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Introduction

The study on Banach space geometry provides many fundamental notions and interest-

ing aspects, and sometimes has surprising results. The basic geometric properties such

as uniform convexity, strict convexity, uniform smoothness, smoothness and uniform

non-squareness have made great contributions to various fields of Banach space theory.

Strict convexity of Banach spaces was first introduced in 1936 by Clarkson [17] (and

independently by Akhiezer and Krein [3]) as the property that the unit sphere contains

no nontrivial line segments, that is, 1 − ‖2−1(x + y)‖ > 0 whenever ‖x‖ = ‖y‖ = 1.

Clarkson [17] made use of these values to define the “uniform” version of strict convexity.

A Banach space X is said to be uniformly convex if δX(ε) > 0 for each 0 < ε ≤ 2,

where δX(ε) = inf{1 − ‖2−1(x + y)‖ : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε}. The

value δX(ε) is called the modulus of convexity of X, and can be viewed as a measure

of how “convex” the unit ball is. In other words, the modulus of convexity provides a

quantification of the geometric structure of the space from the viewpoint of convexity.

A situation similar to this also occurs in smoothness. A Banach space X is said to be

smooth if each unit vector has a unique norm one support functional. In fact, this is

equivalent to the statement that the norm is Gateaux differentiable, which happens if

and only if limt→0+((‖x+ ty‖+ ‖x− ty‖)/2− 1)/t = 0 whenever x, y ∈ X and ‖x‖ = 1.

This allows us to quantify the geometric structure of the space from the viewpoint of

smoothness, namely, the modulus of smoothness of a Banach space X is defined by

ρX(t) = sup{(‖x + ty‖ + ‖x − ty‖)/2 − 1 : x, y ∈ X, ‖x‖ = ‖y‖ = 1} for each t ≥ 0.

Then X is said to be uniformly smooth if limt→0+ ρX(t)/t = 0. An advantage of these

quantifications is that the complete duality between uniform convexity and uniform

smoothness can be easily deduced by the well-known Lindenstrauss formulas, that is,

a Banach space X is uniformly convex if and only if its dual space X∗ is uniformly

smooth. The same statement still holds if X is replaced with X∗. Thus quantifying

geometric structures might lead better results. Note that the same duality does not hold

between strict convexity and smoothness in general, though one of those two properties
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of X∗ implies the other of X.

There are some other ideas to quantify geometric structures of Banach spaces. In

1935, Jordan and von Neumann [36] proved that the norm on a vector spaceX is induced

by an inner product if and only if it satisfies the parallelogram law ‖x+y‖2+‖x−y‖2 =

2(‖x‖2 + ‖y‖2) for each x, y ∈ X. From this result, Clarkson [18] introduced in 1937

the von Neumann-Jordan constant CNJ(X) of a Banach space X as a measure of how

“close” to Hilbert spaces. Namely, the constant CNJ(X) is defined to be the smallest

positive number C such that

1

C
≤ ‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
≤ C

for each x, y ∈ X. Another equivalent formulation of CNJ(X) is

CNJ(X) = sup

{
‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, (x, y) 6= (0, 0)

}
.

It is known that 1 ≤ CNJ(C) ≤ 2, and that CNJ(X) < 2 if and only if X is uniformly

non-square (cf. [47, 77]). Needless to say, CNJ(X) = 1 means that X is a Hilbert space.

It was also pointed out in [47] that CNJ(X∗) = CNJ(X). Moreover, Kato, Maligranda

and Takahashi [39] showed connection between von Neumann-Jordan constants and

the fixed point property of Banach spaces. On this background, the von Neumann-

Jordan constants were recognized to be one of the most important geometric constants

of Banach spaces. However, until 2000’s, there are few examples of Banach spaces that

the von Neumann-Jordan constants are precisely determined; see, for example, [47, 77].

In response to this, Saito, Kato and Takahashi made use of absolute normalized norms

on C2 in their 2000 paper [69] to provide various examples of such two-dimensional

non-Lp-type spaces. Their method was based on the following useful characterization

of absolute norms that can be found in Bonsall and Duncan’s book [15]: For each

absolute normalized norm ‖ · ‖ on C2, define a convex function by ψ(t) = ‖(1− t, t)‖ for

each t ∈ [0, 1]. Then max{1 − t, t} ≤ ψ(t) ≤ 1 for each t. Conversely, if ψ is a convex

function on [0, 1] satisfying max{1 − t, t} ≤ ψ(t) ≤ 1 for each t, then the following

formula defines an absolute normalized norm on C2.

‖(x, y)‖ψ =

 (|x|+ |y|)ψ
(
|y|

|x|+ |y|

)
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Furthermore, this norm satisfies ψ(t) = ‖(1− t, t)‖ψ for each t ∈ [0, 1]. Let AN2 be the

set of all absolute normalized norms on C2, and let Ψ2 be the collection of all convex
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functions ψ on [0, 1] that satisfy max{1 − t, t} ≤ ψ(t) ≤ 1 for each t. Then the above

argument shows that the sets AN2 and Ψ2 are in a one-to-one correspondence under

the equation ψ(t) = ‖(1− t, t)‖ for each t ∈ [0, 1]. Thanks to this characterization, they

could give some formulas to calculate the von Neumann-Jordan constants by using the

properties of corresponding convex functions. It should be noted that the same results

are also true for R2.

Since Saito, Kato and Takahashi applied absolute normalized norms to studying

the von Neumann-Jordan constant, the properties of absolute norms have been widely

studied, especially in terms of corresponding convex functions. The higher dimensional

version of the above characterization was shown in [70]. In the same paper, it was also

proved that the space endowed with an absolute norm is strictly convex if and only if

the corresponding function is strictly convex. On the other hand, Mitani, Saito and

Suzuki [59] characterized the smoothness of an absolute normed space in terms of the

smoothness (differentiablity) of the corresponding convex function. In 2002, the notion

of ψ-direct sums was introduced by Takahashi, Kato and Saito [78] as a generalization of

`p-direct sums, that is, for each ψ ∈ Ψ2 and for Banach space X and Y the ψ-direct sum

X⊕ψY is defined as the space X×Y endowed with the norm ‖(x, y)‖ψ = ‖(‖x‖, ‖y‖)‖ψ.

The same definition naturally works in the higher dimensional case. They also studied

the strict convexity of the ψ-direct sum of two Banach spaces. Strict convexity, uniform

convexity and local uniform convexity of ψ-direct sums were studied in Kato, Saito and

Tamura [43], while smoothness of ψ-direct sums were investigated by Mitani, Oshiro

and Saito [54]; see also [44, 46, 57, 68, 91]. Infinite dimensional absolute norms were

considered in [58], and infinite ψ-direct sums were introduced and studied in [90]. There

are many other papers concerning absolute norms; see, for example, [5, 40, 65, 67, 87]

and so on.

In this thesis, we study geometric structure of Banach spaces by using absolute

norms. In particular, we present some recent results concerning the duality of James

constant, new geometric properties and Tingley’s problem.

Chapter 1 is devoted to study the James constants of two-dimensional spaces. The

James constant J(X) of a Banach space X was defined in 1990 by Gao and Lau [26] as

a measure of how “non-square” the unit ball is, namely, the James constant is defined

by

J(X) = sup{min{‖x+ y‖, ‖x− y‖} : x, y ∈ X, ‖x‖ = ‖y‖ = 1}.

It is known that
√

2 ≤ J(X) ≤ 2 for any Banach space X, and that X is uniformly

non-square if and only if J(X) < 2 (cf [26, 39]). However, unlike von Neumann-Jordan
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constant, the James constant of a Banach space need not coincide with that of its

dual space. A counterexample can be found in [39]. It is not easy to calculate James

constant even in two-dimensional spaces. In Komuro, Saito and Mitani [41, 42] the

James constant of absolute octagonal norms were calculated, but the calculation is far

from easy. In contrast, the computation of James constant in two-dimensional spaces

endowed with symmetric absolute norms is rather easy since it has a simple calcula-

tion formula using corresponding convex functions; see [55]. Using the formula, the

James constants of some specific spaces were determined in [55]. Moreover, the James

constants of the two-dimensional Lorentz sequence space d(2)(ω, q) and its dual space

d(2)(ω, q)∗ had been completely determined; see [56, 60], and also [38, 76]. However, it

is not known that whether J(d(2)(ω, q)) is equal to J(d(2)(ω, q)∗). The first task in the

chapter is to show that J(d(2)(ω, q)) = J(d(2)(ω, q)∗) for every ω, q. This encourages

us to conjecture that J(X∗) = J(X) for every two-dimensional space X endowed with

a symmetric absolute norm. As the main result, we shall show that this conjecture is

true.

In Chapter 2, we introduce and study new geometric properties of Banach spaces

that generalize p-uniform smoothness and q-uniform convexity, where a Banach space

X is said to be p-uniformly smooth if there exists K > 0 such that ρX(τ) ≤ Kτ p for

all τ ≥ 0, and q-uniformly convex if there exists C > 0 such that δX(ε) ≥ Cεq for each

ε ∈ [0, 2]. As in the case of uniform smoothness and uniform convexity, it is known that

p-uniform smoothness and q-uniform convexity are the dual properties of each other

provided that 1/p + 1/q = 1. Moreover, these geometric properties are characterized

by simple norm inequalities. The purpose of the chapter is to introduce the concepts

of ψ-uniform smoothness and ψ∗-uniform convexity of Banach spaces and to present

characterizations analogous to that of p-uniform smoothness and q-uniform convexity.

Applying these characterizations yields the duality between ψ-uniform smoothness and

ψ∗-uniform convexity under certain conditions. To prove the characterizations of p-

uniform smoothness and q-uniform convexity, Beckner’s inequality [12] and its norm

version [49] play fundamental roles. Hence we first investigate the Beckner type in-

equality and its generalizations. An elementary proof of Beckner’s inequality is given.

Then we try to generalize Beckner’s inequality by using absolute normalized norms

on R2. Finally, we formulate ψ-uniform smoothness and ψ∗-uniform convexity of Ba-

nach spaces, and derive some characterizations with the help of generalized Beckner’s

inequalities.

We study Tingley’s problem in Chapter 3. LetX and Y be real Banach spaces. Then

the classical Mazur-Ulam theorem states that if T : X → Y is a surjective isometry then
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T is affine. In 1972, Mankiewicz [52] extended this result by showing that if U ⊂ X

and V ⊂ Y are open and connected and T0 : U → V is a surjective isometry then

there exists a surjective affine isometry T : X → Y such that T0 = T |U . From this,

in particular, it turns out that every isometry from the unit ball of X onto that of Y

can be extended to an isometric isomorphism between X and Y . Motivated by this

observation, Tingley [84] proposed in 1987 the following problem: Suppose that T0 is an

isometry from the unit sphere of X onto that of Y . Then, does T0 have a linear isometric

extension T : X → Y ? This problem is called Tignley’s problem, and is also known as

the isometric extension problem. Many papers, especially in the last decade, have been

devoted to the problem, and it has been solved positively for some classical Banach

spaces; see, for example, [9, 21, 32, 50, 85, 89]. Some mathematicians began to attack

the problem on more general spaces recently. In 2011, Cheng and Dong [16] studied

somewhere-flat spaces. One year later, it was shown by Kadets and Mart́ın [37] that

the problem has an affirmative answer for finite dimensional polyhedral Banach spaces.

Ding and Li [24] studied using the notion of sharp corner points and Tan and Liu [79]

introduced the Tingley property and obtained results on almost-CL-spaces. However,

surprisingly, Tingley’s problem remains open even if X = Y and X is two-dimensional,

the simplest setting for the problem. In this chapter, we present some recent results

on Tingley’s problem. We first give a further property of spherical isometries by using

the frames of the unit balls of Banach spaces. To do this, some geometric properties

concerning frames are studied. Moreover, we describe a new geometric approach to

two-dimensional Tingely’s problem. As applications, we solve the problem for several

specific spaces endowed with symmetric absolute normalized norms on R2.
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Preliminaries

Throughout this thesis, the term “Banach space” always means a real Banach space.

Let X be a Banach space. Then the unit ball and unit sphere of X are defined by

BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1}, respectively. The norm

dual of X is denoted by X∗. For a subset A of X, the symbols A◦, A, 〈A〉, [A], co(A),

aco(A) and co(A) denote the interior, closure, linear span, closed linear span, convex

hull, absolute convex hull and closed convex hull of A.

In this thesis, we make frequently use of an essential correspondence between ab-

solute norms on R2 and certain convex functions on [0, 1]. A norm ‖ · ‖ on R2 is said

to be absolute if ‖(x, y)‖ = ‖(|x|, |y|)‖ for each (x, y), and normalized if ‖(1, 0)‖ =

‖(0, 1)‖ = 1. Let AN2 be the set of all absolute normalized norms on R2, and let Ψ2

be the collection of all convex functions ψ on [0, 1] satisfying max{1− t, t} ≤ ψ(t) ≤ 1

for each t. Then the sets AN2 and Ψ2 are in a one-to-one correspondence under the

equation ψ(t) = ‖(1 − t, t)‖ for each t ∈ [0, 1] (cf. [15, 69]). We remark that the norm

‖ · ‖ψ corresponding to a function ψ ∈ Ψ2 is given by

‖(x, y)‖ψ =

 (|x|+ |y|)ψ
(
|y|

|x|+ |y|

)
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

The most typical examples of absolute normalized norms are the `p-norms. The function

ψp corresponding to the norm ‖ · ‖p is given by

ψp(t) =

{
((1− t)p + tp)1/p if 1 ≤ p <∞,
max{1− t, t} if p =∞.

Symmetry of norms often plays important roles in the thesis. A norm ‖ · ‖ on R2 is

said to be symmetric if ‖(x, y)‖ = ‖(y, x)‖ for each (x, y). It is obvious that an absolute

norm ‖ · ‖ψ is symmetric if and only if the corresponding function ψ is symmetric with

respect to 1/2, that is, ψ(1− t) = ψ(t) for each t ∈ [0, 1]. Let ΨS
2 be the set of all such

functions in Ψ2. Then the set ANS
2 of all symmetric absolute normalized norms on R2
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is naturally identified with the set ΨS
2 in the above sense. We note that ‖ · ‖p ∈ ANS

2

and ψp ∈ ΨS
2 for all 1 ≤ p ≤ ∞.

In general, it is not easy to find the exact norm of the dual space of a Banach space.

This is the case even for two-dimensional spaces. However, the above correspondence

between absolute norms and convex functions gives a clear way to find dual norms.

This is done by calculating the values of the function defined in the following: For each

ψ ∈ Ψ2, let ψ∗ be the function on [0, 1] given by

ψ∗(s) = max
0≤t≤1

(1− s)(1− t) + st

ψ(t)

Then it follows that ψ∗ ∈ Ψ2 and (R2, ‖ · ‖ψ)∗ = (R2, ‖ · ‖ψ∗) (from this we also have

ψ∗∗ = ψ); see [54]. The function ψ∗ is called the dual function of ψ. If ψ ∈ ΨS
2 , then

ψ∗ ∈ ΨS
2 and the behavior of ψ∗ is given by

ψ∗(s) = max
0≤t≤1/2

(1− s)(1− t) + st

ψ(t)

for each s ∈ [0, 1/2]; see [56] for details.

The notion of direct sums of Banach spaces is a basic and important way to produce

a new Banach space from old ones. For example, the `p-direct sum X⊕pY of two Banach

spaces X and Y is defined as the Cartesian product X × Y endowed with the norm

‖(x, y)‖p =

{
(‖x‖p + ‖y‖p)1/p if 1 ≤ p <∞,
max{‖x‖, ‖y‖} if p =∞.

In other words, the norm on X ⊕p Y is defined by ‖(x, y)‖p = ‖(‖x‖, ‖y‖)‖p. An

essential condition that the function ‖(x, y)‖p really becomes a norm on X × Y is the

monotonicity of the `p-norms, where a norm ‖(x, y)‖ on R2 is said to be monotone if

‖(x1, y1)‖ ≤ ‖(x2, y2)‖ whenever x1 ≤ x2 and y1 ≤ y2. In fact, it is known that the

notion of monotonicity is equivalent to that of absoluteness; see [13, 15, 70]. Thus

`p-direct sums can be generalized using absolute norms on R2 in an obvious way. Let

X and Y be Banach spaces, and let ψ ∈ Ψ2. Then the ψ-direct sum of X and Y is the

space X×Y endowed with the norm ‖(x, y)‖ψ = ‖(‖x‖, ‖y‖)‖ψ, and denoted by X⊕ψY
or (X⊕Y )ψ. As in the case of `p-direct sums, it is known that (X⊕ψ Y )∗ = X∗⊕ψ∗ Y ∗

(cf. [54, Proposition 3.4]).
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Chapter 1

The James constants of

two-dimensional spaces

In this chapter, we study the duality of James constants of Banach spaces. It is known

that the James constant J(X) of a Banach space X need not coincide with that of its

dual space. In fact, there is two-dimensional normed space X such that J(X∗) 6= J(X).

Here we shall consider the following problem: When does a two-dimensional normed

space X satisfy J(X∗) = J(X)?

1.1 Basic results

The James constant of a Banach space was defined in 1990 by Gao and Lau [26] as a

measure of how “non-square” the unit ball is. We shall start with the definition.

Definition 1.1.1 (Gao and Lau [26]). Let X be a Banach space. Then the James

constant of X is defined by J(X) = sup{min{‖x+ y‖, ‖x− y‖} : x, y ∈ SX}.

It is known that
√

2 ≤ J(X) ≤ 2 for any Banach space X, and that X is uniformly

non-square if and only if J(X) < 2 (cf [26, 39]).

We can reduce the amount of calculation of James constants using a generalized

orthogonality in Banach spaces. An element x in a Banach space is said to be isosceles

orthogonal to another element y, denoted by x ⊥I y, if ‖x+ y‖ = ‖x− y‖. This notion

was first introduced by James [33]. We remark that x ⊥I y implies x ⊥I −y and y ⊥I x.

For more details about isosceles orthogonality can be found in the survey of Alonso,

Martini and Wu [8].

An examination of the results of Gao and Lau [26] leads the following proposition.
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Proposition 1.1.2. Let X be a Banach space. Then J(X) = sup{‖x + y‖ : x, y ∈
SX , x ⊥I y}.

This reformulation is very effective, in particular, for two-dimensional spaces en-

dowed with symmetric absolute norms. The advantage comes from the following result

of Alonso [4] which shows isosceles orthogonality has the uniqueness property.

Lemma 1.1.3 (Alonso [4]). Let X be a two-dimensional normed space. Suppose that

x ∈ SX . Then there exists a unique (up to the sign) element y ∈ SX such that x ⊥I y.

By the uniqueness property of isosceles orthogonality, we have a useful characteristic

of symmetric absolute norms. Namely, if ψ ∈ ΨS
2 and x, y ∈ R2 with ‖x‖ψ = ‖y‖ψ = 1

then x ⊥I y if and only if x ⊥ y, where ⊥ denotes the usual orthogonality (x makes a

right angle with y). From this and Proposition 1.1.2, Mitani and Saito [55] showed the

following practical calculation method for James constants.

Proposition 1.1.4 (Mitani and Saito [55]). Let ψ ∈ ΨS
2 . Then

J((R2, ‖ · ‖ψ)) = max
0≤t≤1/2

2− 2t

ψ(t)
ψ

(
1− 2t

2− 2t

)
.

Proof. Suppose that x, y ∈ S(R2,‖·‖ψ), and that x ⊥ y. Without loss of generality, we

may assume that x and y are in the first and second quadrants, respectively. Since

ψ(t) = ‖(1 − t, t)‖ψ, we have x = ψ(t)−1(1 − t, t) and y = ψ(t)−1(t, t − 1) for some

t ∈ [0, 1]. Then it follows that

‖x+ y‖ψ = ‖x− y‖ψ =
1 + |2t− 1|

ψ(t)
ψ

(
|2t− 1|

1 + |2t− 1|

)

=


2− 2t

ψ(t)
ψ

(
1− 2t

2− 2t

)
if 0 ≤ t ≤ 1/2,

2t

ψ(t)
ψ

(
2t− 1

2t

)
if 1/2 ≤ t ≤ 1.

