to a chiral one in lactone $\mathbf{6}$. The bicycle lactone $\mathbf{6}$ consists of three consecutive chiral centers containg the desired chiral quaternary carbon and functionalities for construction of the angular triquinane framework.

Scheme 1

2-2 : Synthetic Strategy

Synthetic strategy involving the bicyclic lactone $\mathbf{1 1}$ as a key precursor is shown in scheme 2 . I envisaged that diquinane $\mathbf{9}$ would be synthesized by chemoselective reduction of $\mathbf{1 1}$ and subsequent intramolecular aldol condensation of $\mathbf{1 0}$. The angular triquinane skeleton $\mathbf{7}$ would be constructed via 5-exo radical cyclization of dibromoalkene 8 , which would be obtained from 9 by Luche reduction and C-1 unit homologation.

Scheme 2

2-3 : Transformation of Bicyclic Lactone into Diquinane Framework

In the beginning of the research, I focused on the construction of diquinane framework. Hydrolysis of $\mathbf{1 1}$ under basic conditions proceeded smoothly to produce $\mathbf{1 2}$ in $\mathbf{7 9 \%}$ yield. I envisaged that chemoselective reduction could be done by condition using borane dimethyl sulfide complex, however, this attempt was failed. This problem was solved by reduction with NaBH_{4} via an active ester. Namely, esterification of $\mathbf{1 2}$ with DCC and N-hydroxysuccinimide ${ }^{1)}$ followed by reduction with NaBH_{4} afforded $\mathbf{1 3}$ in good yield. After protection of the resulting hydroxy group as a TBS ether, benzyl ether was cleavaged under hydrogenation conditions to afford 15 . Subsequently, $\mathbf{1 5}$ was converted to $\mathbf{1 0}$ by iodination followed by elimination conditions. Finally, reduction of lactone in $\mathbf{1 0}$ with DIBAL and intramolecular aldol condensation was conducted by treating 16 with EtOH and catalytic NaH to furnish 9 possessing of diquinane framework without isomerization.

Scheme 3

DIBAL
toluene

17

2-4 : Construction of the Angular Triquinane Framework

With the requisite diquinane $\mathbf{9}$ in hand, the next task in 5-exo radical cyclization of bromoalkene $\mathbf{8}$ for the purpose of the construction of the angular triquinane framework (Scheme 4). Removal of TBS group with TBAF followed by mesylation gave 18. Subsequently, Luche reduction ${ }^{2)}$ of an enone moiety in $\mathbf{1 8}$ afforded desired 19 as a single isomer. Introduction of a cyano group to $\mathbf{1 9}$ for the homologation of C-1 unit and subsequent protection of secondary alcohol with TBSOTf gave desired 20. After that, DIBAL reduction of $\mathbf{2 0}$ to provide aldehyde 21, followed by dibromoolefination with tetrabromomethane and hexamethyl phosphorous triamide (HMPT) ${ }^{3 \text {) }}$ gave $\mathbf{8}$. Finally, $\mathbf{8}$ was successively treated for 5-exo radical cyclization ${ }^{4)}$ with tributyltin hydride and AIBN to give $\mathbf{2 2}$ having the angular triquinane framework in 83% yield and subsequently removal of TBS group followed by PDC oxidation provided desired ketone 7 in moderate yields.

Scheme 4

Experimental Section

General

IR spectra were recorded on a JASCO FT/IR-4200 spectrometer. Oily products were measured directly, solid products were diluted with chloroform and then measured. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained for solutions in dueteriochloroform with VARIAN 400 MHz and 700 MHz spectrometer with residual solvent as the internal standard. Mass spectral data were run on JEOL GC-mate. Optical rotation was measured on a HORIBA SEPA-200 spectrometer. Thin layer chromatography (TLC) was carried out on MERCK Silica gel $60 \mathrm{~F}_{254}$ plates employing n-hexane/ethyl acetate as the mobile phase. KANTO Silica gel $60 \mathrm{~N} 40-50 \mu \mathrm{~m}$ was employed for flash column chromatography. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium/benzophenone ketyl. Benzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, $\mathrm{CH}_{3} \mathrm{CN}$, 2,6-lutidine, and TEA were distilled from CaH_{2}. Commercialized $\mathrm{MeOH}, \mathrm{EtOH}, \mathrm{DMSO}$ and DMF were used as reaction solvent. Simple distillation was carried out about ethyl acetate and n-hexane.

2-3 : Experimental Section

Carboxylic Acid 12

To a stirred solution of bicyclic lactone $11(510.0 \mathrm{mg}, 1.602 \mathrm{mmol})$ in $\mathrm{EtOH}(16 \mathrm{ml}), 1 \mathrm{~N} \mathrm{NaOH}$ aq. ($9.6 \mathrm{ml}, 9.612 \mathrm{mmol}$) was added at room temperature under air atmosphere. After being stirred for 4 h at $50{ }^{\circ} \mathrm{C}$, the reaction was quenched by addition of 1 N HCl aq. $(9.6 \mathrm{ml}, 9.612 \mathrm{ml})$. After being diluted with ethyl acetate, aqueous layer was checked to be acidic property with pH paper and then extracted with ethyl acetate two times in the presence of solid NaCl . The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. The residual oil was purified by column chromatography on silica gel (80 g , $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1\right)$ to give carboxylic acid $12(365.6 \mathrm{mg}, 1.259 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.59(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{ddd}, J=3.6,3.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.5$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (br-ddd, $J=8.5,3.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (br-ddd, $J=13.2,6.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (ddd, $J=13.2,10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.56(\mathrm{~m}$, 1 H).

Alcohol 13

To a stirred solution of carboxylic acid $\mathbf{1 2}(365.6 \mathrm{mg}, 1.259 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml})$, N-hydroxy succinimide ($221.8 \mathrm{mg}, 1.889 \mathrm{mmol}$) and then DCC ($393.7 \mathrm{mg}, 1.889 \mathrm{mmol}$) were added at room temperature under nitrogen atmosphere. After being stirred for 30 min , DCC ($131.2 \mathrm{mg}, 0.6295$ $\mathrm{mmol})$ was added because of incomplete esterification. Subsequently, removal of solvent by decompression and then filtration through a celite pad (ethyl acetate/hexane $=2: 1$) were carried out. After concentration, the residual oil was used in next step.

The crude active ester 23 in anhydrous THF (10 ml) and DMF (2 ml), $\mathrm{NaBH}_{4}(41.4 \mathrm{mg}, 1.007$ mmol) was added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 45 min , the reaction was quenched by addition of $\mathrm{AcOH}(288 \mu \mathrm{l}, 5.036 \mathrm{mmol})$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. at $0{ }^{\circ} \mathrm{C}$. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (25 g , ethyl acetate/benzene $=1: 3$) to give alcohol $\mathbf{1 3}(251.6 \mathrm{mg}$, 0.9105 mmol) as a white solid. Analytical data: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.28(\mathrm{~m}, 5 \mathrm{H})$, $4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{ddd}, J=4.5,4.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=10.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.72-2.66 (m, 1H), 2.13-2.06 (m, 1H), 1.91-1.70 (m, 4H), 1.65-1.50 (m, 1H).

TBS Ether 14

To a stirred solution of alcohol $\mathbf{1 3}$ ($251.6 \mathrm{mg}, 0.9105 \mathrm{mmol}$) in anhydrous DMF (9 ml), imidazole ($186.0 \mathrm{mg}, 2.732 \mathrm{mmol}$) and $\mathrm{TBSCl}(212.2 \mathrm{mg}, 1.366 \mathrm{mmol})$ were added at room temperature. After being stirred for 2 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (25 g , ethyl acetate/hexanes $=1: 7$) to give TBS ether 14 ($358.5 \mathrm{~g}, 0.9178 \mathrm{mmol}$) as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (ddd, $J=6.0$, $4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.3,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.41(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.47(\mathrm{~m}$, $1 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$.

Alcohol 15

To a stirred solution of TBS ether $14(358.5 \mathrm{mg}, 0.9178 \mathrm{mmol})$ in $\mathrm{MeOH}(9 \mathrm{ml}), \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(35.9$ $\mathrm{mg}, 10 \mathrm{Wt} \%$) was added at room temperature, and then purged with hydrogen. After being stirred for 30 min under a balloon of hydrogen, the heterogeneous mixture was filtered through a celite pad with ethyl acetate and concentrated. Subsequently, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 2$) to give alcohol $15(235.7 \mathrm{mg}, 0.7844 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.10(\mathrm{ddd}, J=6.2,4.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=12.2,7.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{ddd}, J=12.2,6.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.22-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07$ $(\mathrm{s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$.

Iodide 24

To a stirred solution of alcohol $15(235.7 \mathrm{mg}, 0.7844 \mathrm{mmol})$ in anhydrous toluene (8 ml), imidazole ($120.2 \mathrm{mg}, 1.765 \mathrm{mmol}$), $\mathrm{PPh}_{3}(315.0 \mathrm{mg}, 1.177 \mathrm{mmol})$ and then $\mathrm{I}_{2}(299.2 \mathrm{mg}, 1.177 \mathrm{mmol})$ were added at room temperature under nitrogen atmosphere. Subsequently, the mixture was warmed to $70{ }^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction was quenched by addition of aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and then filtered through a silica pad with ethyl acetate/hexanes $=1: 10$. After concentration, the residual oil was purified by column chromatography on silica gel (25 g , ethyl acetate/hexanes $=1: 10$) to give iodide 24 $(317.8 \mathrm{mg}, 0.7744 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.20$ (ddd, $J=9.5,4.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=9.5$,
$4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{br}-\mathrm{ddd}, J=8.2,3.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.91(\mathrm{~m}, 2 \mathrm{H})$, 1.83-1.71 (m, 2H), 1.60-1.43 (m, 2H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$.

Vinyl Ether 10

To a stirred solution of iodide $24(317.8 \mathrm{mg}, 0.7744 \mathrm{mmol})$ in anhydrous toluene (8 ml), DBU ($356 \mu \mathrm{l}, 0.7744 \mathrm{mmol}$) was added at room temperature under nitrogen atmosphere and then warmed to $110{ }^{\circ} \mathrm{C}$. After being stirred for 8 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on florisil (15 g , ethyl acetate/hexanes $=1: 20)$ to give vinyl ether $\mathbf{1 0}(188.7 \mathrm{mg}, 0.6681 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.69(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=2.5,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{br}-\mathrm{dddd}, J=8.4,2.0,1.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.05-1.92 (m, 2H), 1.78-1.70 (m, 1H), 1.62-1.47 (m, 2H), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.

Enone 9

Firstly, azeotropic dehydration of vinyl ether $\mathbf{1 0}(188.7 \mathrm{mg}, 0.6681 \mathrm{mmol})$ with anhydrous toluene was carried out. To a stirred solution of $\mathbf{1 0}$ in anhydrous toluene (7 ml), DIBAL (1.0 M in toluene, 675 $\mu \mathrm{l}, 0.6815 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 30 min , additional DIBAL (1.0 M in toluene, $66 \mu \mathrm{l}, 0.06681 \mathrm{mmol}$) was added four times. Subsequently, the reaction was quenched by addition of aq.Rochell's salt and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was used in the next step.

Azeotropic dehydration of residual oil with anhydrous toluene was carried out. In the next place, the oil was diluted with anhydrous $\mathrm{EtOH}(7 \mathrm{ml})$, and subsequently $\mathrm{NaH}(2.9 \mathrm{mg}, 0.06681 \mathrm{mmol}$) was added to a reaction mixture at $0{ }^{\circ} \mathrm{C}$. After being stirred for 2 h at room temperature, the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed
with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 10$) to give enone $9(106.0 \mathrm{~g}, 0.3978$ mmol) as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.15(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{br}-\mathrm{d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.90 (br-dd, $J=13.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, J=12.3,9.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.25$ $(\mathrm{m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.

2-4 : Experimental Section

Alcohol 25

To a stirred solution of enone $9(106.0 \mathrm{mg}, 0.3978 \mathrm{mmol})$ in THF (4 ml), TBAF (1.0 M in THF, $0.8 \mathrm{ml}, 0.7956 \mathrm{mmol}$) was added at room temperature under nitrogen atmosphere. After being stirred for 30 min , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=5: 2$) to give alcohol $25(55.7 \mathrm{mg}, 0.3660 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (br-d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{br}-\mathrm{ddd}, J=12.8,6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dddd}, J=12.6,9.7,6.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H})$.

Mesylate 18

To a stirred solution of alcohol $25(55.7 \mathrm{mg}, 0.3660 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$, TEA ($204 \mu \mathrm{l}, 1.464$ $\mathrm{mmol}), \mathrm{MsCl}(57 \mu \mathrm{l}, 0.7320 \mathrm{mmol})$ and then DMAP $(4.5 \mathrm{mg}, 0.03660 \mathrm{mmol})$ were added at room temperature under nitrogen atmosphere. After being stirred for 30 min , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column
chromatography on silica gel (15 g , ethyl acetate/hexanes $=2: 1$) to give mesylate $\mathbf{1 8}(79.4 \mathrm{mg}, 0.3448$ mmol) as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.25(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{br}-\mathrm{d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{br}-\mathrm{ddd}, J=12.9,6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 186-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.30$ ($\mathrm{m}, 1 \mathrm{H}$).

Allyl Aocohol 19

To a stirred solution of mesylate $\mathbf{1 8}(79.4 \mathrm{mg}, 0.3448 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{ml}), \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(192.7$ $\mathrm{mg}, 0.5172 \mathrm{mmol})$ and then $\mathrm{NaBH}_{4}(21.3 \mathrm{mg}, 0.5172 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 30 min , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=2: 1)$ to give allyl alcohol $19(72.6 \mathrm{mg}, 0.3125 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.80(\mathrm{dd}, J=5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.93 (ddd, $J=8.1,1.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.53$ (ddd, $J=8.1,8.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H})$.

Nitrile 26

To a stirred solution of allyl alcohol $19(72.6 \mathrm{mg}, 0.3125 \mathrm{mmol})$ in anhydrous DMSO (3 ml), $\mathrm{NaCN}(47.4 \mathrm{mg}, 0.9375 \mathrm{mmol})$ was added at room temperature under nitrogen atmosphere. The mixture was warmed to $120{ }^{\circ} \mathrm{C}$. After being stirred for 2 h , the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 1)$ to give nitrile $26(43.6 \mathrm{mg}, 0.2671 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=5.83$ (dd, $J=5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.67 (dd, $J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (br-d, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.40(\mathrm{~m}, 5 \mathrm{H})$.

TBS Ether 20

To a stirred solution of nitrile $26(43.6 \mathrm{mg}, 0.2671 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$, 2,6-lutidine ($95 \mu \mathrm{l}$, 0.8013 mmol) and then TBSOTf ($94 \mu \mathrm{l}, 0.4007 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 20 min , the reaction was quenched by addition of ap. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 10)$ to give TBS ether $\mathbf{2 0}(70.4 \mathrm{mg}, 0.4313 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.70(\mathrm{dd}, J=5.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dd}, J=5.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.96 (ddd, $J=7.9,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{ddd}, J=8.1,7.9,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.07-2.00 (m, 1H), 1.73-1.68 (m, 1H), 1.65-1.45 (m, 4H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$.

Aldehyde 21

To a stirred solution of TBS ether $20(70.4 \mathrm{mg}, 0.2537 \mathrm{mmol})$ in anhydrous toluene (3 ml), DIBAL (1.0 M in toluene, $377 \mu \mathrm{l}, 0.3806 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 30 min , the reaction mixture was warmed to $-20{ }^{\circ} \mathrm{C}$ and then quenched by addition of aq.Rochell's salt. The heterogeneous mixture was diluted with ethyl acetate and then washed with brine. Subsequently, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. The residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 11$) to give aldehyde $21(58.1 \mathrm{mg}, 0.2071 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.70$ (dd, $J=3.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=5.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{ddd}, J=8.0,1.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=15.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=15.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=8.3,8.0,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$.

Dibromo Olefin 8

To a stirred solution of $\mathrm{CBr}_{4}(140.2 \mathrm{mg}, 0.4142 \mathrm{mmol})$ and HMPT ($\left.155 \mu \mathrm{l}, 0.8284 \mathrm{mmol}\right)$ in THF $(4 \mathrm{ml})$, aldehyde $21(0.1 \mathrm{M}$ in THF, $2 \mathrm{ml}, 0.2071 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 20 min , the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ and then diluted with ethyl acetate. The organic layer was washed with ap. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and then brine. Subsequently, this layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. The residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 20$) to give dibromo olefine $8(82.3 \mathrm{mg}, 0.1886 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=$ $5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{ddd}, J=7.9,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.24(\mathrm{~m}$, $1 \mathrm{H}), .2 .27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.37(\mathrm{~m}, 5 \mathrm{H})$.

Tricyclic Compound 22

8

22

To a stirred solution of dibromo olefine $\mathbf{8}(82.3 \mathrm{mg}, 0.1886 \mathrm{mmol})$ in anhydrous toluene (2 ml), $\mathrm{Bu}_{3} \mathrm{SnH}(209 \mu \mathrm{l}, 0.7554 \mathrm{mmol})$ and $\operatorname{AIBN}(3.1 \mathrm{mg}, 0.01886 \mathrm{mmol})$ were added and then warmed to $100{ }^{\circ} \mathrm{C}$. After being stirred for 1 h , the reaction mixture was concentrated. The residual oil was purified by short column chromatography on silica gel (10 g , ethyl acetate/hexanes/TEA $=5: 200: 2$) to give tricyclic compound $22(38.9 \mathrm{mg}, 0.1397 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR $(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.57(\mathrm{dddd}, J=5.7,2.2,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dddd}, J=5.7,2.2,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (ddd, $J=7.8,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{dddd}, J=17.1,2.2,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (dddd, $J=17.1,2.2,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=9.2,7.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68$ (m, 2H), 1.66 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$, $0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz, CDCl_{3}): $\delta=134.4,129.4,74.2,58.2,57.6,54.8,47.6,42.3,38.8$, 27.3, 26.0, 25.9, 18.2, -4.7, -4.8.

Alcohol 27

To a stirred solution of tricyclic compound $22(38.9 \mathrm{mg}, 0.1400 \mathrm{mmol})$ in THF (1 ml), TBAF (1.0 M in THF, $280 \mu \mathrm{l}, 0.2800 \mathrm{mmol}$) was added at room temperature under nitrogen atmosphere. After being stirred for 7 h , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 4$) to give alcohol $27(15.0 \mathrm{mg}, 0.09133 \mathrm{mmol})$ as a white solid. Analytical data: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.58(\mathrm{dddd}, J=5.8,2.3,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dddd}, J=5.8,2.3,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (ddd, $J=10.5,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{br}-\mathrm{ddd}, J=6.8,6.8,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84-1.55(\mathrm{~m}, 8 \mathrm{H})$.

