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Abstract

This thesis deals with the application of multiple directional transforms to
image restoration, and discusses two cases of image restoration, image denois-
ing and image fusion.

In Chapter 1, the background of image restoration is described. First, im-
age denoising problems are addressed. Image denoising is a principal problem
of image processing and the purpose is to obtain an original picture as an ideal
one. For photon acquisition systems, low-light image denoising is becoming
in use in optical imaging applications such as astronomical imaging, fluores-
cence microscopy appliances, magnetic resonance imaging. In this case, the
noises are strongly dependent on the signals and approximately obeys Pois-
son distribution, which leads difficulties in denoising process. The denoising
problem for Poisson noise can be modeled by a modular fashion through vari-
ance stabilization. Using the variance stabilization, denoising techniques for
additive Gaussian noises become available for Poisson denoising. This chapter
summarizes some of such existing methods.

Next, image fusion problems are dealt with. Image fusion is a technique to
synthesize a full focused picture, in which all the contents are focused, from a
set of partially focused images with different focal lengths. At present, there
are several types of image fusion techniques. Those include spatial domain,
feature space and transform domain techniques. In the spatial domain and
feature space approaches, the synthesis performance heavily depends on the
adopted segmentation algorithm, and they prone to fail fusion at object edges,
while the transform domain approach is influenced by the adopted transform.
In order to improve the quality of fused image, some disadvantages of existing
methods are discussed in this chapter.

This chapter mentions the possibility of improving the performance of
Poisson denoising and image fusion from viewpoints different form existing
researches.

In Chapter 2, from comparison with Discrete Cosine Transform (DCT) and
Discrete Wavelet Transform (DWT), the features of directional lapped orthog-
onal transforms (DirLOTs) are discussed and emphasized For preparation of
Chapter 3 and later, explanations on DirLOTs are given through some figures
and expressions. Based on the relationship between directivity of DirLOT and
slant edge and texture of image, the possibility of the performance improve-
ment of image restoration is described.

In Chapter 3, a Poisson denoising method is proposed. Various discrete
wavelet transforms have been used for Poisson image denoising. However, the
transforms have disadvantages such as shift variance, aliasing, and lack of di-
rectional selectivity. PURE-LET is known as an efficient Poisson denoising
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technique. However, PURE-LET has a disadvantage of representing slant geo-
metric structures. As another method, there is a technique to convert Poisson
noise to additive Gaussian noise so that typical Gaussian denoising technique
becomes available. Among many Gaussian denoising methods, the SURE-
LET approach is known to be relatively efficient. SURE-LET is a kind of
soft-thresholding method that uses a relation among inter-scale coefficients of
an orthonormal wavelets. Its performance, however, depends on the adopted
wavelets. Classical separable transforms bring poor representation of slant
edges and textures. In order to solve this problem, this section proposes to
combine the variance stabilizing transformation (VST), SURE-LET approach
and multiple DirLOTs (M-DirLOTs). Experimental results show that the pro-
posed method is able to significantly improve the denoising performance.

In Chapter 4, an image fusion method is proposed. Image fusion is a scheme
to improve the quality of information from multiple images. This chapter
deals with an image fusion technique in wavelet transform domain. Some
wavelet-based algorithms were developed. For more effective representation
of image, we use multiple directional transforms to fuse images. M-DirLOTs
can overcome a disadvantage of traditional separable wavelets for representing
slant textures and edges of images. This work analyses characteristics of local
luminance contrast and suggests a novel fusion rule based on inter-scale relation
of wavelet coefficients. Relying on the above consideration, a novel image
fusion method based on inter-scale relation in M-DirLOTs domain is proposed.
Some experimental results show that the proposed method improves the fusion
performance.

In Chapter 5, conclusions of this thesis and future works are summarized.

Index Terms− Poisson noise, Multiple directional transform, Image fusion,
Luminance contrast, Interscale relation

4



Acknowledgements

Acknowledgements My deepest gratitude goes first and foremost to ad-
visory professors Dr. Shogo Muramatsu, for his constant encouragement and
guidance. He has walked me through all the stages of the writing of this thesis.
He has given me lots of useful advices on my writing, and has tried his best to
improve this thesis. Second, I would like to express my heartfelt gratitude to
Professors Dr. Hisakazu Kikuchi, Dr. Shigenobu Sasaki, Dr. Masahiro Yukawa
and Dr. Masanobu Yamamoto, who have instructed and helped me a lot in
the past three years. Without their consistent and illuminating instructions,
this thesis could not have reached its present form.

I would like to acknowledge the support from JSPS KAKENHI Grant Num-
ber 26420347, and from the other members of the KLab. Although there have
appeared no names here, I thank to all individuals in Department of Electrical
and Information Engineering and Graduate School of Science and Technology,
Niigata University.

Last but not the least, my thanks would go to my beloved family for their
loving considerations and great confidence in me all through these years. I
also owe my sincere gratitude to my friends who gave me their help and time
in listening to me and helping me work out my problems during the difficult
course of the thesis.

July, 2015
Zhiyu Chen

5



1 Introduction

In a time of Information Revolution, we receive and exchange information
all the time. High quality display images are becoming in use in consumer
appliances, e.g., astronomical imaging, fluorescence microscopy appliances, and
medical instruments. An image acquisition system should take a photo which
has enough definition for detecting and analysing objects even under inferior
conditions. For that reason, image restoration such as denoising, deblurring,
super-resolution, inpainting and enhancement are applied in image processing
applications. In order to solve these problems, we proposes to apply multiple
DirLOTs (M-DirLOTs) to image restoration. In this thesis, we deal with image
denoising and image fusion.

1.1 Poisson Image Denoising

Image denoising is one of basic problems in image processing. The purpose
is to make the quality of noisy image better. Measurement noise is possible
to occur in digital image acquisition, where the predominant source is the
stochastic nature of the photon-counting process at the detectors [1], [2]. Un-
der some conditions such as low-power light source, short exposure time, and
phototoxicity appeared in the photon acquisition systems (e.g., fluorescence
microscopy, astronomy and medical devices), only a few photons are collected
by the photosensors, producing noise that approximately obeys Poisson dis-
tribution. Poisson noise strongly depends on signals, leading to difficulties in
the denoising process. During the image denoising, the noise corrupted by the
source mentioned above can be modeled as Poisson noise [3], [4], [5].

The denoising problem for Poisson noise can be modeled by a modular
fashion through variance stabilization [6], [7]. The variance of Gaussian noise
is stationary, whereas the variance of Poisson noise is non-stationary. It is pos-
sible to describe the denoising process as follows: First, to modify the noisy
data, a nonlinear variance stabilizing transformation (VST) is applied. Second,
to treat the modified noisy data, algorithms designed for removing Gaussian
noise is applied. Third, to obtain the desired estimation of the unknown noise-
free image, an inverse VST is applied to the denoised data. Fig.1.1 shows the

Figure 1.1: Poisson denoising method based on VST.
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Poisson denoising method based on VST, where b, v, û and x̂ are image con-
taminated by the Poisson noise, transformed data, denoised data and inverted
image, respectively.

In the first step, since the image is corrupted by the signal-dependent noise
whose variance varies with the expectation of the pixel value, the VST should
be applied so that the transformed data of Poisson noise can be approximately
modeled by the Gaussian noise distribution with a constant variance [5], [6], [7].
It becomes possible to apply a denoising process for Gaussian noise algorithms
to Poisson denoising.

Among Gaussian denoising methods, the SURE-LET approach with an or-
thonormal wavelet transform is relatively efficient [8]. The SURE-LET is a
one-pass denoising algorithm and involves only simple thresholding operations
in wavelet domain. However, its performance becomes worse for the regions
where the interscale correlation is weak. Furthermore, diagonal textures, edges
and gradation are inadequately represented with separable transforms (e.g.,
Haar and Symlets). As well, some Poisson denoising methods have been de-
veloped so far. A denoising algorithm designed for Poisson noise based on
a Haar-Fize transform has been proposed in [4]. The Haar-Fize transform
cannot satisfy directional characteristics. Zhang et al. proposed a hybrid ap-
proach that combines VSTs, hypothesis testing, l1-penalized restoration and
advanced redundant multiscale representations [9]. In [2], minimizing MSE es-
timation for Poisson noise based on an unnormalized Haar wavelet transform,
so called PURE-LET, was proposed. PURE-LET is very efficient in terms of
denoising performance and computational complexity. PURE-LET exploits a
linear denoising function to search the optimal solution. However, the adopted
wavelet transform has a disadvantage of representing diagonal geometric struc-
tures. At present, block-matching and 3D filtering (BM3D), which is based on
sparse 3D transform-domain collaborative filtering, is frequently referenced as
the state-of-the-art [10]. The BM3D can achieve an excellent denoising result.
The computation, however, is relatively complex and the one-pass thresholding
implementation is principly impossible.