This shows

J((R2, ‖ · ‖ψ)) = max

{
max

0≤t≤1/2

2− 2t

ψ(t)
ψ

(
1− 2t

2− 2t

)
, max
1/2≤t≤1

2t

ψ(t)
ψ

(
2t− 1

2t

)}
.

However, ψ ∈ ΨS
2 assures that

2t

ψ(t)
ψ

(
2t− 1

2t

)
=

2− 2(1− t)
ψ(1− t)

ψ

(
1− 2(1− t)
2− 2(1− t)

)
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for each t ∈ [0, 1/2]. Thus we finally have

J((R2, ‖ · ‖ψ)) = max
0≤t≤1/2

2− 2t

ψ(t)
ψ

(
1− 2t

2− 2t

)
= max

1/2≤t≤1

2t

ψ(t)
ψ

(
2t− 1

2t

)
,

as desired.

Corollary 1.1.5 (Mitani and Saito [55]). Let ψ ∈ ΨS
2 .

(i) If ψ ≥ ψ2 and the function t 7→ ψ(t)/ψ2(t) takes the maximum at 1/2, then

J((R2, ‖ · ‖ψ)) = 2ψ(1/2).

(ii) If ψ ≤ ψ2 and the function t 7→ ψ(t)/ψ2(t) takes the minimum at 1/2, then

J((R2, ‖ · ‖ψ)) = 1/ψ(1/2).

Proof. Let M = max0≤t≤1 ψ(t)/ψ2(t) = ψ(1/2)/ψ2(1/2). Then it follows that

2− 2t

ψ(t)
ψ

(
1− 2t

2− 2t

)
≤ M(2− 2t)

ψ2(t)
ψ2

(
1− 2t

2− 2t

)
=
√

2M = 2ψ(1/2).

This proves (i). An argument similar to this works in (ii).

It should be noted that the assumption that ψ is symmetric with respect to 1/2 is

redundant in the preceding corollary; see [55, Remark 1].

These formulas allows us to compute the James constants of the space R2 endowed

with symmetric absolute normalized norms rather easily.

Example 1.1.6 (Gao and Lau [26]). Let 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1, and

let r = min{p, q}. Then J(`2p) = 21/r. This immediately follows from the preceding

corollary. We remark that (`2p)
∗ = `2q, and hence J((`2p)

∗) = J(`2q) = 21/r = J(`2p).

Example 1.1.7 (Mitani and Saito [55]). For each 1/2 ≤ β ≤ 1, let ψβ = max{1 −
t, t, β}. Then the associated norm is given by ‖(x, y)‖β = max{|x|, |y|, β(|x| + |y|)}.
The unit ball of the space (R2, ‖ · ‖β) is an octagon. By Theorem 1.1.4, it follows that

J((R2, ‖ · ‖β)) =

{
1/β if 1/2 ≤ β ≤ 1/

√
2,

2β if 1/
√

2 ≤ β ≤ 1.
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Now we shall consider the dual norm ‖ · ‖∗β of ‖ · ‖β. By an easy computation, one

has that

ψ∗β(t) =


1− 2β

β
t+ 1 if 0 ≤ t ≤ 1/2,

2β − 1

β
t+

1 + β

β
if 1/2 ≤ t ≤ 1.

From this, it follows that

2− 2t

ψ∗β(t)
ψ∗β

(
1− 2t

2− 2t

)
=

(2β − 2)t+ 1

(1− 2β)t+ β
,

which and Theorem 1.1.4 together imply that

J((R2, ‖ · ‖∗β)) =

{
1/β if 1/2 ≤ β ≤ 1/

√
2,

2β if 1/
√

2 ≤ β ≤ 1.

In particular, we have J((R2, ‖ · ‖β)∗) = J((R2, ‖ · ‖β)) for each β. See [41, 42] for a

complete discussion of the James constants of octagonal norms.

1.2 The James constant of d(2)(ω, q)

In this section, we consider the James constant of the two-dimensional Lorentz sequence

space d(2)(ω, q). For each 0 < ω ≤ 1 ≤ q < ∞, let d(2)(ω, q) be the space R2 endowed

with the norm ‖(x, y)‖ω,q = (max{|x|q, |y|q} + ωmin{|x|q, |y|q})1/q. Then we obtain

‖ · ‖ω,q ∈ ANS
2 . The corresponding convex function ψω,q ∈ ΨS

2 is given by

ψω,q(t) =

{
((1− t)q + ωtq)1/q if 0 ≤ t ≤ 1/2,

(tq + ω(1− t)q)1/q if 1/2 ≤ t ≤ 1.

The James constants of two-dimensional Lorentz sequence spaces was first studied by

Kato and Maligranda [38].

Proposition 1.2.1 (Kato and Maligranda [38]). Let 0 < ω ≤ 1. If 2 ≤ q <∞, then

J(d(2)(ω, q)) = 2

(
1

1 + ω

)1/q

.

In the same paper, they asked the values of J(d(2)(ω, q)) for 1 ≤ q < 2 and

J(d(2)(ω, q)∗). Using the calculation method described in the preceding section, Mi-

tani and Saito [55] gave a partial answer to this problem.
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Proposition 1.2.2 (Mitani and Saito [55]). Let 0 < ω ≤ 1 ≤ q < 2.

(i) If 0 < ω ≤ 1 +
√

2, then

J(d(2)(ω, q)) = 2

(
1

1 + ω

)1/q

.

(ii) If q = 1 and ω > −1 +
√

2, then

J(d(2)(ω, q)) = 2

(
1

1 + ω

)1/q

.

The value of J(d(2)(ω, q)) was entirely determined in 2008. This is the work of

Mitani, Saito and Suzuki [60] (cf. [61]).

Theorem 1.2.3 (Mitani, Saito and Suzuki [60]). Let 1 < q < 2 < p < ∞ with

1/p+ 1/q = 1. If (
√

2− 1)2−q < ω < 1, then there exists a unique pair of real numbers

s0, s1 such that (
1− ω

ω(1 + ω)

)p−1
< s0 < ω1/(2−q) < s1 < 1

and (1 + si)
q−1(1− ωsq−1i ) = ω(1− si)q−1(1 + ωsq−1i ) for i = 0, 1. Moreover, the value

of J(d(2)(ω, q)) is as follows:

(i) If 0 < ω ≤ (
√

2− 1)2−q, then

J(d(2)(ω, q)) = 2

(
1

1 + ω

)1/q

.

(ii) If (
√

2− 1)2−q < ω ≤
√

2
q − 1, then

J(d(2)(ω, q)) = max

{
2

(
1

1 + ω

)1/q

,

(
2(1 + s0)

q−1

1 + ωsq−10

)1/q
}
.

(iii) If
√

2
q − 1 < ω < 1, then

J(d(2)(ω, q)) =

(
2(1 + s0)

q−1

1 + ωsq−10

)1/q

.

This answered to one of the two questions of Kato and Maligranda. However,

another problem remained open, that is, the value of J(d(2)(ω, q)∗) had not been known

yet. In 2009, Mitani and Saito [56] tried to this problem. As a matter of fact, the norm

of d(2)(ω, q)∗ had not been clarified until then. Therefore they first needed to compute

the dual norm of d(2)(ω, q).
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Proposition 1.2.4 (Mitani and Saito [56]). Let 0 < ω ≤ 1 < p, q <∞ with 1/p+1/q =

1. Then the dual function ψ∗ω,q of ψω,q is given by

ψ∗ω,q(t) =


((1− t)p + ω1−ptp)1/p if 0 ≤ t < ω/(1 + ω),

(1 + ω)1/p−1 if ω/(1 + ω) ≤ t < 1/(1 + ω),

(tp + ω1−p(1− t)p)1/p if 1/(1 + ω) ≤ t ≤ 1.

Consequently, the dual norm ‖ · ‖∗ω,q of ‖ · ‖ω,q is given by

‖(x, y)‖∗ω,q =


(|x|p + ω1−p|y|p)1/p if |y| ≤ ω|x|,
(1 + ω)1/p−1(|x|+ |y|) if ω|x| ≤ |y| ≤ ω−1|x|,
(ω1−p|x|p + |y|p)1/p if ω−1|x| ≤ |y|.

From this, they could attack the problem. An immediate consequence of the pre-

ceding proposition and Corollary 1.1.5, we have the following result.

Proposition 1.2.5 (Mitani and Saito [56]). Let 0 < ω ≤ 1. If 2 ≤ q <∞, then

J(d(2)(ω, q)∗) = 2

(
1

1 + ω

)1/q

.

For the case of 1 < q < 2, the James constant J(d(2)(ω, q)∗) is determined by using

Proposition 1.1.4 as follows:

Theorem 1.2.6 (Mitani and Saito [56]). Let 1 < q < 2 < p <∞ with 1/p + 1/q = 1.

If (
√

2− 1)2−q < ω < 1, then there exists a unique pair of real numbers s∗0, s
∗
1 such that

1− ω
ω(1 + ω)

< s∗0 < ω1/(2−q) < s∗1 < ω

and (1 + s∗i )
p−1(1−ω1−ps∗i

p−1) = ω1−p(1− s∗i )p−1(1 +ω1−ps∗i
p−1) for i = 0, 1. Moreover,

the value of J(d(2)(ω, q)) is as follows:

(i) If 0 < ω ≤ (
√

2− 1)2−q, then

J(d(2)(ω, q)∗) = 2

(
1

1 + ω

)1/q

.

(ii) If (
√

2− 1)2−q < ω ≤
√

2
q − 1, then

J(d(2)(ω, q)∗) = max

{
2

(
1

1 + ω

)1/q

,

(
2(1 + s∗1)

p−1

1 + ω1−ps∗1
q−1

)1/p
}
.
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(iii) If
√

2
q − 1 < ω < 1, then

J(d(2)(ω, q)∗) =

(
2(1 + s∗1)

p−1

1 + ω1−ps∗1
q−1

)1/p

.

Thus two questions proposed by Kato and Maligranda was completely solved by

Theorems 1.2.5 and 1.2.6. The key ingredient of the arguments is obviously the corre-

spondence of ANS
2 and ΨS

2 that underlies Propositions 1.1.4 and 1.2.4. This shows an

advantage of the use of ψ-norms.

Incidentally, taking a glance at the results in this section yields J(d(2)(ω, q)∗) =

J(d(2)(ω, q)) whenever 1 < q < 2 and 0 < ω ≤ (
√

2 − 1)2−q or 2 ≤ q < ∞. Therefore

our next problem is the following: When does the equality J(d(2)(ω, q)∗) = J(d(2)(ω, q))

hold. In what follows, we assume that 1 < q < 2 and (
√

2 − 1)2−q < ω < 1. We start

with the observation of the pair (s0, s1) taken in Theorem 1.2.3.

Suppose that (s0, s1) is the pair of positive numbers taken in Theorem 1.2.3. Define

the real-valued function f on [0, 1/2] by

f(t) =
2− 2t

ψω,q(t)
ψω,q

(
1

2− 2t

)
=

(
ω(1− 2t)q + 1

(1− t)q + ωtq

)1/q

We also put

g(s) = f

(
s

1 + s

)
=

(
(1 + s)q + ω(1− s)q

1 + ωsq

)1/q

for each s ∈ [0, 1]. Since (1 + si)
q−1(1−ωsq−1i ) = ω(1− si)q−1(1 +ωsq−1i ), it follows that

f

(
si

1 + si

)
= g(si) =

(
2(1 + si)

q−1

1 + ωsq−1i

)1/q

.

for i = 0, 1. We now remark that

f

(
s

1 + s

)
f

(
1− s

2

)
= 2

for any s ∈ [0, 1]. Then, as was shown in [60], the function g(s) = f(s/(1 + s)) takes a

unique maximal value at s0 and a unique minimal value at s1, and hence the function

f((1−s)/2) = 2/f(s/(1+s)) takes a unique minimal value at s0 and a unique maximal

value at s1.

s 0 s0 s1 1

f

(
s

1 + s

)
↗ ↘ ↗

f

(
1− s

2

)
↘ ↗ ↘

14



Hence it follows that s1/(1 + s1) = (1− s0)/2, which in turn implies that

f

(
s0

1 + s0

)
f

(
s1

1 + s1

)
= 2. (1.1)

This is a key ingredient of our next argument.

Now we shall prove the following result that answers to the question.

Theorem 1.2.7 ([61]). Let 0 < ω ≤ 1 < q <∞. Then J(d(2)(ω, q)∗) = J(d(2)(ω, q)).

Proof. Keep the notation as above. Suppose that 1 < q < 2 and (
√

2− 1)2−q < ω < 1.

Then Theorem 1.2.6 assures that there exists a unique pair of real numbers s∗0, s
∗
1 such

that
1− ω

ω(1 + ω)
< s∗0 < ω1/(2−q) < s∗1 < ω

and (1 + s∗i )
p−1(1 − ω1−ps∗i

p−1) = ω1−p(1 − s∗i )p−1(1 + ω1−ps∗i
p−1) for i = 0, 1. On the

other hand, the pair (s0, s1) satisfies that(
1− ω

ω(1 + ω)

)p−1
< s0 < ω1/(2−q) < s1 < 1

and (1 + si)
q−1(1 − ωsq−1i ) = ω(1 − si)q−1(1 + ωsq−1i ) for i = 0, 1. Now let s′i = ωsq−1i

for i = 0, 1. Then it follows that

1− ω
1 + ω

< s′0 < ω1/(2−q) < s′1 < ω.

Furthermore, we have

(1 + ωsq−1i )p−1(1− si)− ω1−p(1− ωsq−1i )p−1(1 + si)

= ((1− si)q−1(1 + ωsq−1i ))p−1 − (ω−1(1 + si)
q−1(1− ωsq−1i ))p−1 = 0

for i = 0, 1 since (p− 1)(q− 1) = 1. However, the uniqueness of (s∗0, s
∗
1) guarantees that

s∗i = s′i = ωsq−1i for i = 0, 1. Since s∗1 = ωsq−11 , we have(
2(1 + s1)

q−1

1 + ωsq−11

)1/q (
2(1 + s∗1)

p−1

1 + ω1−ps∗1
p−1

)1/p

= 2.

On the other hand, by (1.1), we also have(
2(1 + s0)

q−1

1 + ωsq−10

)1/q (
2(1 + s1)

q−1

1 + ωsq−11

)1/q

= 2.

Thus it follows that (
2(1 + s0)

q−1

1 + ωsq−10

)1/q

=

(
2(1 + s∗1)

p−1

1 + ω1−ps∗1
p−1

)1/p

.

This together with Theorems 1.2.3 and 1.2.6 proves that J(d(2)(ω, q)∗) = J(d(2)(ω, q)).

The proof is complete.
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1.3 The duality of James constant

As was seen in [39], the equality J(X∗) = J(X) does not hold in general. A counterex-

ample is given by the Day-James `2-`1 space, that is, the space R2 endowed with the

norm

‖(x, y)‖2,1 =

{
‖(x, y)‖2 if xy ≥ 0,

‖(x, y)‖1 if xy ≤ 0.

See [65] for more computations of the James constants of generalized Day-James spaces.

We remark that the norm ‖ · ‖2,1 is symmetric. Moreover, letting ‖(x, y)‖′2,1 = ‖(x +

y, x− y)‖2,1 for each (x, y) yields an absolute norm on R2. Since James constant does

not change under isometric isomorphisms, we have obtained counterexamples of two-

dimensional normed spaces that are equipped with either symmetric or absolute norms.

However, as was shown in this chapter, all the spaces `p, (R2, ‖·‖β) and d(2)(ω, q) satisfy

the equality. The common feature of these spaces is that the norm is both symmetric

and absolute. In this section, we shall prove that every two-dimensional normed space

X endowed with a symmetric absolute norm satisfies J(X∗) = J(X).

In what follows, we denote the normed space (R2, ‖ · ‖ψ) by Xψ for short. Let

fψ(t) =
2− 2t

ψ(t)
ψ

(
1− 2t

2− 2t

)
for each t ∈ [0, 1/2] and each ψ ∈ ΨS

2 . Then Lemma 1.1.4 assures that J(Xψ) =

max0≤t≤1/2 fψ(t). The proof is mainly based on an appropriate density of the strictly

convex functions in ΨS
2 and a certain continuity of the map ψ 7→ J(Xψ). Some pre-

liminary works are needed. We shall start with some definitions. A finite sequence

(ti)
n
i=0 of real numbers is said to be a partition of the interval [0, 1/2] if 0 = t0 < t1 <

· · · < tn = 1/2. Any finite subset P of [0, 1/2] including 0 and 1/2 can be viewed as

a partition of [0, 1/2] by taking the strictly increasing rearrangement, and so we can

identify the partition (ti)
n
i=0 with the set {ti : 0 ≤ i ≤ n}. A function ψ on the interval

[0, 1/2] is said to be piecewise linear if there exist a partition (ti)
n
i=0 of [0, 1/2] and a

finite sequence (ai)
n
i=0 of real numbers such that

ψ(t) =
ai − ai−1
ti − ti−1

t+
ai−1ti − aiti−1
ti − ti−1

(1.2)

for each t ∈ [ti−1, ti]. Letting

αi =
ai − ai−1
ti − ti−1

and βi =
ai−1ti − aiti−1
ti − ti−1

,
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one has that ψ(t) = αit+βi for each t ∈ [ti−1, ti], and that ψ(ti) = ai for each 0 ≤ i ≤ n.

A corner point of the function ψ is an element ti of the partition satisfying 0 < i < n

and αi 6= αi+1. We remark that every corner point is deduced by determining the

intersection point of two distinct (actually, successive) lines. A partition that all the

elements t1, t2, . . . , tn−1 are corner points is called a simplified partition. It is clear that

the function ψ is convex if and only if the sequence (αi)
n
i=1 is non-decreasing. The

piecewise linear function ψ on [0, 1/2] extends to a piecewise linear function on the

unit interval [0, 1] by the formula ψ(t) = ψ(1 − t) for each t ∈ [1/2, 1]. Then it is not

difficult to check that ψ ∈ ΨS
2 is equivalent to a0 = 1 and −1 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ 0.

Henceforth, the function ψ ∈ ΨS
2 is said to be piecewise linear if its restriction to [0, 1/2]

is piecewise linear.

Now we shall introduce a special class of partitions of [0, 1/2]. Let g(t) = (1 −
2t)/(2− 2t) for each [0, 1/2]. Then g is a strictly decreasing function from [0, 1/2] onto

itself. Moreover, we have g(g(t)) = t for all t ∈ [0, 1/2], that is, g−1 = g. A partition

P of [0, 1/2] is said to be recursive if g(P ) = P . We note that every partition P is

included in the recursive partition P ∪ g(P ), the recursive hull of P . As will be seen in

the following lemma, recursive partitions of [0, 1/2] play a crucial role in our discussion.

Lemma 1.3.1 ([71]). Let ψ ∈ Ψ2 be a piecewise linear function defined by (1.2). Sup-

pose that the partition (ti)
n
i=0 is recursive. Then J(Xψ) = max{f(ti) : 0 ≤ i ≤ n}.

Proof. For each i, let Ii = [ti−1, ti] and Ji = [g(ti), g(ti−1)]. Then (Ii)
n
i=1 and (Ji)

n
i=1

are, respectively, covers of the interval [0, 1/2]. Moreover, t ∈ Ji if and only if g(t) ∈ Ii.
Now let K = {(i, j) : Ii ∩ Jj 6= ∅}. Fix an element (i, j) ∈ K. Then the function fψ on

Ii ∩ Jj is given by

fψ(t) =
2− 2t

αit+ βi

(
αj

(
1− 2t

2− 2t

)
+ βj

)
=
−2(αj + βj)t+ αj + 2βj

αit+ βi
.

Since the function fψ is monotone on Ii ∩ Jj, we have

fψ(t) ≤ max{fψ(ti−1), fψ(ti), fψ(g(tj−1)), fψ(g(tj))}.

The recursivity of the partition assures that g(tj) ∈ {ti : 0 ≤ i ≤ n} for each j. Thus

one obtains

max
0≤t≤1/2

fψ(t) = max
(i,j)∈K

max
t∈Ii∩Jj

fψ(t) ≤ max{fψ(ti) : 0 ≤ i ≤ n}.