Ketone 7

To a stirred solution of alcohol $27(15.0 \mathrm{mg}, 0.09133 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, crushed 4A-MS $(45.7 \mathrm{mg})$ and $\operatorname{PDC}(70.1 \mathrm{mg}, 0.1827 \mathrm{mmol})$ were added at room temperature under nitrogen atmosphere. After being stirred for 1.5 h , the reaction was quenched by addition of 2-propanol ($70 \mu \mathrm{l}$, $0.9133 \mathrm{mmol})$. The reaction mixture was directly purified by column chromatography on silica gel (10 g , ethyl acetate/hexanes $=1: 4)$ to give ketone $7(11.0 \mathrm{mg}, 0.06780 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.72$ (dddd, $J=5.6,2.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.59 (dddd, $J=5.6$, $2.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03-2.99 (m, 1H), 2.57-2.50 (m, 3H), 2.32 (br-d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (dddd, J $=18.7,2.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.50(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=223.3,134.5,130.6$, $60.2,57.6,51.3,47.0,43.6,40.3,30.7,27.1$.

Reference

(1) (a) Humphrey, J. M.; Aggen, J. B.; Chamberlin, A. R. J. Am. Chem. Soc. 1996, 118, 11759-11770.
(b) Park, J.; Tian, G. R.; Kim, D. H. J. Org. Chem. 2001, 66, 3696-3703.
(2) Gemal, A. L.; Luche, J. L.; J. Am. Chem. Soc. 1981, 103, 5454-5459.
(3) (a) Jung, M. E.; D'Amico, D. C.; J. Am. Chem. Soc. 1995, 117, 7379-7388; (b) Organ, M. G.; Bratovanov, S. Tetrahedron Lett. 2000, 41, 6945-6949.
(4) Jasperse, C. P.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 5601-5609.

Chapter 3

Total Synthesis
 of

Pentalenolactone F

3-1 : Introduction

A lot of antibiotic agents have been produced by actinomycetes, and some of them were applied to effective medicines. Especially, sesquiterpene antibiotic pentalenolactone (1), which was isolated from a variety of Streptomyces species (Figure 1), has broad spectrum activity as antibiotic and antiviral agent, pathogenic and saprophytic fungi, antitumor property, and important selective inhibition of glyceraldehyde-3-phosphate dehydrogene. ${ }^{1)}$ Therefore, pentalenolactone (1) has great possibility as future medicines.

Figure 1

Angular triquinane

Pentalenolactone (1)

Over the last several years additional representatives of novel metabolite, such as pentalenolactone $\mathrm{F}(\mathbf{2})^{2)}, \mathrm{E}(\mathbf{3})^{3)}, \mathrm{G}(\mathbf{4})^{4)}, \mathrm{H}(5)^{5)}, \mathrm{P}(\mathbf{6})^{6)}$, and $\mathrm{A}(7)^{7}$, have been isolated and devoted considerable efforts toward synthetic study of them (Figure 2). According to biosynthetic researches, they are supposed to be intermediate or shunt metabolite of pentalenolactone (1). I have been interested in its remarkable bioactivities and characteristic structural feature, and selected it as a synthetic target. I now report my considerable efforts to accomplish total synthesis of pentalenolactone F (2).

Figure 2

Pentalenolactone F (2)

Pentalenolactone H (5)

Pentalenolactone E (3)

Pentalenolactone $P(6)$

Pentalenolactone G (4)

Pentalenolactone A (7)

3-2 : Previous Reports

3-2-1 : Methodology by Ohtsuka's Group ${ }^{2 f)}$

In 1983, Ohtuka have reported the first total synthesis of pentalenolactone F (2) methyl ester (Scheme 1). They led humulene (8), which was used as a starting material, to cyclization precursor $\mathbf{1 0}$ composed of a bicyclo[6.3.0] framework by means of oxymercuration and hydroboration-oxidation sequence. Subsequent treatment of $\mathbf{1 0}$ with formic acid resulted in elimination followed by transannular cyclization of the intermediate to furnish the angular triquinane framework in 12. In the next stage, dehydration of $\mathbf{1 2}$ followed by isomerization and allylic oxidation with selenium dioxide provided unsaturated ester 13. Finally, oxidation of the A-ring and then introduction of the epoxide afforded pentalenolactone F (2) methyl ester. In this stage, the selectivity of epoxidation selectivity was so far as $\alpha-: \beta-=73: 27$, and this synthetic method provided a racemic form.

Scheme 1

13

Pentalenolactone E (3) methyl ester

Pentalenolactone F (2) methyl ester

3-2-2 : Methodology by Cane's Group ${ }^{2 b}$)

In 1984, David, E. Cane have reported total synthesis of pentalenolactone F (2) methyl ester (Scheme 2). Firstly, they led dimethyl-3,3-dimethylglutarate, which was used as starting material, to α-dichloroketone 16 composed of a bicyclo [2.3.0] framework by means of [2+2]-cycloaddition of acyl carbene $\mathbf{1 5}$ to $\mathbf{1 4}$. Subsequently, regioselective ring expansion of $\mathbf{1 6}$ by use of diazomethane followed by reduction of chlorine functionalities with zinc provided 18 possessing the bicyclo[3.3.0]octane skeleton. Installation of a diazoacetoxymethyl group for the formation of the A-ring gave 19 which was treated with catalytic $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ resulted in intramolecular C-H insertion of the carbenoid to afford δ-lactone 20. Conversion of the carbonyl group into the methyl ester moiety was easily achieved via CO_{2} insertion of vinyl triflate by use of a palladium catalyst. Subsequently introdution of exo-methylene at the α-posion of the lactone afforded the methyl ester derivative of 3. Stereoselective introduction of α-epoxide was performed via an ingenious stepwise route: 1) reduction of lactone, 2) resulting allyl hemiacetal employing the Sharpless method in the presence of a vanadium catalyst, 3) oxidation of the hemiacetal to the lactone. ${ }^{8)}$ The method accomplished with high α-selectivity, however, it required a multi- step conversion. In addition to that, this synthetic procedure provided racemic substance.

Scheme 2

3-3 : Synthetic Strategy

As described in the champer 3-3, there are two problems in the total synthesis of pentalenolactone F (2). One of them is unresolved synthetic procedure for construction of $\mathbf{2}$ as an optical active form. In the past, several groups have already reported the synthesis of $\mathbf{2}$. However, they were racemic routes. The other problem is the stereoselective introduction of α-epoxide. In the previous synthetic studies reported so far, it has been not reached a satisfactry degree. Therefore, it is necessary to develop the new approach resolving these problems.

Synthetic strategy involving the bicyclic lactone $\mathbf{3 1}$ as a key precursor is shown in scheme 4 . The design of our synthetic plan relied on the combination of $\mathrm{Eu}(\mathrm{OTf})_{3}$ mediated 5-exo-cyclization and regioselective Baeyer Villiger oxidation to construct core framework of natural product. I envisaged that application of the method developed by our laboratory would give bicyclic lactone $\mathbf{3 1}$ from $\mathbf{3 3}$. Diquinane 30 would be synthesized through installation of the dimethyl moiety on the C-ring and an intramolecular aldol condensation of lactone derivative in 31. The angular triquinane skeleton of 28 would be constructed via 5-exo radial cyclization of $\mathbf{2 9}$, which would be derived by installation of a dibromoalkenyl moiety on the primary hydroxy group of 30. Application of dihydroxylation and subsequent Baeyer-Villiger oxidation to 28 would give δ-lactone 27. The Baeyer-Villiger oxidation is expected to provide 27 with high regioselectivity. Finally, introduction of the α-epoxide and conversion to carbonyl group would complete total synthesis of pentalenolactone $\mathrm{F}(\mathbf{2})$.

Scheme 4

3-4 : Construction of the Bicyclic Lactone by 5-exo Cyclization

Synthetic study commenced with preparation of bicyclic lactone $\mathbf{3 1}$ from commercially available 2-methylene-1,3-propanediol (34) (Scheme 5). One of the two hydroxyl group of 34 was protected by sodium hydride and TBSCl to provide 35 . The other one was converted to the corresponding chloride giving 36. Subsequently, the requisite carbon chain for synthesis of cyclization precursor was extended by coupling with 2-propyn-1-ol (37) by use of a cupper catalyst. ${ }^{9)}$ In this reaction, high purity of the cupper catalyst was essential for obtaining a high yield. When copper iodide with 99.999% purity was used, the coupling product 38 was obtained in 97% yield. On the other hand, the catalyst with 99.5% purity decreased reaction rates and chemical yield accompanied by producing an allenic by-product 39 .

Scheme 5

Next, reioselective epoxidation of allyl alcohol 40, which was obtained from acetylenic alcohol 38 via hydrogenation in the presence of Lindlar catalyst was examined. Whereas the use of m-CPBA was accompanied with epoxidation of the exo-methlene, Sharpless method, namely, tert-butyl hydroperoxide in the presence of vanadium catalyst ${ }^{10)}$ has successfully afforded the desired epoxide 41 (Scheme 6)

Scheme 6

Subsequently, preparation of cyclization precursor 33 was examined (Scheme 7). Hydroxyl group of 41 was protected with benzyl bromide under basic conditions. Although it was concerned about Payne rearrangement of 41 leading to 48 , it is fortunately to obtain 45 with no rearrangement products. The TBS group was removed with TBAF in the presence of acetic acid in high yield. In the reaction, neutralization with acetic acid was essential to avoid subsequent cyclization of an alkoxide due to the basic conditions (Figure 3). Additionally, it was revealed that cyclization of 46 was easily proceeded under the acidic conditions such as CDCl_{3}. It was required to pass through an activated alumina for use of NMR measurement. Chlorination of 46 followed by addition of a malonate anion in terms of Tsuji-Trost allylation ${ }^{11)}$ affored desired $\mathbf{3 3}$ in high yield.

Scheme 7

Figure 3

48

49

Examinations of 5-exo cyclization mediated by the Lewis acid mediated was described in Table 1. Our laboratory has already reported the reaction of trans-epoxide $\mathbf{5 0}$ leading to $\mathbf{5 1}$. The reaction using sodium hydride and Europium(III) trifluoromethanesulfonate was low yield (entry 1,2), however, addition of 15 -crown- 5 accelerated the reaction to produce 51 in 81% yield (entry 3). On the other hand, cyclization reaction of cis-epoxide $\mathbf{3 3}$ proceeded easily without addition of 15-crown-5 to give $\mathbf{3 1}$ in high yield (entry 4-6). I considered that difference of the reactivity between $\mathbf{5 0}$ and $\mathbf{3 3}$ was largely
attributable to each transition state (Figure 4). In the transition state $\mathbf{5 2}$ derived from trans-epoxide 50, two C-C bond lie in the same plane. On the other hand, $\mathbf{5 3}$ derived from cis-epoxide $\mathbf{3 3}$ has a C - C bond and a C-H bond lie in the same plane. Therefore, the reactivity can be supposed that cis-epoxide is better than trans-epoxide because of difference of stability in transition state.

Table 1

	 50: trans-epoxide 33: cis-epoxide		NaH Lewis acid additive toluene r.t. 51: $\alpha-\mathrm{CH}_{2} \mathrm{OBn}$ 31: $\beta-\mathrm{CH}_{2} \mathrm{OBn}$			
entry	substrate	NaH (eq.)/Lewis acid(eq.)/additive(eq.)		product	$\begin{gathered} \text { yif } \\ \text { d.p. } \end{gathered}$	$\begin{aligned} & \mathrm{ld}(\%) \\ & \text { rec.s.m. } \end{aligned}$
1	50	$\mathrm{NaH}(2.0) / \mathrm{Eu}(\mathrm{OTf})_{3}(0.1)$		51	19	37
2		$\mathrm{NaH}(2.0) / \mathrm{Eu}(\mathrm{OTf})_{3}(1.0)$			32	40
3		$\mathrm{NaH}(2.0) / \mathrm{Eu}(\mathrm{OTf})_{3}(1.0) / 15$ crown-5(2.0)			81	16
4	33	$\mathrm{NaH}(1.5) / \mathrm{Eu}(\mathrm{OTf})_{3}(0.1)$		31	77	0
5		$\mathrm{NaH}(1.5) / \mathrm{Eu}(\mathrm{OTf})_{3}(0.5)$			82	9
6		$\mathrm{NaH}(1.5) / \mathrm{Eu}(\mathrm{OTf})_{3}(1.0)$			89	0

Figure 4

3-5 : Transformation of Bicyclic Lactone into Diquinane Framework

I next focused on the construction of the diquinane framework and installation of a dimethyl moiety. Chemoselective reduction of an ethylester in $\mathbf{3 1}$ was carried out (Scheme 8). Hydrolysis of $\mathbf{3 1}$ in basic condition proceeded smoothly to produce 54 in quantitative yield. Direct reduction of the carboxyl group in $\mathbf{5 4}$ by use of borane dimethyl sulfide complex or thionyl chloride gave a mixture of several reduction products. This transformation was achieved reduction of active ester $\mathbf{5 6}$, which was obtained with dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (51), ${ }^{12)}$ with sodium borohidride in a combination of THF and DMF. The resulting hydroxy group was protected with TBSCl to give $\mathbf{5 9}$ in high yield. Hemiacetal 58, which was obtained in reduction of $\mathbf{5 6}$ as a small quantity, could be also converted to 59 in short process: selective protection of primary alcohol with TBSCl followed by oxidation with PCC.

Scheme 8

Subsequently, conversion from exo-methylene of $\mathbf{5 9}$ to dimethyl group was examined (Scheme 9). As a general and effective method for preparation of dimethyl moiety, a sequential protocol: cyclopropanation of exo-methlene followed by C-C bond cleavage with platinum catalyst was applied. Cyclopropanation employing improved Simmons-Smith method in the presence of trifluoroacetic acid developed by Shi and co-workers ${ }^{13}$ gave 60 in high yield. In this reaction, it was observed low reactivity and yield under the ordinary conditions. Subsequently, removal of the benzyl ether followed by
cyclopropane cleavage with platinum (IV) oxide ${ }^{14)}$ afforded 62. During the conversion from 60 to $\mathbf{6 2}$, a stepwise approach is essential. When the conditions of $\mathrm{H}_{2} / \mathrm{PtO}_{2}$ was applied on $\mathbf{6 0}$, aromatic ring would be reduced to give undesired 63 .

Scheme 9

59

92%

60

61

prospective by-product (63)

In the next stage, I prepared vinyl ether 66 (Scheme 10). In order to obtain 66 from 62, it is a useful method to carry out elimination of a leaving group. In the use of lactone 62, however, it was supposed that lactone opening with a base followed by formation of epoxide would occur in succession. Therefore, syn-elimination using selenoxide was applied. After addition of a selenyl anion to relative compound 64, oxidation with sodium periodate and consecutive syn-elimination afforded $\mathbf{6 6}$ in high yield. On the other hand, iodination of primary alcohol of $\mathbf{6 2}$ and then elimination in the presence of DBU at $110^{\circ} \mathrm{C}$ was tentatively carried out. As a result, desired 66 was obtained without any by-products. This experimental fact in the reaction indicated that lactone opening did not proceed. In addition, 66 was guessed to be unstable. Therefore, florisil was used instead of silica gel for purification of $\mathbf{6 6}$.

Scheme 10

Finally, construction of the BC-ring was examined by an intramolecular aldol condensation (Scheme 11). Diisobutylaluminum hydride (DIBAL) reduction of 66 provided 68 with ease. By reason that the resultant 68, was chemically equivalent to keto-aldehyde 69 , subsequent treatment with a catalytic amount of sodium ethoxide permitted to trigger intramolecular aldol condensation to give diquinane $\mathbf{3 0}$ in good yield. In this reaction, no isomerization of the methyl carbonyl substituent was observed.

Scheme 11

Pentalenolactone F (2) methyl ester

3-6 : Construction of the Angular Triquinane Framework

With the requisite diquinane $\mathbf{3 0}$ in hand, construction of the angular triquinane framework was examined by 5-exo-radical cyclization (Scheme 12). Removal of the TBS group with TBAF followed by mesylation of the resulting hydroxy group afforded 70, which was subjected to Luche reduction ${ }^{15}$) provided desired 71 as a single isomer. Structural determination at the C_{2} position was described in figure 5 . Addition reaction to 71 with sodium cyanide to elongate the C 1 unit and subsequent protection of secondary alcohol with TBSOTf gave desired 72. After that, DIBAL reduction of 72 to provide aldehyde 73, followed by dibromoolefination with tetrabromomethane and hexamethyl phosphorous triamide (HMPT) ${ }^{16)}$ gave 29. In this reaction, it was appeared that sequence of reagents added to the reaction was very important. To a mixture of active species prepared with $\mathrm{CBr}_{4} / \mathrm{HMPT}$, aldehyde 73 was added to afford 29 in high yield, otherwise removal of TBS group occurred as side reaction. Finally, Treatment of $\mathbf{2 9}$ with tributyltin hydride and AIBN resulted in 5-exo radical cyclization ${ }^{17)}$ to furnish 28 composed of angular triquinane framework in 83% yield.

Scheme 12

3-7: Application of Baeyer-Villiger Oxidation to Construct $\boldsymbol{\delta}$-Lactone Ring

3-7-1 : Dihydroxylation and Selective Protection

I next focused on the construction of A-ring composed of δ-lactone from angular triquinane framework, and envisaged that it was possible to obtain desired 6-membered ring by Baeyer-Villiger oxidation procedure. Firstly, treatment of $\mathbf{2 8}$ with osumium tetraoxide and NMO afforded α-diol 74 as a single isomer (Scheme 13). This stereoselectivity stemmed largely from steric hindrance of β-face because of fused ring and sensitivity of this reaction condition. Subsequently diol 74 was protected as anisylideneacetal with 75, and then reductive cleavage of $\mathbf{7 6}$ with DIBAL provided $\mathbf{7 7}$ and $\mathbf{7 8}$ at a ratio of $17: 83$ in quantitative yield. Both of them were converted to 27 respectively by similar conditions.

Scheme 13

28

74

(17:83)

At this stage, the stereochemistry at $\mathrm{C}_{2,12,13}$ generated by Luche reduction and dihydroxylation was verified by NOE experiments using 76 (Figure 5). In the result, there were correlation between $\mathrm{C}_{2}-\mathrm{H}$ and $\mathrm{C}_{13}-\mathrm{H}$. Therefore, absolute configuration was determined as 76 described in Figure 5.