1.2 Multi-focus Image Fusion

As known, the focused range of visible imaging system is limited. Thus, it
is difficult to obtain all objects in the same scene clearly. A well-focused image
has clearer detail than a defocused image comparatively. To acquire a focused
image is a basic task for human perception and machine vision. Image fusion
is a scheme to improve the quality of information from a set of images. The
image fusion is the process of combining relevant information from multiple
images into a single image. The fused image will be more informative than
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Figure 1.2: Image fusion framework based on DWT.

any of the original images. More reliable and accurate information can be
provided by the image fusion with multi-sensor data. Multiple images which
are captured at different focus levels are used to reconstruct a single image in
the approach proposed in the article [11]. It is basically realized by combining
well-focused clear parts of multiple source images. Image fusion of multiple
images will increase the image quality.

At present, there are mainly two approaches in multi-focused image fusion.
One approach selects pixels from all clear parts of source images in the spatial
domain or feature space to produce a fused image. However this approach
causes blocking effect, which has great influence on the quality of fused image.
Moreover, this approach hardly depends on the adopted segmentation algo-
rithm, making the choice serious. For instance, if an object in a source image
is partially clear and blur, an object will be extracted from the source image
with the blur part when the whole of the object needs to be considered in the
segmentation algorithm [12], [13].

The other approach achieves the fusion from coefficients of multi-scale
transform under a premise that the detailed information of image is dis-
tributed in high frequency subbands. It is known that Discrete Cosine Trans-
form (DCT), Discrete Wavelet Transform (DWT), Dual-Tree Complex Wavelet
Transform (DT-CWT), Curvelet and Contourlet can be used as the transform
[14]. A framework of an image fusion system is shown in Fig.1.2 [15]. The
inherent feature of the wavelet transform provides the following advantages:

1. Perfect restoration property which ensures no information loss in the sig-
nal decomposition process.
2. Decomposition of an image into the approximation and detail image,

which represents the different structure of the original image.
3. The decomposition tiling of the 2-D DWT matches to the human visual

system.
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In [14], wavelet multi-resolution decomposition has been applied to coefficient-
level image fusion. Based on this method, a shift-invariant wavelet was men-
tioned to improve the fusion quality [15]. Some wavelet-based algorithms were
developed in the articles [16] and [17]. However, the wavelet transform has
characteristics in limited directions. A new construction, sharp frequency lo-
calization Contourlet transform (SFLCT), was suggested in [18]. In some
studies, the authors indicate the method can alleviate the problem of non-
localization. However, it causes pseudo-Gibbs phenomena easily. In order to
overcome these disadvantages, Cycle Spinning was proposed [19]. Some multi-
focus image fusion methods based on non-subsampled contourlet transform
(NSCT) have been proposed [20], [21]. NSCT can lead to better frequency
selectivity and regularity, but the computational complexity is high. Based on
non-subsampled shearlet transform (NSST), a multi-focus image fusion method
was proposed [22]. Although the image fusion performance for diagonal tex-
tures and edges was improved, there remains a disadvantage that the NSCT
and NSST cannot satisfy orthogonality, and the computational complexity is
still high. In [23], a fusion method based on DT-CWT was introduced.

1.3 Problem Statement

In practical applications, all kinds of wavelet transforms have been evolved
and shown the ability in representing natural images that contain smooth ar-
eas separated with edges. However, natural images consist of edges that are
smooth curves, which cannot be captured efficiently by these transforms. To
overcome some shortcomings of traditional transforms, the dual-tree complex
wavelet transform (DT-CWT) was proposed [24]. The 2-D DT-CWT have six
subbands that give information about the details of an image, where the an-
gles are set to ±15,±45,±75 degrees. Note that the DT-CWT has only fixed
directions for choice. Since the construction is based on real 1-D two-channel
filter banks, the design and implementation are not complicated. However,
the structure is restrictive. For example, the symmetric and orthogonal prop-
erty are not simultaneously satisfied. The curvelet is one of the successful
2-D transforms, which can efficiently approximate smooth curve edges [25].
There is a question how to construct a tight curvelet-like transform in dis-
crete domain. In [26], Do and Vetterli start with discrete-domain construc-
tion of filter banks for producing an alternative directional multiresolution
analysis framework (Contourlet transform). In order to solve pseudo-Gibbs
phenomena, NSCT was proposed [27]. However, these frameworks are also
restrictive to satisfy both of tightness and symmetry simultaneously. A non-
subsampled shearlet transform (NSST) was proposed [28]. NSST can capture

9



two-dimensional geometrical structure much more effectively than traditional
multi-scale transform. There remains a disadvantage that the NSST cannot
satisfy orthogonality, and the computational complexities are high.

In the above transforms, the orthogonality, symmetry, overlapping and di-
rectionality cannot be achieved at the same time. For more effective representa-
tion of image, we proposed a new transform, M-DirLOTs, using non-separable
and directional filter banks that can efficiently represent images containing
contours, textures and gradation with few coefficients [29]. M-DirLOTs are
not only with multi-scale, but also with multi-direction property. Compared
with the traditional transforms, M-DirLOTs can represent edges and other
singularities along trend surfaces much more efficiently. In order to improve
the image restoration performance, we apply M-DirLOTs to Poisson denoising
and image fusion.

1.4 Organization

This section shows the organization of this thesis. This thesis mainly con-
sists of two parts. The first part deals with the problem of the Poisson noise
removal. The other part discusses multi-focus image fusion. This disserta-
tion considers image denoising and image fusion. In this thesis, we propose to
apply a union of directional lapped orthogonal transforms (DirLOTs) to im-
age restoration problems. DirLOTs are 2-D non-separable lapped orthogonal
transforms with directional characteristics. Its bases overcome a disadvantage
of separable transforms and suitable for restoring slant textures and edges in
images. Based on this feature, multiple DirLOTs are first applied to con-
struct multi-scale representations and then unified to construct a redundant
dictionary so that the restoration performance is improved. Experimental re-
sults show that the unified dictionary of multiple multi-scale DirLOTs is able
to significantly improve the performance of image restoration. This thesis is
organized as follows:

Chapter 2: Multi-directional Transform

In Chapter 2, the multi-scale transform are reviewed. Their features are
described.

Chapter 3: Heuristic Poisson Denoising with M-DirLOTs

In Chapter 3, Heuristic Restoration will be introduced. Firstly, we anal-
yse the Poisson noise model with its important features and properties. The
process is difficult to Poisson denoising, since the noise strongly depend on sig-
nals. Meanwhile, the denoising results depend on wavelet transform. In order
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to improve the Poisson denoising result, we propose a method based on mul-
tiple directional transforms. The denoising results confirm that the approach
is very competitive to some state-of-the-art denoising methods. A classical
VST and state-of-the-art Gaussian denoising algorithm (SURE-LET) are in-
troduced. The combination of VST, SURE-LET and M-DirLOTs is proposed
to reduce Poisson noise. The denoising results confirm that the approach is
very competitive to some state-of-the-art denoising methods.

Chapter 4: Heuristic Image Fusion with M-DirLOTs

In Chapter 4, an image fusion framework with DWT. Image fusion is a
scheme to improve the quality of information from multiple images. For more
effective representation of image, we use multiple directional transforms to fuse
images. We investigate features of the local luminance contrast. An influential
review of the related work on imgae fusion is provided. A new measurement
based on interscale relation of wavelet coefficients is proposed to fuse image.
Several experimental results are presented. Common measurements apply to
evaluate the performance of denoising and fusion approaches. Several state-of-
the-art approaches are described and compared to each other in details. Both
objective and subjective image quality assessments are discussed.

Chapter 5: Conclusions and Future Work

In Chapter 5, some conclusions is summarized and potential future work is
shown.
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2 Multi-directional Transform

In this chapter, we detail the basic concepts of multi-directional transform.
The general purpose of most signal processing applications is to decompose
an original signal into a primitive or fundamental constituents, and to per-
form simple operations separately on each components, in order to accomplish
sophisticated operations via a combination of several divided operations. In
recent years, multi-directional transforms have been supplemented by many
new ideas. These alternatives aim to provide more useful ways for analyzing
and processing signals in different applications, but the classic methods still
act as a useful theoretical tool for evaluating the new one and still dominate
the discussion.