The converse is obvious, and therefore we have the lemma.
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We next provide two technical lemmas. The first one shows the continuity of the

function ψ 7→ J(Xψ) with respect to the uniform norm ‖ · ‖∞ on C[0, 1].

Lemma 1.3.2 ([71]). The function ψ 7→ J(Xψ) is continuous on ΨS
2 .

Proof. Let (ψn) be a sequence in ΨS
2 that converges uniformly to ψ ∈ ΨS

2 . Then it

follows from 1/2 ≤ ψn(t), ψ(t) ≤ 1 that

‖fψn − fψ‖∞ = max
t∈[0,1/2]

(2− 2t)|ψn(g(t))ψ(t)− ψn(t)ψ(g(t))|
ψn(t)ψ(t)

≤ 16‖ψn − ψ‖∞,

and hence ‖fψn − fψ‖∞ → 0 as n→∞. In particular, we have

J(Xψ) = ‖fψ‖∞ = lim
n
‖fψn‖∞ = lim

n
J(Xψn).

This completes the proof.

We now consider the dual function of a piecewise linear function. Let ψ ∈ ΨS
2 be a

piecewise linear function defined by (1.2). Then the dual function ψ∗ is given by

ψ∗(s) = max
0≤t≤1/2

(1− s)(1− t) + st

ψ(t)

= max
1≤i≤n

max
t∈[ti−1,ti]

(1− s)(1− t) + st

ψ(t)

= max
1≤i≤n

max
t∈[ti−1,ti]

(2s− 1)t+ 1− s
αit+ βi

= max
1≤i≤n

max

{
(2s− 1)ti−1 + 1− s

αiti−1 + βi
,
(2s− 1)ti + 1− s

αiti + βi

}
= max

0≤i≤n

(2ti − 1)s+ 1− ti
ai

for each s ∈ [0, 1/2]. Hence the dual function is also piecewise linear as the maximum

function of (n+ 1)-lines.

To present appropriate density properties in ΨS
2 , we here note the following useful

fact: If a monotone sequence (ψn) in ΨS
2 converges uniformly to ψ ∈ ΨS

2 , then the

sequence (ψ∗n) also converges uniformly to ψ∗. Indeed, the function ((1 − s)(1 − t) +

st)/ψn(s) of s ∈ [0, 1] converges uniformly to ((1−s)(1−t)+st)/ψ∗(s) for each t ∈ [0, 1],
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and so

ψ∗(t) = max
0≤s≤1

(1− s)(1− t) + st

ψ(s)

= lim
n

max
0≤s≤1

(1− s)(1− t) + st

ψn(s)

= lim
n
ψ∗n(t)

for all t ∈ [0, 1]. Moreover, since ϕ ≤ ψ implies ϕ∗ ≥ ψ∗, the sequence (ψ∗n) is also

monotone. In other words, the monotone sequence (ψ∗n) converges pointwise to the

continuous function ψ∗. Thus the sequence (ψ∗n) converges uniformly to ψ∗ by Dini’s

theorem.

To prove the second lemma, we need the following results.

Lemma 1.3.3 (Takahashi, Kato and Saito [78]). Let ψ ∈ Ψ2. Then Xψ is strictly

convex if and only if ψ is strictly convex.

Lemma 1.3.4 (Mitani, Saito and Suzuki [59]). Let ψ ∈ Ψ2. Then Xψ is smooth if and

only if ψ is differentiable on (0,1), ψ′R(0) = −1 and ψ′L(1) = 1, where ψ′R and ψ′L are,

respectively, the right and left derivative of ψ.

Let ψ ∈ ΨS
2 be a piecewise linear function defined by (1.2). Then ψ(t) > 1 − t for

all t ∈ (0, 1/2] if and only if α1 > −1. Now suppose that α1 > −1. It follows from

ψ(t) ≥ α1t+ 1 for all t ∈ (0, 1/2] that

ψ∗(s) = max
0≤t≤1/2

(1− s)(1− t) + st

ψ(t)
≤ max

0≤t≤1/2

(1− s)(1− t) + st

α1t+ 1

for each s ∈ [0, 1/2]. In particular, we have ψ∗(s) = 1− s if 0 ≤ s ≤ (1 + α1)/(2 + α1).

Lemma 1.3.5 ([71]). Let ψ ∈ ΨS
2 . Then there exists a sequence (ψn) of strictly convex

elements of ΨS
2 such that ‖ψn − ψ‖∞ → 0 and ‖ψ∗n − ψ∗‖∞ → 0 as n→∞.

Proof. We first show that any the maximum function of two lines can be uniformly

approximated by a smooth convex function. Let `1(t) = at + b and `2 = ct + d with

a < c. Without loss of generality, we may assume that the lines intersects at t0 ≥ 0.

Then we have d ≤ b. Take an arbitrary ε > 0. Now let

αε =
c− a

4ε
,

βε =
a(t0 + ε)− c(t0 − ε)

2ε
,

γε =
(c− a)(t0 − ε)2

4ε
+ b,
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and let hε(t) = αεt
2 + βεt + γε. It follows from αε > 0 and t0 = (b − d)/(c − a)

that hε is a convex and smooth function satisfying h′ε(t0 − ε) = a, h′ε(t0 + ε) = c,

hε(t0 − ε) = `1(t0 − ε) and hε(t0 + ε) = `2(t0 + ε). Hence, letting

kε(t) =


`1(t) if t ∈ (−∞, t0 − ε],
hε(t) if t ∈ [t0 − ε, t0 + ε],

`2(t) if t ∈ [t0 + ε,∞),

yields a smooth function. Moreover, since kε is convex, we obtain

sup
t
|kε(t)− (max{`1, `2})(t)| ≤

`1(t0 − ε) + `2(t0 + ε)

2
− (max{`1, `2})(t0)

= (c− a)(t0 + ε) + d− b.

Thus the supremum tends to 0 as ε → 0. We remark that if a = −c then all the

functions max{`1, `2}, hε and kε are symmetric at t0. We also remark that we can

take a sequence (εn) of positive numbers such that the sequence (kεn) is decreasing and

converges uniformly to max{`1, `2} since kε(t) > (max{`1, `2})(t) for all t ∈ (t0− ε, t0 +

ε). To see this, consider the tangent line of kε at t0. An appropriate figure might be

help.

Next we take a piecewise linear function ψ ∈ ΨS
2 such that ψ(t) > 1 − t for all

t ∈ (0, 1/2]. Then the dual function ψ∗ is also piecewise linear and ψ∗(t) = 1 − t on

[0, t0] for some t0 ∈ (0, 1/2]. Now we can apply the above argument to “remove” the

corner points of the function ψ∗, that is, there exists a sequence (ψn) in ΨS
2 such that

the sequence (ψ∗n) is decresing, each the function ψ∗n is smooth and ψ∗n(t) = 1 − t on

[0, tn] for some tn ∈ (0, 1/2), and converges uniformly to ψ∗. Then the space Xψ∗n is

smooth by Lemma 1.3.4. However, by Lemma 1.3.3, this shows that the space Xψn ,

and hence the function ψn, is strictly convex. Moreover, the sequence (ψn) converges

uniformly to ψ.

We now remark that every piecewise linear element ψ in ΨS
2 such that ψ(t0) = 1− t0

for some t0 ∈ (0, 1/2] can be approximated uniformly by a decreasing sequence (ψn) of

piecewise linear functions in ΨS
2 satisfying ψn(t) > 1 − t for all t ∈ (0, 1/2]. This and

the above argument together show the lemma.

We now ready to prove the main theorem.

Theorem 1.3.6 ([71]). Let ψ ∈ ΨS
2 . Then J(Xψ∗) = J(Xψ).

Proof. We first assume that the function ψ ∈ ΨS
2 is piecewise linear with respect to a

simplified and recursive partition (ti)
n
i=0. Then the dual function ψ∗ is also piecewise
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linear, and so there exist a partition (sj)
m
j=0 of [0, 1/2] and a sequence of positive numbers

(bj)
m
j=0 satisfying t0 = 0, tn = 1/2 and

ψ∗(s) =
bj − bj−1
sj − sj−1

s+
bj−1sj − bjsj−1
sj − sj−1

for each s ∈ [sj−1, sj]. For each pair (i, j) with i 6= j, let

γij =
bi − bj
si − sj

and δij =
bjsi − bisj
si − sj

,

respectively. Since ψ = ψ∗∗, the function ψ is given by

ψ(t) = max
0≤i≤n

(2si − 1)t+ 1− si
bi

for each t ∈ [0, 1/2]. Let `j be the line given by

`j(t) =
(2si − 1)t+ 1− si

bi
,

and let Ik = {t ∈ [0, 1/2] : ψ(t) = `k(t)}. Take an arbitrary i ∈ {0, 1, . . . , n}. If

i = 0, then fψ(t0) = 2ψ(1/2) = 1/ψ∗(1/2) = fψ∗(1/2). Similarly, if i = n then

fψ(tn) = fψ∗(0). So we assume that 0 < i < n. Since ti is a corner point, there exist

two distinct lines `i and `j such that ψ(ti) = `i(ti) = `j(ti). It follows that

ti =
γij + δij
γij + 2δij

.

Moreover, one has

ψ(ti) = `i(ti) =
1

γij + 2δij
.

Now pick a index k such that g(ti) ∈ Ik. Then we have

ψ(g(ti)) =
−2(γij + δij)sk + γij + 2δij

2bkδij
,

and hence

f(ti) =
−2(γij + δij)sk + γij + 2δij

bk
.

On the other hand, one has

ψ∗(s) = max
0≤t≤1/2

(1− s)(1− t) + st

ψ(t)

≥ (1− s)(1− ti) + sti
ψ(ti)

= δij(1− s) + (γij + δij)s.
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for each s ∈ [0, 1/2]. In particular, the inequality

(2− 2sk)ψ
∗(g(sk)) ≥ −2(γij + δij)sk + γij + 2δij

holds. This together with bk = ψ∗(sk) imply that fψ(ti) ≤ fψ∗(sk), which in turn implies

that J(Xψ) ≤ J(Xψ∗) by Lemma 1.3.1.

Now suppose that ψ is a strictly convex element in ΨS
2 . For each n ∈ N, let (t

(n)
i )kni=0

be the recursive hull of the dyadic partition (k/2n)2
n−1

k=0 , and let ψn ∈ ΨS
2 be the piecewise

linear function determined by the partition (t
(n)
i )kni=0 and the values (ψ(t

(n)
i ))kni=0. Since

(k/2n)2
n−1

k=0 ⊂ (k/2n+1)2
n

k=0, we obtain (t
(n)
i )kni=0 ⊂ (t

(n+1)
i )

kn+1

i=0 , which implies that the

sequence (ψn) is decreasing. We remark that the function ψm coincides with ψ on

{k/2n : 0 ≤ k ≤ 2n−1} whenever m > n. This shows that ‖ψn − ψ‖∞ → 0, and also

that ‖ψ∗n−ψ∗‖∞ → 0. Since the partition (t
(n)
i )kni=0 is simplified and recursive, it follows

that J(Xψn) ≤ J(Xψ∗n) for each n. However, the continuity of the function ψ 7→ J(Xψ)

assures that J(Xψ) ≤ J(Xψ∗).

Finally, let ψ be an arbitrary element in ΨS
2 . Then, Lemma 1.3.5 provides a sequence

(ψn) of strictly convex elements of ΨS
2 such that ‖ψn − ψ‖∞ → 0 and ‖ψ∗n − ψ∗‖∞ → 0

as n→∞. It follows that J(Xψ) = limn J(Xψn) ≤ limn J(Xψ∗n) = J(Xψ∗). Combining

this and the fact that ψ∗∗ = ψ yields the equality J(Xψ∗) = J(Xψ), as desired.

Since James constants are invariant under scaling, we finally have the following

result.

Theorem 1.3.7 ([71]). Let X be a two-dimensional real normed space R2 equipped with

a symmetric absolute norm. Then J(X∗) = J(X).

1.4 Remarks

We shall give some remarks on the results in the chapter. Let x, y be two vectors in

a Banach space. Then x is said to be Roberts orthogonal to y, denoted by x ⊥R y, if

‖x + αy‖ = ‖x − αy‖ for all α ∈ R (cf. [66]). A two-dimensional normed space X is

isometrically isomorphic to the space R2 equipped with a symmetric absolute norm if

and only the space X has a basis {x, y} such that x ⊥R y and x+ y ⊥R x− y. Indeed,

if x ⊥R y and x+ y ⊥R x− y then the norm on R2 defined by ‖(a, b)‖ = ‖ax+ by‖ for
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each (a, b) is clearly absolute. Moreover, it follows from x+ y ⊥R x− y that

‖(a, b)‖ = ‖ax+ by‖ =
|a+ b|

2

∥∥∥∥ 2a

a+ b
x+

2b

a+ b
y

∥∥∥∥
=
|a+ b|

2

∥∥∥∥x+ y +
a− b
a+ b

(x− y)

∥∥∥∥
=
|a+ b|

2

∥∥∥∥x+ y − a− b
a+ b

(x− y)

∥∥∥∥
=
|a+ b|

2

∥∥∥∥ 2b

a+ b
x+

2a

a+ b
y

∥∥∥∥
= ‖bx+ ay‖ = ‖(b, a)‖

whenever a 6= −b, that is, the norm ‖ · ‖ is also symmetric. The converse is shown

by putting x = (1, 0) and y = (0, 1). Thus we obtain the following consequence of the

main theorem.

Corollary 1.4.1 ([71]). Let X be a two-dimensional real normed space with J(X∗) 6=
J(X). Then there is no basis {x, y} for X satisfying x ⊥R y and x+ y ⊥R x− y.

We conclude this chapter with counterexamples that have hexagonal (and hence

asymmetric) norms. Remark that both AN2 and Ψ2 are convex, and that the corre-

spondence preserves the convex structure. Namely, the following hold:

(i) If ‖ · ‖, ‖ · ‖′ ∈ AN2, then λ‖ · ‖+ (1− λ)‖ · ‖′ ∈ AN2 for all λ ∈ (0, 1).

(ii) If ψ, ψ′ ∈ Ψ2, then λψ + (1− λ)ψ′ ∈ Ψ2 for all λ ∈ (0, 1).

(iii) ‖ · ‖λψ+(1−λ)ψ′ = λ‖ · ‖ψ + (1− λ)‖ · ‖ψ′ for each ψ, ψ′ ∈ Ψ2 and all λ ∈ (0, 1).

By (iii), the extreme points of AN2 and Ψ2 are essentially the same. Moreover, we

have the following result.

Theorem 1.4.2 (Grza↪́slewicz [30]; Komuro, Saito and Mitani [40]). For each 0 ≤ α ≤
1/2 ≤ β ≤ 1, define the function ψα,β by

ψα,β =


1− t if 0 ≤ t ≤ α,
(α + β − 1)t+ β − 2αβ

β − α
if α ≤ t ≤ β,

t if β ≤ t ≤ 1.

Then ext(Ψ2) = {ψα,β : 0 ≤ α ≤ 1/2 ≤ β ≤ 1}.
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The James constant of Xψα,β is completely determined by Komuro, Saito and Mi-

tani [41]; see also [42].

Theorem 1.4.3 (Komuro, Saito and Mitani [41]). Let 0 ≤ α ≤ 1/2 ≤ β ≤ 1 with

α < 1− β.

(i) If ψα,β(1/2) ≤ 1/2(1− α), then

J(Xψα,β) =
1

ψα,β(1/2)
.

(ii) If 1/2(1− α) ≤ ψα,β(1/2) ≤ c(α, β), then

J(Xψα,β) = 1 +
1

ψα,β(1/2) + (2β − 1)/(β − α)
.

(iii) If c(α, β) ≤ ψα,β(1/2), then

J(Xψα,β) = 2ψα,β(1/2),

where

c(α, β) =
1

4

1− 2β − 1

β − α
+

√(
1 +

2β − 1

β − α

)2

+ 4

 .

Using this result, we can provide new examples of J(X∗) 6= J(X), where X is the

space R2 endowed with an extreme absolute normalized norm on R2.

Example 1.4.4. The computation is based on Theorem 1.4.3. For each β ∈ (1/2, 1),

let ψβ be an asymmetric element of Ψ2 given by

ψβ(t) = ψ0,β(t) =


β − 1

β
t+ 1 if t ∈ [0, β],

t if t ∈ [β, 1],

and let

c(β) = c(0, β) =
1

4

1− β
β

+

√(
1 +

2β − 1

β

)2

+ 4

 .

Then it follows that ψβ(1/2) ≥ c(β) if and only if β ≥ 2/3. Hence, by Theorem 1.4.3,

we have

J(Xψβ) =


6β − 2

5β − 2
if β ∈ (1/2, 2/3],

3β − 1

β
if β ∈ [2/3, 1).
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We next consider the dual function of ψβ. After an easy computation, we obtain

ψ∗β(t) =

 1− t if t ∈ [0, (2β − 1)/(3β − 1)],
2β − 1

β
t+

1− β
β

if t ∈ [(2β − 1)/(3β − 1), 1].

We note that ψβ/(3β−1)(t) = ψ∗β(1− t) for each t ∈ [0, 1], which implies that

‖(x, y)‖ψβ/(3β−1)
= ‖(y, x)‖ψ∗β

for each (x, y), that is, the space Xψβ/(3β−1)
is isometrically isomorphic to the space Xψ∗β

.

Hence we have

J(Xψ∗β
) =


1

β
if β ∈ (1/2, 2/3],

2

2− β
if β ∈ [2/3, 1).

Thus, consequently, we obtain J(Xψ∗β
) 6= J(Xψβ) whenever β 6= 2/3.
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Chapter 2

New geometric properties of

Banach spaces

In the study of geometric properties of Banach spaces, norm inequalities often play fun-

damental roles. One of the most famous results in this direction is the uniform convexity

of the Lp-spaces that is easily proved by Clarkson’s inequality. Moreover, the notions

of p-uniform smoothness and q-uniform convexity have important characterizations in

terms of norm inequalities that are useful to prove some duality results.

This chapter is devoted to study new geometric properties of Banach spaces that

generalize p-uniform smoothness and q-uniform convexity. The goal of the chapter

is to present imitations of the basic results on p-uniform smoothness and q-uniform

convexity including characterizations by norm inequalities and duality properties. For

this purpose, so-called Beckner’s inequality and its generalizations are also investigated.

Then we try to formulate new geometric properties.

2.1 An elementary proof of Beckner’s inequality

Beckner’s inequality that was shown by Beckner in his 1975 paper [12] plays an impor-

tant role in a characterization of p-uniform smoothness in terms of norm inequalities

(cf. [49, Lemma 1.e.14]).

Theorem 2.1.1 (Beckner’s inequality). Suppose that 1 < p ≤ q < ∞. Let γp,q =√
(p− 1)/(q − 1). Then the inequality(

|u+ γp,qv|q + |u− γp,qv|q

2

)1/q

≤
(
|u+ v|p + |u− v|p

2

)1/p
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holds for all u, v ∈ R.

It is also known that the constant γp,q in Beckner’s inequality is the best possible

choice, that is, if γ ≥ 0 and the inequality(
|u+ γv|q + |u− γv|q

2

)1/q

≤
(
|u+ v|p + |u− v|p

2

)1/p

holds for all u, v ∈ R, then one has γ ≤ γp,q. We note that the case of 0 ≤ γ ≤ 1

is essential in this direction. Indeed, letting u = 0 and v = 1 in the above inequality

shows γ ≤ 1. The proof of this fact can be essentially found in [88, Theorem 6].

We shall present an elementary proof of Theorem 2.1.1 and the above fact; see [83],

and also [48, 62]. Naturally, the case of p = q is trivial. Hence we assume that

1 < p < q < ∞, and that b ∈ [0, 1]. Let Aδ be the linear operator from `2p into `2q
defined by

Aδ =

(
1 δ

δ 1

)
,

and let ‖Aδ‖p,q denote the operator norm of Aδ. Define the real-valued function fp,q,δ

on [0, 1] by

fp,q,δ(t) =
((
t1/p + δ(1− t)1/p

)q
+
(
δt1/p + (1− t)1/p

)q)1/q
.