Figure 5

3-7-2 : Baeyer-Villiger Oxidation for Construction of $\boldsymbol{\delta}$-Lactone Framework

Transformation of the 5 -membered ring into δ-lactone framework was examined by Baeyer-Villiger oxidation procedure (Scheme 14). In the first, O-alkylation of 78 with iodomethane and sodium hydride followed by hydrogenolysis with $\mathrm{Pd}(\mathrm{OH})_{2}$ gave $\mathbf{8 0}$ in high yield. After that, the resulting secondary alcohol was converted to α-alkoxyketone $\mathbf{8 1}$ by oxidation with AZADO ${ }^{18)}$ in quantitative yield. In the oxidation step, PDC oxidation was firstly attempted, however, filtration invited yield loss. Therefore, AZADO oxidation which has easy aftertreatment was adopted. Subsequently, construction of δ-lactone ring was accomplished in the next step. Baeyer-Villiger oxidation of $\mathbf{8 1}$ using m-CPBA and solid sodium hydrogen carbonate ${ }^{19)}$ afforded $\mathbf{8 2}$ in 98% yield. In addition, oxidation step proceeded with preservation of stereochemistry and without preparation of $\mathbf{8 4}$ (Figure 6). This method resulted in high regioselectivity due to a mesomeric effect from oxygen atom substituted at the α-position.

Scheme 14

Next, I attempted to remove the acetal moiety of $\mathbf{8 2}$ (Scheme 15). However ring opening did not proceed with sodium borohydride in ethanol conditions. Therefore, sodium hydride was added to accelerate ring-opening. As a result, reduction of the acetal moiety was achieved via aldehyde 83 to provide 27. This experimental fact indicated that sodium ethoxide accelerate ring-opening to provide 83,
and subsequent reduction of aldehyde followed by intramolecular formation of δ-lactone framework afforded 27. And although it was concerned about epimerization at C_{8} because of addition of sodium hydride, anticipated 85 was not obtained (Figure 6).

Scheme 15

Figure 6

A similar procedure was applied for 77 (Scheme 16), which means that oxidation with AZADO followed by Baeyer-Villiger reaction and subsequent reduction with sodium borohydride and sodium hydride were carried out. As a result, desired $\mathbf{2 7}$ was obtained almost exclusively.

Scheme 16

3-8 : New Approach to Construct α-Epoxide

3-8-1 : Installation of exo-Olefine

I next focused on the installation of the oxygen atom to construct α-epoxide. In the first, exo-olefination to add essential one carbon unit was resolved. It is useful method to utilize Eschenmoser's salt ${ }^{20)}$ for installation of exo-olefine at carbonyl α-position. In the synthetic report by Pirrung and co-workers ${ }^{4 b}$, this reagent was used to achieve the assignment (Scheme 17). However, this procedure gave unsatisfied yields for installation of exo-olefine.

Scheme 17

On the other hand, by many synthetic researchers who accomplished total synthesis of Pentalenolactones it was indicated that great steric hindrance existed around the reaction position due to hindered neopentyl carbon and fused framework ${ }^{4 \mathrm{~b}, 6)}$. Therefore, I considered that exo-olefination with lactol 92 which obtained by DIBAL reduction of $\mathbf{2 7}$ would be effective (Scheme 18). Because lactol 92 was equivalent to hydroxy aldehyde $\mathbf{9 3}$ which was guessed to have low steric hindrance, I thought that exo-olefination of $\mathbf{9 3}$ followed by re-formation of 6-membered ring to give $\mathbf{9 5}$ would afford sufficient result. However, desired $\mathbf{9 5}$ was not obtained. Secondary, TBS protection of primary alcohol of $\mathbf{9 3}$ to provide aldehyde followed by olefination was attempted. In the result, TBS protected compound from 92 was observed. It is necessary to open the 6-membered ring for olefination via lactol 92 , but there were few possibilities to gain $\mathbf{9 3}$ because of stability of $\mathbf{9 2}$.

Scheme 18

I gave up the olefination via lactol $\mathbf{9 2}$ due to the difficulty of ring opening and changed my mindset. Pirrung and co-workers used Eschenmoser's salt as electrophile to install exo-olefine moiety ${ }^{4 \mathrm{bb}}$. However, the yield of olefination was unsatisfied because of highly steric hindrance around reaction position. Therefore, I attempted new procedure to install exo-olefine using formaldehyde which was the least electrophile for addition of one carbon unit (Table 2). In the first, commercially available p-formaldehyde was added to a mixture of 27 and LDA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-50^{\circ} \mathrm{C}$ for preparation of hydroxymethyl comound 96. After that, mesylation was carried out to provide 97 (entry 1). However, desired 97 was not obtained. And also the condition at $-20^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$ afforded similar result (entry 2,3). Subsequently NaHMDS was applied to this reaction as substitute for LDA, but desired 97 was little obserbed (entry 4, 5). Considering these experimental result, it was supposed that main reason to disturb the reaction progress was size of electrophile. Therefore, monomeric formaldehyde according to a method developed by the Paquette group ${ }^{6,21)}$ which is smaller electrophile reagent than p-formaldehyde was applied to this reaction. As a consequence, desired 97 was produced in moderate yield (entry 6-8). In this reaction, the temperature was considered to be very important. High temperature caused ring opening of lactone, and low temperature caused not preparation of anion. By the result of investigation, after anion preparation and addition of monomeric formaldehyde at $-60^{\circ} \mathrm{C}$, warming to $-10^{\circ} \mathrm{C}$ followed by quench gave 97 in 63% yield and 27 was recovered in 32% yield (entry 7). Although, olefination succeeded, there were several problems about monomeric formaldehyde. One of them was instability of
this reagent. After adjustment, it was necessary to use quickly. Otherwise, white solid was produced and concentration of this solution would change. In addition to that, the concentration was different of each adjustment. Therefore, excessive amounts of monomeric formaldehyde were needed.

Table 2

entry	base	electrophile	temperature $\left({ }^{\circ} \mathrm{C}\right)$	yields(\%)	
	LDA	p-formaldehyde	-50	0	99
2	LDA	p-formaldehyde	-20	0	95
3	LDA	p-formaldehyde	0	0	87
4	NaHMDS	p-formaldehyde	-10	0	97
5	NaHMDS	p-formaldehyde	0	6	82
6	NaHMDS	monomeric formaldehyde	-78	42	23
7	NaHMDS	monomeric formaldehyde	-60	63	32
8	NaHMDS	monomeric formaldehyde	-50	33	43

3-8-2 : α-Selective Dihydroxylation

Before now, several procedures to install epoxide have been reported (Scheme 19). Among them, Paquette ${ }^{22)}$ and co-workers reported epoxidation with allyl alcohol. After DIBAL reduction of $\mathbf{9 8}$ to give lactol, epoxidation by Sharpless method and subsequent TPAP oxidation afforded $\mathbf{9 9}$. On the other hand, Ohtsuka ${ }^{2 f)}$ and co-workers reported epoxidation with hydrogen peroxide to provide Pentalenolactone F (2) methyl ester. However, both procedures were low yield and selectivity, respectively. Therefore, I explored new epoxidation method to afford desired product with high yield and selectivity.

Scheme 19

98

1) DIBAL, DME
2) $\mathrm{VO}(\mathrm{acac})_{2}, t-\mathrm{BuOOH}$ benzene
3) TPAP, NMO, 4A-MS $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 26 \%$ (3 steps)

α-epoxide 99

β-epoxide 100
73
:
27

I anticipated that formation of epoxide via dihydroxylation was the best procedure for high selectivity. Because general dihydroxylation method with osumium tetraoxide was sensitive to steric hindrance, it was supposed that this procedure would afford high selectivity. After that, mesylation of primary alcohol followed by treatment with base would provide α-epoxide. By reference to this thinking, oxidation of double bond was attempted (Scheme 20). In the result, dihydroxylation of double bond with osumium tetraoxide and NMO was accomplished in high yield and selectivity. In association with this reaction, conformation of $\mathbf{9 7}$ was verified by NOESY experiments. It was supposed that A-ring of

97 was chair-conformation due to correlation between $\mathrm{C}_{14}-\mathrm{H}$ and $\mathrm{C}_{3,6}-\mathrm{H}$. And it was supposed that this stereoselectivity stemmed largely from steric hindrance of β-face.

Scheme 20

Figure 6

97

After protection of $\mathbf{1 0 2}$ with dimethoxypropane and CSA to afford $\mathbf{1 0 3}$, removal of TBS group and subsequent oxidation of secondary alcohol with PDC $^{23)}$ provided 104 in good yield (Scheme 21). At this stage, the stereochemistry generated by dihydroxylation with osumium tetraoxide was verified by NOE experiments using 104 (Figure 7). In the result, there were correlation between $\mathrm{C}_{3}-\mathrm{H}$ and $\mathrm{C}_{14}-\mathrm{H}$. Therefore, absolute configuration of $\mathbf{1 0 4}$ was determined and it was appeared that oxidation of double bond of $\mathbf{9 7}$ proceeded from α-face.

Scheme 21

Figure 7

In association with dihydroxylation of 97, I made an interesting discovery. More specifically, oxidation of relative $\mathbf{1 0 5}$ with osumium tetraoxide gave undesired $\mathbf{1 0 6}$ selectively (Scheme 22). By the result of NOESY experiments described in Figure 8, it was supposed that A-ring of $\mathbf{1 0 5}$ was boat conformation unlike in the case of $\mathbf{9 7}$. And I guessed that these differences caused different reactivity between 97 and 105 .

Scheme 22

105

106

Figure 8

3-9 : Total Synthesis of Pentalenolactone F Methyl Ester

3-9-1 : Installation of One Carbon Atom

Finally, the required unsaturated ester and α-epoxide were prepared. In 1987, Marino and co-workers accomplished installation of unsaturated ester by original method ${ }^{3 b)}$ (Scheme 23). More specifically, conversion of $\mathbf{1 0 7}$ to pyrrolidine enamine $\mathbf{1 0 8}$ followed by carbomethoxylation gave $\mathbf{1 0 9}$. After conjugate reduction with sodium cyanoborohydride to provide 110, elimination of the pyrrolidine via its N -oxide in base afforded $\mathbf{1 1 1}$ in $\mathbf{6 0 \%}$ yield (4 steps). In reference to this procedure, I attempted installation of carbomethoxy group with 104. However, desired product was not obtained. Therefore, I decided to explore new method for installation of unsaturated ester.

Scheme 23

Initial attempt was carried out by direct installation of methylester with methyl cyanoformate (Scheme 24). However, this reaction of $\mathbf{1 0 4}$ proceeded smoothly to produce not desired C-alkylated $\mathbf{1 1 2}$ but undesired O alkylated 113.

Scheme 24

Because direct esterification of $\mathbf{1 0 4}$ was difficult, carboxylation and subsequent methylation was attempted (Scheme 25). Carboxylation of $\mathbf{1 0 4}$ with CO_{2} gas followed by methylation with iodomethane and potassium carbonate afforded not $\mathbf{1 1 4}$ but $\mathbf{1 1 5}$. In order to lead $\mathbf{1 1 5}$ to natural product, it was necessary to remove the hydroxy group. Therefore, conversion of resultant alcohol to the corresponding triflate and subsequent treatment with Pd catalyst and tributyltin hydride was planned. But hydrolysis was provoked by the use of sodium hydride and comins reagent. Because of failure of direct deoxygenization, reduction of double bond followed by elimination was attempted. Although the condition to reduce double bond, (1) $\mathrm{Pd}-\mathrm{C} / \mathrm{H}_{2} / \mathrm{MeOH}$, (2) $\mathrm{PtO}_{2} / \mathrm{H}_{2} / \mathrm{EtOH}$, (3) $\mathrm{NaBH}_{4} / \mathrm{NiCl}_{2} / \mathrm{MeOH}$, were carried out, reduced product was not observed. It was a real pity that the procedure for direct carbonylation was unsuccessful, however, alternative new method was explored. Owing to severe steric hindrance around reaction position, some deirect carbonylation procedure were all unsuccessful. Therefore, the least small reagent which was monomeric formaldehyde ${ }^{21)}$ to add one carbon atom was applied. In the result, treatment of $\mathbf{1 0 4}$ with the reagent gave desired $\mathbf{1 1 6}$ in 61% yield. In this regard, however it was necessary to observe carefully because warming in reaction mixture permitted to produce more 117. And luckily, undesired enone by elimination was not observed. In my synthetic route, I needed a method using monomeric formaldehyde for modification of A-ring, or else I couldn't complete it.

Scheme 25

104
 DMF

114

116 (61\%)

115

117 (11\%)

3-9-2 : Modification of A-Ring and Construction of Epoxide

Subsequently, oxidation of $\mathbf{1 1 6}$ with Jones reagent ${ }^{24)}$ or RuCl_{3} was carried out. However, they resulted in decomposition. Because it was hard to achieve direct oxidation of 116, an alternative stepwise procedure was explored. Luche reduction of $\mathbf{1 1 6}$ to give corresponding $\mathbf{1 1 8}$ followed by protection of primary alcohol with TBSCl afforded 119 in good yield (Scheme 26). In these steps, the sequence of reactions was very important to prevent elimination side reaction to give enone.

Scheme 26

Mesylation of $\mathbf{1 1 9}$ resulted in decomposition and desired $\mathbf{1 2 0}$ was not obtained due to unexplained instability of $\mathbf{1 2 0}$ (Scheme 27). Because of that reason, protection with acetic anhydride was selected to give $\mathbf{1 2 1}$ in high yield. Subsequent TBAF treatment afforded 122, which was oxidized in the following steps.

Scheme 27

Finally, conversion of $\mathbf{1 2 2}$ into unsaturated ester and construction of epoxide were achieved (Scheme 28). After PCC oxidation ${ }^{25)}$ of primary alcohol to give $\mathbf{1 2 3}$ followed by treatment with DBU to produce 124, Pinnick oxidation ${ }^{26)}$ and subsequent esterification afforded $\mathbf{1 2 5}$ in high yield. Having successfully introduced unsaturated ester, I turned my attention to construct α-epoxide. Removal of acetonide in acidic condition provided 126, which was mesylated to give $\mathbf{1 2 7}$. Lastly, the treatment of 127 with DBU without purification accomplished total synthesis of pentalenolactone F (2) methyl ester and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those already reported.

Scheme 28

1) NaClO_{2}

125

MsCl, TEA
DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

127

Pentalenolactone F (2) methylester

Experimental Section

General

IR spectra were recorded on a JASCO FT/IR-4200 spectrometer. Oily products were measured directly, solid products were diluted with chloroform and then measured. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained for solutions in dueteriochloroform with VARIAN 400 MHz and 700 MHz spectrometer with residual solvent as the internal standard. Mass spectral data were run on JEOL GC-mate. Optical rotation was measured on a HORIBA SEPA-200 spectrometer. Thin layer chromatography (TLC) was carried out on MERCK Silica gel $60 \mathrm{~F}_{254}$ plates employing n-hexane/ethyl acetate as the mobile phase. KANTO Silica gel $60 \mathrm{~N} 40-50 \mu \mathrm{~m}$ was employed for flash column chromatography. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium/benzophenone ketyl. Benzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, $\mathrm{CH}_{3} \mathrm{CN}$, 2,6-lutidine, and TEA were distilled from CaH_{2}. Commercialized $\mathrm{MeOH}, \mathrm{EtOH}, \mathrm{DMSO}$ and DMF were used as reaction solvent. Simple distillation was carried out about ethyl acetate and n-hexane.

3-4 : Experimental Section

TBS Ether 35

To a stirred solution of 2-Methylene-1,3-propanediol $34(2.01 \mathrm{~g}, 22.81 \mathrm{mmol})$ in anhydrous THF $(46 \mathrm{ml}), \mathrm{NaH}(1.19 \mathrm{~g}, 27.37 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was warmed to room temperature. After being stirred for $30 \mathrm{~min}, \mathrm{TBSCl}(4.26 \mathrm{~g}, 27.37 \mathrm{mmol})$ was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$ and then mixture was warmed to room temperature. After being stirred for 2 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 15 \rightarrow 1: 4$) to give TBS ether $35(4.50 \mathrm{~g}, 22.24 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3356,3094,2955$, 2929, 2885, 2857, 2774, 2739, 2710, 1658, 1472, 1255, 1083, 836, $777 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.11-5.09(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.4,111.1,65.1,64.7,25.9,18.3,5.4$. HRMS: calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}$, 202.1389; found 202.1393.

Allyl Chloride 36

To a stirred solution of TBS ether $35(1.37 \mathrm{~g}, 6.781 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{ml})$, TEA $(2.8 \mathrm{ml}, 20.34 \mathrm{mmol}), n-\mathrm{Bu}{ }_{4} \mathrm{NCl}(3.76 \mathrm{~g}, 13.56 \mathrm{mmol})$ and $\mathrm{MsCl}(0.8 \mathrm{ml}, 10.17 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was warmed to room temperature and stirred for 2 h . Although TLC analysis showed incomplete disappearance of $\mathbf{3 5}$, additional $\mathrm{MsCl}(0.8 \mathrm{ml}, 10.17 \mathrm{mmol})$ was added. After being stirred for 1 h , the reaction was quenched by addition of aq. NaHCO_{3} and diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 15)$ to give allyl chloride $36(1.47 \mathrm{~g}, 6.658 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3442,3100,3084,2955,2930,2885,2857,2803,1653,1462,1257,1089,846,777$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=5.29-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}$, $2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=144.5,114.4,63.4,45.0,25.9,18.3$, 5.4. HRMS: calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{ClOSi}, 220.1050$; found 220.1045 .