2.1 Discrete Cosine Transform

A discrete cosine transform(DCT) describes a sequence of finitely many
points in terms of a sum of cosine functions oscillating at different frequencies.
DCT is essential in numerous applications of science and engineering, because
it has a strong energy compaction property. After decorrelation the image data
with DCT, each transform coefficient can be encoded independently without
losing compression efficiency. And this reveals some of the vital characters of
DCT.

The most common DCT definition of a 1-D sequence of length M is

C(n) =
M−1∑
n=0

√
2

M
ckcos

k(n+ 1
2
)π

M
, k = 0, 1, ...,M − 1,

where ck is defined as

ck =

{ 1√
2

k = 0

1 k = 1, 2, ...,M − 1.

This makes DCT matrix orthogonal. The construction of 2-D DCT is based
on the definition of 1-D.

2.2 Discrete Wavelet Transform

The discrete wavelet transform(DWT) linear map data from the time do-
main to the wavelet domain. This decomposition is repeated to increase the
frequency resolution and the approximation coefficients decomposed by high
and low pass filters. It is represented as a binary tree with nodes representing
a sub-space with a different time-frequency localization. The tree is shown
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Figure 2.1: Three levels wavelet transform. x[n]: discrete signal of length n.
g[n]:low pass filter. h[n]:high pass filter. ↓ 2:downsampling filter.

Figure 2.2: Wavelet transform. (a) and (b) are decimated wavelet decomposi-
tion diagrams, where the one-level and two-level case are shown, respectively.

in Fig.2.1. At each level in the above diagram the signal is decomposed into
low-frequency and high-frequency.

The decomposition tiling of two-dimensional decimated wavelet transform
is shown in Fig.2.2. After the decomposition, LL, LH, HL and HH compo-
nents will be obtained. LL is the low frequency component of the image, and
retains the primary information. LH and HL include horizontal and vertical
edge information, respectively. HH contains diagonal information on the high
frequency components. The detail information of image is represented in the
HL, LH and HH subbands.

The wavelet transforms are relatively efficient for image restoration. How-
ever, its performance becomes worse for the regions which can generally be
overcome by separable transforms (e.g., Haar and Symlets). Nevertheless, the
representation of edges, textures, and gradual changing are inadequate with
these separable transforms. To address this problem, the non-separable or-
thonormal transform was proposed to be applied to the image restoration so
that its performance for textures and edges can be improved. However, this
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Figure 2.3: Lattice structure of a four channel analysis bank of DirLOT (for-
ward transform), where d(z) is defined as a 2-D delay chain of size 4×1, M is

the number of channels, symbols W0, U0 and U
{d}
nd are orthonormal matrices

with of size M/2×M/2, E0 is an M×M symmetric orthonormal transform di-
rectly given by 2-D DCT, z−1

x and z−1
y are shifts of coefficients in the horizontal

and vertical direction, respectively.

Table 2.1: Comparison of characteristics among transforms
Property DirLOT ISOWT (5/3,9/7) Haar DCT

DWT DWT

Orthogonality Yes Yes No Yes Yes
Symmetry Yes Yes Yes Yes Yes
Overlapping Yes Yes Yes No No
Directivity Yes No No No No

approach is only applicable to a fixed single geometric direction. In order
to overcome the problem, a redundant transform with multiple DirLOTs was
proposed so that the performance of image denoising can be improved [29].

2.3 Multiple Directional Transforms

In this section, we introduce a mixture of DirLOTs as a multi-directional
transform [29], [30]. The multiple DirLOTs provide multi-scale decomposi-
tion and multi-directional decomposition. We use multiple DirLOTs to image
restoration. It can take the features of images well and provide more informa-
tion.

2.3.1 2-D Directional LOT

DirLOTs are able to completely satisfy the following three properties: or-
thogonality, symmetry, and overlapping property with a non-separable basis.
This transform can be constructed with a lattice structure as shown in Fig.2.3.
In addition, it can also satisfy the properties of fixed-critically-subsampling,
real-valued, and compact-support. Furthermore, It can hold the trend van-
ishing moments (TVMs) for any direction. It is verified that the directional
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Figure 2.4: Examples of amplitude responses and bases of M-DirLOTs, where
[Ny, Nx]

T = [4, 4]T , i.e. the basis size is 10× 10.

property works well for diagonal textures and edges. Table 2.1 shows compar-
ison with other transforms.

The analysis polyphase matrix of order [Ny, Nx] can be represented by

E(z) =

Ny∏
ny=1

{R{y}
ny

Q(zy)} ·
Nx∏

nx=1

{R{x}
nx

Q(zx)} ·R0E0,

where

Q(zd) =
1

2

(
IM

2
IM

2

IM
2

−IM
2

)(
IM

2
0M

2

0M
2

z−1
d IM

2

)(
IM

2
IM

2

IM
2

−IM
2

)

R0 =

(
W0 0M

2

0M
2

U0

)
,R{d}

n =

(
IM

2
0M

2

0M
2

U
{d}
n

)
,

W0, U0 and U
{d}
nd are orthonormal matrices of size M/2 × M/2. The M is

the number of channels, i.e., M = |det M|. All of matrices W0, U0 and U
{d}
nd

can freely be controlled during the design process. E0 is an M ×M symmetric
orthonormal transform matrix given directly through the 2-D separable DCT.
I is identity matrix of size M/2×M/2.

2.3.2 Multiple Directional LOTs

A single DirLOT is not suitable for images with oblique texture and edges
in various directions. In order to express the geometric structures of image
better, we define a dictionary D by M-DirLOTs as

D = [ΨT
ϕ0

ΨT
ϕ1

ΨT
ϕ2

ΨT
ϕ3

...ΨT
ϕR−1

]T ,

whereΨϕ0 is a nondirectional isotropic symmetric orthonormal DWT (ISOWT)
with the classical two-order vanishing moments (VMs) [31], and Ψϕk

is a di-
rectional symmetric orthonormal wavelet transforms (DirSOWTs) constructed
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by DirLOTs with the two-order TVMs for the direction ϕi. Fig.2.4 shows ex-
amples of atomic images in dictionary D. R corresponds to the redundancy.
The column vectors in D construct a normalized tight frame and satisfy

DTD =
R−1∑
k=0

ΨT
ϕk
Ψϕk

= RI,

which makes the image process simple.

2.3.3 Parameters Setting

In this thesis, some experimental results will be obtained with MATLAB
R2014a implementation of our algorithm based on SaivDr Package. To pro-
mote the culture of reproducible research, the SaivDr Package can be accessed
at http://www.mathworks.com/matlabcentral/fileexchange/45084-saivdr-pack
age.

M-DirLOTs of polyphase order [Ny, Nx]
T = [4, 4]T were adopted. Since

the basis size of DirLOTs is Ly × Lx = 10 × 10, Symlet of index 5, Sym5,
was used as a reference of separable orthogonal DWT. The support size of the
Symlet of index 5 is identical to the adopted DirLOTs. In order to achieve
high-performance denoised image under relatively low redundancy. The TVM
angles ϕ1, ϕ2, ϕ3, ϕ4 were set to −π

6
, π
6
, 2π

6
and 4π

6
, respectively. Thus, the re-

dundancy results in R = 1 + 4 = 5. The numbers of hierarchical level of
M-DirLOTs were set to four.
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3 Heuristic Poisson Denoising with M-DirLOTs

In this chapter, we detail the process of image denoising with M-DirLOTs.
The heuristic shrinkage is applied.

3.1 Poisson Denoising based on VST

In this section, the Poisson noise , the SURE-LET, the Anscombe transform
and its inverse transform are reviewed.

3.1.1 Poisson Noise

Suppose x = {xi}, i = 0, ..., N − 1 is a noiseless image where N is the
number of pixels. We use boldface b to denote the image observed through
an image acquisition system. b consists of N independent Poisson random
variables bi depending on the underlying intensities xi with bi ∼ P (bi|xi). Each
variable bi can be considered as a Poisson random variable with the following
probability density function

P (bi|xi) = e−xi
xbi
i

bi!
,

where xi denotes the mean of bi, which equals to its variance σ2
i for Poisson

distribution. Therefore, the mean and the variance of the Poisson variable can
be represented by

E{bi|xi} = Var{bi|xi} = xi.

Poisson noise p = {pi} can be represented by

pi = bi − xi = bi − E{bi|xi}.

Thus, E{pi|xi} = 0 and Var{pi|xi} = xi.
Acquired b can be thought of as a noisy measurement of the intensity signal

x, where the noise is modeled as a Poisson noise.