Then we have the following two lemmas.

Lemma 2.1.2. ‖Aδ‖p,q = max0≤t≤1/2 fp,q,δ(t).

Proof. Take an arbitrary (u, v) ∈ R2 with ‖(u, v)‖p = 1. It follows from |v| = (1 −
|u|p)1/p that∥∥∥∥∥

(
1 δ

δ 1

)(
u

v

)∥∥∥∥∥
q

= (|u+ δv|q + |δu+ v|q)1/q

≤ ((|u|+ δ|v|)q + (δ|u|+ |v|)q)1/q

=
((
|u|+ δ(1− |u|p)1/p

)q
+
(
δ|u|+ (1− |u|p)1/p

)q)1/q
= fp,q,δ(|u|p)
≤ max

0≤t≤1
fp,q,δ(t),

which implies that ‖Aδ‖p,q ≤ max0≤t≤1 fp,q,δ(t). On the other hand, putting xt =

(t1/p, (1 − t)1/p) yields ‖Aδ‖p,q ≥ ‖Aδxt‖q = fp,q,δ(t) for each t ∈ [0, 1]. This proves

‖Aδ‖p,q = max0≤t≤1 fp,q,δ(t). However, the fact that fp,q,δ(1− t) = fp,q,δ(t) for each t ∈
[0, 1] assures that max0≤t≤1 fp,q,δ(t) = max0≤t≤1/2 fp,q,δ(t). This completes the proof.
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Lemma 2.1.3. Let γ ∈ [0, 1], and let δ = (1 − γ)/(1 + γ). Then the following are

equivalent:

(i) The inequality(
|u+ γv|q + |u− γv|q

2

)1/q

≤
(
|u+ v|p + |u− v|p

2

)1/q

(2.1)

holds for all u, v ∈ R.

(ii) fp,q,δ(1/2) = max0≤t≤1/2 fp,q,δ(t).

Proof. We first note that fp,q,δ(1/2) = 21/q−1/p(1 + δ). Therefore, the condition (ii) just

means that ‖Aδ‖p,q = 21/q−1/p(1 + δ) by Lemma 2.1.2. Suppose that (i) holds. Take

arbitrary u, v ∈ R. Applying (2.1) for u1 = (u+ v)/2 and v1 = (u− v)/2, we have(
|(1 + γ)u+ (1− γ)v|q + |(1− γ)u+ (1 + γ)v|q

2q+1

)1/q

≤
(
|u|p + |v|p

2

)1/p

,

or
1 + γ

2

(
|u+ δv|q + |δu+ v|q

2

)1/q

≤
(
|u|p + |v|p

2

)1/p

.

Since (1 + γ)(1 + δ) = 2, it follows that

‖Aδ(u, v)‖q = (|u+ δv|q + |δu+ v|q)1/q ≤ 21/q−1/p(1 + δ)‖(u, v)‖p,

which implies that ‖Aδ‖p,q = 21/q−1/p(1+δ). Conversely, we assume that (ii) holds. Let

u, v ∈ R. Put u2 = u+ v and v2 = u− v, respectively. Then we obtain(
|u+ γv|q + |u− γv|q

2

)1/q

=
1 + γ

21/q+1
(|u2 + δv2|q + |δu2 + v2|q)1/q

=
2−1/q

(1 + δ)
‖Aδ(u2, v2)‖q

≤ 2−1/q

(1 + δ)
‖Aδ‖p,q‖(u2, v2)‖p

= 2−1/p‖(u2, v2)‖p

=

(
|u+ v|p + |u− v|p

2

)1/p

.

The proof is complete.
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Now, let

δp,q =
1− γp,q
1 + γp,q

=

√
q − 1−

√
p− 1√

q − 1 +
√
p− 1

=
p+ q − 2− 2

√
(p− 1)(q − 1)

q − p
,

and let α = 1/p and β = q − 1, respectively. We note that 0 < α < 1 and β + 1 >

αβ − α + 1.

We need the following three lemmas.

Lemma 2.1.4. For each δ ∈ (0, δp,q], let g1,δ be the real-valued function on [0, 1] defined

by

g1,δ(u) = −βδu2 + (αβ + α− 1)(1 + δ2)u− (2α− 1)βδ − 2(1− α)δu1/(1−α).

(i) If 1 < p < 2, then there exists a real number u0 ∈ (0, 1) such that g1,δ(u0) = 0,

g1,δ(u) < 0 for all u ∈ [0, u0), and g1,δ(u) > 0 for all u ∈ (u0, 1).

(ii) If 2 ≤ p <∞, then g1,δ(u) > 0 for all u ∈ (0, 1).

Proof. Since 0 < α < 1, we have 1/(1−α) > 1, which shows that g1,δ is strictly concave

on [0, 1]. We first note that

g1,δ(1) = (αβ + α− 1)(1 + δ2)− 2(αβ − α + 1)δ

=
1

p

(
(q − p)δ2 − 2(p+ q − 2)δ + q − p

)
≥ 0.

(i) Suppose that 1 < p < 2. We claim that g1,δ(u1) > 0 for some u1 ∈ (0, 1]. If

δ < δp,q, then we have g1,δ(1) > 0. In the case of δ = δp,q, the derivative of g1,δp,q is

given by

g′1,δp,q(u) = −2βδp,qu+ (αβ + α− 1)(1 + δ2p,q)− 2δp,qu
α/(1−α).

Since β + 1 > αβ − α + 1, we have

g′1,δp,q(1) = (αβ + α− 1)(1 + δ2p,q)− 2(β + 1)δp,q

< (αβ + α− 1)(1 + δ2p,q)− 2(αβ − α + 1)δp,q = 0.

Therefore g1,δp,q is strictly decreasing on (1− ε, 1] for some ε > 0, and so g1,δp,q(1− ε) >
g1,δp,q(1) = 0. The claim is proved. Since g1,δ(0) = −(2α−1)βδ < 0 for each δ ∈ (0, δp,q],

by the intermediate value theorem, there exists a real number u0 ∈ (0, 1) such that

g1,δ(u0) = 0. By the strict concavity of g1,δ, we finally have (i).

(ii) If 2 ≤ p <∞, then we have g1,δ(0) = −(2α−1)βδ ≥ 0. So we obtain g1,δ(u) > 0

for all u ∈ (0, 1) since g1,δ is strictly concave.
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Lemma 2.1.5. For each δ ∈ (0, δp,q], let g2,δ be the real-valued function on [0, 1] defined

by

g2,δ(s) = (αβ + α− 1)(1 + δ2)sα − αβδ(s2α−1 + s)− (1− α)δ(s2α + 1).

(i) g2,δp,q(s) ≤ 0 for all s ∈ [0, 1].

(ii) If 0 < δ < δp,q, then there exists a real number s0 ∈ (0, 1) such that g2,δ(s0) = 0,

g2,δ(s) < 0 for all s ∈ [0, s0), and g2,δ(s) > 0 for all s ∈ (s0, 1).

Proof. The derivative of g2,δ is

g′2,δ(s) = αs2α−2g1,b(s
1−α).

We note that g2,δ(0) = −(1 − α)δ < 0. So by Lemma 2.1.4, the behavior of g2,δ is

as follows: If 1 < p < 2, putting u1 = u
1/(1−α)
0 yields that the function g2,δ is strictly

decreasing on [0, u1] and strictly increasing on [u1, 1].

s 0 · · · u1 · · · 1

g′2,δ − 0 +

g2,δ − ↘ ↗

If 2 ≤ p <∞, then the function g2,δ is strictly increasing on [0, 1].

s 0 · · · 1

g′2,δ +

g2,δ − ↗

On the other hand, we have

g2,δ(1) = (αβ + α− 1)(1 + δ2)− 2(αβ − α + 1)δ.

Then it follows that g2,δp,q(1) = 0 and g2,δ(1) > 0 for all δ < δp,q. Thus one obtains

g2,δp,q(s) ≤ 0 for all s ∈ [0, 1]. If 0 < δ < δp,q, the intermediate value theorem guarantees

that there exists a real number s0 ∈ (0, 1) such that g2,δ(s0) = 0, g2,δ(s) < 0 for all

s ∈ [0, s0) and g2,δ(s) > 0 for all s ∈ (s0, 1), which shows (ii).

Lemma 2.1.6. For each δ ∈ (0, δp,q], let g3,δ be the real-valued function on [0, 1] defined

by

g3,δ(s) = (sα + δ)β(sα−1 − δ) + (δsα + 1)β(δsα−1 − 1).

(i) g3,δp,q(s) ≥ 0 for all s ∈ [0, 1].
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(ii) If 0 ≤ δ < δp,q, then there exists a real number s1 ∈ (0, 1) such that g3,δ(s1) = 0,

g3,δ(s) > 0 for all s ∈ [0, s1), and g3,δ(s) < 0 for all s ∈ (s1, 1).

Proof. We put δ0 = δ1/(1−α). Since sα−1 ≥ 1 for each s ∈ [0, 1], we have sα−1 − δ > 0.

If 0 ≤ s ≤ δ0, then δsα−1 − 1 ≥ 0, and hence g3,δ(s) > 0. Let g4,δ be the real-valued

function on (δ0, 1] defined by

g4,δ(s) = log(sα + δ)β(sα−1 − δ)− log(δsα + 1)β(1− δsα−1).

Obviously, g3,δ(s) ≥ 0 if and only if g4,δ(s) ≥ 0. The derivative of g4,δ is given by

g′4,δ(s) =
(1− δ2)sα−2g2,δ(s)

(sα + δ)(sα−1 − δ)(δsα + 1)(1− δsα−1)
.

Thus one has g′4,δp,q(s) ≤ 0 for all s ∈ (δ0, 1] by Lemma 2.1.5 (i), that is, the function

g4,δp,q is decreasing on (δ0, 1], which in turn implies that g4,δp,q(s) ≥ g4,δp,q(1) = 0 for all

s ∈ (δ0, 1].

If 0 ≤ δ < δp,q, the behavior of g4,δ is as follows by Lemma 2.1.5 (ii):

s δ0 · · · s0 · · · 1

g′4,δ − 0 +

g4,δ ∞ ↘ − ↗ 0

Hence, using the intermediate value theorem, it turns out that there exists a real number

s1 ∈ (0, 1) such that g3,δ(s1) = 0, g4,δ(s) > 0 for all s ∈ [0, s1) and g4,δ(s) < 0 for all

s ∈ (s1, 1).

We now present an elementary proof. Suppose that δ ∈ [0, δp,q]. Let gδ be the

real-valued function on [0, 1/2] defined by

gδ(t) = (fp,q,δ(t))
q = (t1/p + δ(1− t)1/p)q + (δt1/p + (1− t)1/p)q.

If δ = 0, then g0 is clearly decreasing on [0, 1/2], which shows that fp,q,0(1/2) <

max0≤t≤1/2 fp,q,0(t). On the other hand, for each δ ∈ (0, δp,q], the derivative of gδ is

g′δ(t) =
q

p
(1− t)q/p−1g3,δ

(
t

1− t

)
.

By Lemma 2.1.6 (i), we have g′δp,q(t) ≥ 0 for all t ∈ [0, 1/2]. Thus the function gδp,q is

nondecreasing on [0, 1/2], that is, gδp,q(1/2) = max0≤t≤1/2 gδp,q(t). However, this means

that fp,q,δp,q(1/2) = max0≤t≤1/2 fp,q,δp,q(t), which and Lemma 2.1.3 together show that

the inequality(
|u+ γp,qv|q + |u− γp,qv|q

2

)1/q

≤
(
|u+ v|p + |u− v|p

2

)1/p
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holds for all u, v ∈ R. This proves Theorem 2.1.1.

Finally, we show that γp,q is the best constant for Beckner’s inequality. Suppose

that γp,q < γ ≤ 1. Let δ = (1 − γ)/(1 + γ). According to Lemma 2.1.3, it is enough

to prove that fp,q,δ(1/2) < max0≤t≤1/2 fp,q,δ(t). In the case of γ = 1, we have δ = 0.

For γp,q < γ < 1, it follows that 0 < δ < δp,q. Then Lemma 2.1.6 (ii) assures that

the function gδ is strictly increasing on [0, s2] and strictly decreasing on [s2, 1/2], where

s2 = s1/(1 + s1).

t 0 · · · s2 · · · 1/2

g′δ + 0 −
gδ ↗ ↘

This shows that fp,q,δ(1/2) < fp,q,δ(s2) = max0≤t≤1/2 fp,q,δ(t), as desired.

2.2 Generalized Beckner’s inequalities

We next study generalizations of Beckner’s inequality. For this purpose, we make use of

symmetric absolute normalized norms on R2. Recall that the function ψp corresponding

to the `p-norm on R2 is given by

ψp(t) =

{
((1− t)p + tp)1/p if 1 ≤ p <∞,
max{1− t, t} if p =∞.

Using the functions ψp and ψq, Beckner’s inequality can be viewed as follows: Let

1 < p ≤ q <∞, and let γp,q =
√

(p− 1)/(q − 1). Then the inequality

‖(u+ γp,qv, u− γp,qv)‖q
2ψq(1/2)

≤ ‖(u+ v, u− v)‖p
2ψp(1/2)

holds for all u, v ∈ R. Hence our problem is as follows: Let ϕ, ψ ∈ ΨS
2 , and let γ ∈ [0, 1].

When does the inequality

‖(u+ γv, u− γv)‖ϕ
2ϕ(1/2)

≤ ‖(u+ v, u− v)‖ψ
2ψ(1/2)

(2.2)

hold for all u, v ∈ R? For each ϕ, ψ ∈ ΨS
2 , let Γ(ϕ, ψ) be the set of all γ ∈ [0, 1]

such that the inequality (2.2) holds for all u, v ∈ R. Needless to say, the inequality is

trivial for γ = 0. Thus the main purpose of the section is to clarify the condition of

Γ(ϕ, ψ) 6= {0}.
The following is an important characterization of absolute norms on R2. The proof

can be found in [13, Proposition IV.1.1] (see, also [70, Lemma 4.1]).
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Lemma 2.2.1. A norm ‖ · ‖ on R2 is absolute if and only if it is monotone, that is, if

|x1| ≤ |x2| and |y1| ≤ |y2| then ‖(x1, y1)‖ ≤ ‖(x2, y2)‖.

The first task is the following lemma.

Lemma 2.2.2 ([72]). Let ϕ, ψ ∈ ΨS
2 , and let γ ∈ [0, 1]. Then the following are equiva-

lent:

(i) The inequality
‖(u+ γv, u− γv)‖ϕ

2ϕ(1/2)
≤ ‖(u+ v, u− v)‖ψ

2ψ(1/2)

holds for all u, v ∈ R.

(ii) The inequality
‖(1 + γu, 1− γu)‖ϕ

2ϕ(1/2)
≤ ‖(1 + u, 1− u)‖ψ

2ψ(1/2)

holds for all u ∈ [0, 1].

Proof. It is enough to show that (ii) ⇒ (i). Suppose that (ii) holds. We first take an

arbitrary u > 1. Then |1± γu| ≤ |u± γ|, which and Lemma 2.2.1 imply that

‖(1 + γu, 1− γu)‖ϕ
2ϕ(1/2)

≤ ‖(u+ γ, u− γ)‖ϕ
2ϕ(1/2)

=
u ‖(1 + γu−1, 1− γu−1)‖ϕ

2ϕ(1/2)

≤
u ‖(1 + u−1, 1− u−1)‖ψ

2ψ(1/2)

=
‖(1 + u, 1− u)‖ψ

2ψ(1/2)
.

Now let u ≤ 0. Since ϕ, ψ ∈ ΨS
2 , the assumption and the above inequality show that

‖(1 + γu, 1− γu)‖ϕ
2ϕ(1/2)

=
‖(1− γu, 1 + γu)‖ϕ

2ϕ(1/2)

≤ ‖(1− u, 1 + u)‖ψ
2ψ(1/2)

=
‖(1 + u, 1− u)‖ψ

2ψ(1/2)
.

Thus the inequality

‖(1 + γu, 1− γu)‖ϕ
2ϕ(1/2)

≤ ‖(1 + u, 1− u)‖ψ
2ψ(1/2)
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holds for all u ∈ R. Finally, take arbitrary u, v ∈ R. If u = 0, we have

‖(γv,−γv)‖ϕ
2ϕ(1/2)

= γ|v| ≤ |v| = ‖(v,−v)‖ψ
2ψ(1/2)

.

So we assume that u 6= 0. Then

‖(u+ γv, u− γv)‖ϕ
2ϕ(1/2)

=
|u| ‖(1 + γu−1v, 1− γu−1v)‖ϕ

2ϕ(1/2)

≤
|u| ‖(1 + u−1v, 1− u−1v)‖ψ

2ψ(1/2)

=
‖(u+ v, u− v)‖ψ

2ψ(1/2)
.

This completes the proof.

We remark that the condition (ii) in the preceding lemma is equivalent to the fol-

lowing statement: The inequality

ϕ((1− γu)/2)

ψ((1− u)/2)
≤ ϕ(1/2)

ψ(1/2)

holds for all u ∈ [0, 1]. Thus it follows that

Γ(ϕ, ψ) =

{
γ ∈ [0, 1] :

ϕ((1− γu)/2)

ψ((1− u)/2)
≤ ϕ(1/2)

ψ(1/2)
for all u ∈ [0, 1]

}
.

for all ϕ, ψ ∈ ΨS
2 . Moreover, since the function

[0, 1] 3 γ 7→ ϕ((1− γu)/2)

ψ((1− u)/2)

is continuous and convex for each fixed u ∈ [0, 1], the set Γ(ϕ, ψ) is closed and convex.

This means that Γ(ϕ, ψ) is a subinterval of [0, 1]. Let γϕ,ψ = max Γ(ϕ, ψ). Then γϕ,ψ is

the best constant for the inequality.

In what follows, we study some conditions for γϕ,ψ > 0. The following is the simplest

result in this direction.

Proposition 2.2.3 ([72]). Let ϕ, ψ ∈ ΨS
2 . Suppose that ϕ(t) = ϕ(1/2) on [δ, 1− δ] for

some 0 ≤ δ < 1/2. Then γϕ,ψ > 0.

Proof. Let γ = 1− 2δ > 0. Then we have

1

2
≥ 1− γu

2
≥ 1− γ

2
= δ
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for all u ∈ [0, 1], which implies that

ϕ((1− γu)/2)

ψ((1− u)/2)
=

ϕ(1/2)

ψ((1− u)/2)
≤ ϕ(1/2)

ψ(1/2)
.

Thus γ ∈ Γ(ϕ, ψ), and so γϕ,ψ ≥ γ > 0.

For each ψ ∈ ΨS
2 , we remark that ψ′L(1/2) ≤ 0, and that ψ′L(1/2) = 0 if and only if

ψ is differentiable at 1/2, where ψ′L denotes the left derivative of ψ. For two functions

ϕ, ψ ∈ ΨS
2 , we consider the following four cases:

(I) ϕ′L(1/2) = 0 and ψ′L(1/2) = 0.

(II) ϕ′L(1/2) = 0 and ψ′L(1/2) < 0.

(III) ϕ′L(1/2) < 0 and ψ′L(1/2) = 0.

(IV) ϕ′L(1/2) < 0 and ψ′L(1/2) < 0.

We first present the following result concerning cases (II), (III) and (IV).

Theorem 2.2.4 ([72]). Let ϕ, ψ ∈ ΨS
2 .

(i) If ϕ′L(1/2) = 0 and ψ′L(1/2) < 0, then γϕ,ψ > 0.

(ii) If ϕ′L(1/2) < 0 and ψ′L(1/2) = 0, then γϕ,ψ = 0.

(iii) If ϕ′L(1/2) < 0 and ψ′L(1/2) < 0, then γϕ,ψ > 0.

In particular, if ϕ′L(1/2) < 0 then

γϕ,ψ ≤
ϕ(1/2)ψ′L(1/2)

ψ(1/2)ϕ′L(1/2)
.