Alkynyl Alcohol 38

To a stirred solution of allyl chloride $36(8.58 \mathrm{~g}, 38.36 \mathrm{mmol})$ in degassed anhydrous DMF (97 $\mathrm{ml})$, crushed $\mathrm{K}_{2} \mathrm{CO}_{3}(10.70 \mathrm{~g}, 77.72 \mathrm{mmol}), n-\mathrm{Bu}_{4} \mathrm{NCl}(1.10 \mathrm{~g}, 3.886 \mathrm{mmol})$, $\mathrm{CuI}(99.999 \%$ trace metals basis, $740.1 \mathrm{mg}, 3.886 \mathrm{mmol}$) and then 2-propyn-1-ol $37(7.0 \mathrm{ml}, 116.58 \mathrm{mmol})$ were added at room temperature under nitrogen atmosphere. After being stirred for 18 h , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The heterogeneous mixture was filtered through a celite pad with ethyl acetate and then resultant organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ followed by brine. After separation of two layers, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 5$) to give alkynyl alcohol $38(9.00 \mathrm{~g}, 37.44 \mathrm{mmol})$ as a slightly yellow oil. Analytical data: $\operatorname{IR}(\mathrm{KBr})$: $\mathrm{v}^{\sim}=$ $3352,3084,2955,2929,2884,2857,2739,2710,2288,2224,1659,1255,1085,837,777 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$

NMR (700 MHz, CDCl_{3}): $\delta=5.15-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=2.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13$ (s, 2H), $3.00(\mathrm{br}-\mathrm{s}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.3,110.9$, 83.1, 80.7, 65.5, 51.4, 25.9, 22.8, 18.3, 5.4. HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}, 240.1546$; found 240.1549.

Allyl Alcohol 40

To a stirred solution of alkynyl alcohol $38(10.20 \mathrm{~g}, 42.43 \mathrm{mmol})$ in $\mathrm{MeOH}(106 \mathrm{ml})$, quinoline ($0.9 \mathrm{ml}, 10 \mathrm{Wt} \%$) and Lindlar cat. ($510.0 \mathrm{mg}, 5 \mathrm{Wt} \%$) were added at room temperature, and then purged with hydrogen. After being stirred for 3.5 h under a balloon of hydrogen, the heterogeneous mixture was filtered through a celite pad with ethyl acetate and concentrated. The residual oil was diluted with ethyl acetate and then washed with 0.5 N HCl , aq. NaHCO_{3} followed by brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and subsequent concentration, the residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 4)$ to give allyl alcohol $40(9.60 \mathrm{~g}, 39.44 \mathrm{mmol})$ as a slightly yellow oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3345,3094,3077,3019,2955,2929,2885,2857,2738,2710,1650$, 1462, 1255, 1083, $836 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.80-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.56(\mathrm{~m}, 1 \mathrm{H})$, 5.02 (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.9,130.2,129.9,110.3,65.9$, 58.2, 30.8, 25.9, 18.4, 5.3. HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}, 242.1702$; found 242.1724 .

Epoxide 41

To a stirred solution of allyl alcohol $40(13.20 \mathrm{~g}, 54.23 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(68 \mathrm{ml})$, TBHP (5.0 Msoln in decane, $14.1 \mathrm{ml}, 70.50 \mathrm{mmol}$) and then $\mathrm{VO}(\mathrm{OEt})_{3}(1.0 \mathrm{ml}, 5.423 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was warmed to room temperature. After being stirred for 4 h , the reaction was quenched by addition of aq. NaHCO_{3} and diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 2$) to give epoxide $41(12.60 \mathrm{~g}, 48.76 \mathrm{mmol})$ as a slightly yellow oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3427,3094$, 3079, 2955, 2930, 2885, 2857, 2774, 2739, 2710, 1740, 1655, 1255, 1085, $836 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.12(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 5.00(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.18$ (br-d, $\left.J=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.10(\mathrm{br}-\mathrm{d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.21$ (ddd, $J=5.8,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (ddd, $J=7.5,5.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (br-dd, $J=15.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (br-dd, $J=6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (br-dd, $J=15.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 0.90 $(\mathrm{s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.6,112.3,66.3,60.3,56.2$, 55.8, 31.2, 25.8, 18.3, -5.2, -5.4. HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$, 258.1651; found 258.1657.

Benzyl Ether 45

To a stirred solution of epoxide $41(555.9 \mathrm{mg}, 2.140 \mathrm{mmol})$ in anhydrous THF (7 ml), NaH (140.1 $\mathrm{mg}, 3.210 \mathrm{mmol}), \mathrm{BnBr}(390 \mu \mathrm{l}, 3.210 \mathrm{mmol})$ and then $n-\mathrm{Bu} \mathrm{u}_{4} \mathrm{NI}(79.2 \mathrm{mg}, 0.210 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was warmed to room temperature. After being stirred for 1 h , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (80 g , ethyl acetate/hexanes $=1: 12$) to give benzyl ether 45 ($680.3 \mathrm{mg}, 1.952 \mathrm{mmol}$) as a colorless oil. Analytical data: IR (KBr): v ${ }^{\sim}=3088,3065,3030$, 2954, 2929, 2884, 2856, 2739, 2710, 1654, 1254, 1101, 836, 777, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.14(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.97(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{br}-\mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{br}-\mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{dd}, J=11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{ddd}, J=6.4,4.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{ddd}, J=6.5,6.5,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26-2.23 (m, 2H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.8,137.8,128.4$, $127.8,110.8,73.3,68.2,66.0,55.1,54.8,31.4,25.9,18.3,5.4$. HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$, 348.2121 ; found 348.2119 .

Alcohol 46

To a stirred solution of benzyl ether $45(3.20 \mathrm{~g}, 9.182 \mathrm{mmol})$ in anhydrous THF (31 ml), AcOH $(526 \mu \mathrm{l}, 9.182 \mathrm{mmol})$ and then TBAF (1.0 Msoln in THF, $13.8 \mathrm{ml}, 13.77 \mathrm{mmol}$) were added at room temperature under nitrogen atmosphere and stirred for 6 h . Although TLC analysis showed incomplete
disappearance of $\mathbf{4 5}$, additional TBAF (1.0 Msoln in THF, $4.6 \mathrm{ml}, 4.591 \mathrm{mmol}$) was added. After being stirred for 2.5 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (150 g, ethyl acetate/hexanes $=1: 3 \rightarrow$ 1:1) to give alcohol $46(1.99 \mathrm{~g}, 8.520 \mathrm{mmol})$ as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3424$, 3087, 3064, 3030, 2988, 2916, 2862, 2745, 1653, 1606, 1587, 1454, 1077, 741, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl_{3}): $\delta=7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.13(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 5.03(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.11(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=11.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=$ $11.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.25 (ddd, $J=5.9,5.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (ddd, $J=6.0,6.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.31$ (m, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.0,137.6,128.5,127.9,127.9,112.5,73.5,67.9,66.0,55.2$, 55.1, 31.8. HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}, 234.1256$; found 234.1261.

Allyl Chloride 47

To a stirred solution of alcohol $46(417.5 \mathrm{mg}, 1.782 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{ml})$, TEA $(0.7 \mathrm{ml}, 5.346 \mathrm{mmol}), n-\mathrm{Bu}_{4} \mathrm{NCl}(990.5 \mathrm{mg}, 3.564 \mathrm{mmol})$ and then $\mathrm{MsCl}(207 \mu \mathrm{l}, 2.673 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was warmed to room temperature. After being stirred for 3 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (25 g , ethyl acetate/hexanes $=1: 5$) to give allyl chloride 47 ($419.9 \mathrm{mg}, 1.661 \mathrm{mmol}$) as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3086$, 3063, 3030, 2988, 2917, 2860, 1645, 1454, 1097, 913, 745, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.25(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 5.14(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{dd}, J=11.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=11.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.1,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{dd}, J=11.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{ddd}, J=6.1,4.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=7.1,5.5,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.43 (br-dd, $J=16.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (br-dd, $J=16.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=141.6,137.7,128.5,127.8,116.6,73.4,67.9,54.9,54.5,48.3,31.7$. HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClO}_{2}$, 252.0917 ; found 252.0916 .

Epoxy Malonate 33

To a stirred solution of allyl chloride $47(12.20 \mathrm{~g}, 48.27 \mathrm{mmol})$ in degassed anhydrous THF (69 $\mathrm{ml}), \mathrm{PPh}_{3}(968.9 \mathrm{mg}, 3.620 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.40 \mathrm{~g}, 1.207 \mathrm{mmol})$ and then $\mathrm{NaCH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$ in THF $(47.5 \mathrm{ml}, 77.23 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was warmed to room temperature. After being stirred for 30 min , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified three times by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 4 \rightarrow 1: 3$) to give epoxy malonate $33(17.10 \mathrm{~g}, 45.43 \mathrm{mmol})$ as a yellow oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3085,3064,3029,2982,2937,2906,2870,1748,1731$, $1649,1236,1152,1097,1034,699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.96(\mathrm{~s}$, $1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~d}, J=$ $11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=11.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{ddd}, J=6.3,4.4$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{ddd}, J=6.5,5.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{br}-\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.26$ $(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.9$, $168.9,142.0,137.8,128.4,127.8,113.4,73.3,68.1,61.5,61.5,54.9,54.6,50.4,35.2,34.6,14.1$. HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6}, 376.1886$; found 376.1878.

Bicyclic Lactone 31

To a stirred solution of dried $\mathrm{Eu}(\mathrm{OTf})_{3}$, epoxy malonate 33 ($106.1 \mathrm{mg}, 0.2820 \mathrm{mmol}$) in anhydrous toluene (3 ml) and then $\mathrm{NaH}(18.5 \mathrm{mg}, 0.4230 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was warmed to room temperature. After being stirred for 3 h , the reaction was quenched by addition of $\mathrm{AcOH}(33 \mu \mathrm{l}, 0.5640 \mathrm{mmol})$ and then Phthalate pH Standard Solution $(\mathrm{pH}=4)$. After aqueous layer was checked to be acidic property with pH paper, the organic layer was diluted with ethyl acetate, washed with brine and then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/benzene $=1: 20 \rightarrow 1: 5$) to give bicyclic lactone $31(82.7 \mathrm{~g}, 0.2503 \mathrm{mmol})$ as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3080$,

3064, 3030, 2983, 2938, 2907, 2864, 2811, 1776, 1735, 1243, 1122, 1051, 740, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl_{3}): $\delta=7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.97(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.94(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{ddd}, J=5.2,4.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dq}, J=10.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dq}$, $J=10.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{br}-\mathrm{d}, J=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{ddd}, J=7.2,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{br}-\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.27$ (br-d, $\left.J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(700} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.0,169.8$, $146.0,137.5,128.5,127.9,127.7,109.3,83.4,73.6,70.7,62.3,60.9,40.4,39.1,13.9$. HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}, 330.1467$; found 330.1469 .

3-5 : Experimental Section

Carboxylic Acid 54

To a stirred solution of bicyclic lactone $31(3.90 \mathrm{~g}, 11.80 \mathrm{mmol})$ in $\mathrm{EtOH}(24 \mathrm{ml}), 3 \mathrm{~N} \mathrm{NaOH}$ aq. $(20 \mathrm{ml}, 59.00 \mathrm{mmol})$ was added at room temperature under air atmosphere. After being stirred for 2 h at $50{ }^{\circ} \mathrm{C}$, the reaction was quenched by addition of $3 \mathrm{~N} \mathrm{HCl} \mathrm{aq}.(20 \mathrm{ml}, 59.00 \mathrm{ml})$. After being diluted with ethyl acetate, aqueous layer was checked to be acidic property with pH paper and then extracted with ethyl acetate three times in the presence of solid NaCl . The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. The residual oil was purified by column chromatography on silica gel (150 g , $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10: 1 \rightarrow 5: 1\right)$ to give carboxylic acid $54(3.54 \mathrm{~g}, 11.71 \mathrm{mmol})$ as a slightly yellow oil.

Alcohol 57

To a stirred solution of carboxylic acid $\mathbf{5 4}(810.8 \mathrm{mg}, 2.682 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{ml})$, N-hydroxy succinimide $55(413.7 \mathrm{mg}, 3.487 \mathrm{mmol})$ and then DCC ($726.8 \mathrm{mg}, 3.487 \mathrm{mmol}$) were added at room temperature under nitrogen atmosphere. After being stirred for 1 h , N -hydroxy succinimide
($63.7 \mathrm{mg}, 0.5364 \mathrm{mmol}$) and then DCC ($111.8 \mathrm{mg}, 0.5364 \mathrm{mmol}$) were added because of incomplete esterification. Subsequently, removal of solvent by decompression and then filtration through a celite pad (ethyl acetate/hexane $=2: 1$) were carried out. After concentration, the residual oil was used in next step.

The crude active ester 56 in anhydrous THF (11 ml) and anhydrous DMF (2 ml), $\mathrm{NaBH}_{4}(88.3 \mathrm{mg}$, 2.146 mmol) was added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 1 h , the reaction was quenched by addition of $\mathrm{AcOH}(0.6 \mathrm{ml}, 10.73 \mathrm{mmol})$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. at $0{ }^{\circ} \mathrm{C}$. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (80 g , ethyl acetate/benzene $=1: 3 \rightarrow 1: 1$) to give alcohol 57 $(656.5 \mathrm{mg}, 1.691 \mathrm{mmol})$ as a slightly white oil.

TBS Ether 59

To a stirred solution of alcohol $57(6.48 \mathrm{~g}, 22.47 \mathrm{mmol})$ in anhydrous DMF (45 ml), imidazole $(4.59 \mathrm{~g}, 67.41 \mathrm{mmol})$ and $\operatorname{TBSCl}(5.24 \mathrm{~g}, 33.71 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was warmed to room temperature. After being stirred for 1 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 10 \rightarrow 1: 5$) to give TBS ether $59(8.82 \mathrm{~g}$, 21.90 mmol) as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3066,3031,2953,2929,2896,2857$, 2804, 2739, 2711, 1773, 1667, 1255, 1147, 1096, $838 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.37-7.28 (m, 5H), 4.91 (br-s, 1H), 4.89 (br-s, 1H), $4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{dt}, J=6.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.80 (br-dd, $J=6.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{br}-\mathrm{d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (br-d, $J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{br}-\mathrm{d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz , CDCl_{3}): $\delta=179.7,147.4,137.7,128.4,127.8,127.7,108.8,82.8,73.5,71.4,65.2,57.3,43.8,38.8,38.8$, $25.8,18.2,-5.6$. HRMS: calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}, 402.2226$; found 402.2229 .

Cyclopropane 60

To a stirred solution of $\mathrm{Et}_{2} \mathrm{Zn}(1.0 \mathrm{M}$ in Hexanes, $24.7 \mathrm{ml}, 24.67 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(29$ $\mathrm{ml}), \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(1.9 \mathrm{ml}, 24.67 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 20 min at $0{ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{I}_{2}(2.0 \mathrm{ml}, 24.67 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 20 min . To a reaction mixture, TBS ether $59\left(0.7 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.31 \mathrm{~g}, 8.222 \mathrm{mmol}\right)$ was added at $0{ }^{\circ} \mathrm{C}$, and then was warmed to room temperature. After being stirred for 10.5 h , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with aq. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ followed by brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 6$) to give cyclopropane $\mathbf{6 0}$ (3.14 $\mathrm{g}, 7.537 \mathrm{mmol}$) as a slightly yellow oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3067,3030,2994,2951,2929$, 2896, 2884, 2857, 2803, 2739, 2711, 1769, 1252, 1126, 1095, $838 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{ddd}, J=6.2,4.8,4.8$ Hz, 1H), 3.89 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=7.9,4.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=13.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=13.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{br}-\mathrm{d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.50-0.44$ (m, $4 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=180.8,137.8,128.4,127.8,127.7$, 84.0, 73.6, 72.3, 65.8, 59.0, 45.0, 42.0, 41.8, 25.9, 22.0, 18.3, 13.8, 5.6, -5.5. HRMS: calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}, 416.2383$; found 416.2380.

Alcohol 61

To a stirred solution of cyclopropane $60(5.80 \mathrm{~g}, 13.92 \mathrm{mmol})$ in $\mathrm{MeOH}(35 \mathrm{ml}), \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}$ $(580.0 \mathrm{mg}, 10 \mathrm{Wt} \%)$ was added at room temperature, and then purged with hydrogen. After being stirred for 5 h under a balloon of hydrogen, the heterogeneous mixture was filtered through a celite pad with ethyl acetate and concentrated. Subsequently, the residual oil was purified by column chromatography on silica gel $(150 \mathrm{~g}$, ethyl acetate/hexanes $=1: 2)$ to give alcohol $\mathbf{6 1}(4.44 \mathrm{~g}, 13.60 \mathrm{mmol})$ as a colorless
oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3422$, 2952, 2930, 2897, 2884, 2857, 1769, 1253, 1094, 1030, 839, $778 \mathrm{~cm}^{-1} . \quad{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.33$ (ddd, $J=6.4,5.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.93(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{ddd}, J=12.2,7.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{ddd}, J=12.2,6.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.76 (ddd, $J=7.9,5.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=13.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{br}-\mathrm{d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.52-0.46(\mathrm{~m}, 4 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=180.6,85.7,66.5,64.9,59.3,43.7,42.1,41.5,25.9$, $22.0,18.4,13.8,5.6,-5.6,-5.6$. HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}, 326.1913$; found 326.1912.

Dimethyl Compound 62

To a stirred solution of alcohol $61(5.48 \mathrm{~g}, 16.78 \mathrm{mmol})$ in $\mathrm{AcOH}(56 \mathrm{ml}), \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}(2.09 \mathrm{~g}$, $25.17 \mathrm{mmol})$ and $\mathrm{PtO}_{2}(381.0 \mathrm{mg}, 1.678 \mathrm{mmol})$ were added at room temperature and then purged with hydrogen. After being stirred for 18 h under a balloon of hydrogen, the heterogeneous mixture was filtered through a celite pad with ethyl acetate and then washed with $\mathrm{H}_{2} \mathrm{O}$, aq. NaHCO_{3} followed by brine. Subsequently, the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. The residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 1$) to give dimethyl compound $62(5.21 \mathrm{~g}, 15.86 \mathrm{mmol})$ as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3443$, 2953, 2931, 2901, 2884, 1768, 1256, 1113, 1093, 838, $778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 4.32 (ddd, $J=5.7,4.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, 1 H), 2.71 (ddd, $J=9.1,3.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (br-dd, $J=5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (dd, $J=13.4,9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{br}-\mathrm{dd}, J=13.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}$, $3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=181.3$, 86.0, 68.0, 65.0, 59.4, 48.2, 47.7, 43.7, 40.5, 29.5, 27.7, 25.9, 18.5, -5.5, -5.7. HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}, 328.2070$; found 328.2064.