3.1.2 Anscombe Transform

Because of the non-stability and the dependence on the underlying intensity
of its variance, any existing Gaussian denoising algorithms cannot be directly
applied to Poisson denoising model. Aiming at solving this problem, several
VST methods have been adopted [4], [6], [9]. Among them, the Anscombe
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Figure 3.1: Principle of orthonormal wavelet denoising

transform was chosen because of its extensive application, efficiency, and sim-
plicity [6]. The expression of the transform can be given by

vi = f(bi) = 2

√
bi +

3

8
,

where bi and vi denote the i-th pixel of the observed image contaminated by
Poisson noise and the transformed data, respectively.

After performing the Anscombe transform, the noise throughout the whole
image can be approximately modeled by Gaussian distributed. As a result, it
is possible to apply Gaussian denoising algorithms. Inverse transform of the
Anscombe transform is needed in order to return the variance-stabilized and
denoised data to the original range. The Anscombe transform results in bias
error, because it is a nonlinear forward transform. In order to minimize bias
error, various inverse transforms were proposed. In this thesis, a closed-form
approximation of this exact unbiased inverse

x̂i =
1

4
v̂2i +

1

4

√
3

2
v̂−1
i − 11

8
v̂−2
i +

5

8
v̂−3
i − 1

8

is adopted [10].

3.1.3 SURE-LET Approach

The pixel values that were observed by an image acquisition device can be
defined as b = (b0, b1, ...bN−1)

T , where N is the number of pixels, and (·)T is
the transpose operator. v = (v0, v1, ..., vN−1)

T is the transformed data. The
denoising problem of an image corrupted by Poisson noise is equivalent to
restoring the noise-free image u from the transformed picture v.

The picture v is considered to be corrupted with noise ω which is generally
modeled as an additive white Gaussian noise (AWGN) with zero mean. Let u
be the clean noiseless picture. Then, the transformed image v can be expressed
by

v = u+ ω.

18



This image denoising problem becomes to find a good candidate û of un-
known noiseless picture u only from the transformed picture v. Fig.3.1 shows
the principle of orthonormal wavelet denoising, where Ψ,Θ and ΨT are the for-
ward discrete wavelet transform (DWT), shrinkage function and inverse DWT,
respectively. The quality of image denoising is determined by the transform Ψ
and shrinkage function Θ.

The SURE-LET approach is a technique to realize the shrinkage function
Θ. During the implementation of SURE-LET, all of a priori hypotheses are
able to be avoided on the noiseless picture u under the AWGN assumption.
Then, the denoising problem is reformulated as the search for the denoising
process that minimizes the Stein’s unbiased risk estimate (SURE). In [8], the
point-wise thresholding

θ(y) =
K∑
k=1

akye
−(k−1) y2

2T2 ,

was proposed, where y is a wavelet coefficient. In this function, K = 2 and
T =

√
6σ were suggested [8]. Moreover, the following form of the shrinkage

function was proposed:

θ(y, yp; a, b) = e
−y2p

12σ2

K∑
k=1

akye
−(k−1) y2

12σ2 + (1− e
−y2p

12σ2 )
K∑
k=1

bkye
−(k−1) y2

12σ2 ,

where yp is an interscale prediction of y obtained from the wavelet parent-
child relationship. The parameters ak and bk are linearly solved for minimizing
SURE [32]. The parameters are determined by a solution of a system of linear
equations for minimizing SURE for each transform and each image. This
predictor tells us only an indication on its expected magnitude. Therefore,
the parent yp was used as a discriminator between high and low SNR wavelet
coefficients.

In this section, a heuristic shrinkage is adopted. The heuristic shrinkage
takes the average of the denoising results obtained by independent SURE-
LET denoising with Ψϕk

for k = 0, 1, · · ·, R− 1[33]. The heuristic shrinkage is
available and simply realized by

û =
1

R
DTΘ(Dv) =

1

R

R−1∑
k=0

ΨT
ϕk
Θ(Ψϕk

v).

Note that SURE-LET is realized by a one-pass manner, where any of itera-
tion, block-matching or direction/edge detection are not required, whereas the
algorithm reaches the performance of the art in image denoising.
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Figure 3.2: Poisson denoising results for “Lena”. (a) Original image. (b) Noisy
image (peak = 20): PSNR = 15.43 dB. (c), (d) and (e) are denoised results,
through Sym5 (PSNR = 25.60 dB), ISOWT (PSNR = 25.68 dB) and multiple
DirLOTs (PSNR = 26.23 dB), respectively.

Figure 3.3: Poisson denoising results for “Lena”. (a) Noisy image (peak =
30): PSNR = 17.15 dB. (b), (c), (d) and (e) are denoised results, through TV
(PSNR = 25.47 dB), ST-NLM (PSNR = 24.96 dB), PURE-LET (PSNR =
26.02 dB) and proposed method (PSNR = 26.94 dB), respectively.

3.2 Experimental Results

This section shows some experimental results of Poisson denoising in order
to verify the significance of multiple DirLOTs based on VST. The combination
of the SURE-LET approach as the shrinkage function and the M-DirLOTs as
the DWT is evaluated. In addition, the interscale shrinkage function was
adopted as in [8], where the parameter K was fixed to 2 and T =

√
6σ.

The variance was estimated by applying the robust median estimator to the
finest wavelet coefficients [34]. The results of Symlet of index 5 (Sym5), single
ISOWT and DT-CWT are also given as references.

3.2.1 Efficiencies of three transforms and four methods

Figs.3.2 and 3.3 show the first experimental results. In these experiments,
“Lena” of size 128×128 pixels was used, where the noise level were set to peak
= 20 and peak = 30, respectively. Peak intensity is varied by setting the
maximum intensity of the noise-free signal. From Fig.3.2, it is observed that
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Figure 3.4: Poisson denoising results when peak = 30 for “Coco”. (a) Original
image. (b), (c) and (d) are denoised results, through DT-CWT, multiple
DirLOTs (BiShrink) and proposed method, respectively.

Figure 3.5: Poisson denoising results when peak = 10 for “Boat”. (a) Original
image. (b), (c) and (d) are denoised results, through DT-CWT, multiple
DirLOTs (BiShrink) and proposed method, respectively.

multiple DirLOTs shows better performance for diagonal edges and gradual
changing (e.g., edge of hat and face) among four transforms. In Fig.3.3, we can
also see that the multiple DirLOTs shows better quality for edges and detail
informations (e.g., edge of hat, eye and plush) compared with the other three
methods.

3.2.2 Performances of DT-CWT and M-DirLOTs

In the second experiment, eight images “Coco”, “Boat”, “Baboon”, “Man”,
“Cameraman”, “Saturn”, “Peppers” and “Opthalmic”, were used, where the
sizes are all 256×256 pixels. “Cameraman” adopted here is a part of original
Cameraman of size 512×512. Peak signal-to-noise ratio (PSNR) and normal-
ized mean integrated squared error (NMISE) were used as performance metrics
for evaluating image restoration problem. The NMISE takes the noise variance
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Figure 3.6: Poisson denoising results when peak = 60 for “Baboon”. (a)
Original image. (b), (c) and (d) are denoised results, through DT-CWT,
multiple DirLOTs (BiShrink) and proposed method, respectively.

Figure 3.7: Poisson denoising results when peak = 5 for “Man”. (a) Original
image. (b), (c) and (d) are denoised results, through DT-CWT, multiple
DirLOTs (BiShrink) and proposed method, respectively.

of the Poisson process into account. In order to shrink the complex-valued co-
efficients of DT-CWT, locally adaptive Bivariate Shrinkage (BiShrink, [7×7])
was used [35].

Figs.3.4-3.7 show parts of the experimental results based on VST-BiShrink
and proposed method. Figs.3.8-3.11 show parts of the experimental results
based on VST and SURE-LET. It can be seen that the quality of denoising
image with the multiple DirLOTs is better than the results of Sym5, ISOWT
and DT-CWT. Figs.3.4-3.7 show that image denoising can be improved for
diagonal edges by multiple DirLOTs. Observing Fig.3.8, we see better quality
result for diagonal textures than the results of Sym5 and ISOWT. Fig.3.9
shows better performance for gradual changing and edges (e.g., central part).
Figs.3.10-3.11 show better denoising performance for gradual changing.

By contrast, it can be seen that the noise has been effectively reduced for
diagonal textures, edges and gradation. The multiple DirLOTs improved the
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Table 3.1: Comparison of PSNRs and NMISEs between two transforms among
three methods. BiShrink and Proposed denoted as B and P, respectively.