Proof. (i) We first remark that

ψ(t) ≥ ψ(1/2)− ψ′L(1/2)

(
1

2
− t
)

for all t ∈ [0, 1/2]. Since ϕ′(1/2) = 0, there exists t0 ∈ [0, 1/2) such that

ϕ(1/2)− ϕ(t)

1/2− t
≥ ψ′L(1/2)

2
,

or

ϕ(t) ≤ ϕ(1/2)− ψ′L(1/2)

2

(
1

2
− t
)
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for all t ∈ [t0, 1/2]. Putting γ = 1− 2t0 > 0, we have

1

2
≥ 1− γu

2
≥ 1− γ

2
= t0

for each u ∈ [0, 1]. Hence, by an easy calculation, it follows that

ϕ((1− γu)/2)

ψ((1− u)/2)
≤ ϕ(1/2)− ψ′L(1/2)γu/4

ψ(1/2)− ψ′L(1/2)u/2
≤ ϕ(1/2)− ψ′L(1/2)u/4

ψ(1/2)− ψ′L(1/2)u/2
≤ ϕ(1/2)

ψ(1/2)
.

This means that γ ∈ Γ(ϕ, ψ). Thus we obtain γϕψ ≥ γ > 0.

(ii) and (iii): Assume that ϕ′L(1/2) < 0. Put

k0 =
ϕ(1/2)ψ′L(1/2)

ψ(1/2)ϕ′L(1/2)
.

We first show that the inequality γϕ,ψ ≤ k0 holds. Suppose that k0 < 1, and that

k0 < γ ≤ 1. Since
γψ(1/2)ϕ′L(1/2)

ϕ(1/2)
< ψ′L(1/2),

there exists t0 ∈ [0, 1/2) such that

ψ(1/2)− ψ(t)

1/2− t
>
γψ(1/2)ϕ′L(1/2)

ϕ(1/2)
,

for all t ∈ [t0, 1/2), or

ψ(t) < ψ(1/2)− γψ(1/2))ϕ′L(1/2)

ϕ(1/2)

(
1

2
− t
)

for all t ∈ [t0, 1/2). On the other hand, since

ϕ(t) ≥ ϕ(1/2)− ϕ′L(1/2)

(
1

2
− t
)

for each t ∈ [0, 1/2], putting u0 = 1− 2t0 shows that

ψ((1− u0)/2) = ψ(t0) <
ψ(1/2)

ϕ(1/2)

(
ϕ(1/2)− γϕ′L(1/2)

(
1

2
− t0

))
=
ψ(1/2)

ϕ(1/2)

(
ϕ(1/2)− γu0ϕ

′
L(1/2)

2
,

)
,

and that

ϕ((1− γu0)/2) ≥ ϕ(1/2)− γu0ϕ
′
L(1/2)

2
.

These proves that
ϕ((1− γu0)/2)

ψ((1− u0)/2)
>
ϕ(1/2)

ψ(1/2)
,
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that is, γ 6∈ Γ(ϕ, ψ). Thus γϕ,ψ ≤ k0. The statement (ii) immediately follows from this.

Finally, we shall show (iii). Suppose that ϕ′L(1/2) < 0, and that ψ′L(1/2) < 0. Then

we have k0 > 0. Take an arbitrary γ satisfying 0 < γ < min{k0, 1}. Since

ϕ′L(1/2) >
ϕ(1/2)ψ′L(1/2)

γψ(1/2)
,

there exists t0 ∈ [0, 1/2) such that if t ∈ [t0, 1/2) then

ϕ(1/2)− ϕ(t)

1/2− t
≥ ϕ(1/2)ψ′L(1/2)

γψ(1/2)
.

Namely, for each t ∈ [t0, 1/2), one has

ϕ(t) ≤ ϕ(1/2)− ϕ(1/2)ψ′L(1/2)

γψ(1/2)

(
1

2
− t
)
.

We also note that

ψ(t) ≥ ψ(1/2)− ψ′L(1/2)

(
1

2
− t
)

for all t ∈ [0, 1/2]. Now putting γ0 = min{1− 2t0, γ} > 0, we have

1

2
≥ 1− γ0u

2
≥ 1− γ0

2
≥ t0

for all u ∈ [0, 1], which implies that

ϕ((1− γ0u)/2) ≤ ϕ(1/2)− γ0uϕ(1/2)ψ′L(1/2)

2γψ(1/2)

=
ϕ(1/2)

ψ(1/2)

(
ψ(1/2)− γ0u

2γ
ψ′L(1/2)

)
≤ ϕ(1/2)

ψ(1/2)

(
ψ(1/2)− u

2
ψ′L(1/2)

)
.

Then, it follows from the inequality

ψ((1− u)/2) ≥ ψ(1/2)− uψ′L(1/2)

2

that
ϕ((1− γ0u)/2)

ψ((1− u)/2)
≤ ϕ(1/2)

ψ(1/2)
.

for all u ∈ [0, 1]. This shows that γ0 ∈ Γ(ϕ, ψ), and so we have γϕ,ψ ≥ γ0 > 0.

The following is an application of the preceding theorem.
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Example 2.2.5 ([72]). For each α ∈ (1/2, 1), let ψα be an element of ΨS
2 defined by

ψα(t) =

{
1 + 2(α− 1)t if t ∈ [0, 1/2],

2α− 1 + 2(1− α)t if t ∈ [1/2, 1].

Suppose that α, β ∈ (1/2, 1), and that α ≤ β. Then

k0 =
ψα(1/2)(ψβ)′L(1/2)

ψβ(1/2)(ψα)′L(1/2)
=
α(1− β)

β(1− α)
≤ 1.

On the other hand, for each u ∈ [0, 1], we have

ψα((1− k0u)/2) = 1 + (α− 1)(1− k0u)

= α− (α− 1)k0u

= α− α(1− β)

β
u

=
α

β
(β − (1− β)u)

=
α

β
(1 + (β − 1)(1− u))

=
α

β
ψβ((1− u)/2).

Thus k0 ∈ Γ(ψα, ψβ), which and Theorem 2.2.4 together show that

γψα,ψβ = k0 =
α(1− β)

β(1− α)
.

Theorem 2.2.4 clarifies whether γϕ,ψ > 0 in the cases (II), (III) and (IV). However,

we have had no information about (I) yet. Therefore we next consider several special

subcases of (I). Let ϕ, ψ ∈ ΨS
2 . Suppose that the second derivatives ϕ′′ and ψ′′ are

continuous on (δ, 1− δ) for some 0 ≤ δ < 1/2. Then we remark that ϕ′′(1/2) ≥ 0 and

ψ′′(1/2) ≥ 0 by the convexity. This allows us to consider the following four subcases of

(I):

(I-a) ϕ′′(1/2) = 0 and ψ′′(1/2) = 0.

(I-b) ϕ′′(1/2) = 0 and ψ′′(1/2) > 0.

(I-c) ϕ′′(1/2) > 0 and ψ′′(1/2) = 0.

(I-d) ϕ′′(1/2) > 0 and ψ′′(1/2) > 0.
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Here we do not consider the case (I-a) because of its complexity. For the cases (I-b),

(I-c) and (I-d), we have the following result.

Theorem 2.2.6 ([72]). Let ϕ, ψ ∈ ΨS
2 . Suppose that the second derivatives ϕ′′ and ψ′′

are continuous on (δ, 1− δ) for some 0 ≤ δ < 1/2.

(i) If ϕ′′(1/2) = 0 and ψ′′(1/2) > 0, then γϕ,ψ > 0.

(ii) If ϕ′′(1/2) > 0 and ψ′′(1/2) = 0, then γϕ,ψ = 0.

(iii) If ϕ′′(1/2) > 0 and ψ′′(1/2) > 0, then γϕ,ψ > 0.

In particular, if ϕ′′(1/2) > 0 then

γϕ,ψ ≤

√
ϕ(1/2)ψ′′(1/2)

ψ(1/2)ϕ′′(1/2)
.

Proof. (i) For each γ ∈ (0, 1], define the function fγ : [0, 1− 2δ)→ R by the formula

fγ(u) =
ψ((1− u)/2)

ψ(1/2)
− ϕ((1− γu)/2)

ϕ(1/2)
.

Then, the first and second derivative of fγ are as follows:

f ′γ(u) =
1

2

(
γϕ′((1− γu)/2)

ϕ(1/2)
− ψ′((1− u)/2)

ψ(1/2)

)
,

f ′′γ (u) =
1

4

(
ψ′′((1− u)/2)

ψ(1/2)
− γ2ϕ′′((1− γu)/2)

ϕ(1/2)

)
.

So we have f ′a(0) = 0 and

f ′′a (0) =
1

4

(
ψ′′(1/2)

ψ(1/2)
− γ2ϕ′′(1/2)

ϕ(1/2)

)
=
ψ′′(1/2)

4ψ(1/2)
> 0.

From these facts, the function fa is nonnegative on the interval [0, u0] for some u0 ∈
(0, 1]. Let γ0 = γu0 > 0. Take an arbitrary u ∈ [0, 1] and put v = u0u. Then

0 ≤ v ≤ min{u0, u}, and so
1− u

2
≤ 1− v

2
≤ 1

2
,

which implies that ψ((1− u)/2) ≥ ψ((1− v)/2). Hence it follows that

fγ0(u) =
ψ((1− u)/2)

ψ(1/2)
− ϕ((1− γ0u)/2)

ϕ(1/2)

≥ ψ((1− v)/2)

ψ(1/2)
− ϕ((1− γv)/2)

ϕ(1/2)

= fγ(v) ≥ 0.
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This shows γ0 ∈ Γ(ϕ, ψ), and hence γϕ,ψ ≥ γ0 > 0.

We next suppose that ϕ′′(1/2) > 0. Put

k0 =

√
ϕ(1/2)ψ′′(1/2)

ψ(1/2)ϕ′′(1/2)
.

Then, as in the proof of (i), we have f ′′a (0) < 0 for each γ > k0. It follows thatfγ(u0) < 0

for some u0 ∈ (0, 1 − 2δ). This means that γ 6∈ Γ(ϕ, ψ), which shows γϕ,ψ ≤ k0. We

note that this also proves (ii). In the case of (iii), one has k0 > 0. Moreover, for each

γ with 0 < γ < min{1, k0}, we obtain f ′′γ (0) > 0. Hence the function fγ is nonnegative

on some nontrivial interval [0, u0]. We finally get γϕ,ψ > 0 by an argument similar to

that in the first paragraph. This completes the proof.

Remark 2.2.7. We remark that√
ψq(1/2)ψ′′p(1/2)

ψp(1/2)ψ′′q (1/2)
=

√
p− 1

q − 1
= γp,q,

where γp,q is the best constant for Beckner’s inequality. This gives another aspect of

the constant γp,q.

We next consider the duality of generalized Beckner’s inequalities. The following

lemma which is analogous to Lemma 2.1.3 will be needed.

Lemma 2.2.8 ([72]). Suppose that ϕ, ψ ∈ ΨS
2 . For each γ ∈ [0, 1], let

Aγ =

(
1 + γ 1− γ
1− γ 1 + γ

)
.

Then γ ∈ Γ(ϕ, ψ) if and only if∥∥Aγ : (R2, ‖ · ‖ψ)→ (R2, ‖ · ‖ϕ)
∥∥ ≤ 2ϕ(1/2)

ψ(1/2)
.

Proof. Let γ ∈ Γ(ϕ, ψ). Then, by Lemma 2.2.2,

‖(u+ γv, u− γv)‖ϕ
2ϕ(1/2)

≤ ‖(u+ v, u− v)‖ψ
2ψ(1/2)

for all u, v ∈ R. Take arbitrary u, v ∈ R. Applying the inequality for u + v and u− v,

we obtain

‖((1 + γ)u+ (1− γ)v, (1− γ)u+ (1 + γ)v)‖ϕ
2ϕ(1/2)

≤ ‖(2u, 2v)‖ψ
2ψ(1/2)

,
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or

‖Aγ(u, v)‖ϕ ≤
2ϕ(1/2)

ψ(1/2)
‖(u, v)‖ψ.

Thus we have ∥∥A : (R2, ‖ · ‖ψ)→ (R2, ‖ · ‖ϕ)
∥∥ ≤ 2ϕ(1/2)

ψ(1/2)
.

Conversely, suppose that∥∥Aγ : (R2, ‖ · ‖ψ)→ (R2, ‖ · ‖ϕ)
∥∥ ≤ 2ϕ(1/2)

ψ(1/2)
.

Let u, v ∈ R. Putting u1 = (u+ v)/2 and v1 = (u− v)/2, we have

‖(u+ γv, u− γv)‖ϕ = ‖((1 + γ)u1 + (1− γ)v1, (1− γ)u1 + (1 + γ)v1)‖ϕ
= ‖Aγ(u1, v1)‖ϕ

≤ 2ϕ(1/2)

ψ(1/2)
‖(u1, v1)‖ψ

=
ϕ(1/2)

ψ(1/2)
‖(u+ v, u− v)‖ψ.

Hence one has γ ∈ Γ(ϕ, ψ).

We now present the following duality result.

Theorem 2.2.9 ([72]). Let ϕ, ψ ∈ ΨS
2 . Then γϕ,ψ = γψ∗,ϕ∗.

Proof. Since min0≤t≤1 ϕ(t) = ϕ(1/2), it follows that

ϕ∗(1/2) = sup
0≤t≤1

(1− t)/2 + t/2

ϕ(t)
=

1

2ϕ(1/2)
.

We similarly have ψ∗(1/2) = 1/2ψ(1/2), which implies that

ψ∗(1/2)

ϕ∗(1/2)
=
ϕ(1/2)

ψ(1/2)
.

Now for each γ ∈ [0, 1], define the matrix Aγ as in Lemma 2.2.8. We remark that

A∗γ = Aγ, where A∗γ is the adjoint operator of Aγ. Then Lemma 2.2.8 assures that

γ ∈ Γ(ϕ, ψ) if and only if∥∥Aγ : (R2, ‖ · ‖ψ)→ (R2, ‖ · ‖ϕ)
∥∥ ≤ 2ϕ(1/2)

ψ(1/2)
,

which happens if and only if∥∥Aγ : (R2, ‖ · ‖ϕ∗)→ (R2, ‖ · ‖ψ∗)
∥∥ ≤ 2ψ∗(1/2)

ϕ∗(1/2)
.

The last statement is equivalent to γ ∈ Γ(ψ∗, ϕ∗). Thus we obtain Γ(ϕ, ψ) = Γ(ψ∗, ϕ∗),

which proves γϕ,ψ = γψ∗,ϕ∗ .
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Finally, we give the norm version of generalized Beckner’s inequalities.

Theorem 2.2.10 ([72]). Let X be a Banach space. Suppose that ϕ, ψ ∈ ΨS
2 , and that

γ ∈ Γ(ϕ, ψ). Then the inequality

‖(x+ γy, x− γy)‖ϕ
2ϕ(1/2)

≤ ‖(x+ y, x− y)‖ψ
2ψ(1/2)

holds for all x, y ∈ X.

Proof. Take arbitrary x, y ∈ X, and put z = x + y and w = x − y, respectively. We

also put u = (‖z‖+ ‖w‖)/2 and v = (‖z‖ − ‖w‖)/2. Then we have

‖(x+ γy, x− γy)‖ϕ
2ϕ(1/2)

=
‖(2−1(1 + γ)z + 2−1(1− γ)w, 2−1(1− γ)z + 2−1(1 + γ)w)‖ϕ

2ϕ(1/2)

≤ ‖(2
−1(1 + γ)‖z‖+ 2−1(1− γ)‖w‖, 2−1(1− γ)‖z‖+ 2−1(1 + γ)‖w‖)‖ϕ

2ϕ(1/2)

=
‖(u+ γv, u− γv)‖ϕ

2ϕ(1/2)

≤ ‖(u+ v, u− v)‖ϕ
2ψ(1/2)

=
‖(x+ y, x− y)‖ψ

2ψ(1/2)
.

The proof is complete.

2.3 ψ-uniform smoothness

It is the time to introduce new geometric properties of Banach spaces that generalize the

notion of p-uniform smoothness. We start this section with the definition of ψ-uniform

smoothness.

Definition 2.3.1 ([73]). Let ψ ∈ Ψ2. Then a Banach space X is said to be ψ-uniformly

smooth if there exists M > 0 such that ρX(τ) ≤ ‖(1,Mτ)‖ψ − 1 for each τ ∈ [0, 1].

The above definition can be weakened as follows.

Lemma 2.3.2 ([73]). Let ψ ∈ Ψ2. Then a Banach space X is ψ-uniformly smooth if

and only if there exist M > 0 and δ ∈ (0, 1] such that ρX(τ) ≤ ‖(1,Mτ)‖ψ − 1 for each

τ ∈ [0, δ].
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Proof. Suppose that there exist M > 0 and δ ∈ (0, 1] such that ρX(τ) ≤ ‖(1,Mτ)‖ψ−1

for each τ ∈ [0, δ]. Let

M0 = max

{
M,

δ + 1

δ

}
.

Then for each τ ∈ [δ, 1] we obtain

ρX(τ) ≤ τ ≤M0τ − 1 ≤ ‖(1,M0τ)‖ψ − 1.

This and Lemma 2.2.1 together show that ρX(τ) ≤ ‖(1,M0τ)‖ψ − 1 for each τ ∈
[0, 1].

As will be seen in the following lemma, p-uniform smoothness is equivalent to ψp-

uniform smoothness, and hence the notion of ψ-uniform smoothness is a natural gen-

eralization of that of p-uniform smoothness. Recall that a Banach space X is said to

be p-uniformly smooth if there exists K > 0 such that ρX(τ) ≤ Kτ p for all τ ≥ 0.

Proposition 2.3.3 ([73]). Let X be a Banach space, and let 1 < p ≤ 2. Then X is

p-uniformly smooth if and only if it is ψp-uniformly smooth.

Proof. Suppose that X is p-uniformly smooth. Then there exists a K > 0 satisfying

ρX(τ) ≤ Kτ p for each τ > 0. Since the function f on [0, 1] given by

f(τ) = 1 + pK(1 +K)p−1τ p − (1 +Kτ p)p

is nondecreasing, it follows that f ≥ 0. Putting M = p1/pK1/p(1 +K)1−1/p we have

ρX(τ) ≤ 1 +Kτ p − 1

≤ (1 + pK(1 +K)p−1τ p)1/p − 1

= ‖(1,Mτ)‖p − 1

for each τ ∈ [0, 1]. This shows that X is ψp-uniformly smooth.

Conversely, assume that X is ψp-uniformly smooth. Let M be a positive real number

such that

ρX(τ) ≤ ‖(1,Mτ)‖p − 1

for each τ ∈ [0, 1]. Then for each τ ∈ [0, 1] one has

ρX(τ) ≤ ‖(1,Mτ)‖p − 1 = (1 +Mpτ p)1/p − 1 ≤ 1 +
1

p
Mpτ p − 1 =

1

p
Mpτ p.

On the other hand, if τ ≥ 1 then ρX(τ) ≤ τ ≤ τ p. Hence we obtain

ρX(τ) ≤ max{Mp/p, 1}τ p

for each τ ≥ 0, that is, the space X is p-uniformly smooth.
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For each ψ ∈ Ψ2, let ψ′R denote the right derivative of ψ. The relationship between

uniform smoothness and ψ-uniform smoothness is as follows.

Proposition 2.3.4 ([73]). Suppose that ψ ∈ Ψ2 and that ψ′R(0) = −1. Then every

ψ-uniformly smooth Banach space is uniformly smooth.

Proof. Let X be a ψ-uniformly smooth Banach space. Then there exists M > 0 such

that ρX(τ) ≤ ‖(1,Mτ)‖ψ − 1 for each τ ∈ [0, 1]. Since the function

τ 7→ Mτ

1 +Mτ

is increasing on R+, it follows that

lim
τ→0+

ψ(Mτ/(1 +Mτ))− 1

τ
= lim

τ→0+

ψ(Mτ/(1 +Mτ))− 1

Mτ/(1 +Mτ)
· Mτ/(1 +Mτ)

τ

= Mψ′R(0) = −M.