Iodide 67

To a stirred solution of dimethyl compound $\mathbf{6 2}(5.21 \mathrm{~g}, 15.86 \mathrm{mmol})$ in anhydrous toluene (53 ml), imidazole ($4.32 \mathrm{~g}, 63.44 \mathrm{mmol}$), $\mathrm{PPh}_{3}(8.49 \mathrm{~g}, 31.72 \mathrm{mmol})$ and then $\mathrm{I}_{2}(6.05 \mathrm{~g}, 23.79 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. Subsequently, the mixture was warmed to $70{ }^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction was quenched by addition of aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ at $0{ }^{\circ} \mathrm{C}$ and then filtered through a silica pad with ethyl acetate. After concentration, the residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 25 \rightarrow 1: 10$) to give iodide $67(6.75 \mathrm{~g}$, $15.40 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=2953,2932,2901,2883,2857,1775$, $1098,1078,838,778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.36(\mathrm{ddd}, J=9.7,5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ $(\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=9.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=9.7,9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.78(\mathrm{ddd}, J=9.2,5.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=13.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59$ (dd, $J=13.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=181.4,84.5,67.8,59.9,49.0,48.3,47.7,40.4$, 29.0, 27.9, 25.9, 18.5, 7.4, -5.5. HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{SiI}, 438.1088$; found 438.1074.

Vinyl Ether 66

To a stirred solution of iodide $67(123.8 \mathrm{mg}, 0.2824 \mathrm{mmol})$ in anhydrous toluene (3 ml), DBU ($130 \mu \mathrm{l}, 0.8472 \mathrm{mmol}$) was added at room temperature under nitrogen atmosphere and then warmed to $110{ }^{\circ} \mathrm{C}$. After being stirred for 13 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on florisil (150 g , ethyl acetate/hexanes $=1: 25)$ to give vinyl ether $\mathbf{6 6}(76.2 \mathrm{mg}, 0.2454 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3120,2955,2931,2899,2858,2737,2709,1800,1687,1667,1464,1257,1114$, $838,777 \mathrm{~cm}^{-1} . \quad{ }^{1} \mathrm{HNMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.65(\mathrm{dd}, J=2.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=2.3,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dddd}, J=9.1,5.3,1.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96(\mathrm{dd}, J=13.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=13.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=180.0,160.6,87.1,67.1,59.4,48.8,46.4,46.1,40.9,29.1,28.0,25.6,18.0,-5.7$. HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}, 310.1964$; found 310.1951.

Enone 30

Firstly, azeotropic dehydration of vinyl ether $\mathbf{6 6}(947.6 \mathrm{mg}, 3.052 \mathrm{mmol})$ with anhydrous toluene was carried out. To a stirred solution of 66 in anhydrous toluene (15 ml), DIBAL ($3.1 \mathrm{ml}, 3.113 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 40 min , the reaction was quenched by addition of aq.Rochell's salt and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was used in the next step.

Azeotropic dehydration of residual oil with anhydrous toluene was carried out. In the next place, the oil was diluted with anhydrous $\mathrm{EtOH}(15 \mathrm{ml})$, and subsequently $\mathrm{NaH}(13.3 \mathrm{mg}, 0.3052 \mathrm{mmol}$) was added to a reaction mixture at $0{ }^{\circ} \mathrm{C}$. After being stirred for 7.5 h at room temperature, the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (80 g , ethyl acetate/hexanes $=1: 15 \rightarrow 1: 10$) to give enone 30 (667.8 g , 2.267 mmol) as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3074,3033,2953,2929,2897,2857$, $2736,2710,1709,1586,1470,1256,1093,839,777 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49(\mathrm{~d}, J$ $=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=$ $10.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=13.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=13.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.52(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.3,169.6,132.3,68.3,60.7,53.9,45.2,43.3,42.3,30.6,29.3,25.8$, 18.2, -5.5. HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}, 294.2015$; found 294.2019.

3-6 : Experimental Section

Alcohol 128

To a stirred solution of enone $\mathbf{3 0}(2.84 \mathrm{~g}, 9.643 \mathrm{mmol})$ in THF (48 ml), TBAF (1.0 M in THF, 11.6 $\mathrm{ml}, 11.57 \mathrm{mmol}$) was added at room temperature under nitrogen atmosphere. After being stirred for 30
min, the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=1: 2 \rightarrow 2: 1 \rightarrow 4: 1$) to give alcohol $128(1.63 \mathrm{~g}, 9.043 \mathrm{mmol})$ as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3417,3079$, 3037, 2952, 2930, 2863, 2731, 2720, 1704, 1695, 1584, 1367, 1061, 817, $798 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.55(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{br}-\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=10.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{dd}, J=10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=10.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=13.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$ (br-d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}$, $3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz, CDCl_{3}): $\delta=212.7,168.7,133.1,68.2,60.5,53.6,45.5,43.2$, 42.2, 30.5, 29.2. HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}, 180.1150$; found 180.1149.

Mesylate 70

To a stirred solution of alcohol $128(44.3 \mathrm{mg}, 0.2458 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$, TEA ($137 \mu \mathrm{l}$, $0.9832 \mathrm{mmol}), \mathrm{MsCl}(38 \mu \mathrm{l}, 0.4916 \mathrm{mmol})$ and then DMAP ($3.0 \mathrm{mg}, 0.02458 \mathrm{mmol}$) were added at room temperature under nitrogen atmosphere. After being stirred for 1 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 1$) to give mesylate $70(63.2 \mathrm{mg}, 0.2446$ mmol) as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3024,2954,2937,2906,2866,1713,1588$, $1357,1176,978,957,845 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.52(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{dd}, J=10.0,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.89(\mathrm{dd}, J=13.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=13.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=211.0,166.1,133.7$, 72.6, 57.8, 53.6, 45.6, 43.2, 42.4, 37.6, 30.4, 29.0. HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}, 258.0926$; found 258.0926.

Allyl Aocohol 71

To a stirred solution of mesylate $70(1.61 \mathrm{~g}, 6.232 \mathrm{mmol})$ in $\mathrm{MeOH}(31 \mathrm{ml}), \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(2.79 \mathrm{~g}$, $7.478 \mathrm{mmol})$ and then $\mathrm{NaBH}_{4}(307.5 \mathrm{mg}, 7.478 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 40 min , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (80 g , ethyl acetate/hexanes $=2: 1$) to give allyl alcohol $71(1.59 \mathrm{~g}, 6.107 \mathrm{mmol})$ as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3531$, 3387, 3051, 3029, 2952, 2864, 1352, 1174, 974, 952, 844, $529 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $5.68(\mathrm{dd}, J=5.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=5.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (dddd, $J=7.4,7.4,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{ddd}, J=11.0,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.62(\mathrm{dd}, J=12.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=13.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.6,134.1,77.3,74.9,61.3,50.2,49.1,41.1,41.0,37.4$, 29.7, 28.7. HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}, 260.1082$; found 260.1080.

Nitrile 129

To a stirred solution of allyl alcohol $71(1.59 \mathrm{~g}, 6.107 \mathrm{mmol})$ in anhydrous DMSO (31 ml), NaCN $(925.7 \mathrm{mg}, 18.32 \mathrm{mmol}$) was added at room temperature under nitrogen atmosphere. The mixture was warmed to $120{ }^{\circ} \mathrm{C}$. After being stirred for 2 h , the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (150 g , ethyl acetate/hexanes $=2: 3)$ to give nitrile $\mathbf{1 2 9}(965.4 \mathrm{mg}, 5.047 \mathrm{mmol})$ as a white solid. Analytical data: IR $(\mathrm{KBr}): \mathrm{v}^{\sim}=3317,3260,3061,3019,2955,2931,2895,2865,2249,1215,1090,1046,756 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl_{3}): $\delta=5.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=7.6,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=10.5,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ $(\mathrm{d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=12.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=13.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{ddd}, J=$ $12.7,7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{br}-\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=137.9,133.7,118.4,77.1,59.1,52.5,52.3,41.4,41.3,29.6,29.5,28.9$. HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}, 191.1310$; found 191.1314 .

TBS Ether 72

To a stirred solution of nitrile $129(965.4 \mathrm{mg}, 5.047 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, 2,6-lutidine (1.4 ml , 12.11 mmol) and then TBSOTf ($1.4 \mathrm{ml}, 6.056 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 40 min , the reaction was quenched by addition of ap. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (80 g , ethyl acetate/hexanes $=1: 20)$ to give TBS ether $72(1.51 \mathrm{~g}, 4.942 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3058,3044,2954,2929,2896,2858,2248,1471,1367,1131,1102,860,837 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl_{3}): $\delta=5.63$ (dd, $J=5.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.60 (dd, $J=5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (ddd, J $=7.7,1.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{ddd}, J=10.1,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=16.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=13.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dd}, J=13.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.44(\mathrm{ddd}, J=13.2,7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.6,134.5,118.6,77.0,58.7,53.1,52.6,41.9,40.9,29.7,29.5,29.2$, 25.9, 18.2, -4.8, -4.9. HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NOSi}, 305.2175$; found 305.2179.

Aldehyde 73

To a stirred solution of TBS ether $72(1.29 \mathrm{~g}, 4.222 \mathrm{mmol})$ in anhydrous toluene (42 ml), DIBAL (1.0 M in toluene, $6.2 \mathrm{ml}, 6.333 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 30 min , the reaction mixture was warmed to $-20{ }^{\circ} \mathrm{C}$ and then quenched by addition of aq.Rochell's salt. The heterogeneous mixture was diluted with ethyl acetate and then washed with brine. Subsequently, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. The residual oil was purified by column chromatography on silica gel (80 g , ethyl acetate/hexanes $=1: 20$) to give aldehyde 73 ($1.23 \mathrm{~g}, 3.987 \mathrm{mmol}$) as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3057,3039,2953,2929$, 2895, 2857, 2726, 1724, 1365, 1255, 1106, 860, 836, $775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=9.64$ (dd, $J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{ddd}, J=5.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{ddd}, J=$ $7.4,1.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, J=10.3,7.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=15.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=$ $15.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=13.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=13.1,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.39(\mathrm{ddd}, J=13.1,7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.5,138.3,132.6,77.3,57.8,55.2,53.6,53.1,41.5,40.8$, 29.6, 29.3, 25.9, 18.3, -4.8. HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}, 308.2172$; found 308.2167.

Dibromo Olefin 29

To a stirred solution of $\mathrm{CBr}_{4}(1.73 \mathrm{~g}, 5.116 \mathrm{mmol})$ and HMPT ($1.9 \mathrm{ml}, 10.23 \mathrm{mmol}$) in THF (17 ml), aldehyde $73\left(0.3 \mathrm{M}\right.$ in THF, $789.3 \mathrm{mg}, 2.558 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 15 min , the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ and then diluted with ethyl acetate. The organic layer was washed with ap. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and then brine. Subsequently, this layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated. The residual oil was purified by column chromatography on silica gel (80 g , ethyl acetate/hexanes $=1: 40$) to give dibromo olefine $29(1.17 \mathrm{~g}, 2.520 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3055,3036,2952,2928,2896,2857,1714,1618,1365$, $1251,1101,861,836,778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.26(\mathrm{dd}, J=8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (dd, $J=5.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{ddd}, J=7.5,1.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, $J=10.7,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=14.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=14.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=$ $12.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{dd}, J=13.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{ddd}, J=12.9,7.5$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=138.7,136.6,132.5,89.5,77.5,60.4,52.7,52.6,44.3,41.9,40.7,29.8,29.1,26.0,18.4$, -4.8. HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{OSi}, 462.0590$; found 462.0590

Tricyclic Compound 28

29
 AIBN toluene

28

To a stirred solution of dibromo olefine $29(656.7 \mathrm{mg}, 1.414 \mathrm{mmol})$ in anhydrous toluene (14 ml), $\mathrm{Bu}_{3} \mathrm{SnH}(1.6 \mathrm{ml}, 5.656 \mathrm{mmol})$ and $\operatorname{AIBN}(23.2 \mathrm{mg}, 0.1414 \mathrm{mmol})$ were added and then warmed to $100{ }^{\circ} \mathrm{C}$. After being stirred for 1 h , the reaction mixture was concentrated. The residual oil was purified by column chromatography on silica gel (40 g , ethyl acetate/hexanes/TEA $=1: 20: 1$) to give tricyclic compound 28 ($357.9 \mathrm{mg}, 1.167 \mathrm{mmol}$) as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3046,2951$, 2934, 2885, 2857, 1470, 1364, 1254, 1101, 858, 835, $774 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.55$ (dddd, $J=5.7,2.4,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dddd}, J=5.7,2.2,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{ddd}, J=10.5,7.9$,
$6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dddd}, J=16.9,2.4,2.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dddd}, J=16.9,2.4$, $2.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (ddd, $J=10.8,7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.79 (ddd, $J=12.1,10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.72 (dd, $J=12.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{dd}, J=12.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{dd}, J=12.9,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.05(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 134.1, 129.6, 73.9, 58.5, 57.7, 57.2, 56.0, 51.6, 42.7, 40.6, 36.1, 29.2, 27.4, 25.9, 18.2, -4.8. HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{OSi}, 306.2379$; found 306.2384.

3-7 : Experimental Section

Diol 74

To a stirred solution of tricyclic compound $28(540.6 \mathrm{mg}, 1.763 \mathrm{mmol})$ in anhydrous THF (3 ml) and $t-\mathrm{BuOH}(10 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$, $\mathrm{NMO}(309.9 \mathrm{mg}, 2.645 \mathrm{mmol})$ and then $\mathrm{OsO}_{4}(44.8 \mathrm{mg}, 0.1763$ mmol) were added at room temperature under air atmosphere. After being stirred for 50 min , the reaction was quenched by addition of $\mathrm{NaHSO}_{3}(550.4 \mathrm{mg}, 5.289 \mathrm{mmol})$ and then diluted with ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (40 g , ethyl acetate/hexanes $=1: 2 \rightarrow 2: 1)$ to give diol $74(494.5 \mathrm{mg}, 1.452 \mathrm{mmol})$ as a white solid. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3334,3017,2949,2931,2904,2858,1463,1363,1105,837,765 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.15(\mathrm{ddd}, J=9.6,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dddd}, J=5.0,5.0,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (ddd, $J=5.1,5.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=10.6,8.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.87(\mathrm{~m}, 6 \mathrm{H}), 1.77-1.72(\mathrm{~m}$, $2 \mathrm{H}), 1.60(\mathrm{~d}, ~ J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{dd}, J=13.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{ddd}, J=13.1,8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.03(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $79.0,74.8,73.8,59.1,57.3,55.8,55.2,48.0,41.7,41.0,36.3,29.2,27.6,25.9,18.2,-4.7,-4.8$. HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}, 340.2434$; found 340.2439 .

Anisylidene Acetal 76

74

76

To a stirred solution of diol $74(494.5 \mathrm{mg}, 1.452 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$, p-Anisaldehyde dimethylacetal ($400 \mu \mathrm{l}, 2,178 \mathrm{mmol}$) and then PPTS in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{ml}, 0.1452 \mathrm{mmol})$ were added at room temperature under nitrogen atmosphere. After being stirred for 50 min , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (40 g , benzene) to anisylidene acetal $76(652.9 \mathrm{mg}, 1.423 \mathrm{mmol})$ as a colorless oil. Analytical data: (about major product) IR (KBr): $\mathrm{v}^{\sim}=3070$, 2999, 2952, 2930, 2903, 2857, 2803, 2767, 1616, 1518, 1250, 1078, 822, $775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.43$ $(\mathrm{m}, 2 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{ddd}, J=6.1,6.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13 (ddd, $J=5.4,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dd}, J=7.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.23$ (dd, $J=14.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=14.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{ddd}, J=12.6,7.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82$ (dd, $J=12.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=12.7,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.29(\mathrm{ddd}, J=12.7,8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (700 MHz, CDCl_{3}): $\delta=160.5,129.0,128.3,113.8,104.7,87.2,83.9,73.7,61.0,57.9,56.0$, $55.3,55.2,48.1,42.9,40.7,40.3,29.6,28.1,25.9,18.2,-4.7,-5.0$. HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}$, 458.2852; found 458.2863. (about minor product) IR (KBr): $\mathrm{v}^{\sim}=3068,2951,2930,2857,2768,2737$, $2709,1614,1515,1249,835,775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.35(\mathrm{~m}, 2 \mathrm{H})$, 6.90-6.88 (m, 2H), $6.02(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{ddd}, J=6.5,5.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=5.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (ddd, $J=7.1,6.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=10.1,8.3,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.15(\mathrm{dd}, J=14.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=14.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1,95(\mathrm{ddd}, J=12.7,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.79(\mathrm{dd}, J=12.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=12.9,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.33(\mathrm{ddd}, J=12.9,8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (700 MHz, CDCl_{3}): $\delta=160.1,130.8,127.6,113.7,102.7,86.9,83.3,73.7,59.7$, 57.2, 56.2, 55.3, 54.7, 47.0, 42.1, 41.2, 39.7, 29.5, 28.1, 25.9, 18.2, -4.7, -4.9. HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}, 458.2852$; found 458.2863.

MPM Ether 77 and 78

Firstly, azeotropic dehydration of anisylidene acetal $76(652.9 \mathrm{mg}, 1.423 \mathrm{mmol})$ with anhydrous toluene was carried out. To a stirred solution of 76 in anhydrous toluene (14 ml), DIBAL (1.0 M in toluene, $2.8 \mathrm{ml}, 2.846 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere and subsequently the reaction mixture was stirred for 50 min . TLC analysis showed incomplete disappearance of 76 and additional DIBAL (1.0 M in toluene, $1.4 \mathrm{ml}, 1.423 \mathrm{mmol}$) was added to reaction mixture at $-78{ }^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction was quenched by addition of aq.Rochell's salt at $-20{ }^{\circ} \mathrm{C}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified three times by column chromatography on silica gel $(40 \mathrm{~g}$, ethyl acetate $/$ hexanes $=1: 5)$ to give MPM ether $77(105.1 \mathrm{mg}, 0.2281 \mathrm{mmol})$ and $78(524.1 \mathrm{mg}$, 1.138 mmol) as a colorless oil. Analytical data: (about major product 78) IR (KBr): $\mathrm{v}^{\sim}=3552,3016$, 2952, 2931, 2858, 1613, 1513, 1250, 1215, 835, $758 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}$, $J=9.8,7.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{ddd}, J=6.7,5.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{ddd}, J=5.3,4.7,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{ddd}, J=10.4,7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.01-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=12.9,9.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=13.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{ddd}, J=$ $12.9,5.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=13.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{dd}, J=13.0$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{ddd}, J=13.0,7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$, $0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.3,130.1,129.3,113.9,81.2,77.5,74.0,70.9,58.8$, $57.4,55.7,55.4,55.3,44.6,41.7,41.0,36.7,29.3,28.0,25.9,18.2,-4.7,-4.8$. HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}, 460.3009$; found 460.3009. (about minor product 77) IR (KBr): $\mathrm{v}^{\sim}=3551,3018,2953$, 2933, 2858, 1513, 1215, $757 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{ddd}, J=10.3,7.7,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06$ (dddd, $J=4.9,4.4,4.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=6.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=11.1,7.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=13.7,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.86(\mathrm{ddd}, J=12.8,10.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=13.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=13.1,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, J=12.8,6.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{dd}, J=12.9,11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.31(\mathrm{ddd}, J=12.9,7.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz, CDCl_{3}): $\delta=159.3,130.1,129.4,113.9,85.6,73.7,72.7,71.2,59.5,57.2$,
$55.5,55.3,52.4,48.1,41.6,40.9,36.0,29.2,27.4,25.9,18.2,-4.8,-4.9$. HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}$, 460.3009 ; found 460.3009 .