Peak
PSNR [dB] NMISE

5 10 20 30 60 120 5 10 20 30 60 120

Image Coco
DT-CWT(B) 24.73 26.49 28.68 29.70 31.73 33.74 0.04 0.05 0.06 0.08 0.09 0.12

M-DirLOTs(B) 25.57 27.19 29.12 30.18 31.89 33.73 0.04 0.05 0.06 0.07 0.09 0.11
M-DirLOTs(P) 25.63 27.21 29.22 30.28 31.96 33.80 0.04 0.05 0.06 0.07 0.09 0.11

Image Boat
DT-CWT(B) 21.93 23.03 24.57 25.47 27.18 28.85 0.08 0.12 0.17 0.20 0.26 0.34

M-DirLOTs(B) 22.44 23.54 25.22 26.12 27.67 29.47 0.08 0.11 0.14 0.17 0.23 0.30
M-DirLOTs(P) 22.55 23.66 25.33 26.22 27.73 29.45 0.07 0.11 0.14 0.17 0.23 0.30

Image Baboon
DT-CWT(B) 19.99 20.58 21.39 21.98 23.41 25.01 0.10 0.18 0.29 0.37 0.52 0.70

M-DirLOTs(B) 20.17 20.85 21.77 22.43 23.93 25.42 0.10 0.17 0.26 0.34 0.46 0.64
M-DirLOTs(P) 20.46 21.28 22.21 22.89 24.26 25.52 0.09 0.15 0.24 0.30 0.42 0.62

Image Man
DT-CWT(B) 21.79 23.03 24.24 25.13 26.63 28.42 0.08 0.12 0.17 0.21 0.29 0.38

M-DirLOTs(B) 22.07 23.44 24.82 25.83 27.45 29.19 0.07 0.11 0.15 0.18 0.24 0.32
M-DirLOTs(P) 22.36 23.68 25.09 25.98 27.58 29.26 0.07 0.10 0.14 0.17 0.23 0.31

denoising performance for natural images which contain rich amount of geo-
metrical structures. In Table 3.1, the multiple DirLOTs shows better quality
compared with the results of DT-CWT. Simultaneously, the proposed method
shows better results than the BiShrink ([7×7]) with multiple DirLOTs. The
denoising performances among three transforms for various noise levels are
compared in Table 3.2. In Table 3.2, we see that the proposed multiple Dir-
LOTs achieve the highest PSNRs and the smallest NMISEs for all the peak
values in the four images. The union of multiple DirLOTs shows the best
performance among the three transforms in the second experiment.
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Figure 3.8: Poisson denoising results for “Cameraman”. (a) Original image.
(b) Noisy image ( peak = 10 ). (c), (d) and (e) are denoised results, through
Sym5, ISOWT and multiple DirLOTs, respectively.

Figure 3.9: Poisson denoising results for “Saturn”. (a) Original image. (b)
Noisy image ( peak = 30 ). (c), (d) and (e) are denoised results, through
Sym5, ISOWT and multiple DirLOTs, respectively.
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Figure 3.10: Poisson denoising results for “Peppers”. (a) Original image. (b)
Noisy image ( peak = 20 ). (c), (d) and (e) are denoised results, through Sym5,
ISOWT and multiple DirLOTs, respectively.

Figure 3.11: Poisson denoising results for “Opthalmic”. (a) Original image.
(b) Noisy image ( peak = 10 ). (c), (d) and (e) are denoised results, through
Sym5, ISOWT and multiple DirLOTs, respectively.
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Table 3.2: Comparison of PSNRs and NMISEs among three transforms based
on VST and SURE-LET

Image Peak Noise
PSNR [dB] NMISE

Sym5 ISOWT M-DirLOTs Sym5 ISOWT M-DirLOTs

5 11.44 18.03 18.38 19.90 0.21 0.19 0.14
10 14.48 24.29 24.35 25.34 0.12 0.11 0.09

Camera- 20 17.48 27.96 28.14 28.79 0.11 0.11 0.09
man 30 19.21 29.36 29.49 30.22 0.12 0.12 0.10

60 22.23 31.38 31.43 32.32 0.15 0.15 0.12
120 25.23 33.53 33.66 34.31 0.18 0.18 0.15
5 12.67 14.12 13.75 14.12 0.41 0.41 0.36
10 15.48 19.16 19.49 20.70 0.30 0.29 0.22

Saturn 20 18.57 25.71 25.92 26.69 0.19 0.19 0.15
30 20.26 29.07 29.24 30.18 0.15 0.14 0.12
60 23.36 33.50 33.53 34.03 0.15 0.14 0.13
120 26.32 35.34 35.38 35.94 0.21 0.21 0.19
5 10.12 22.16 22.06 22.53 0.07 0.08 0.07
10 13.18 23.95 23.85 24.38 0.10 0.10 0.09

Peppers 20 16.15 25.94 25.92 26.53 0.12 0.13 0.11
30 17.92 26.85 26.80 27.46 0.15 0.15 0.13
60 20.93 28.67 28.61 29.22 0.19 0.20 0.17
120 23.94 30.53 30.46 30.96 0.24 0.25 0.23
5 11.79 20.28 20.65 22.06 0.14 0.12 0.09
10 14.71 24.97 25.08 26.24 0.09 0.08 0.06

Opthalmic 20 17.73 28.77 28.71 28.96 0.07 0.07 0.07
30 19.50 29.59 29.52 29.86 0.09 0.09 0.08
60 22.49 31.35 31.31 31.50 0.12 0.12 0.12
120 25.52 32.85 32.80 33.03 0.17 0.17 0.16
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Table 3.3: Comparison of average computation times for Lena (256×256) and
Cameraman (512× 512)

Image TV ST-NLM PURE-LET Proposed

Lena 43.45 s 69.50 s 0.37 s 0.96 s
Cameraman 280.61 s 349.04 s 1.52 s 3.04 s

3.2.3 Comparison with State-of-the-art Methods

In the third experiment, “House”, “Brain”, “Barbara” and “Lena”, were
used, where the sizes are all 256×256 pixels. The TV, ST-NLM, PURE-LET
algorithm were used as references, where three algorithms were implemented
using MATLAB programs provided by their authors [36], [37], [38]. The TV
method is the usual total variation regularization [39]. The ST-NLM (stabi-
lized version of NL means) method adopted the Non-Local means (NL means)
filter based on VST [40], [41]. The redundancy of adopted transform in PURE-
LET was set to five [2].

Figs.3.12-3.15 show the experimental results among four method for vari-
ous peak intensities. It can be seen that the quality for detail informations,
diagonal textures and edges (e.g., housetop) of denoising image with the mul-
tiple DirLOTs is better than the results of the other methods in Fig.3.12. In
Fig.3.13, we can see that the proposed method shows better quality for edges,
detail informations and gradual changing. Figs.3.14-3.15 show better denois-
ing performance for detail informations and edges. For PSNRs in Table 3.4,
we can see that the proposed method achieve the highest PSNR for all the four
images. It can be seen from Table 3.4 that the proposed method achieve small-
est NMISEs for all the peak values in the four images among the four method.
We also compared computation times among the four methods in Table 3.3.
The computation times have been averaged over 10 noise realizations. In the
case of Lena of size 256×256, the computation time of the proposed method
is about 2.2% and 1.4% of TV and ST-NLM, respectively. In the case of
Cameraman of size 512×512, it is about 1.1% and 0.9%. For these two cases,
computation times are the same order of that of the PURE-LET.

The experimental results imply that the multiple DirLOTs are not only
able to reproduce the diagonal structure appropriately, but also generate fairly
good results. By introducing directional decomposition into the transform, can
efficiently obtain diagonal components present in natural images.
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Figure 3.12: Poisson denoising results for “House”. (a) Original image. (b)
Noisy image ( peak = 5 ). (c), (d), (e) and (f) are denoised results, through
TV, ST-NLM, PURE-LET and proposed method, respectively.

Figure 3.13: Poisson denoising results for “Brain”. (a) Original image. (b)
Noisy image ( peak = 10 ). (c), (d), (e) and (f) are denoised results, through
TV, ST-NLM, PURE-LET and proposed method, respectively.
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Figure 3.14: Poisson denoising results for “Barbara”. (a) Original image. (b)
Noisy image ( peak = 30 ). (c), (d), (e) and (f) are denoised results, through
TV, ST-NLM, PURE-LET and proposed method, respectively.