From this one has

lim
τ→0+

ρX(τ)

τ
≤ lim

τ→0+

‖(1,Mτ)‖ψ − 1

τ

= lim
τ→0+

(1 +Mτ)ψ(Mτ/(1 +Mτ))− 1

τ

= lim
τ→0+

Mτψ(Mτ/(1 +Mτ)) + ψ(Mτ/(1 +Mτ))− 1

τ

= lim
τ→0+

Mψ(Mτ/(1 +Mτ)) + lim
τ→0+

ψ(Mτ/(1 +Mτ))− 1

τ

= M −M = 0.

Thus X is uniformly smooth.

We now introduce a technical condition on elements in Ψ2. A function ψ ∈ Ψ2 is

said to have the property (∗) if there exists M > 0 satisfying

‖(1, τ)‖ψ + τ 2 ≤ ‖(1,Mτ)‖ψ

for each τ ∈ [0, 1]. We can prove that the function ψp has the property (∗) for each

1 ≤ p ≤ 2. Indeed, putting M = (1/p+ 1)1/p yields

‖(1, τ)‖p + τ 2 = (1 + τ p)1/p + τ 2 ≤ 1 +
1

p
τ p + τ p = 1 +Mpτ p.
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Now we choose a positive number K such that Kp > max{pMp, (1 +Mp)p − 1}. Then

the function

f(τ) = ‖(1, Kτ)‖p − (1 +Mpτ p)

is non-negative on [0, 1]. Hence it follows that

‖(1, τ)‖p + τ 2 ≤ 1 +Mpτ p ≤ ‖(1, Kτ)‖p

for each τ ∈ [0, 1].

The following gives a useful characterization of the property (∗).

Lemma 2.3.5 ([73]). Let ψ ∈ Ψ2. Then the following are equivalent.

(i) The function ψ has the property (∗).

(ii) For each K > 0 and each α > 0 there exists M > 0 such that

‖(1, Kτ)‖ψ + ατ 2 ≤ ‖(1,Mτ)‖ψ

for each τ ∈ [0, 1].

(iii) There exist M > 0 and δ ∈ (0, 1] such that

‖(1, τ)‖ψ + τ 2 ≤ ‖(1,Mτ)‖ψ

for each τ ∈ [0, δ].

Proof. Suppose that four positive real numbers K,α, δ and M satisfy the inequality

‖(1, Kτ)‖ψ + ατ 2 ≤ ‖(1,Mτ)‖ψ

for each τ ∈ [0, δ]. Letting

M0 = max

{
M, max

τ∈[δ,1]

‖(1, Kτ)‖ψ + ατ 2

τ

}
we have

‖(1, Kτ)‖ψ + ατ 2 ≤ ‖(1,M0τ)‖ψ

for each τ ∈ [0, 1]. This shows (i) ⇔ (iii).

Now suppose that K > 0 and α > 0. Put β = max{K,
√
α}. Then for each

τ ∈ [0, β−1] one has

‖(1, Kτ)‖ψ + ατ 2 ≤ ‖(1, βτ)‖ψ + β2τ 2

≤ ‖(1,Mβτ)‖ψ,

which and the above argument together show that (i) ⇔ (ii).
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The property (∗) plays an important role in our argument.

Proposition 2.3.6 ([73]). Let ψ ∈ Ψ2 with the property (∗). Then every 2-uniformly

smooth Banach space is ψ-uniformly smooth.

Proof. Suppose that a Banach space X is 2-uniformly smooth. Then there exists K > 0

such that ρX(τ) ≤ Kτ 2 for each τ ≥ 0. Since ψ has the property (∗), the preceding

lemma assures that there exists M > 0 such that

ρX(τ) ≤ 1 +Kτ 2 − 1

≤ ‖(1, τ)‖ψ +Kτ 2 − 1

≤ ‖(1,Mτ)‖ψ − 1

for each τ ∈ [0, 1]. Hence X is ψ-uniformly smooth.

We shall characterize ψ-uniform smoothness in terms of norm inequalities. The

following lemma will be needed.

Lemma 2.3.7 ([73]). Let ψ ∈ ΨS
2 . Suppose that M ≥ 1. Then ‖(1,Mτ)‖ψ ≤ ‖(M, τ)‖ψ

for each τ ∈ [0, 1].

Proof. The case of τ = 0 or 1 is clear. For each τ ∈ (0, 1), we have

M

M + τ
=

Mτ

Mτ + τ 2
≥ Mτ

1 +Mτ
≥ Mτ

M2 +Mτ
=

τ

M + τ
.

Then it follows that

ψ

(
Mτ

1 +Mτ

)
≤ max

{
ψ

(
M

M + τ

)
, ψ

(
τ

M + τ

)}
= ψ

(
τ

M + τ

)
.

On the other hand, since M ≥ 1, we obtain M + τ ≥ 1 +Mτ for each τ ∈ (0, 1), which

implies that

‖(M, τ)‖ψ = (M + τ)ψ

(
τ

M + τ

)
≥ (1 +Mτ)ψ

(
Mτ

1 +Mτ

)
= ‖(1,Mτ)‖ψ

for each τ ∈ (0, 1).

Theorem 2.3.8 ([73]). Let X be a Banach space and ψ ∈ ΨS
2 with the property (∗).

Suppose that γψ,ψ2 > 0. Then the following are equivalent
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(i) The space X is ψ-uniformly smooth.

(ii) There exists M > 0 such that

‖(x+ y, x− y)‖ψ
2ψ(1/2)

≤ ‖(x,My)‖ψ

for each x, y ∈ X.

(iii) For any ϕ ∈ ΨS
2 with γϕ,ψ > 0, there exists an Mϕ > 0 such that

‖(x+ y, x− y)‖ϕ
2ϕ(1/2)

≤ ‖(x,Mϕy)‖ψ

for each x, y ∈ X.

(iv) For some ϕ ∈ ΨS
2 with γϕ,ψ > 0, there exists an Mϕ > 0 such that

‖(x+ y, x− y)‖ϕ
2ϕ(1/2)

≤ ‖(x,Mϕy)‖ψ

for each x, y ∈ X.

Proof. Let γ = γψ,ψ2 and

F (x, y) = max

{
‖(x+ γy, x− γy)‖ψ

2ψ(1/2)
,
‖(γx+ y, γx− y)‖ψ

2ψ(1/2)

}
for each x, y ∈ X, for short. Notice that

F (x, y) ≤ ‖(x+ y, x− y)‖2
2ψ2(1/2)

for each x, y ∈ X.

(i) ⇒ (ii) Suppose that X is ψ-uniformly smooth. Then there exists a K > 0 such

that ρX(τ) ≤ ‖(1, Kτ)‖ψ − 1 for each τ ∈ [0, 1]. Let x ∈ SX and y ∈ BX \ {0}. It

follows from

‖x+ y‖+ ‖x− y‖
2

− 1 ≤ ρX(‖y‖) ≤ ‖(1, K‖y‖)‖ψ − 1

that
‖x+ y‖+ ‖x− y‖

2
≤ ‖(1, K‖y‖)‖ψ.

Putting

α =
‖x+ y‖+ ‖x− y‖

2
and αβ =

‖x+ y‖ − ‖x− y‖
2

,
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we have ‖x+ y‖ = α + αβ and ‖x− y‖ = α− αβ. Since γψ,ψ2 > 0, one has

F (x, y)− ‖(1, K‖y‖)‖ψ ≤
‖(x+ y, x− y)‖2

2ψ2(1/2)
− ‖x+ y‖+ ‖x− y‖

2

=
‖(α + αβ, α− αβ)‖2√

2
− α

=
α‖(1 + β, 1− β)‖2√

2
− α

= α

((
(1 + β)2 + (1− β)2

2

)1/2

− 1

)
= α(

√
1 + β2 − 1)

≤ α(1 + β2 − 1)

= αβ2.

From the facts that

α =
‖x+ y‖+ ‖x− y‖

2
≥ ‖x+ y + x− y‖

2
= ‖x‖ = 1

and

(αβ)2 =

(
‖x+ y‖ − ‖x− y‖

2

)2

≤
(
‖x+ y − (x− y)‖

2

)2

= ‖y‖2,

it follows that

F (x, y) ≤ ‖(1, K‖y‖)‖ψ + αβ2

≤ ‖(1, K‖y‖)‖ψ + (αβ)2

≤ ‖(1, K‖y‖)‖ψ + ‖y‖2

≤ ‖(1,M‖y‖)‖ψ
= ‖(x,My)‖ψ

for some M > 0 by the property (∗). Clearly, it may be assumed that M ≥ 1.

Now suppose that x, y ∈ X \ {0}. If ‖x‖ ≥ ‖y‖ then, as was shown in the above,

one has
‖(x+ γy, x− γy)‖ψ

2ψ(1/2)
≤ F (x, y) ≤ ‖(x,My)‖ψ.

On the other hand, if ‖x‖ < ‖y‖ then the above inequality and Lemma 2.3.7 guarantee

that F (x, y) ≤ ‖(y,Mx)‖ψ ≤ ‖(My, x)‖ψ, or

‖(x+ γy, x− γy)‖ψ
2ψ(1/2)

≤ ‖(x,My)‖ψ.
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Thus we finally have
‖(x+ y, x− y)‖ψ

2ψ(1/2)
≤ ‖(x,Mγ−1y)‖ψ

for each x, y ∈ X, as desired.

(ii) ⇒ (iii) Suppose that γϕ,ψ > 0. Then, by Theorem 2.2.10, we have

‖(x+ γϕ,ψy, x− γϕ,ψy)‖ϕ
2ϕ(1/2)

≤ ‖(x+ y, x− y)‖ψ
2ψ(1/2)

≤ ‖(x,My)‖ψ

for each x, y ∈ X. Putting Mϕ = Mγ−1ϕ,ψ > 0 and replacing y with γ−1ϕ,ψy, we obtain

‖(x+ y, x− y)‖ϕ
2ϕ(1/2)

≤ ‖(x,Mϕy)‖ψ

for each x, y ∈ X.

(iii) ⇒ (iv) Obvious.

(iv) ⇒ (i) Suppose that ψ ∈ ΨS
2 and Mϕ > 0 satisfy γϕ,ψ > 0 and

‖(x+ y, x− y)‖ϕ
2ϕ(1/2)

≤ ‖(x,Mϕy)‖ψ

for each x, y ∈ X. By [69, Lemma 3], one has

‖x+ y‖+ ‖x− y‖
2

=
‖(‖x+ y‖, ‖x− y‖)‖1

2
≤ ‖(‖x+ y‖, ‖x− y‖)‖ϕ

2ϕ(1/2)

=
‖(x+ y, x− y)‖ϕ

2ϕ(1/2)
≤ ‖(x,Mϕy)‖ψ

for each x, y ∈ X. Now let x, y ∈ SX and τ ∈ (0, 1]. Then we obtain

‖x+ τy‖+ ‖x− τy‖
2

− 1 ≤ ‖(1,Mϕτ)‖ψ − 1,

which implies that ρX(τ) ≤ ‖(1,Mϕτ)‖ψ − 1. Therefore the space X is ψ-uniformly

smooth.

We conclude this section with some examples of functions ψ ∈ ΨS
2 that satisfy the

assumption of the preceding theorem.

Example 2.3.9. Let 1 ≤ p ≤ 2. As was mentioned preceding Lemma 2.3.5, the

function ψp has the property (∗). Moreover, it is easy to check that γψp,ψ2 = 1.
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Example 2.3.10. Suppose that 0 < ω1 < p, q < ∞, and that with 1/p + 1/q =

1. Recall that the two-dimensional Lorentz sequence space d(2)(ω, q) is the space R2

endowed with the norm

‖(x, y)‖ω,q = (max{|x|q, |y|q}+ ωmin{|x|q, |y|q})1/q.

We note ‖ · ‖ω,q ∈ AN2 and the function ψω,q associated with this norm is given by

ψω,q(t) =

{
((1− t)q + ωtq)1/q if 0 ≤ t ≤ 1/2,

(tq + ω(1− t)q)1/q if 1/2 ≤ t ≤ 1.

As in [56], the function ψ∗ω,q associated with the norm of d(2)(ω, q)∗ is given by

ψ∗ω,q(t) =


((1− t)p + ω1−ptp)1/p if 0 ≤ t ≤ ω/(1 + ω),

(1 + ω)1/p−1 if ω/(1 + ω) ≤ t ≤ 1/(1 + ω),

(tp + ω1−p(1− t)p)1/p if 1/(1 + ω) ≤ t ≤ 1.

Then ψ∗ω,q satisfies the assumption of Theorem 2.3.8 for each 2 ≤ q < ∞ and each

0 < ω < 1. Indeed, we have γψ∗ω,q ,ψ2 > 0 by Proposition 2.2.3. Moreover, for each

τ ∈ [0, ω] we obtain

‖(1, τ)‖∗ω,q + τ 2 = (1 + ω1−pτ p)1/p + τ 2

≤ 1 +
1

p
ω1−pτ p + τ p

≤ 1 + ω1−p
(

1

p
+ ωp−1

)
τ p.

As in the proof of Lemma 2.3.3, it follows that

1 +K0τ
p ≤ (1 + pK0(1 +K0)

p−1τ p)1/p,

where K0 = ω1−p(p−1 + ωp−1). Hence, for M = max{1, (pK0(1 + K0)
p−1ω1−p)1/p} and

each τ ∈ [0,M−1ω], one has

‖(1, τ)‖∗ω,q + τ 2 ≤ (1 + ω1−pMpτ p)1/p = ‖(1,Mτ)‖∗ω,q.

This together with Lemma 2.3.5 ensures that ψ∗ω,q has the property (∗).

We remark that the set Ψ2 can be viewed as the subset of C[0, 1], the Banach space

of all continuous functions on [0, 1] equipped with the uniform norm. The following

result shows the elements of Ψ2 that satisfy the assumption of Theorem 2.3.8 are rich.
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Theorem 2.3.11 ([73]). Let D be the set of all functions ψ ∈ ΨS
2 that have the property

(∗) and satisfy γψ,ψ2 > 0. Then D is dense in ΨS
2 .

Proof. We first note that ∅ 6= D since ψp ∈ D∩ΨS
2 for each 1 ≤ p ≤ 2. Let ψ ∈ ΨS

2 \{ψ1}
and ψ0 ∈ D. For each λ ∈ (0, 1], let ϕλ = (1 − λ)ψ + λψ0 ∈ ΨS

2 . Since ψ0 has the

property (∗), Lemma 2.3.5 guarantees that there exists M > 0 satisfying

‖(1, τ)‖ϕλ + τ 2 = (1− λ)‖(1, τ)‖ψ + λ‖(1, τ)‖ψ0 + τ 2

= (1− λ)‖(1, τ)‖ψ + λ(‖(1, τ)‖ψ0 + λ−1τ 2)

≤ (1− λ)‖(1, τ)‖ψ + λ‖(1,Mτ)‖ψ0

for each τ ∈ [0, 1]. Letting M0 = max{M, 1} yields

‖(1, τ)‖ϕλ + τ 2 ≤ ‖(1,M0τ)‖ϕλ

for each τ ∈ [0, 1]. Hence the function ϕλ has the property (∗) for each λ ∈ (0, 1].

Next, for each λ ∈ (0, 1] and each µ ∈ (ϕλ(1/2), 1), let ϕλ,µ = max{ϕλ, µ}. Remark

that ϕλ,µ 6= ψ1. Then there exists δ ∈ (0, 1/2) such that ϕλ,µ = ϕλ on [0, δ]∪[1−δ, 1] and

ϕλ,µ = µ on [δ, 1 − δ]. From this we have γϕλ,µ,ψ2 > 0 by Proposition 2.2.3. Moreover,

for each τ ∈ [0, δ/(1− δ)M0] it follows from τ/(1 + τ) ≤M0τ/(1 +M0 τ) ≤ δ that

‖(1, τ)‖ϕλ,µ + τ 2 = ‖(1, τ)‖ϕλ + τ 2

≤ ‖(1,M0τ)‖ϕλ
= ‖(1,M0τ)‖ϕλ,µ ,

which and Lemma 2.3.5 together show that ϕλ,µ also has the property (∗), that is,

ϕλ,µ ∈ D.

Finally, we note that

‖ψ − ϕλ,µ‖∞ ≤ ‖ψ − ϕλ‖∞ + ‖ϕλ − ϕλ,µ‖∞ = λ‖ψ − ψ0‖∞ + µ− ϕλ(1/2)

for each λ ∈ (0, 1] and each µ ∈ (ϕλ(1/2), 1). This proves that D is dense in ΨS
2 .

2.4 ψ∗-uniform convexity and duality

In this section, we consider ψ∗-uniform convexity of Banach spaces. As in the case of

ψ-uniform smoothness, some characterizations using norm inequalities will be given.

As an application it is shown that ψ-uniform smoothness and ψ∗-uniform convexity are

the dual properties of each other.
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Definition 2.4.1 ([73]). Let ψ ∈ Ψ2. Then a Banach space X is said to be ψ-uniformly

convex if there exists K > 0 such that ‖(1− δX(ε), Kε)‖ψ ≤ 1 for each ε ∈ [0, 2].

The following result shows that the preceding definition is also a natural general-

ization of the notion of q-uniform convexity. Recall that a Banach space X is said to

be q-uniformly convex if there exists C > 0 such that δX(ε) ≥ Cεq for each ε ∈ [0, 2].

Remark that for 1 ≤ p ≤ q ≤ ∞ with p−1 + q−1 = 1 we have ψ∗q = ψp.

Proposition 2.4.2 ([73]). Let 2 ≤ q < ∞. Then a Banach space X is q-uniformly

convex if and only if it is ψq-uniformly convex.

Proof. Suppose that X is q-uniformly convex. Then there exists C > 0 such that

δX(ε) ≥ Cεq for each ε ∈ [0, 2]. One can easily check that

(1− x)q ≤ 1− x

2

for each x ∈ [0, 1]. Hence, by 0 ≤ Cεq ≤ δX(ε) ≤ 1, we have

(1− δX(ε))q ≤ (1− Cεq)q ≤ 1− Cεq

2
.

Putting K = (C/2)1/q, we obtain ‖(1 − δX(ε), Kε)‖q = (1 − δX(ε))q + Kqεq ≤ 1 for

each ε ∈ [0, 2].

Conversely, assume that there exists K > 0 such that ‖(1 − δX(ε), Kε)‖q ≤ 1 for

each ε ∈ [0, 2]. Then (1− δX(ε))q ≤ 1−Kqεq, and so

1− δX(ε) ≤ (1−Kqεq)1/q ≤ 1− 1

q
Kqεq.

Thus, for C = Kq/q, we have δX(ε) ≥ Cεq for each ε ∈ [0, 2]. This shows X is

q-uniformly convex.

The following proposition shows a basic duality between the functions ψ and ψ∗.

We remark that ψ∗∗ = ψ.

Proposition 2.4.3 ([73]). Let ψ ∈ Ψ2. Then ψ′R(0) = −1 if and only if ψ∗(t) > 1− t
for each t ∈ (0, 1/2].

Proof. Let α0 = ψ′R(0) > −1. It follows from α0 ≤ (ψ(t)− 1)/t that ψ(t) ≥ 1 + α0t for

each t ∈ [0, 1], which implies that

ψ∗(t) = max
0≤s≤1

(1− s)(1− t) + st

ψ(s)
≤ max

0≤s≤1

(1− s)(1− t) + st

1 + α0s
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for each t ∈ [0, 1]. However, the function

s→ (1− s)(1− t) + st

1 + α0s

is decreasing on [0, 1] if t ≤ (1 + α0)/(2 + α0), and hence one obtains ψ∗(t) = 1− t on

[0, (1 + α0)/(2 + α0)].

Conversely, we assume that ψ∗(t) = 1− t on [0, δ] for some 0 < δ ≤ 1/2. Then, for

each t ∈ [0, 1], we have

ψ(t) = sup
0≤s≤1

(1− s)(1− t) + st

ψ∗(s)

≥ sup
0≤s≤δ

(1− s)(1− t) + st

ψ∗(s)

= sup
0≤s≤δ

(
1− t+

s

1− s
t

)
= 1− t+

δ

1− δ
t

= 1− 1− 2δ

1− δ
t.