Methyl Ether 79

To a stirred solution of MPM ether $78(415.2 \mathrm{mg}, 0.9012 \mathrm{mmol})$ in anhydrous THF (9 ml), NaH $(58.9 \mathrm{mg}, 1.352 \mathrm{mmol})$ and then $\mathrm{MeI}(86 \mu \mathrm{l}, 1.352 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, and subsequently warmed to room temperature. After being stirred for 4 h , TLC analysis showed incomplete disappearance of 78 and additional $\mathrm{NaH}(39.3 \mathrm{mg}, 0.9012 \mathrm{mmol})$ and then MeI (57 $\mu \mathrm{l}, 0.9012 \mathrm{mmol}$) were added. After being stirred for 40 min , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel $(25 \mathrm{~g}$, ethyl acetate $/$ hexanes $=1: 6)$ to give methyl ether $79(419.1 \mathrm{mg}, 0.8828 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3102,3064,3032,2950,2934,2857,2737,2709,2241,1613,1513$, $1248,1105,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.56(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=9.5,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, 3 H), 3.79 (ddd, $J=5.3,4.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=6.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=10.8$, $8.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{br}-\mathrm{dd}, J=8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=13.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (ddd, $J=12.9$, $9.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{dd}, J=13.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.32$ $(\mathrm{dd}, J=13.0,8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.1,130.7,129.4,113.6,87.2,78.1,73.9,70.3,59.2,57.3,57.3,55.2$, 55.2, 52.5, 44.4, 41.6, 40.9, 36.5, 29.3, 27.8, 25.9, 18.2, -4.8. HRMS: calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}, 474.3165$; found 474.3157.

Alcohol 80

To a stirred solution of methyl ether $79(515.6 \mathrm{mg}, 1.086 \mathrm{mmol})$ in ethyl acetate (11 ml), $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(25.8 \mathrm{mg}, 5 \mathrm{Wt} \%)$ was added and then purged with hydrogen. After being stirred for 4 h under a balloon of hydrogen, the heterogeneous mixture was filtered through a celite pad with ethyl acetate. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 3)$ to give alcohol $\mathbf{8 0}(370.3 \mathrm{mg}, 1.044 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3557,3470,2950,2934,2857,2828,1463,1253,1130,1105,835,775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.18(\mathrm{ddd}, J=9.0,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dddd}, J=4.5,4.5,4.5,4.5 \mathrm{~Hz}$, 1 H), $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.17$ (br-dd, $J=6.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{br}-\mathrm{ddd}, J=10.3,7.7$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{dd}, J=13.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=12.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{dd}, J=12.5,10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.33(\mathrm{br}-\mathrm{dd}, J=12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz, CDCl_{3}): $\delta=88.5,73.8,72.6,59.3,57.4,57.0,55.7,52.2,48.0,41.7,40.9$, 36.5, 29.2, 27.5, 25.9, 18.2, -4.8, -4.8. HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}, 354.2590$; found 354.2584.

Ketone 81

To a stirred solution of alcohol $80(470.0 \mathrm{mg}, 1.325 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{ml})$, AZADO ($20.2 \mathrm{mg}, 0.1325 \mathrm{mmol}$) and then $\operatorname{PhI}(\mathrm{OAc})_{2}(653.2 \mathrm{mg}, 1.988 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, and subsequently warmed to room temperature. After being stirred for 11.5 h , the reaction mixture was diluted with ethyl acetate and then quenched by addition of aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 8$) to give ketone $81(448.1 \mathrm{mg}, 1.271 \mathrm{mmol})$ as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3472,3351,3174,2952$, 2931, 2857, 2826, 2737, 2709, 1749, 1464, 1253, 1106, 836, $775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=4.27(\mathrm{ddd}, J=7.6,7.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{br}-\mathrm{d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=18.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{~d}, ~ J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, J=8.4,8.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{br}-\mathrm{ddd}, J=7.1,6.6,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.01(\mathrm{ddd}, J=13.0,7.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{ddd}, J=13.0,4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.41$ (ddd, $J=13.1,8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.0,86.2,73.2,59.0,58.2,58.0,52.7,52.3,50.8,42.0,41.6,38.2,29.0$, 27.5, 25.8, 18.1, -4.8, -4.9. HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}, 352.2434$; found 352.2432.

Methyl Acetal 82

To a stirred solution of ketone $\mathbf{8 1}(448.1 \mathrm{mg}, 1.271 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{ml})$, crushed $\mathrm{NaHCO}_{3}(320.3 \mathrm{mg}, 3.813 \mathrm{mmol})$ and then $m-\mathrm{CPBA}(506.3 \mathrm{mg}, 1.907 \mathrm{mmol})$ were added at room temperature under nitrogen atmosphere. After being stirred for 30 min , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration and then short column chromatography, the residual oil was purified by column chromatography on silica gel (40 g , ethyl acetate/hexanes $=1: 6$) to give methyl acetal $82(457.9 \mathrm{mg}, 1.242 \mathrm{mmol})$ as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=2953,2931,2857$, $2253,1754,1464,1250,1111,837 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.20 (ddd, $J=8.7,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.37 (br-ddd, $J=9.9,8.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddd}, J=9.0,3.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{ddd}, J=13.0,9.0,9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77$ (ddd, $J=13.0,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=13.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.61(\mathrm{dd}, J=13.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{ddd}, J=13.3,8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, $9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.6,106.7,72.6,58.4,56.7,56.3$, 50.1, 48.7, 43.0, 41.8, 40.7, 37.0, 30.1, 29.0, 25.8, 18.1, -4.8, -4.8. HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$, 368.2383 ; found 368.2377 .

Lactone 27

To a stirred solution of methyl acetal $82(213.6 \mathrm{mg}, 0.5795 \mathrm{mmol})$ in anhydrous $\mathrm{EtOH}(6 \mathrm{ml})$, $\mathrm{NaBH}_{4}(71.5 \mathrm{mg}, 1.739 \mathrm{mmol})$ and then $\mathrm{NaH}(38.0 \mathrm{mg}, 0.8693 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 50 min , the reaction was quenched by addition of Phthalate pH Standard Solution $(\mathrm{pH}=4)$ and then diluted with ethyl acetate. Subsequently, aqueous layer was checked to be acidic property with pH paper and then the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel $(25 \mathrm{~g}$, ethyl acetate/hexanes $=1: 5)$ to give lactone $27(192.7 \mathrm{mg}, 0.5692 \mathrm{mmol})$ as a white solid.

Analytical data: IR (KBr): $\mathrm{v}^{\sim}=2954,2930,2857,2253,1748,1464,1385,1258,1107,909,836,777$, $734 \mathrm{~cm}^{-1} . \quad{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.30(\mathrm{ddd}, J=8.9,7.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=11.5,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=11.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (ddd, $J=10.8,7.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{dd}, J=13.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=11.2,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.58(\mathrm{dd}, J=13.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{ddd}, J=13.1,7.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.07(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0,72.8$, $70.5,57.9,57.0,50.7,44.4,42.9,41.8,40.8,36.1,29.9,28.3,25.8,18.1,-4.8$. HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}, 338.2277$; found 338.2279 .

Ketone 86

To a stirred solution of alcohol $77(158.4 \mathrm{mg}, 0.3438 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$, AZADO $(5.2 \mathrm{mg}, 0.03438 \mathrm{mmol})$ and then $\mathrm{PhI}(\mathrm{OAc})_{2}(169.5 \mathrm{mg}, 0.5157 \mathrm{mmol})$ were added at room temperature under nitrogen atmosphere. After being stirred for 17 h , the reaction was diluted with ethyl acetate and then quenched by addition of aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 9$) to give ketone $86(149.9 \mathrm{mg}, 0.3268 \mathrm{mmol})$ as a white solid. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3001,2954,2932,2857,2252,1746,1513,1250,1108,909,733 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddd}, J=8.8,8.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1 H), 2.52 ($\mathrm{s}, 2 \mathrm{H}$), 2.32 (br-ddd, $J=8.4,8.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15 (ddd, $J=7.5,7.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90$ (ddd, $J=12.9,8.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{ddd}, J=12.9,5.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{ddd}, J=12.9$, $8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=216.7,159.3,129.7,129.6,113.8,82.5,73.0,71.4,59.2,57.7,55.2,52.7,51.6,50.5$, $41.9,41.6,37.0,28.8,27.3,25.8,18.1,-4.8,-5.0$. HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}$, 458.2852; found 458.2863.

MPM Acetal 87

To a stirred solution of ketone $86(149.9 \mathrm{mg}, 0.3268 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$, crushed $\mathrm{NaHCO}_{3}(82.4 \mathrm{mg}, 0.9804 \mathrm{mmol})$ and then $m-$ CPBA ($130.1 \mathrm{mg}, 0.4902 \mathrm{mmol}$) were added at room temperature under nitrogen atmosphere. After being stirred for 30 min , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by short column chromatography on silica gel (ethyl acetate/TEA $=1: 0.01$). After concentration, the residual oil was purified by chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 5$) to give MPM acetal 87 $(143.7 \mathrm{mg}, 0.3027 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3066,3035,2953,2931$, 2857, 2253, 1748, 1613, 1514, 1250, 1109, 909, $734 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (ddd, $J=9.2,6.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=9.8,8.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{ddd}, J=9.2,3.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=$ $13.2,9.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (ddd, $J=13.2,6.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=13.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.55$ (m, 2H), $1.46(\mathrm{ddd}, J=13.3,8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$, $-0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=171.7,159.5,129.8,128.4,113.7,103.5,72.4,70.2$, 58.3, 56.3, 55.3, 49.9, 48.8, 43.2, 41.8, 40.7, 36.6, 30.0, 28.8, 25.8, 18.1, -4.8. HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}, 474.2802$; found 474.2804.

Lactone 27

To a stirred solution of MPM acetal $87(33.1 \mathrm{mg}, 0.06973 \mathrm{mmol})$ in anhydrous $\mathrm{EtOH}(1 \mathrm{ml})$, $\mathrm{NaBH}_{4}(8.6 \mathrm{mg}, 0.2092 \mathrm{mmol})$ and then $\mathrm{NaH}(4.5 \mathrm{mg}, 0.1046 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 50 min , the reaction was quenched by addition of Phthalate pH Standard Solution $(\mathrm{pH}=4)$ and then diluted with ethyl acetate. Subsequently, aqueous layer was checked to be acidic property with pH paper and then the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel $(15 \mathrm{~g}$, ethyl acetate/hexanes $=1: 5)$ to give lactone $27(23.0 \mathrm{mg}, 0.06793 \mathrm{mmol})$ as a white solid.

3-8 : Experimental Section

exo-Methylene 97

Firstly, azeotropic dehydration of lactone $27(74.2 \mathrm{mg}, 0.2192 \mathrm{mmol})$ with anhydrous toluene was carried out. To a stirred solution of 27 in THF (2 ml), NaHMDS (0.6 M in toluene, $550 \mu \mathrm{l}, 0.3288$ mmol) was added at $-60{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere and then stirred for 2 h . Subsequently, Monomeric Formaldehyde (0.2 M in THF, $5.5 \mathrm{ml}, 1.096 \mathrm{mmol}$) was added to reaction mixture at $-60{ }^{\circ} \mathrm{C}$. After being stirred for 30 min , the reaction mixture was warmed to $-10{ }^{\circ} \mathrm{C}$ and then quenched by addition of Phthalate pH Standard Solution $(\mathrm{pH}=4)$. After being diluted with ethyl acetate, aqueous layer was checked to be acidic property with pH paper and then the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residual oil which was obtained by concentration was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{ml})$ and then treated with $\mathrm{DBU}(102 \mu \mathrm{l}, 0.6576 \mathrm{mmol}), \mathrm{MsCl}(25 \mu \mathrm{l}, 0.3288 \mathrm{mmol})$ and then DMAP $(2.7 \mathrm{mg}, 0.02192 \mathrm{mmol})$ at room temperature under nitrogen atmosphere. After being stirred for 2 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 7$) to give exo-methylene 97 (48.4 $\mathrm{mg}, 0.1381 \mathrm{mmol})$ as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3019,2954,2930,2893,2857$, $1733,1634,1614,1470,1253,1214,1132,836,759 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.97(\mathrm{~s}$, $1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{ddd}, J=9.1,7.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=11.4$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=10.7,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{ddd}, J=13.3,9.2,9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.98(\mathrm{dd}, J=13.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, J=13.3,7.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=13.2,10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.63(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{ddd}, J=13.2,7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, $9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0,145.1,120.6,72.8,69.8,56.2,56.2,55.8$, 45.2, 42.1, 40.7, 36.6, 30.3, 28.8, 25.8, 18.1, -4.8. HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}, 350.2277$; found 350.2278 .

Diol 102

To a stirred solution of exo-methylene $97(34.4 \mathrm{mg}, 0.09813 \mathrm{mmol})$ in anhydrous THF (0.3 ml) and $t-\mathrm{BuOH}(1 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{ml}), \mathrm{NMO}(34.5 \mathrm{mg}, 0.2944 \mathrm{mmol})$ and then $\mathrm{OsO}_{4}(2.5 \mathrm{mg}, 9.813 \mu \mathrm{~mol})$ were added at room temperature under air atmosphere. After being stirred for 4.5 h , the reaction was quenched by addition of $\mathrm{NaHSO}_{3}(209.7 \mathrm{mg}, 1.178 \mathrm{mmol})$ and then diluted with ethyl acetate followed by $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 3$) to give diol $102(34.6 \mathrm{mg}, 0.08997 \mathrm{mmol})$ as a white solid. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3505,3152$, 2955, 2931, 2884, 2858, 2253, 1722, 1471, 1257, 1113, 1018, 908, $733 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=4.97(\mathrm{dd}, J=10.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}$, $J=10.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=11.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=10.3,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.45 (ddd, $J=11.2,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (dddd, $J=11.0,3.9,3.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=13.5$, $11.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=14.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{ddd}, J=13.5,7.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=$ $13.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$, $0.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=174.4,75.8,73.2,71.4,63.5,58.4,51.8,51.4,45.3$, $42.6,38.1,37.0,31.5,30.2,25.8,18.0,-4.8,-4.9$. HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}$, 384.2332; found 384.2339 .

Acetonide 103

To a stirred solution of diol $102(77.1 \mathrm{mg}, 0.2005 \mathrm{mmol})$ in DCE (2 ml), dimethoxy propane (246 $\mu \mathrm{l}, 2.005 \mathrm{mmol})$ and then CSA ($4.7 \mathrm{mg}, 0.02005 \mathrm{mmol}$) were added at room temperature under nitrogen atmosphere. After being stirred for 1 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 5)$ to give acetonide $103(81.9 \mathrm{mg}, 0.1929 \mathrm{mmol})$ as a white solid. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=2986,2953,2932,2886,2858,2254,1742,1471,1384,1250,1113,909,733 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.84(\mathrm{dd}, J=10.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J$ $=9.6,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H})$, $2.21(\mathrm{ddd}, J=13.3,10.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=13.3,7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.79(\mathrm{dd}, J=13.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dd}, J=13.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=172.1,111.2,84.4,73.3,70.9,67.5,59.0,53.7,52.9,45.5,42.6,38.3,38.0,31.4,30.8,26.5$, 26.2, 25.8, 18.0, -4.8, -4.9. HRMS: calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}, 424.2645$; found 424.2663.

Alcohol 130

To a stirred solution of acetonide $103(10.8 \mathrm{mg}, 0.02453 \mathrm{mmol})$ in THF (1 ml), TBAF (1.0 M in THF, $74 \mu \mathrm{l}, 0.07539 \mathrm{mmol}$) was added at room temperature under nitrogen atmosphere. After being stirred for 6.5 h , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with brine. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (5 g , ethyl acetate/hexanes $=1: 1$) to give alcohol $130(7.5 \mathrm{mg}, 0.02416 \mathrm{mmol})$ as a white solid. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3446,2990,2955,2869$, $2253,1738,1472,1375,1071,908,732,649 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.86$ (br-d, $J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.63 (br-d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (br-ddd, $J=10.5,8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.1$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{ddd}, J=13.7,10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (br-dd, $J=13.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.77-1.71 (m, 2H), 1.64 (dd, $J=13.5,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3$, $111.3,84.2,73.0,70.8,67.4,59.5,53.1,52.7,45.8,42.3,38.5,37.0,31.4,30.6,26.5,26.2$. HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5}, 310.1780$; found310.1779.

Ketone 104

To a stirred solution of alcohol $130(31.3 \mathrm{mg}, 0.1008 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ crushed 4A-MS $(50.4 \mathrm{mg})$ and then PDC $(77.4 \mathrm{mg}, 0.2016 \mathrm{mmol})$ were added at room temperature under nitrogen atmosphere. After being stirred for 1.5 h , the reaction was quenched by addition of 2-propanol ($77 \mu \mathrm{l}$, $1.008 \mathrm{mmol})$. The heterogeneous mixture was filtered through a silica gel (10 g , ethyl acetate/hexanes = 2:1). After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 1$) to give ketone $\mathbf{1 0 4}(30.4 \mathrm{mg}, 0.09858 \mathrm{mmol})$ as a colorless oil. Analytical
data: IR (KBr): $\mathrm{v}^{\sim}=2989,2958,2937,2869,2360,2337,2254,1743,1770,1469,1382,1274,1066$, $732 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.05(\mathrm{br}-\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.05(\mathrm{br}-\mathrm{d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=18.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=$ $18.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz, CDCl_{3}): $\delta=217.3,171.6,111.8,84.2,68.6,67.2,56.9,56.4,52.0,45.7$, 42.2, 42.0, 40.1, 29.5, 28.0, 26.3, 25.2. HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}, 308.1624$; found308.1632.