Figure 3.15: Poisson denoising results for “Lena”. (a) Original image. (b)
Noisy image ( peak = 60 ). (c), (d), (e) and (f) are denoised results, through
TV, ST-NLM, PURE-LET and proposed method, respectively.
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Table 3.4: Comparison of PSNRs and NMISEs among four methods for various
peak intensities

Peak
PSNR [dB] NMISE

5 10 20 30 60 120 5 10 20 30 60 120

Image House
TV 15.78 22.83 26.24 26.77 27.74 12.91 0.26 0.11 0.09 0.11 0.18 10.74

ST-NLM 20.28 22.77 24.96 26.09 28.85 31.61 0.07 0.09 0.11 0.13 0.15 0.17
PURE-LET 23.92 25.43 27.12 27.79 29.72 31.55 0.04 0.06 0.08 0.10 0.13 0.16
Proposed 24.41 25.95 27.57 28.45 30.31 31.92 0.03 0.05 0.07 0.08 0.11 0.15

Image Brain
TV 15.66 23.04 26.64 27.23 27.83 28.18 0.27 0.11 0.10 0.14 0.26 0.49

ST-NLM 21.30 23.60 25.23 26.12 27.95 30.17 0.10 0.12 0.15 0.18 0.22 0.25
PURE-LET 23.99 25.56 27.17 27.99 29.72 31.53 0.08 0.10 0.12 0.14 0.17 0.20
Proposed 24.67 26.04 27.73 28.58 30.49 32.23 0.06 0.07 0.08 0.10 0.12 0.16

Image Barbara
TV 15.24 19.86 21.41 21.56 21.72 14.21 0.33 0.25 0.34 0.49 0.96 8.29

ST-NLM 18.79 20.31 21.97 23.02 25.32 27.97 0.13 0.19 0.27 0.32 0.38 0.41
PURE-LET 20.74 21.79 23.00 24.06 25.69 27.85 0.10 0.16 0.23 0.27 0.35 0.41
Proposed 20.82 22.01 23.28 24.19 26.09 27.99 0.10 0.14 0.21 0.26 0.32 0.41

Image Lena
TV [39] 16.12 21.46 24.65 25.27 25.91 26.21 0.34 0.24 0.23 0.29 0.51 1.01

ST-NLM [41] 19.45 22.04 24.36 25.64 27.98 30.46 0.15 0.18 0.23 0.26 0.32 0.35
PURE-LET [2] 22.96 24.18 25.64 26.57 28.55 30.36 0.11 0.15 0.21 0.24 0.28 0.35

Proposed 23.00 24.48 26.24 27.26 29.08 30.88 0.09 0.12 0.16 0.18 0.24 0.31

3.3 Summary

The SURE-LET approach for Poisson denoising was reviewed as an or-
thonormal wavelet-based denoising technique. There was a disadvantage that
the representation of diagonal geometric structures is relatively insufficient by
using traditional separable transform. Therefore, we proposed to adopt the
multiple DirLOTs in order to improve the SURE-LET approach and applied
it to removing Poisson noise by introducing VST. Experimental results show
that the combination of the VST, SURE-LET, and multiple DirLOTs signif-
icantly improved the denoising performance, and their effectiveness has been
verified.
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4 Heuristic Image Fusion with M-DirLOTs

In this section, let us review an image fusion technique based on DWT,
and specify the fusion rule.

4.1 Fusion framework based on DWT

The decomposition tiling of two-dimensional wavelet transform is shown
in Fig.2.2. After the decomposition, LL, LH, HL and HH components will be
obtained. LL is the low frequency component of the image, and retains the
primary information. LH and HL include horizontal and vertical edge infor-
mation, respectively. HH contains diagonal information on the high frequency
components. The detail information of image is represented in the HL, LH
and HH subbands.

A framework of an image fusion system based on one-level DWT is illus-
trated in Fig.1.2. Although fusion of two images is illustrated, the fusion of
multiple images can also be achieved by analogy. In Fig.1.2, A and B are two
original images, and F is a fused image. The basic steps of the procedure are
as follows:

1. DWT decomposition is applied to every image to analyze the subband
coefficients. LLℓ, LHℓ, HLℓ and HHℓ are approximation information, hori-
zontal edge information, vertical edge information and diagonal information,
respectively, where ℓ denotes the decomposition level.
2. Each subband is fused independently. Different fusion algorithms can be

used to process individual subband.
3. The inverse DWT is applied to generate a fused image.

Figure 4.1: Coefficient-based and region-based approaches.
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In detail, there are two types of fusion rules for fusing the subbands; the
coefficient-based and region-based approaches. In Fig.4.1, the coefficient-based
and region-based approaches are shown. In the coefficient-based fusion, the
wavelet coefficients are fused by selecting the either value on corresponding
position or taking weighted coefficient of two coefficients. For the region-based
fusion, the wavelet coefficients in local windows are fused. A new pixel value
will be a center value of window A if fusing parameters of window A is greater
than one of the corresponding window B. In this thesis, the coefficient-based
approach is discussed.

Considering characteristics of wavelet coefficients, an image fusion rule (de-
noted as Θ) and forward DWT (denoted as Ψ) are chosen. The above fusion
algorithm is compactly expressed by

xF = Ψ−1cF = Ψ−1Θ(ΨxA,ΨxB),

where xA, xB and xF are vector representations of input image A, input image
B and fused image F, respectively. cF is the vector representation of the
fused coefficients. The fusion rule Θ usually takes the average value, standard
deviation, energy, etc.

4.1.1 Combination of Approximation Subband

Let cLA and cLB be approximation wavelet coefficients of ΨxA and ΨxB,
respectively, and cLF is an approximation coefficient of cF . A classical fusion
rule uses average values for low-frequency coefficients [43]. The relationship
among the approximation coefficients is represented by

cLF = ΘL(cA, cB) =
1

2
(cLA + cLB).

4.1.2 Combination of Detail Subbands

Image information about salient features of a given picture, such as edges
appears as wavelet coefficients of large absolute values. Thus, it is convenient
to extract suitable absolute values of the corresponding wavelet coefficients.
Many distinctive focus measurements measure the variation of coefficients.
Coefficients with properer values of these measurements, when multiple origi-
nal images are compared, are considered from clear parts and selected as the
coefficients of the fused image. Compared among many measurements, the
sum-modified-Laplacian (SML) is a good measurement for detail subbands[44].
Let cHA , c

H
B and cHF be the detail wavelet coefficients (i.e. LHℓ, HLℓ and HHℓ)
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of ΨxA, ΨxB and cF , respectively. The SML is defined as follows:

SMLH,ℓ,k(i, j) =
W∑

r=−W

L∑
c=−L

[MLH,ℓ,k(i+ r, j + c)],

where MLH,ℓ,k is modified Laplacian. The parameters W and L set the window
size (2W + 1) × (2L + 1), which are used to compute the SMLH,ℓ,k. If we set
the size of the window to 3× 3, then the MLH,ℓ,k is defined by

MLH,ℓ,k(i, j)= |2cH,ℓ,k(i, j)−cH,ℓ,k(i−δ, j)−cH,ℓ,k(i+δ, j)|
+|2cH,ℓ,k(i, j)−cH,ℓ,k(i, j−δ)−cH,ℓ,k(i, j+δ)|,

where cH,ℓ,k(i, j) denotes the coefficient located at (i, j) in the ℓ-th decomposi-
tion level and k-th subband. Symbol δ is a spacing variable between coefficients
to compute ML and often set to 1.

Considering the human visual contrast (e.g., sensitivity to local contrast
change, edges, and directional features), the local luminance contrast was de-
veloped [45]. SML based on visual contrast (VC) is given by

VCH,ℓ,k
SML (i, j) =


SMLH,ℓ,k(i, j)

(c̄L,ℓ(i, j))1+α
, if c̄L,ℓ(i, j) ̸= 0

SMLH,ℓ,k(i, j), otherwise

, (1)

where c̄L,ℓ(i, j) is the mean coefficient of approximation subband of the cor-
responding detail subband at the position (i, j) centered of the window for
the same scale. α is a visual constant, which is set by perceptual experiment,
ranging from 0.6 to 0.7 [46].

The detail subband of the fused image denoted as cH,ℓ,k
F (i, j) is given by

where VCHA,ℓ,k
SML (i, j) and VCHB ,ℓ,k

SML (i, j) are VCH,ℓ,k
SML of detail subbands of the

corresponding image A and B at location (i, j), respectively.