This shows that

ψ′R(0) = lim
t→0+

ψ(t)− 1

t
≥ −1− 2δ

1− δ
> −1,

which completes the proof.

This duality provides the following natural implication.

Proposition 2.4.4 ([73]). Suppose that ψ ∈ Ψ2 and that ψ′R(0) = −1. Then every

ψ∗-uniformly convex Banach space is uniformly convex.

Proof. Suppose that a Banach space X is ψ∗-uniformly convex. Then there exists K > 0

such that ‖(1− δX(ε), Kε)‖ψ∗ ≤ 1 for each ε ∈ [0, 2]. Take an arbitrary ε ∈ (0, 2], and

put

tε =
Kε

1− δX(ε) +Kε
.

Since ψ(tε) > 1− tε by the preceding proposition, it follows that

1− δX(ε)

1− δX(ε) +Kε
= 1− tε < ψ∗(tε) = ψ∗

(
Kε

1− δX(ε) +Kε

)
,

or 1 − δX(ε) < ‖(1 − δX(ε), Kε)‖ψ∗ ≤ 1, which in turn implies that δX(ε) > 0. The

proof is complete.

53



The notion of ψ∗-uniform convexity also has a characterization using norm inequal-

ities. To see this, we need the following two lemmas.

Lemma 2.4.5 ([73]). Let X be a Banach space. Suppose that ψ ∈ ΨS
2 , and that K > 0.

Then the following are equivalent.

(i) The inequality ∥∥∥∥(1− δX(ε),
Kε

2

)∥∥∥∥
ψ

≤ 1.

holds for each ε ∈ [0, 2].

(ii) The inequality ∥∥∥∥(1

2
(x+ y),

K

2
(x− y)

)∥∥∥∥
ψ

≤ 1.

holds for each x, y ∈ X.

Proof. Suppose that (i) holds. Take arbitrary x, y ∈ BX . Put ‖x − y‖ = ε. Then, we

have ∥∥∥∥1

2
(x+ y)

∥∥∥∥ ≤ 1− δX(ε),

and so ∥∥∥∥(1

2
(x+ y),

K

2
(x− y)

)∥∥∥∥
ψ

≤
∥∥∥∥(1− δX(ε),

Kε

2

)∥∥∥∥
ψ

≤ 1.

Assume conversely that (ii) holds. Let ε ∈ [0, 2]. Then for any δ > 0 there exist

x, y ∈ BX such that ‖x− y‖ = ε and

1−
∥∥∥∥x+ y

2

∥∥∥∥ < δX(ε) + δ,

which implies that

1− δX(ε)− δ <
∥∥∥∥1

2
(x+ y)

∥∥∥∥ ,
and so ∥∥∥∥(1− δX(ε)− δ, Kε

2

)∥∥∥∥
ψ

≤
∥∥∥∥(1

2
(x+ y),

K

2
(x− y)

)∥∥∥∥
ψ

≤ 1.

Hence we have ∥∥∥∥(1− δX(ε),
Kε

2

)∥∥∥∥
ψ

≤ 1.

as δ → 0.

Lemma 2.4.6 (Generalized Hölder’s inequality [13, 54]). Let ψ ∈ Ψ2. Then |〈x, y〉| ≤
‖x‖ψ‖y‖ψ∗ for each x, y ∈ R2.
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To show the characterization, we also make use of the following duality between two

norm inequalities concerning with the pairs (ϕ, ψ) and (ϕ∗, ψ∗) will be needed.

Lemma 2.4.7 ([73]). Let ϕ, ψ ∈ ΨS
2 and K > 0. Then the following are equivalent.

(i) The inequality
‖(x+ y, x− y)‖ϕ

2ϕ(1/2)
≤ ‖(x,Ky)‖ψ.

holds for each x, y ∈ X.

(ii) The inequality
‖(f + g, f − g)‖ϕ∗

2ϕ∗(1/2)
≥ ‖(f,K−1g)‖ψ∗ .

holds for each f, g ∈ X∗.

The equivalence remains true even if X is replaced with X∗.

Proof. Suppose that (i) holds. Put γ = K−1. Replacing y with γy, we obtain

‖(x+ γy, x− γy)‖ϕ
2ϕ(1/2)

≤ ‖(x, y)‖ψ

for each x, y ∈ X. Let

A =

(
1 γ

1 −γ

)
.

Then the above inequality means that∥∥∥∥∥A
(
x

y

)∥∥∥∥∥
ϕ

≤ 2ϕ(1/2)

∥∥∥∥∥
(
x

y

)∥∥∥∥∥
ψ

.

Hence we have ‖A : X ⊕ψ X → X ⊕ϕ X‖ ≤ 2ϕ(1/2). From this, we also have

‖A∗ : X∗ ⊕ϕ∗ X∗ → X∗ ⊕ψ∗ X∗‖ ≤ 2ϕ(1/2) =
1

ϕ∗(1/2)
.

Remark that

A∗ =

(
1 1

γ −γ

)
.

It follows that

‖(h+ k, γ(h− k))‖ψ∗ =

∥∥∥∥∥A∗
(
h

k

)∥∥∥∥∥
ψ∗

≤ ‖(h, k)‖ϕ∗
ϕ∗(1/2)

55



for each h, k ∈ X∗. Now suppose that f, g ∈ X∗. Putting h = f + g and k = f − g we

obtain

‖(2f, 2γg)‖ψ∗ ≤
‖(f + g, f − g)‖ϕ∗

ϕ∗(1/2)
,

and so

‖(f,K−1g)‖ψ∗ ≤
‖(f + g, f − g)‖ϕ∗

2ϕ∗(1/2)
.

Conversely, assume that (ii) holds. Then one has

‖A∗ : X∗ ⊕ϕ∗ X∗ → X∗ ⊕ψ∗ X∗‖ ≤
1

ϕ∗(1/2)
= 2ϕ(1/2),

or ‖A : X ⊕ψ X → X ⊕ϕ X‖ ≤ 2ϕ(1/2). It follows that

‖(x+ γy, x− γy)‖ϕ =

∥∥∥∥∥A
(
x

y

)∥∥∥∥∥
ϕ

≤ 2ϕ(1/2)‖(x, y)‖ψ.

Finally, replacing y with Ky, we obtain

‖(x+ y, x− y)‖ϕ
2ϕ(1/2)

≤ ‖(x,Ky)‖ψ

for all x, y ∈ X.

The same argument is still valid even if X is replaced with X∗.

We now present the characterization.

Theorem 2.4.8 ([73]). Let X be a Banach space and ψ ∈ ΨS
2 with the property (∗).

Suppose that γψ,ψ2 > 0. Then the following are equivalent

(i) The space X is ψ∗-uniformly convex.

(ii) There exists M > 0 such that

‖(x+ y, x− y)‖ψ∗
2ψ(1/2)

≥ ‖(x,My)‖ψ∗

for each x, y ∈ X.

(iii) For any ϕ ∈ ΨS
2 with γϕ,ψ > 0, there exists an Mϕ > 0 such that

‖(x+ y, x− y)‖ϕ∗
2ϕ∗(1/2)

≥ ‖(x,Mϕy)‖ψ∗

for each x, y ∈ X.
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(iv) For some ϕ ∈ ΨS
2 with γϕ,ψ > 0, there exists an Mϕ > 0 such that

‖(x+ y, x− y)‖ϕ∗
2ϕ∗(1/2)

≥ ‖(x,Mϕy)‖ψ∗

for each x, y ∈ X.

Proof. (i) ⇒ (ii) Suppose that X is ψ∗-uniformly convex. Then there exists K > 0

such that ‖(1− δX(ε), Kε)‖ψ∗ ≤ 1 for each ε ∈ [0, 2]. Let τ ∈ (0, 1] and f, g ∈ SX∗ . For

any ε > 0 there exist x, y ∈ BX such that (f + τg)(x), (f − τg)(y) ≥ 0, ‖f + τg‖ <
(f + τg)(x) + ε and ‖f − τg‖ < (f − τg)(y) + ε. By Lemmas 2.4.5 and 2.4.6, we have

‖f + τg‖+ ‖f − τg‖
2

− 1 <
(f + τg)(x) + (f − τg)(y)

2
− 1 + ε

=

∣∣∣∣(f + τg)(x) + (f − τg)(y)

2

∣∣∣∣− 1 + ε

=

∣∣∣∣f(x+ y) + τg(x− y)

2

∣∣∣∣− 1 + ε

≤ ‖x+ y‖+ τ‖x− y‖
2

− 1 + ε

=

∥∥∥∥1

2
(x+ y)

∥∥∥∥+
τ

K

∥∥∥∥K2 (x− y)

∥∥∥∥− 1 + ε

≤
∥∥∥(1,

τ

K

)∥∥∥
ψ

∥∥∥∥(1

2
(x+ y),

K

2
(x− y)

)∥∥∥∥
ψ∗
− 1 + ε

≤
∥∥∥(1,

τ

K

)∥∥∥
ψ
− 1 + ε.

As ε→ 0, one has that

‖f + τg‖+ ‖f − τg‖
2

− 1 ≤
∥∥∥(1,

τ

K

)∥∥∥
ψ
− 1,

which implies that

ρX∗(τ) ≤
∥∥∥(1,

τ

K

)∥∥∥
ψ∗
− 1.

Thus X∗ is ψ-uniformly smooth. However, then Theorem 2.3.8 assures that there exists

M > 0 such that
‖(f + g, f − g)‖ψ

2ψ(1/2)
≤ ‖(f,Mg)‖ψ

for each f, g ∈ X∗. This and Lemma 2.4.7 together show that

‖(x+ y, x− y)‖ψ∗
2ψ∗(1/2)

≥ ‖(x,M−1y)‖ψ∗

57



for each x, y ∈ X.

(ii) ⇒ (iii) Suppose that ϕ ∈ ΨS
2 with γψ∗,ϕ∗ = γϕ,ψ > 0. Then, by Theorem 2.2.10,

we have

‖(x,Mγϕ,ψy)‖ψ∗ ≤
‖(x+ γψ∗,ϕ∗y, x− γψ∗,ϕ∗y)‖ψ∗

2ψ∗(1/2)

≤ ‖(x+ y, x− y)‖ϕ∗
2ϕ∗(1/2)

for each x, y ∈ X. Putting Mϕ = Mγϕ,ψ > 0, one has (iii).

(iii) ⇒ (iv): Obvious.

(iv) ⇒ (i): Suppose that there exist ϕ ∈ ΨS
2 with γϕ,ψ > 0 and Mϕ > 0 such that

‖(x+ y, x− y)‖ϕ∗
2ϕ∗(1/2)

≥ ‖(x,Mϕy)‖ψ∗

for each x, y ∈ X. As in the proof of [69, Lemma 2], the function t 7→ ϕ(t)/(1 − t) is

non-decreasing, which implies that ‖ · ‖ϕ∗ ≤ 2ϕ∗(1/2)‖ · ‖∞. Hence we have

‖(x+ y, x− y)‖ϕ∗
2ϕ∗(1/2)

=
‖(‖x+ y‖, ‖x− y‖)‖ϕ∗

2ϕ∗(1/2)

≤ ‖(‖x+ y‖, ‖x− y‖)‖∞ = max{‖x+ y‖, ‖x− y‖},

or ‖(x,Mϕy)‖ψ∗ ≤ max{‖x + y‖, ‖x − y‖} for each x, y ∈ X. In particular, for each

x, y ∈ BX one has∥∥∥∥(1

2
(x+ y),

Mϕ

2
(x− y)

)∥∥∥∥
ψ∗
≤ max {‖x‖, ‖y‖} ≤ 1,

which together with Lemma 2.4.5 prove that ‖(1− δX(ε),Mϕε/2)‖ψ∗ ≤ 1 for each

ε ∈ [0, 2]. This shows that X is ψ∗-uniformly convex.

The preceding theorem together with Lemma 2.4.7 and Theorems 2.3.8 also show

the duality between ψ-uniform smoothness and ψ∗-uniform convexity.

Corollary 2.4.9 ([73]). Let X be a Banach space and ψ ∈ ΨS
2 with the property (∗).

Suppose that γψ,ψ2 > 0.

(i) The space X is ψ-uniformly smooth if and only if X∗ is ψ∗-uniformly convex.

(ii) The space X∗ is ψ-uniformly smooth if and only if X is ψ∗-uniformly convex.

We conclude this chapter with the following consequence of Corollary 2.4.9.

Corollary 2.4.10 ([73]). Let ψ ∈ Ψ2 with the property (∗). Suppose that γψ,ψ2 > 0.

Then every 2-uniformly convex Banach space is ψ∗-uniformly convex.
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Chapter 3

Recent progress in Tingley’s

problem

The purpose of this chapter is to describe some recent results on Tingley’s problem. As

the first result in this topic, Tingley [84] proved that every surjective isometry between

the unit spheres of two finite dimensional normed spaces maps the pairs of antipodal

points to such pairs. From this, we have a feeling that, at least in the two-dimensional

case, spherical isometries preserve the extreme points. We shall consider this problem

in a bit more general settings. Specifically, we make use of the frame of the unit ball as

a natural generalization of the set of the k-extreme points. Then it is shown that every

spherical isometries preserves the frames of the unit balls.

A usual way to attack Tingley’s problem is to show that the natural extension

of a spherical isometry is linear. However, in this chapter, we try to present a new

geometric approach to the two-dimensional Tingley problem that does not rely on the

natural extensions. As applications, we present various new examples including the

two-dimensional Lorentz sequence space d(2)(ω, q) and its dual d(2)(ω, q)∗ by simple

arguments.

3.1 The frame of the unit ball

We start this section with the definition of the frame of the unit ball of a Banach

space. If A and B are two subsets of a Banach space with A ⊂ B, let Intr(A ∩B) and

∂r(A ∩ B) denote the relative interior and relative boundary of A with respect to B,

respectively. For each x ∈ SX , let ν(x) be the subset of SX∗ whose members are the

support functionals for BX that support BX at x, that is, ν(x) = {f ∈ SX∗ : f(x) = 1}.
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The map ν : SX → SX∗ is called the spherical image map for SX ; see, for example, [53,

Definition 5.4.23]. Let SF(BX) denote the set of all support functionals f for BX

satisfying ‖f‖ = 1. Then SF(BX) =
⋃
x∈SX ν(x). For each f ∈ SF(BX), the closed

convex subset F (f) = f−1({1}) ∩ BX of SX is called the exposed face of BX with

respect to f . We remark that if x ∈ SX , then x ∈ F (f) if and only if f ∈ ν(x).

Since ν(x) 6= ∅ for all x ∈ SX by the Hahn-Banach theorem, we also remark that

SX =
⋃
{F (f) : f ∈ SF(BX)}. The notion of exposed face of BX is an important

tool for the study of Banach space geometry. The readers interested in this topic are

referred to Aizpuru and Garćıa-Pacheco [1, 2], and Garćıa-Pacheco [28, 29]. The frame

of the unit ball is defined as follows:

Definition 3.1.1 ([64]). For each f ∈ SF(BX), define the edge E(f) of BX with respect

to f by E(f) = ∂r(F (f)∩ f−1({1})). Then the frame of the unit ball frm(BX) is given

by

frm(BX) =
⋃
{E(f) : f ∈ SF(BX)}.

In [64], a simple relationship between the frame and the extreme points of BX was

given. Let ext(BX) denote the set of all extreme points of BX .

Theorem 3.1.2 ([64]). Let X be a Banach space. Then ext(BX) ⊂ frm(BX). In

particular, frm(BX) = ext(BX) if dimX = 2.

Hence, the frame of the unit ball is closely related to the set of all extreme points.

However, if dimX ≥ 3, the equality in the preceding theorem cannot be expected. So

it is natural to ask what kind of set equals frm(BX) when dimX ≥ 3.

We recall the notion of k-extreme points. The definition adopted here can be found

in [51, 92] (cf. [10]).

Definition 3.1.3. Let X be a Banach space, and let k be a positive integer such

that dimX ≥ k + 1. An element x ∈ SX is said to be a k-extreme point of BX if

{x1, x2, . . . , xk+1} ⊂ SX and

x =
x1 + x2 + · · ·+ xk+1

k + 1

imply the linear dependence of {x1, x2, . . . , xk+1}. The set of all k-extreme points of

BX is denoted by extk(BX).

The notion of k-extreme points is a natural generalization of that of extreme points.

We remark that 1-extreme points are just extreme points, that is, ext1(BX) = ext(BX).
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We first present a characterization of the frame of the unit ball using k-extreme

points. The following lemma can be found in [53, Theorem 1.3.14]. We give the proof

of the first lemma only for the sake of completeness.

Lemma 3.1.4. Every closed, convex, absorbing subset of a Banach space includes a

neighborhood of the origin.

Proof. Let C be a closed, convex, absorbing subset of a Banach space X, and let

D = C ∩ (−C). Then, the subset D of C is also closed, convex, and absorbing. From

this, it follows that X =
⋃
n∈N nD. The Baire category theorem assures that IntD 6= ∅,

which implies that

0 ∈ 1

2
IntD +

1

2
Int(−D) ⊂ 1

2
D +

1

2
(−D) = D ⊂ C.

This proves the lemma.

We now give the characterization mentioned in the above.

Theorem 3.1.5 ([80]). Let X be an n-dimensional Banach space. Then frm(BX) =

extn−1(BX).

Proof. Suppose that x ∈ SX \ extn−1(BX). Then, there exist n-elements x1, x2, . . . , xn

of SX such that {xi}ni=1 is linearly independent and

x =
1

n

n∑
i=1

xi.

Take an arbitrary f ∈ ν(x). Since f(xi) ≤ 1 for each i and

1

n

n∑
i=1

f(xi) = f(x) = 1,

we have f(xi) = 1 for all i = 1, 2, . . . , n, that is, {xi}ni=1 ⊂ F (f). It follows that

{xi−x}n−1i=1 ⊂ ker f . Then we claim that ker f = 〈{xi−x}n−1i=1 〉. To see this, it is enough

to prove that {xi−x}n−1i=1 is linearly independent since dim ker f = n− 1. Suppose that

{αi}n−1i=1 ⊂ R and
∑n−1

i=1 αi(xi − x) = 0. Then, it follows that

n−1∑
i=1

αixi =

(
n−1∑
i=1

αi

)
x =

1

n

(
n−1∑
i=1

αi

)
n∑
i=1

xi.

However, from the fact that {xi}ni=1 is linearly independent, we obtain αj = n−1
∑n−1

i=1 αi

for all j = 1, 2, . . . , n− 1 and n−1
∑n−1

i=1 αi = 0. This proves α1 = α2 = · · · = αn−1 = 0,

that is, {xi − x}n−1i=1 is linearly independent.
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Next, we put A = co({xi − x}ni=1). Remark that

0 =
1

n

n∑
i=1

(xi − x) ∈ A.

Let y ∈ ker f \ {0}. Then, there exists {αi}n−1i=1 ⊂ R with
∑n−1

i=1 |αi| > 0 such that

y =
∑n−1

i=1 αi(xi−x). Put I = {i ∈ {1, 2, . . . , n−1} : αi ≥ 0} and J = {1, 2, . . . , n−1}\I,

respectively. Since xi − x = −
∑

j 6=i(xj − x) for each i, we obtain

y =
∑
i∈I

αi(xi − x) +
∑
i∈J

αi(xi − x)

=
∑
i∈I

|αi|(xi − x) +
∑
i∈J

(−αi)
∑
j 6=i

(xj − x)

=
∑
i∈I

|αi|(xi − x) +
∑
i∈J

|αi|
∑
j 6=i

(xj − x)

=
∑
i∈I

|αi|(xi − x) +
∑
i∈J

(n− 1)|αi|

(
1

n− 1

∑
j 6=i

(xj − x)

)
.

Letting K =
∑

i∈I |αi| +
∑

i∈J(n − 1)|αi| yields K > 0 and K−1y ∈ A. Then, we also

have t−1y ∈ A for all t > K since 0 ∈ A. Therefore, there exists a positive real number

r such that rBker f ⊂ A by Lemma 3.1.4, which implies that

x+ rBker f ⊂ x+ A = x+ co({xi − x}ni=1) = co({xi}ni=1) ⊂ F (f).