3-9 : Experimental Section

Hydroxy Methyl Compound 116

Firstly, azeotropic dehydration of ketone $104(28.7 \mathrm{mg}, 0.09307 \mathrm{mmol})$ with anhydrous toluene was carried out. To a stirred solution of ketone 104 in THF (1 ml), NaHMDS (0.6 M in toluene, $465 \mu \mathrm{l}$, 0.2792 mmol) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere and then stirred for 30 min . Subsequently, Monomeric Formaldehyde (0.2 M in THF, $465 \mu \mathrm{l}, 0.09307 \mathrm{mmol}$) was added to reaction mixture at $-55{ }^{\circ} \mathrm{C}$ and then stirred for 30 min . TLC analysis showed incomplete disappearance of $\mathbf{1 0 4}$ and additional Monomeric Formaldehyde (0.2 M in THF, $465 \mu \mathrm{l}, 0.09307 \mathrm{mmol}$) was added at $-55{ }^{\circ} \mathrm{C}$. After being stirred for 10 min , the reaction mixture was warmed to $-15^{\circ} \mathrm{C}$ and quenched by addition of Phthalate pH Standard Solution $(\mathrm{pH}=4)$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=2: 1 \rightarrow 3: 1$) to give hydroxy methyl compound $116(19.1 \mathrm{mg}, 0.05648 \mathrm{mmol})$ as a colorless oil. Analytical data: IR $(\mathrm{KBr}): \mathrm{v}^{\sim}=3495,3019$, 2992, 2958, 2935, 2870, 1739, 1215, $756 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.11(\mathrm{dd}, J=11.5$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=11.6,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{dd}, J=11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{ddd}, J=11.4,3.6,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=217.0$, $171.7,111.9,84.4,67.4,67.1,59.9,55.9,55.0,53.1,51.5,44.8,44.5,39.6,29.6,28.0,26.4,25.4$. HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}, 338.1729$; found 338.1724.

Diol 118

To a stirred solution of hydroxy methyl compound $\mathbf{1 1 6}(9.8 \mathrm{mg}, 0.02898 \mathrm{mmol})$ in $\mathrm{EtOH}(1 \mathrm{ml})$, $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{M}$ in $\mathrm{EtOH}, 40 \mu \mathrm{l}, 0.01159 \mathrm{mmol})$ and then $\mathrm{NaBH}_{4}(0.3 \mathrm{M}$ in EtOH$, 41 \mu \mathrm{l}, 0.01159$ mmol) were added at $-60{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 20 min , the reaction was quenched by addition of acetone ($9 \mu \mathrm{l}, 0.1159 \mathrm{mmol}$) and aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The heterogeneous mixture was diluted with ethyl acetate. Subsequently, the organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (5 g , ethyl acetate) to give diol $\mathbf{1 1 8}(7.5 \mathrm{mg}, 0.02203 \mathrm{mmol}$) as a white solid. Analytical data: IR $(\mathrm{KBr}): \mathrm{v}^{\sim}=3437,3019,2955,2931,2837,2402,2359,2335,1739,1215,756 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.83(\mathrm{dd}, J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=6.3,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{dd}, J=11.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=11.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}$, $J=11.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=10.7,4.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=9.7,6.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (dddd, $J=10.7,6.3,6.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=14.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (dd, $J=14.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700MHz, CDCl_{3}): $\delta=172.8,111.4,84.9,67.6,67.2,61.6,61.6,53.9,52.2,49.0,48.8$, 42.2, 40.2, 31.9, 31.0, 26.4, 25.9. HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{6}, 340.1886$; found 340.1888.

TBS Ether 119

To a stirred solution of diol $118(5.6 \mathrm{mg}, 0.01645 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, TEA ($23 \mu \mathrm{l}, 0.1645$ $\mathrm{mmol}), \mathrm{TBSCl}(12.8 \mathrm{mg}, 0.08225 \mathrm{mmol})$ and then a small amount of DMAP were added at room temperature under nitrogen atmosphere. After being stirred for 9.5 h , TLC analysis showed imcomplete disappearance of 118 and additional TEA ($23 \mu \mathrm{l}, 0.1645 \mathrm{mmol}$) and then $\mathrm{TBSCl}(12.8 \mathrm{mg}, 0.08225$ mmol) were added. After being stirred for 9.5 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (5 g ,
ethyl acetate/hexanes $=1: 4)$ to give TBS ether $119(7.0 \mathrm{mg}, 0.01540 \mathrm{mmol})$ as a colorless oil. Analytical data: $\operatorname{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3478,3018,2992,2953,2931,2884,2860,1744,1257,1215,1071,837$, $757,667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.80(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26$ (br-dd, $J=5.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=11.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=10.6,5.2,4.5 \mathrm{~Hz}$, 1 H), 2.45 (ddd, $J=9.5,5.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dddd}, J=10.6,5.5,5.3,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=13.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=13.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ $(\mathrm{s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.8,111.3,85.0,75.8,67.6,67.2,62.1,61.6,54.1,52.8,49.5,49.3,41.8,40.4$, $31.9,31.2,26.4,25.8,25.8,18.1,-5.6,-5.7$. HRMS: calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Si}, 454.2751$; found 454.2746 .

Acetate 121

To a stirred solution of TBS ether $119(17.6 \mathrm{mg}, 0.03871 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, TEA ($32 \mu \mathrm{l}$, $0.2323 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(11 \mu \mathrm{l}, 0.1161 \mathrm{mmol})$ and then a small amount of DMAP were added at room temperature under nitrogen atmosphere. After being stirred for 3 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 3$) to give acetate $\mathbf{1 2 1}(17.5 \mathrm{mg}, 0.03523$ mmol) as a white solid. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=2992$, 2955, 2931, 2860, 2254, 1739, 1383, $1244,1093,909,733 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.36(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}$, $J=12.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72 (dd, $J=9.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=9.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ddd, $J=9.0,6.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ $(\mathrm{ddd}, J=9.7,7.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04$ $(\mathrm{s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.6,170.1,111.1,84.7,76.5,69.0,67.5$, $62.8,61.7,53.1,51.9,51.3,50.5,43.0,40.5,31.2,31.1,26.4,25.8,25.4,21.0,18.2,-5.5$. HRMS: calcd for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Si}, 496.2856$; found 496.2856 .

Alcohol 122

To a stirred solution of acetate $121(5.8 \mathrm{mg}, 0.01168 \mathrm{mmol})$ in THF (1 ml), AcOH (0.9 M in THF, $21 \mu \mathrm{l}, 0.01752 \mathrm{mmol}$) and then TBAF (1.0 M in THF, $35 \mu \mathrm{l}, 0.03504 \mathrm{mmol}$) were added at room temperature under nitrogen atmosphere. After being stirred for 4 h , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (5 g , ethyl acetate/hexanes $=3: 1$) to give alcohol $122(3.0 \mathrm{mg}, 0.007844 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.33(\mathrm{dd}, J=5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (dd, $J=11.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=11.8,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.55(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{ddd}, J=9.3,6.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, $1.73-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$.

Aldehyde 124

122

124

To a stirred solution of alcohol $122(8.5 \mathrm{mg}, 0.02223 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml}), 4 \mathrm{~A}-\mathrm{MS}(11.1 \mathrm{mg})$ and then PCC ($14.7 \mathrm{mg}, 0.06669 \mathrm{mmol}$) were added at room temperature under nitrogen atmosphere. After being stirred forl h , the reaction was quenched with 2-propannol ($26 \mu \mathrm{l}, 0.3335 \mathrm{mmol}$). The heterogeneous mixture was filtered through a silica gel (10 g , ethyl acetate/hexanes $=2: 1$) and then concentrated. This oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ and then treated with $\mathrm{DBU}(10 \mu \mathrm{l}, 0.06669 \mathrm{mmol})$ at room temperature under nitrogen atmosphere. After being stirred for 30 min , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (5 g , ethyl acetate/hexanes $=1: 3$) to give unsaturated aldehyde 124 (6.2 $\mathrm{mg}, 0.01935 \mathrm{mmol})$ as a colorless oil. Analytical data: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.30(\mathrm{~s}, 1 \mathrm{H})$, 6.79 (br-s, 1H), 5.04 (dd, $J=11.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 2.92(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.48$ $(\mathrm{s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H})$.

Methyl Ester 125

124

1) NaClO_{2}

125

To a stirred solution of unsaturated aldehyde $124(6.2 \mathrm{mg}, 0.01935 \mathrm{mmol})$ in t - $\mathrm{BuOH}(600 \mu \mathrm{l})$, 2-methyl-2-butene ($31 \mu \mathrm{l}, 0.2903 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{O}(200 \mu \mathrm{l}), \mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(9.1 \mathrm{mg}, 0.05805 \mathrm{mmol})$ and then $\mathrm{NaClO}_{2}(6.6 \mathrm{mg}, 0.05805 \mathrm{mmol})$ were added at room temperature under air atmosphere. After being stirred for 2 h , DMF $(600 \mu \mathrm{l})$, crushed $\mathrm{K}_{2} \mathrm{CO}_{3}(13.4 \mathrm{mg}, 0.09675 \mathrm{mmol})$ and then $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{SO}_{2}(10$ $\mu \mathrm{l}, 0.09675 \mathrm{mmol}$) were added at room temperature. The reaction mixture was stirred for 11.5 h , afterwards, it was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (5 g , ethyl acetate/hexanes $=1: 3$) to give methyl ester $125(6.1 \mathrm{mg}, 0.01813 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): v~$=3020,2992,2954$, 2934, 2870, 1740, 1711, 1215, 756, $668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.71$ (br-s, 1H), 5.02 (br-d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.88(\mathrm{br}-\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{br}-\mathrm{d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.75$ (s, 3H), 3.27 (br-s, 1H), 2.81 (br-s, 1H), 2.01 (br-d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{br}-\mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.70-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz, CDCl $)_{3}$: $\delta=171.3,164.1,149.8,133.3,111.6,84.1,67.4,67.2,58.9,54.9,54.7,51.7,51.0,44.5,40.2,31.4,29.0$, 26.4, 25.2. HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}, 350.1729$; found 350.1732 .

Diol 126

To a stirred solution of methyl ester $125(8.0 \mathrm{mg}, 0.02283 \mathrm{mmol})$ in $\mathrm{EtOH}(590 \mu \mathrm{l}), 1 \mathrm{~N} \mathrm{HCl}(460$ $\mu \mathrm{l}$) was added and then warmed to $50{ }^{\circ} \mathrm{C}$. After being stirred for 22 h , the reaction was diluted with ethyl acetate and then quenched with mixture of aq. NaHCO_{3} and brine. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 1$) to give diol $126(4.9 \mathrm{mg}, 0.01579$ mmol) as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3515,3506,3498,3019,2955,1720,1714$, $1215,757,669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.73$ ($\mathrm{dd}, J=2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.15(\mathrm{dd}, J=$
$11.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=11.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{dd}, J=13.6,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2,164.2,149.8,133.1,76.9,68.3,62.9,58.3,54.5,53.7,51.7,50.9$, 44.6, 39.9, 31.1, 30.2. HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6}, 310.1416$; found 310.1425 .

Pentalenolactone F (2) Methyl Ester

To a stirred solution of diol $126(4.7 \mathrm{mg}, 0.01514 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, TEA ($13 \mu \mathrm{l}, 0.09084$ $\mathrm{mmol}), \mathrm{MsCl}(4 \mu \mathrm{l}, 0.04542 \mathrm{mmol})$ and then a small amount of DMAP were added at room temperature under nitrogen atmosphere. After being stirred for 50 min , the reaction was quenched with aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ and then treated with DBU ($7 \mu \mathrm{l}, 0.04542 \mathrm{mmol}$). Although the reaction mixture was stirred for $1 \mathrm{~h}, \mathrm{TLC}$ analysis showed incomplete disappearance of 127 and additional DBU ($7 \mu \mathrm{l}, 0.04542 \mathrm{mmol}$) was added. After being stirred for 4 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (5 g , ethyl acetate/hexanes $=1: 2$) to give Pentalenolactone F (2) methyl ester ($3.4 \mathrm{mg}, 0.01163 \mathrm{mmol}$) as a colorless oil. Analytical data: IR $(\mathrm{KBr}): \mathrm{v}^{\sim}=3019,2956,2931,2860,1765,1712,1439,1260,1215,756,669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}(700$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.86(\mathrm{dd}, J=2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=11.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.7,9.0$ Hz, 1H), 3.76 (s, 3H), 3.59-3.55 (m, 1H), $3.06(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=13.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{dd}$, $J=13.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.2,164.2,149.7$, $132.6,67.9,58.4,55.2,55.0,51.9,51.8,51.6,49.5,45.7,40.9,29.5,29.1$. HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$, 292.1311; found 292.1308 .

Reference

(1) (a) Koe, B. K.; Sobin, B. A.; Celmer, W. D. Antibiot. Annu. 1957, 672; (b) Takeuchi, S.; Ogawa, Y.; Yonehara, H. Tetrahedron Lett. 1969, 32, 2737; (c) Martin, D.; Slomp, G.; Mizsak, S.; Chidester, C. Tetrahedron Lett. 1970, 56, 4901; (d) Duchamp, D. J.; Chidester, C. G. Acta Crystallogr., Sect. B. 1972, B28, 173; (e) Hartmann, S.; Neff, J.; Heer, U.; Mieke, D. FEBS Lett. 1978, 93, 339.
(2) (a) Cane, D. E.; Sohng, J. K.; Williard, P. G. J. Org. Chem. 1992, 57, 844-851; (b) Tillman, A. M.; Cane, D. E. J. Antibiot. 1983, 36, 170; (c) Seto, H.; Noguchi, H.; Sankawa, U.; Yoichi, I. J. Antibiot, 1984, 37, 816-817; (d) Cane D. E.; Thomas, P. J. J. Am. Chem. Soc, 1984, 106, 5295-5303; (e) Williard, P. G.; Sohng, J. K.; Cane, D. E. J. Antibiot, 1988, 41, 130-133; (f) Ohtsuka, T.; Shirahama, H.; Matsumoto, T. Tetrahedron Lett. 1983, 24, 3851-3854.
(3) (a) Cane, D.E.; Rossi, T. Tetrahedron Lett. 1979, 20, 2973; (b) Marino, J. P.; Silvenia, C.; Comasseto, J.; Petragnani, N. J. Org. Chem. 1987, 52, 4139-4140.
(4) (a) Seto, H.; Sasaki, T.; Yonehara, H.; Uzawa, J. Tetrahedron Lett. 1978, 19, 923; (b) Pirrung, M. C.; Thomson, S. A. J. Org. Chem. 1988, 53, 227-230.
(5) Seto, H.; Sasaki, T.; Umezawa, J.; Takeuchi, S.; Yonehara, H. Tetrahedron Lett, 1978, 19, 4411.
(6) Kang, H. J.; Ra, C. S.; Paquette, L. A. J. Am. Chem. Soc. 1991, 113, 9384-9385.
(7) Liu, Q.; Yue, G.; Wu, N.; Lin, G.; Li, Y.; Quan, J.; Li, Q.; Wang, G.; Yang, Z. Angew. Chem. 2012, 124, 12238-12242.
(8) Danishefsky, S.; Hirama, M.; Gombatz, K.; Harayama, T.; Berman, E.; Schuda, P. F. J. Am. Chem. Soc. 1979, 101, 7020.
(9) (a) Yadav, J. S.; Somaiah, R.; Ravindar, K.; Chandraiah, L.; Tetrahedron Lett. 2008, 49, 2848-2850.
(b) Han, L.; Razdan, R. K. Tetrahedron Lett. 1998, 39, 771-774.
(10) (a) Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136-6137. (b) Michaelson, R. C.; Palermo, R. E.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 1990-1992. (c) Lempers, H. E. B.; Garcia, A. R. I.; Sheldon, R. A. J. Org. Chem. 1998, 63, 1408-1413.
(11) Trost, B. M.; Terry, J. F. J. Am. Chem. Soc. 1973, 95, 292-294.
(12) (a) Humphrey, J. M.; Aggen, J. B.; Chamberlin, A. R. J. Am. Chem. Soc. 1996, 118, 11759-11770.
(b) Park, J.; Tian, G. R.; Kim, D. H. J. Org. Chem. 2001, 66, 3696-3703.
(13) (a) Yang, Z.; Lorenz, J. C.; Shi, Y. Tetrahedron Lett. 1998, 39, 8621-8624. (b) Charette, A. B.; Beauchemin, A.; Francoeur, S. J. Am. Chem. Soc. 2001, 123, 8139-8140.
(14) Yasuyuki, K.; Junko, F.; Yusuke, O.; Hiromichi, F. J. Org. Chem. 2003, 68, 5917-5924.
(15) Gemal, A. L.; Luche, J. L.; J. Am. Chem. Soc. 1981, 103, 5454-5459.
(16) (a) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769-3772; (b) Jung, M. E.; D’Amico, D. C.; J. Am. Chem. Soc. 1995, 117, 7379-7388; (c) Organ, M. G.; Bratovanov, S. Tetrahedron Lett. 2000, 41, 6945-6949; (d) Matsumura, R.; Suzuki, T.; Hagiwara, H.; Hoshi, T.; Ando, M. Tetrahedron Lett. 2001, 42, 1543-1546; (e) Saitoh, T.; Suzuki, T.; Sugimoto, M, Hagiwara, H.; Hoshi, T. Tetrahedron Lett. 2003, 44, 3175-3178; (f) Uemura, T.; Suzuki, T.; Onodera, N.; Hagiwara, H.; Hoshi, T. Tetrahedron Lett. 2007, 48, 715-719; (g) Sugimoto, M.; Suzuki, T.; Hagiwara, H.; Hoshi, T. Tetrahedron Lett. 2007, 48, 1109-1112.
(17) Jasperse, C. P.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 5601-5609.
(18) (a) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412-8413;
(b) Kumazaki, H.; Nakajima, R.; Bassho, Y.; Yokoshima, S.; Fukuyama, T. Synlett. 2015, 26, 2131-2134; (c) Hayakawa, I.; Niida, K.; Kigoshi, H. Chem. Commun. 2015, 51, 11568-11571.
(19) (a) Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 1899, 32, 3625-3633; (b) Matsutani, H.; Ichikawa, S.; Hiyama, T. J. Am. Chem. Soc. 1997, 119, 4541.
(20) Schreiber, J.; Maag, H.; Hashimoto, N.; Escenmoser, A. Angew. Chem. Int. Ed. 1971, 10, 330-331.
(21) Schlosser, M.; Jenny, T.; Guggisberg, Y. Synlett. 1990, 704.
(22) Kang, H. J.; Ra, C. S.; Paquette, L. A. J. Am. Chem. Soc. 1992, 114, 7387.
(23) Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 20, 399-402.
(24) Bowden, K.; Heillbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39-45.
(25) Corey, E. J.; William Suggs, J. Tetrahedron Lett. 1975, 16, 2647-2650.
(26) Bal, B. S.; Childers Jr, W. E.; Pinnick, H. W. Tetrahedron. 1981, 37, 2091-2096.