4.1.3 Focused Region Detection

In [21], an identification method of the focused region based on classical
fusion rule was introduced. The detection of focused regions can be presented
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as following steps:

1. Apply DWT to source images (A and B). The lowpass subband and the
highpass subbands coefficients are fused. The inverse DWT is applied to get
an initial fused image.
2. Calculate the RMSE (root mean square error) of each pixel within a local

area between the source images and the initial fused image.
3. Compare the value RMSEA(i, j) and RMSEB(i, j) to determine logical

matrix Z (binary image), where ‘1’ in Z indicates the pixel at position (i, j) in
image A is fused (RMSEA(i, j) ≤ RMSEB(i, j)) and ‘0’ indicates the pixel in
B is fused.
4. Morphological opening (Z ◦B) and closing (Z •B) with small structural

element are used to optimize Z (thin connections, thin protrusions, narrow
breaks, fill long thin gulfs). Meanwhile, a threshold Tth is set to remove the
holes smaller than the threshold. The structural element B is a 4×4 matrix
with logical 1’s and Tth is set according to the experimental results. The
resulting logical matrix denoted as Z′. Morphological operations are again
performed to smooth object contours [47].
5. The final image F is constructed by the map Z′.

4.1.4 Proposed Fusion Rule

In [45], the local luminance contrast can be understood as contrast of high-
frequency component and low-frequency component in wavelet domain. It is
defined as

C =
L′ − LB

LB

=
△L

LB

,

where L′ and LB are local gray level and local brightness of the background,
respectively. LB and △L correspond to low-frequency component and high-
frequency component, respectively. The traditional contrast measurement
(e.g., VCSML) was based on this feature. In Eq.(1), the low-frequency com-
ponents at the same scale were used to calculate VCSML of detail subbands.
However, the performance is weak since low-pass subband at the same scale
contains some high-frequency components.

In order to improve the characteristics of VC, we suggest to adopt piece-
wise constant low-frequency information. We propose to build an interscale
predictor of the same size as LLℓ from the deepest low-pass scale through
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Figure 4.2: (a) Subband tile of maximally decimated orthogonal wavelet trans-
form. (b) Example of interscale relation.

nearest neighbor interpolation. We define interscale VC (IVCSML) as

IVCH,ℓ,k
SML (i, j) =


SMLH,ℓ,k(i, j)

(c̄L,ℓp (i, j))1+α
, if c̄L,ℓp (i, j) ̸= 0

SMLH,ℓ,k(i, j), otherwise

,

where c̄L,ℓp is the mean coefficient of predictor coefficient at the position (i, j)
centered of the window for the same scale. α is a visual constant ranging
from 0.6 to 0.7. SMLH,ℓ,k denotes SML in the ℓ-th decomposition level and
k-th high-frequency subband. Fig.4.2 show the subband tile of maximally
decimated orthogonal wavelet transform and the interscale relation between
low-frequency subband and interscale predictor.

For the purpose of better performance, the highpass subbands coefficients
are merged by the IVC maximum choosing scheme discussed in Section 4.1.2.
The fused detail coefficients denoted as cH,ℓ,k

F (i, j) is given by

After focused regions detection, the fused image is obtained. Unfortunately,
the fused image may contain many erroneous results at the edge of the focused
regions. In addition, our proposed method selects the fusion pixels of the
focused border regions from the Z . Therefore, we construct the final map Z′
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Table 4.1: Adopted transforms and the features
Abrv. Features R

UDHT
Undecimated Haar wavelet

decomposition level is set to two
7

NSCT
Nonsubsampled contourlet
[22, 23, 23, 24] directions

36

NSST
Nonsubsampled shearlet
[23, 23, 24, 24] directions

49

M-DirLOTs
Polyphase order [Ny, Nx]

T = [4, 4]T Classical

VM+TVM w directions [−π
6 ,

π
6 ,

2π
6 , 4π

6 ]
5

as

Z′(i, j) =


1, if s(i, j) = mn

0, if s(i, j) = 0

Z(i, j), if 0 < s(i, j) < mn

,

where s(i, j) is sum of Z′ at the (i, j) within m× n window. 0 < s(i, j) < mn
means the position (i, j) is on the boundary of focused region.

The proposed method adopts IVC and final map to improve the quality of
fused image (selects clear coefficients from wavelet coefficients of source images)
and to build up the performance of image edge detection. In this section, a
heuristic approach is adopted to take the average of the fused results, which
obtained by independent fusion with Ψϕk

for k = 0, 1, · · ·, R−1. Our proposed
heuristic fusion is simply realized by

xF =
1

R
DTcF =

1

R

R−1∑
k=0

ΨT
ϕk
Θ(Ψϕk

xA,Ψϕk
xB).

4.2 Experimental Results

Through some experiments, we confirm effectiveness of the image fusion
method based on M-DirLOTs and IVC.

4.2.1 Performances of Four Transforms

For image fusion in transform domain, there is a problem in the choice
of the optimal transform basis for signal representation. Hereon, we use a
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Figure 4.3: Test images of size 256 × 256, 8-bit grayscale and the artificially
generated blurred images with different focus levels. (a) Barbara, (b) Peppers,
(c) House, (d) Lena.

classical fusion rule (averages low-frequency coefficients and selects absolute
maximum of high-frequency coefficients) to evaluate the effect of some existing
transforms. Table 4.1 summarizes four transforms and their features. Fig.4.3
shows test images and in the comparison experiment of fusion performance of
four transforms which are conducted using artificially generated images with
different focus levels. “Barbara,” “Peppers,” “House” and “Lena,” were used,
and the sizes of them were all 256 × 256 pixels.

Fig.4.4 shows the magnified regions of “Peppers” and “Lena”. Fig.4.5 and
Fig.4.6 show some partial results. We can see that M-DirLOTs show better
quality for edges, detail informations and gradual changing from figures. The
fusion performances were summarized in Table 4.2. Table 4.2 shows that the
proposed M-DirLOTs achieved the highest PSNR for all the four images at
different focus levels. It can be seen from Table 4.2 that that the proposed M-
DirLOTs achieved the highest SSIM (structural similarity), which illustrated
that the M-DirLOTs worked well for diagonal edges and textures [42]. As
expected, experiments demonstrate that M-DirLOTs outperform other trans-
forms in the same fusion rule.

4.2.2 Comparison of Performances between VC and IVC

We use the above mentioned method to evaluate the effect of IVC. “Pepsi”
(512×512), “Disk” (480×640) and “Lab” (480×640) were used. Fig.4.7 shows
multi-focus source images. Mutual information (MI) andQAB/F as information
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Figure 4.4: Magnified regions of “Peppers” and “Lena”. (a) group and (b)
group are fused images, where UDHT, NSCT, NSST and M-DirLOTs, respec-
tively.

Figure 4.5: Results for “Barbara”. (a) ,(b), (c) and (d) are the difference
images between fusd result and Fig.4.3(a1), where UDHT, NSCT, NSST and
M-DirLOTs, respectively.

Figure 4.6: Results for “House”. (a) ,(b), (c) and (d) are the difference im-
ages between fusd result and Fig.4.3(c1), where UDHT, NSCT, NSST and
M-DirLOTs, respectively.
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Table 4.2: Comparison of PSNRs [dB] and SSIMs among four transforms
PSNR SSIM

Image Barbara Peppers House Lena Barbara Peppers House Lena

UDHT 47.97 42.63 45.11 43.43 0.9977 0.9949 0.9980 0.9964
NSCT 47.50 44.22 48.46 44.51 0.9987 0.9973 0.9986 0.9978
NSST 46.62 42.87 47.87 43.88 0.9986 0.9977 0.9986 0.9978

M-DirLOTs 55.13 45.63 54.38 49.99 0.9995 0.9985 0.9996 0.9992

Table 4.3: Comparison of MI and QAB/F between VC and IVC without focused
regions detection

Image
MI QAB/F

Pepsi Disk Lab Pepsi Disk Lab

VC 6.9702 6.2194 7.3573 0.7733 0.6865 0.7319
IVC 6.9764 6.2282 7.3566 0.7737 0.6979 0.7328

Figure 4.7: Multi-focus source images.

measures for evaluating image fusion performance were used. MI represents
how much of the information in the fused image was obtained from the input
images [48]. QAB/F uses Sobel edge detection to measure how much edge
information in the fused image can be obtained from the source images [49].
Table 4.3 compares the performances between VC and IVC. It can be seen
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that the IVC can achieve highest MI and QAB/F except the case that the MI
of “Lab”.

4.2.3 Comparison of MI and QAB/F among Four Methods

In this experiment, Li’s[21], Yong’s[23] and Liu’s[13] method were used as
references. Four decomposition levels, with 4, 8, 8, 16, directions from coarser
scale to finer scale, are used in the Li’s method. The numbers of hierarchical
level of DT-CWT was set to 3. Figs.4.8-4.10 show the experimental results. It
can be seen that the quality of fused image edges with the proposed method is
better than the results of Li’s, Yong’s and Liu’s method. Table 4.4 compares
the MI performances and QAB/F metric among four methods. We can see that
the proposed method outperforms the other methods.

The experimental results imply that M-DirLOTs are not only able to repro-
duce the structure appropriately, but also generate good results. By introduc-
ing directional decomposition into the transform, M-DirLOTs can efficiently
obtain diagonal components present in natural images.

4.3 Summary

Wavelet-based image fusion methods for multi-focus images were reviewed.
It was pointed out that the representation of geometric structures is relatively
insufficient by using traditional separable transform. In order to solve this
problem, M-DirLOTs was introduced to improve the image fusion quality for
edges and textures. Meanwhile, IVC was applied to further the fusion per-
formance. Experimental results show the imageing fused performance was
improved, and their effectiveness has been verified.

Table 4.4: Comparison of MI and QAB/F among four methods

Image
MI QAB/F

Pepsi Disk Lab Pepsi Disk Lab

Li’s method[21] 8.7862 8.0970 8.6365 0.7916 0.7310 0.7555
Yong’s method[23] 8.7141 8.1987 8.4971 0.7851 0.7339 0.7553
Liu’s method[13] 8.6289 8.2165 8.5201 0.7885 0.7364 0.7585

Proposed 8.8728 8.2712 8.7877 0.7939 0.7375 0.7588
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Figure 4.8: The ‘Pepsi’ fused images of different methods. (a)-(d) are the
difference images between fused images and Fig.4.7(a1), where Li’s method,
Yong’s method, Liu’s method and proposed method, respectively.

Figure 4.9: The ‘Disk’ fused images of different methods. (a)-(d) are the
difference images between fused images and Fig.4.7(b1), where Li’s method,
Yong’s method, Liu’s method and proposed method, respectively.

Figure 4.10: The ‘Lab’ fused images of different methods. (a)-(d) are the
difference images between fused images and Fig.4.7(c1), where Li’s method,
Yong’s method, Liu’s method and proposed method, respectively.
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5 Conclusions

5.1 Contributions

In this thesis, our aim is to improve the performances for image denoising
and image fusion. The traditional multi-scale transforms, DCT, Haar, Symlet,
DT-CWT, Curvelet, NSCT and NSST are used for the application of image
restoration.

It is pointed that the traditional transforms have some disadvantages of
representing geometric structures and memory consumption, and there are de-
ficiencies worth mentioning. For traditional separable transforms, they cannot
represent slant textures and edges for various directions. For traditional non-
separable transforms, they have high computational complexities. Therefore,
we have proposed a non-separable directional lapped orthogonal transforms to
solve these problems. It has been verified through some experiments that this
transform has improved the image representation.

The experimental results suggest that proposed approachs are promising
alternative for image restoration. Although our methods are based on maxi-
mally decimated directional transform, they output results that are compara-
ble to translation-invariant and undecimated approaches. Simultaneously, our
algorithms reduce computational complexity and smaller memory requirement
than undecimated transform models. Based on these features, our methods
can be applied to obtain high-quality photographs under poor imaging con-
ditions (low-power light source, short exposure time, phototoxicity and signal
focus system) in the photon acquisition applications.

The summarizations of each chapters are as follows:

Chapter 2

In Chapter 2, the features of DirLOTs were introduced. From comparison
with the traditional transforms, how to choose the transform of the proposed
method was explained. The parameters of the M-DirLOTs were determined.

Chapter 3

In Chapter 3, in order to fully improve the quality of image restoration,
the state-of-the-art methods are considered in this work. The multi-resolution
and multi-directional wavelets are employed in each decomposition level. The
SURE-LET approach for Gaussian noise was reviewed as an orthonormal
wavelet-based denoising technique. And it can overcome the disadvantage
that the representation of diagonal geometric structures is relatively insuffi-
cient by using traditional separable transform. Therefore, the classical VST
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and one-pass manner SURE-LET are combined to significantly improve the
Poisson denoising performance. It was demonstrated experimentally that the
proposed Poisson denoising method outperforms some state-of-the-art Poisson
denoising algorithms. At the same time, the computational efficiency has been
improved significantly too.

Chapter 4

In Chapter 4, the image fusion presented in this thesis is related to the
local luminance contrast. In traditional applications, some traditional wavelet
transforms have been evolved. But these transforms cannot efficient capture di-
agonal geometric structures of natural images. Simultaneously, the traditional
multiple directional transforms (e.g., NSCT and NSST) cannot satisfy orthog-
onality, and the computational complexities and redundancy are high. For
more effective representation of image, we used a new transform (M-DirLOTs)
of representations using non-separable and directional filter banks that can
efficiently represent images containing contours, textures and gradation with
few coefficients. The local luminance contrast was applied to improve the fu-
sion quality in traditional methods. The local brightness of the background
without degradation is needed under the definition of local luminance contrast.
Or equivalently, the low-frequency information is more exactly, the authentic
local luminance contrast is better. To get the deep low-frequency information,
the interscale correlation of wavelet coefficients was used. Therefore, IVC was
proposed to fuse high-frequency information. A large number of experiments
verify that proposed method can compete and outperform the state-of-the-art
fusion methods.

5.2 Open Problems

There remain some problems for the proposed method. In future work, we
optimize dictionary for image representation. We can take the geometric struc-
tures of images well and reduce memory utilization using the optimized dictio-
nary. Based on the optimized dictionary, the perfermance of image restoration
will be further improved. For example, high resolution image Poisson denoing,
multi-focus color image fusion and multi-exposure color image fusion. Let us
summarize them as open problems.

5.2.1 Dictionary Optimization

From the research in this thesis, we can conclude that some properties of
wavelet coefficients are very critical for improving the results of image restora-
tion, which are sparsity, directivity and flexibility.

43



Sparsity is a description closely related to image compression. In this
thesis, we have shown that wavelets can represent image sparsity for various
nature images. The image sparse representation means wavelet transform has
found the intrinsic structure in the input images. In other words, that means
the transform can help with better restoration. For our future work, we have
to take into consideration the sparsity.

Directivity is provided by M-DirLOTs. It matches the human visual
system, which overcomes the traditional multi-scale transforms. In this thesis,
heuristic operation was adopted for image denoising and fusion. However, this
approach leads to the loss of some details and the oversmoothness, and the
multi-directional properties are not used effectively. Therefore, the choice of
the optimal coefficients for signal representation will be concerned.

Flexibility means that M-DirLOTs can be applied in different situations
(e.g., denoising, deblurring, super-resolution, inpainting and fusion). In order
to improve quality of image restoration in different situations, the choice of
the TVM angles need to be considered.

5.2.2 Extensive Application

Mixed Poisson−Gaussian Noise In Chapter 3, an efficient Poisson
denoising algorithm was proposed. Recently, high resolution displays are be-
coming in use in practical appliances, e.g. 8K TV, and medical implements.
Consider also an image acquisition system. The system should take a photo
which has enough resolution for detecting and analysing objects under inferior
conditions. Considering the influence of photon collection, the Poisson noise
appear in the photon acquisition system. At the same time, Gaussian noise
is possible to occur in an image obtained by digital image acquisition, where
the intrinsic thermal and electronic fluctuations of the acquisition devices.
The noise corrupted by the two sources mentioned above can be modeled as
Poisson-Gaussian noise, where the Poisson component accounts for the signal-
dependent uncertainty inherent to photon accumulation, and the Gaussian
component accounts for the other signal-independent noise sources, such as
thermal noise. A problem lies in estimating the underlying intensity of Pois-
son noise, potentially further degraded by Gaussian noise.

AdaptiveWeightMap Fusion In Chapter 4, one approach based on
IVC (averages low-frequency coefficients and selects the either value on cor-
responding position with maximum of IVC coefficients) was applied. Recent
years, the weight construction is proposed to combine pixel saliency and spatial
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context for image fusion. In order to obtain pixel saliency and spatial consis-
tency of fused image, the weight map construction need to be considered.

Color Image Restoration In Chapter 3 and Chapter 4, grayscale im-
age restoration approachs were introduced. In a real-world situation, nature
images are color. For color image denoising, the psychology of color image
perception of human need to be considered. Meanwhile, the multi-focus color
image fusion and multi-exposure color image fusion is suitable for human and
machine perception or further processing. From these backgrounds, image
restoration is demanded in a lot of image and video processing applications.
In the future, by further taking the inadequacies of the proposed method such
as the color image, we plan to develop more effective fusion rule to overcome
the limitations discussed above. Simultaneously, how to improve the effective-
ness of the proposed method by adaptively choosing the parameters of the
proposed method can be further researched.
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