Chapter 4

Application
 to
 Optically Active Compound

4-1 : Introduction

Among triquinane group, the angular type which has unique structure composed of three cyclopentane rings around one carbon is abundant in nature. For example, pentalenene, isocomene, pentalenolactones have a common angular triquinane framework (Figure 1). And many scientists have considered this type as attractive ring structure consisting of significant interests and promising bioactivity. Therefore, a lot of investigations have been done by many scientists. In the result, various synthetic methods have been explored until now. However, there are few procedures to construct angular triquinane framework as optical active material. In association with this problem, our laboratory has accomplished total synthesis of pentalenolactone F in the past several years (Chapter 1~3). And I considered that application of Sharpless asymmetric epoxidation method ${ }^{1)}$ would resolve that problem.

Figure 1

Pentalenolactone F

Pentalenene

Pentalenolactone G

Isocomene

Pentalenolactone H

4-2 : Synthetic Study as the Optically Active Form

In our laboratory, Sharpless asymmetric epoxidation of 1 was attempted (Scheme 1). As a result, five-membered ether 4 was accompanied as a side product arising from nucleophilic attack of an oxygen atom of MPM ether to the epoxide. Because of this side-reaction, this epoxidation step was low yield. In order to resolve this problem, I planned to replace MPM to Bz group. The electron-withdrawing Bz group would decrease electron density of oxygen atom and expect to prevent the formation of five-membered ether. The asymmetric epoxide formation would make it possible to construct the angular triquinane framework as an optically active form.

Scheme 1

In reference to the synthetic procedure of pentalenolactone F (Chapter 3), application of Sharpless asymmetric epoxidation was examined (Scheme 2). One of the two hydroxyl group of $\mathbf{5}$ was protected with Bz group to give 6 in high yield. And another one was converted to chlorine, and subsequently essential carbon chain for synthesis of cyclization precursor was extended by coupling with 2-propyn-1-ol (7) ${ }^{2)}$ to give $\mathbf{8}$. Hydrogenation of $\mathbf{8}$ with Lindlar catalyst provided cis-allyl alcohol $\mathbf{9}$ and then regio and stereoselective epoxidation of 9 was achieved under Sharpless asymmetric conditions to give $\mathbf{1 0}$ in high chemical and optical yields. After protection of $\mathbf{1 0}$ with BnBr and $\mathrm{Ag}_{2} \mathrm{O}$, removal of Bz group followed by chlorination afforded common intermediate 12. Synthetic sample $\mathbf{1 2}$ exhibited identical spectroscopic data (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR) with those of the allyl chloride obtained in Chapter 3.

Scheme 2

2-methylene-1,3-propanediol (5)
6

1) $\mathrm{MsCl}, n-\mathrm{Bu}_{4} \mathrm{NCl}$

8 $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 72 \%$

TBHP, Ti(Oi-Pr) 4
L-(+)-DET

10

1) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$
2) $\xrightarrow{\mathrm{MsCl}_{2}, n-\mathrm{Bu}_{4} \mathrm{NCl}}$

12

Experimental Section

General

IR spectra were recorded on a JASCO FT/IR-4200 spectrometer. Oily products were measured directly, solid products were diluted with chloroform and then measured. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained for solutions in dueteriochloroform with VARIAN 400 MHz and 700 MHz spectrometer with residual solvent as the internal standard. Mass spectral data were run on JEOL GC-mate. Optical rotation was measured on a HORIBA SEPA-200 spectrometer. Thin layer chromatography (TLC) was carried out on MERCK Silica gel $60 \mathrm{~F}_{254}$ plates employing n-hexane/ethyl acetate as the mobile phase. KANTO Silica gel $60 \mathrm{~N} 40-50 \mu \mathrm{~m}$ was employed for flash column chromatography. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium/benzophenone ketyl. Benzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, $\mathrm{CH}_{3} \mathrm{CN}$, 2,6-lutidine, and TEA were distilled from CaH_{2}. Commercialized $\mathrm{MeOH}, \mathrm{EtOH}, \mathrm{DMSO}$ and DMF were used as reaction solvent. Simple distillation was carried out about ethyl acetate and n-hexane.

4-2 : Experimental Section

Benzoate 6

6

To a stirred solution of 2-Methylene-1,3-propanediol $5(311.2 \mathrm{mg}, 3.532 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{ml})$, $\mathrm{PhC}\left(\mathrm{OCH}_{3}\right)_{3}(1.9 \mathrm{ml}, 10.60 \mathrm{mmol})$, and then PPTS $\left(1.2 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.9 \mathrm{ml}, 0.3532 \mathrm{mmol}\right)$ were added at room temperature under nitrogen atmosphere and subsequently stirred for 2 h . TLC analysis showed complete disappearance of 5 and then $\mathrm{H}_{2} \mathrm{O}$ was added. After being stirred for $1 \mathrm{~h}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ was added to reaction mixture to remove $\mathrm{H}_{2} \mathrm{O}$ and then concentrated. The residual oil was purified by column chromatography on silica gel (40 g , ethyl acetate/hexanes $=1: 2$) to give benzoate $6(659.1 \mathrm{mg}, 3.431$ mmol) as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3423,3090,3064,3034,2991,2933,2875$, $1720,1660,1601,1452,1271,1114,1025,711 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06$ (br-d, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (br-dd, $J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (br-dd, $J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.31$ (s, 1H), 5.29 (s, $1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.5,143.4,133.2,129.9,129.7$, 128.4, 114.5, 65.1, 63.8. HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}, 192.0787$; found 192.0785.

Allyl Chloride 13

To a stirred solution of benzoate $6(659.1 \mathrm{mg}, 3.431 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{ml})$, TEA $(1.4 \mathrm{ml}$, $10.29 \mathrm{mmol}), n-\mathrm{Bu}{ }_{4} \mathrm{NCl}(1.91 \mathrm{~g}, 6.862 \mathrm{mmol})$ and then $\mathrm{MsCl}(0.4 \mathrm{ml}, 5.147 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was warmed to room temperature. After being stirred for 2 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (40 g , ethyl acetate/hexanes $=1: 15$) to give allyl chloride 13 ($685.7 \mathrm{mg}, 3.255 \mathrm{mmol}$) as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3089$, 3063, 3033, 2997, 2957, 2881, 1724, 1451, 1271, 1111, 1026, 934, $710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=8.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H})$, $5.38(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.0,139.9,133.2,129.8$, 129.6, 128.4, 118.1, 64.6, 45.1. HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{2}, 210.0448$; found 210.0447.

Alkynyl Alcohol 8

To a stirred solution of allyl chloride $13(282.8 \mathrm{mg}, 1.342 \mathrm{mmol})$ in degassed DMF (13 ml), crushed $\mathrm{K}_{2} \mathrm{CO}_{3}(278.2 \mathrm{mg}, 2.013 \mathrm{mmol}), n-\mathrm{Bu}{ }_{4} \mathrm{NCl}(37.3 \mathrm{mg}, 0.1342 \mathrm{mmol}), \mathrm{CuI}(26.9 \mathrm{mg}, 0.1342$ $\mathrm{mmol})$ and then 2-propyn-1-ol ($242 \mu \mathrm{l}, 4.026 \mathrm{mmol}$) at room temperature under nitrogen atmosphere. The mixture was stirred for 3 h at $50{ }^{\circ} \mathrm{C}$. TLC analysis showed incomplete disappearance of $\mathbf{1 3}$ and additional $\mathrm{K}_{2} \mathrm{CO}_{3}(278.2 \mathrm{mg}, 2.013 \mathrm{mmol})$ was added three times, and stirred for 3.5 h in total. The reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The heterogeneous mixture was filtered through a celite pad with ethyl acetate. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (25 g , ethyl acetate/hexanes $=1: 3$) to give alkynyl alcohol $\mathbf{8}(205.6 \mathrm{mg}$, 0.8929 mmol) as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3415,3301,3090,3068,3034,2991$, 2932, 2874, 2291, 2223, 1720, 1452, 1274, 1113, $1025712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 8.06 (br-d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (br-dd, $J=7.6,7.6, \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (br-dd, $J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 5.34 (s, $1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.2$,
138.7, 133.1, 129.9, 129.6, 128.4, 115.1, 82.1, 81.3, 66.6, 51.3, 23.6. HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$, 230.0943; found 230.0948 .

Allyl Alcohol 9

To a stirred solution of alkynyl alcohol $8(357.9 \mathrm{mg}, 1.554 \mathrm{mmol})$ in ethyl acetate (16 ml), quinolone ($33 \mu \mathrm{l}, 10 \mathrm{Wt} \%$) and Lindlar cat. $(17.9 \mathrm{mg}, 5 \mathrm{Wt} \%)$ were added and then purged with hydrogen. After being stirred for 1 h under a balloon of hydrogen, TLC analysis showed incomplete disappearance of $\mathbf{8}$ and additional Lindlar cat. ($17.9 \mathrm{mg}, 5 \mathrm{Wt} \%$) six times, and stirred for 17 h in total. The heterogeneous mixture was filtered through a celite pad with ethyl acetate and concentrated. After being diluted with ethyl acetate, the organic layer was extracted and washed with 0.5 N HCl , aq. NaHCO_{3} and then brine. Then organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residual oil was purified by column chromatography on silica gel (25 g , ethyl acetate/hexanes $=1: 5$) to give allyl alcohol 9 ($340 \mathrm{mg}, 1.464 \mathrm{mmol}$) as a yellow oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3403,3089,3070$, 3019, 2929, 2877, 1720, 1654, 1601, 1452, 1315, 1274, 1113, 1026, $711 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.08-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{dtt}, J=10.9,6.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.62(\mathrm{dtt}, J=10.9,7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H})$, 4.20 (dd, $J=6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.94 (br-d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.3$, $142.3,133.1,130.8,130.0,129.6,128.7,128.4,114.0,67.0,58.3,31.4$. HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$, 232.1100; found 232.1099.

Epoxide 10

To a stirred solution of L-(+)-DET ($351 \mu \mathrm{l}, 2.050 \mathrm{mmol}$) and crushed 4A-MS (512.5 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml}), \mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(515 \mu \mathrm{l}, 1.757 \mathrm{mmol})$ was added at $-20{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred for 20 min , TBHP (2.6 M in isooctane, $1.1 \mathrm{ml}, 2.928 \mathrm{mmol}$) was added to a mixture at $-20{ }^{\circ} \mathrm{C}$ and then stirred for 20 min . allyl alcohol $9\left(0.25 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.0 \mathrm{ml}, 1.464 \mathrm{mmol}\right)$ was added to a mixture and stirred for 27 h . After that, the reaction was quenched by addition of aq.Rochell's salt
and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography two times on silica gel (25 g , ethyl acetate/hexanes $=1: 1$) to give epoxide $10(295.7 \mathrm{mg}, 1.191 \mathrm{mmol})$ as a colorless oil. Analytical data: IR (KBr): $\mathrm{v}^{\sim}=3428,3089,3065,2986,2931,2884,1721,1655,1601,1452$, $1315,1274,1113,1026,712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.08-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{br}-\mathrm{s}, 2 \mathrm{H}), 3.87$ (br-dd, J $=12.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=12.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{br}-\mathrm{dd}, J=15.9,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{br}-\mathrm{dd}, J=15.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.2,140.3,133.2,129.9$, $129.6,128.5,115.1,67.3,60.5,56.3,55.4,31.9$. HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}, 248.1049$; found 248.1055. $\quad[\alpha]_{\mathrm{D}}{ }^{24}-26.0\left(\mathrm{c}=0.05, \mathrm{CHCl}_{3}\right)$.

Benzyl Ether 11

To a stirred solution of epoxide $10(28.3 \mathrm{mg}, 0.1140 \mathrm{mmol})$ in toluene $(1 \mathrm{ml}), \mathrm{Ag}_{2} \mathrm{O}(63.4 \mathrm{mg}$, $0.2736 \mathrm{mmol})$ and then $\operatorname{BnBr}(27 \mu \mathrm{l}, 0.2280 \mathrm{mmol})$ were added at room temperature under nitrogen and blocked out light atmosphere. The mixture was stirred for 3 h . TLC analysis showed incomplete disappearance of $\mathbf{1 0}$ and additional $\mathrm{Ag}_{2} \mathrm{O}(15.9 \mathrm{mg}, 0.06840 \mathrm{mmol})$ and $\mathrm{BnBr}(7 \mu \mathrm{l}, 0.05700 \mathrm{mmol})$ were added and stirred for 1 h . The heterogeneous mixture was filtered through a celite pad with ethyl acetate and concentrated. The residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate/hexanes $=1: 4)$ to give benzyl ether $\mathbf{1 1}(28.7 \mathrm{mg}, 0.08467 \mathrm{mmol})$ as a colorless oil. Analytical data: $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\sim}=3087,3063,3031,2988,2925,2861,1720,1655,1452,1271,1110,712$, $700 \mathrm{~cm}^{-1} . \quad{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{br}-\mathrm{s}, 2 \mathrm{H})$, $4.61(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=11.1$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (ddd, $J=6.2,4.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{td}, J=6.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{br}-\mathrm{d}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (700 MHz, CDCl_{3}): $\delta=166.1,140.2,137.7,133.1,130.0,129.6,128.4,128.4,127.8$, $127.8,114.9,73.4,68.0,67.3,55.0,54.5,32.0$. HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}, 322.1569$; found 322.1571 . $[\alpha]_{\mathrm{D}}{ }^{23}+8.0\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right)$.

Allyl Chloride 12

To a stirred solution of benzyl ether $11(23.7 \mathrm{mg}, 0.07004 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{MeOH}(1 \mathrm{ml}$, 5:1), crushed $\mathrm{K}_{2} \mathrm{CO}_{3}(48.4 \mathrm{mg}, 0.3502 \mathrm{mmol})$ was added at room temperature under nitrogen atmosphere. After being stirred for 7 h , the reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate $/$ hexanes $=1: 1$) to give alcohol 14 .

To a stirred solution of alcohol $\mathbf{1 4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, TEA ($39 \mu \mathrm{l}, 0.2800 \mathrm{mmol}$), n - $\mathrm{Bu}_{4} \mathrm{NCl}(39.7$ $\mathrm{mg}, 0.1400 \mathrm{mmol})$ and then $\mathrm{MsCl}(11 \mu \mathrm{l}, 0.1400 \mathrm{mmol})$ were added at room temperature under nitrogen atmosphere. After being stirred for 3 h , the reaction was quenched by addition of aq. NaHCO_{3} and then diluted with ethyl acetate. The organic layer was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residual oil was purified by column chromatography on silica gel (15 g , ethyl acetate $/$ hexanes $=1: 5)$ to give allyl chloride $12(13.5 \mathrm{mg}, 0.05341 \mathrm{mmol})$ as a colorless oil. Analytical data: $[\alpha]_{D}^{25}+20.3\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right)$.

Reference

(1) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5976-5978; (b) Saitoh, T.; Suzuki, T.; Sugimoto, M.; Hagiwara, H.; Hoshi, T. Tetrahedron Lett. 2003, 44, 3175-3178.
(2) (a) Yadav, J. S.; Somaiah, R.; Ravindar, K.; Chandraiah, L.; Tetrahedron Lett. 2008, 49, 2848-2850.
(b) Han, L.; Razdan, R. K. Tetrahedron Lett. 1998, 39, 771-774.

Acknowledgment

I would like to express my sincere thanks to Professor Toshio Suzuki for his invaluable advice, guidance and engineering discussion throughout the course of this research and the preparation of this manuscript. I would also like to thank Professor Hisahiro Hagiwara for his many helpful discussions and suggestions and continuing encouragement during this work, and the preparation of this manuscript.

Spectral Data

釉渴大学 珧学部

$\begin{array}{llllllllllll}00 & 1500 & 1400 & 1300 & 1200 & 1100 & 1000 & 900 & 800 & 700 & 600 & 500 \\ \text { Wavenumber }[\mathrm{cm}-1]\end{array}$
Wavenumber [cm-1]

漫大学 理学部

新滑大复 理军部

| | 1500 | 1400 | 1300 | 1200 | 1100 | 1000 | 900 | 800 | 700 | 600 | 500 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}4000 & 3000 & 3200 & 2800 & 2400 & 2000 & 1900 & 1800 & 1700\end{array}$

膰渴大学 喠学部

渴大学 理学部

 $\begin{array}{llllllllllll}0 & 1500 & 1400 & 1300 & 1200 & 1100 & 1000 & 900 & 800 & 700 & 600 & 500 \\ \text { Wavenumber [cm-1] }\end{array}$ $\begin{array}{llllllllll}4000 & 3600 & 3200 & 2800 & 2400 & 2000 & 1900 & 1800 & 1700 & 160\end{array}$

䧆渴大学 理学部

 $\begin{array}{lllllllllll}0 & 1500 & 1400 & 1300 & 1200 & 1100 & 1000 & 900 & 800 & 700 & 600 \\ \text { Wavenumber [cm-1] }\end{array}$

新渦大学 理罕部

湤大学 理学部

渴大学 理学部

䄬温大复 輯军部

細大学 輯军部

为

柇温大学 理军部

| $10 \%-1$ |
| :--- | :--- | :--- |

縎大学 輯军部

細大学 輯军部

斯渴大学 理学部

 $\begin{array}{llllllllllll}0 & 1500 & 1400 & 1300 & 1200 & 1100 & 1000 & 900 & 800 & 700 & 600 & 500 \\ \text { Wavenumber }[\mathrm{cm}-1]\end{array}$

䄬温大学 唯军部

湤大学 理学部

(20)

0	1500	1400	1300	1200	1100	1000	900	800	700	600
500	400									
Wavenumber [cm-1]										

0022

	1500	1400	1300	1200	1100	1000	900	800	700	600	500

为

(20

(2000

 $\begin{array}{lllllllllll}00 & 1500 & 1400 & 1300 & 1200 & 1100 & 1000 & 900 & 800 & 700 & 600 \\ 500 & 400 \\ \text { Wavenumber [cm-1] }\end{array}$

細大学 輯军部

 Wavenumber［cm－1］

析渴大空 理学部

細大学 輯军部

斯滑大学 輯学部

斯渢大罙 理学部

䑯渦大学 理学部

舺湡大要 理学部

船湡大学 理学部

娦渦大空 唓军部