This shows that x ∈ F (f) \ E(f), and hence x 6∈ frm(BX).

Conversely, we assume that x ∈ SX \ frm(BX). Let f ∈ ν(x). Then x ∈ F (f)\E(f),

and so there exists a positive real number r such that x + rBker f ⊂ F (f). Since

dimX = n, we have dim ker f = n − 1. Let {ei}n−1i=1 be a basis for ker f . Putting

en = −
∑n−1

i=1 ei, then en 6= 0 and
∑n

i=1 ei = 0. We also put

ui =
rei

max1≤i≤n ‖ei‖

for each i = 1, 2, . . . , n. Since ‖ui‖ ≤ r, it follows that ui ∈ rBker f , that is, x+ui ∈ F (f)

for all i = 1, 2, . . . , n. We remark that

1

n

n∑
i=1

(x+ ui) = x+
1

n

n∑
i=1

ui = x.

Now suppose that {αi}ni=1 ⊂ R and
∑n

i=1 αi(x+ ui) = 0. Then, we have(
n∑
i=1

αi

)
x+

n∑
i=1

αiui = 0.
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In particular,
n∑
i=1

αi = f

((
n∑
i=1

αi

)
x+

n∑
i=1

αiui

)
= 0.

On the other hand, it follows from un = −
∑n−1

i=1 ui that

0 =
n∑
i=1

αiui =
n−1∑
i=1

αiui + αnun

=
n−1∑
i=1

αiui − αn
n−1∑
i=1

ui

=
n−1∑
i=1

(αi − αn)ui.

Since {ei}n−1i=1 is linearly independent, we obtain α1 = α2 = · · · = αn. This and∑n
i=1 αi = 0 together imply that α1 = α2 = · · · = αn = 0. Thus, the set {x + ui}ni=1 is

linearly independent, and so x 6∈ extn−1(BX). This completes the proof.

From the fact that ext1(BX) = ext(BX), one obtains the latter half of Theorem 3.1.2.

The preceding theorem shows that frm(BX) is a natural generalization of the set of all

(the weakest) k-extreme points of the unit ball.

In 1960, Singer [74] introduced the notion of k-strict convexity of Banach spaces.

For k ∈ N, a Banach space X is said to be k-strictly convex if for any k + 1 elements

x1, x2, . . . , xk+1 ∈ X the equality ∥∥∥∥∥
k+1∑
i=1

xi

∥∥∥∥∥ =
k+1∑
i=1

‖xi‖

implies the linear dependence of {x1, x2, . . . , xk+1}. For the complex version of this

notion, the readers are referred to Liu and Zhuang [51] and Zhuang [92]. We shall recall

Singer’s characterization of k-strict convexity (cf. [74, Theorem 1] and [75, Lemma 4.2]).

The proof can be simplified by using the sharp triangle inequality for n-elements; see

Kato, Saito and Tamura [45]. For any nonzero elements x1, x2, . . . , xn of a Banach
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space, the sharp triangle inequality

n∑
i=1

‖xi‖ −

(
n−

∥∥∥∥∥
n∑
i=1

xi
‖xi‖

∥∥∥∥∥
)

max
1≤i≤n

‖xi‖

≤

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
≤

n∑
i=1

‖xi‖ −

(
n−

∥∥∥∥∥
n∑
i=1

xi
‖xi‖

∥∥∥∥∥
)

min
1≤i≤n

‖xi‖

holds.

Theorem 3.1.6 (Singer [74]). A Banach space X is k-strictly convex if and only if

extk(BX) = SX .

Proof. It is enough to prove that extk(BX) = SX implies the k-strict convexity of X.

Let x1, x2, . . . , xk+1 ∈ X \ {0} such that∥∥∥∥∥
k+1∑
i=1

xi

∥∥∥∥∥ =
k+1∑
i=1

‖xi‖.

Then, by the sharp triangle inequality, we have(
k + 1−

∥∥∥∥∥
k+1∑
i=1

xi
‖xi‖

∥∥∥∥∥
)

min
1≤i≤k+1

‖xi‖ ≤
k+1∑
i=1

‖xi‖ −

∥∥∥∥∥
k+1∑
i=1

xi

∥∥∥∥∥ = 0,

which implies that ∥∥∥∥∥
k+1∑
i=1

xi
‖xi‖

∥∥∥∥∥ = k + 1.

However, then {x1, x2, . . . , xk+1} is linearly dependent since extk(BX) = SX . The proof

is complete.

As a consequence of Theorems 3.1.5 and 3.1.6, we have the following result.

Corollary 3.1.7. An n-dimensional Banach space X is (n − 1)-strictly convex if and

only if frm(BX) = SX .

We next present a characterization of frames using the extreme points of the unit

balls of two-dimensional subspaces. To do this, some preparations are needed. The

proof of the following lemma can be found in [64, Lemma 3.3].
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Lemma 3.1.8 ([64]). Suppose that X is a Banach space, that x ∈ SX and f ∈ ν(x),

and that y ∈ ker f \ {0}. Then there exist t1, t2 ∈ R such that t1 ≤ 0 ≤ t2, {t ∈ R :

‖x + ty‖ = 1} = [t1, t2], and x + t1y, x + t2y ∈ E(f). In particular, if t1t2 = 0 then

x ∈ E(f).

As an easy consequence of Lemma 3.1.8, we have the following.

Proposition 3.1.9 ([80]). BX = co(frm(BX)).

Proof. It is enough to prove that SX ⊂ co(frm(BX)). Let x ∈ SX , and let f ∈ ν(x).

Take an arbitrary y ∈ ker f \ {0}. By the preceding lemma, there exist t1, t2 ∈ R such

that t1 ≤ 0 ≤ t2, {t ∈ R : ‖x + ty‖ = 1} = [t1, t2], and x + t1y, x + t2y ∈ E(f). If

t1t2 = 0 then x ∈ E(f), and so we assume that t1 < 0 < t2. Then, it follows that

x =
t2

t2 − t1
(x+ t1y) +

−t1
t2 − t1

(x+ t2y) ∈ co(frm(BX)).

This shows the proposition.

The famous Krein-Milman theorem states that every nonempty compact convex

subset of a Hausdorff locally convex space is the closed convex hull of the set of its

extreme points. In particular, if X is a reflexive Banach space, then BX = co(ext(BX)).

However, it is well known that the unit ball of the space c0 has no extreme points, where

c0 is the Banach space of all sequences of scalars that converge to 0. Thus, it is rather

interesting to compare this fact to the preceding proposition.

The frame of the unit ball is closely related to the notion of Birkhoff orthogonality.

Let X be a Banach space, and let x, y ∈ X. Then x is said to be Birkhoff orthogonal

to y, denoted by x ⊥B y, if ‖x + ty‖ ≥ ‖x‖ for all t ∈ R. It is known that Birkhoff

orthogonality is not symmetric in general, that is, x ⊥B y does not imply y ⊥B x.

More details about Birkhoff orthogonality can be found in Birkhoff [14], Day [19, 20]

and James [33, 34, 35].

In [34], James gave the following characterization of Birkhoff orthogonality.

Lemma 3.1.10 (James [34]). Let X be a real normed linear space and let x and y be

two elements of X. Then x ⊥B y if and only if there exists f ∈ X∗ \ {0} such that

|f(x)| = ‖f‖‖x‖ and f(y) = 0.

For the sake of convenience, we introduce the following notion: An element x is said

to be strongly Birkhoff orthogonal to y in the positive real line, denoted by x ⊥+
B y, if

x ⊥B y and ‖x+ ty‖ > ‖x‖ for all t > 0.

Some basic properties of the frame of the unit ball are collected in the following

proposition.
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Proposition 3.1.11 ([80]). Let X be a Banach space.

(i) Suppose that x ∈ SX , and that f ∈ ν(x). Then x ∈ E(f) if and only if there

exists y ∈ ker f \ {0} such that ‖x+ ty‖ > 1 for all t > 0.

(ii) Suppose that x ∈ SX . Then x ∈ frm(BX) if and only if there exists y ∈ X \ {0}
such that x ⊥+

B y.

(iii) The set frm(BX) is symmetric, that is, frm(BX) = − frm(BX).

(iv) Let M be a closed subspace of X. Then frm(BM) ⊂ frm(BX) ∩M .

Proof. (i) First, we assume that x ∈ E(f). To show that there exists y ∈ X \ {0}
satisfying ‖x + ty‖ > 1 for all t > 0, suppose contrary that for any y ∈ ker f \ {0},
there exists ty > 0 such that ‖x + tyy‖ = 1. Then, we remark that x + ty ∈ F (f) for

all t ∈ [0, ty]. Indeed, for each t ∈ [0, ty], we obtain

1 = f(x+ ty) ≤ ‖x+ ty‖

=

∥∥∥∥(1− t

ty

)
x+

t

ty
(x+ tyy)

∥∥∥∥
≤
(

1− t

ty

)
‖x‖+

t

ty
‖x+ tyy‖

= 1.

Putting A = −x + F (f), then A is closed, convex subset of ker f and 0 ∈ A. Fur-

thermore, since y ∈ sA for all s > t−1y , the set A is absorbing in ker f . Thus, we have

0 ∈ Intr(A ∩ ker f) by Lemma 3.1.4, which implies that

x+ rBker f ⊂ x+ A = F (f)

for some r > 0. It follows that x ∈ F (f) \ E(f), a contradiction.

Conversely, suppose that there exists y ∈ ker f \ {0} such that ‖x + ty‖ > 1 for all

t > 0. Then, it directly follows from Lemma 3.1.8 that x ∈ E(f).

(ii) This follows from (i) and Lemma 3.1.10.

(iii) Since x ⊥+
B y implies −x ⊥+

B −y, we have (iii).

(iv) This is an immediate consequence of (ii).

As a consequence of Theorem 3.1.5 and (iv) of the preceding proposition, we have

the following corollary.
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Corollary 3.1.12 ([80]). Let X be an infinite dimensional Banach space. Then⋃
k∈N

extk(BX) ⊂ frm(BX).

We now present another characterization of frames.

Theorem 3.1.13 ([80]). Let X be a Banach space. Then

frm(BX) =
⋃
{ext(BM) : M is a two-dimensional subspace of X}.

Proof. Let x ∈ frm(BX). Then, there exists y ∈ X \ {0} such that x ⊥+
B y by Propo-

sition 3.1.11 (ii). Putting M = [{x, y}], then dimM = 2 since the set {x, y} is lin-

early independent. Applying Theorem 3.1.2 and Proposition 3.1.11 (ii), one has that

x ∈ frm(BM) = ext(BM). Conversely, let M be a two-dimensional subspace of X.

Then, by Proposition 3.1.2 and Proposition 3.1.11 (iv), we have ext(BM) = frm(BM) ⊂
frm(BX) ∩M . This completes the proof.

We shall study the topological properties of the frame of the unit ball. The following

lemmas are needed.

Lemma 3.1.14 ([80]). Let X be a Banach space, and let f and g be two distinct

elements of SF(BX). Then F (f) ∩ F (g) = E(f) ∩ E(g). In particular, if x 6∈ frm(BX)

then ν(x) must be a singleton.

Proof. It is clear that F (f)∩F (g) ⊃ E(f)∩E(g). So we assume that F (f)∩F (g) 6= ∅.
Let x ∈ F (f)∩F (g). Then, we remark that ker f \ ker g 6= ∅ and ker g \ ker f 6= ∅ since

f 6= g and f(x) = g(x) = 1. Suppose that y ∈ ker g \ ker f . Putting z = x − f(y)−1y,

then z ∈ ker f \ {0} and

‖x+ tz‖ =

∥∥∥∥(1 + t)x− t

f(y)
y

∥∥∥∥
≥ g

(
(1 + t)x− t

f(y)
y

)
= 1 + t > 1

for all t > 0. Therefore, x ∈ E(f) by Proposition 3.1.11 (i). Similarly, one can show

that x ∈ E(g).

Lemma 3.1.15 ([80]). Let X be a Banach space, and let x ∈ SX . If x ∈ F (f) \ E(f)

for some f ∈ ν(x), then ν(x) = {f} and x 6∈ frm(BX).
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Proof. This directly follows from the preceding lemma.

The frame of the unit ball is always closed.

Theorem 3.1.16 ([80]). Let X be a Banach space. Then frm(BX) is closed in X.

Proof. It is enough to prove that X \ frm(BX) is open. Let x ∈ SX \ frm(BX). Then,

by Lemma 3.1.14, the set ν(x) is a singleton. Putting f = ν(x), then x ∈ F (f) \E(f),

and so there exists a positive real number r such that x + rB◦ker f ⊂ F (f), where

B◦ker f = {x ∈ ker f : ‖x‖ < 1}. Since the set x+ rB◦ker f is open in F (f), it follows that

x+ rB◦ker f ⊂ F (f)\E(f). Applying Lemma 3.1.15, we have x+ rB◦ker f ⊂ X \ frm(BX).

Now, let

B = x+
r

2 + r
B◦X ,

where B◦X = {x ∈ X : ‖x‖ < 1}. Take an arbitrary y ∈ B. Then,

y = x+
r

2 + r
z

for some z ∈ B◦X . Hence, we have

(2 + r)y = (2 + r)x+ rz

= (2 + r + rf(z))x+ r(z − f(z)x)

= (2 + r + rf(z))

(
x+

r

2 + r + rf(z)
(z − f(z)x)

)
.

We put

w =
1

2 + r + rf(z)
(z − f(z)x).

Then, we obtain w ∈ ker f . Moreover, since z ∈ B◦X , it follows that 2 + r + rf(z) ≥ 2

and ‖z − f(z)x‖ ≤ ‖z‖+ |f(z)|‖x‖ < 2, which implies that

‖w‖ =
‖z − f(z)x‖

2 + r + rf(z)
< 1.

This shows that

y =
2 + r + rf(z)

2 + r
(x+ rw) ∈ 2 + r + rf(z)

2 + r
(x+ rB◦ker f )

⊂ 2 + r + rf(z)

2 + r
F (f)

⊂ 2 + r + rf(z)

2 + r
SX .

Thus we have y 6∈ SX whenever f(z) 6= 0, whence y ∈ X \ frm(BX). On the other hand,

if f(z) = 0, then y ∈ x+ rB◦ker f ⊂ X \ frm(BX). These proves that B ⊂ X \ frm(BX),

that is, x ∈ Int(X \ frm(BX)). Therefore the set X \ frm(BX) is open.
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As an application of the preceding theorem, we next show that the frame of the unit

ball is connected if the dimension of the space is not less than three. For this, we need

the following three lemmas.

Lemma 3.1.17 ([80]). Let X be a Banach space with dimX ≥ 3. Suppose that f ∈
SF(BX), and that F (f) \ E(f) 6= ∅. Then E(f) is a connected subset of frm(BX).

Proof. Let x0 ∈ F (f) \ E(f). Then, there exists a positive real number r such that

x0 + rBker f ⊂ F (f). Putting A = −x0 + F (f), then A is a closed, convex, absorbing

subset of ker f . Let pA be the Minkowski functional of A, that is, let pA(x) = inf{t >
0 : x ∈ tA} for each x ∈ ker f . Then, pA is a sublinear functional on ker f and

{x ∈ ker f : pA(x) < 1} ⊂ A ⊂ {x ∈ ker f : pA(x) ≤ 1}.

It follows from this inclusion that A = {x ∈ ker f : pA(x) ≤ 1}. Indeed, if x ∈ X and

pA(x) = 1, then

pA

((
1− 1

n

)
x

)
=

(
1− 1

n

)
pA(x) < 1,

for each n ≥ 2. This shows (1−n−1)x ∈ A for all n ≥ 2, which implies that x ∈ A since

A is closed. We first see the continuity of pA on ker f . Since rBker f ⊂ A ⊂ 2Bker f , one

can easily have
1

2
‖x‖ ≤ pA(x) ≤ 1

r
‖x‖

for all x ∈ ker f . On the other hand, by the sublinearity of pA, we obtain

pA(x)− pA(y) ≤ pA(x− y) ≤ 1

r
‖x− y‖

for all x, y ∈ ker f . Replacing x with y, we have

|pA(x)− pA(y)| ≤ 1

r
‖x− y‖

for all x, y ∈ ker f . This proves that pA is continuous on ker f .

Next, we show that Intr(A ∩ ker f) = {x ∈ ker f : pA(x) < 1}. From the preceding

paragraph, it follows that {x ∈ ker f : pA(x) < 1} = p−1A ((−∞, 1)) is open in ker f ,

which implies that {x ∈ ker f : pA(x) < 1} ⊂ Intr(A ∩ ker f). Conversely, let x ∈
Intr(A ∩ ker f). We may assume that x 6= 0. Then, x+ sBker f ⊂ A for some s > 0. In

particular, (
1 +

s

‖x‖

)
x ∈ A.
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Hence, we have pA(x) ≤ (1 + s‖x‖−1)−1 < 1. Thus, Intr(A ∩ ker f) = {x ∈ ker f :

pA(x) < 1}, which in turn implies that ∂r(A ∩ ker f) = {x ∈ ker f : pA(x) = 1}.
Suppose that x and y are two distinct elements of ∂r(A ∩ ker f) satisfying ‖y‖x +

‖x‖y 6= 0. Let

κ(t) =
(1− t)x+ ty

pA((1− t)x+ ty)

for each t ∈ [0, 1]. Then, one has that κ is a path from x to y in ∂r(A ∩ ker f).

We shall omit the assumption that ‖y‖x + ‖x‖y 6= 0. If ‖y‖x + ‖x‖y = 0, then

there exists z ∈ ker f such that {x, z} is linearly independent since dim ker f ≥ 2.

Putting w = pA(z)−1z, we have that w ∈ ∂r(A∩ ker f), and that {x,w} is also linearly

independent. Since ‖w‖x + ‖x‖w 6= 0 and ‖y‖w + ‖w‖y 6= 0, as in the preceding

paragraph, there are two paths λ, µ such that λ joins x to w and µ joins w to y.

Putting

κ(t) =

{
λ(2t) (t ∈ [0, 1/2]),

µ(2t− 1) (t ∈ [1/2, 1]),

then κ is a path from x to y. Thus, the set ∂r(A ∩ ker f) is path-connected, whence it

is a connected subset of A.

Finally, since the map x 7→ x0 + x is a homeomorphism from ker f onto f−1({1}),
and it maps A onto F (f), we obtain that E(f) = x0 + ∂r(A∩ ker f) is also a connected

subset of frm(BX).

Lemma 3.1.18 ([80]). Suppose that X is a Banach space. Let x, y ∈ SX with x+y 6= 0,

and let z(t) = (1− t)x+ ty for each t ∈ R. Then the following are equivalent:

(i) ‖z(t0)‖ = mint∈R ‖z(t)‖.

(ii) z(t0) ⊥B x− y.

Proof. Since z(t0) + t(x − y) = z(t0 − t) for all t ∈ R, it follows that ‖z(t0)‖ =

mint∈R ‖z(t)‖ if and only if z(t0) ⊥B x− y.

Lemma 3.1.19 ([80]). Let X be a Banach space, let x and y be two elements of frm(BX)

such that {x, y} is linearly independent, and let z(t) = (1 − t)x + ty for each t ∈ R.

Suppose that ‖z(t)‖−1z(t) 6∈ frm(BX) for all t ∈ (0, 1). Then there exists a functional

f ∈ SX∗ such that x, y ∈ E(f) and F (f) \ E(f) 6= ∅.
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Proof. Let M = [{x, y}], and let α = mint∈R ‖z(t)‖ > 0. First, we show that α = 1.

Suppose to the contrary that 0 < α < 1. Let A be the closed subset of the unit interval

[0, 1] defined by

A = {t ∈ R : ‖z(t)‖ = α}.

Putting t0 = minA, we have t0 ∈ (0, 1) since the function t 7→ ‖z(t)‖ is convex. Then,

Lemma 3.1.18 assures that z(t0) ⊥B x − y, and so there exists a functional f ∈ SX∗

such that f(α−1z(t0)) = 1 and f(x− y) = 0 by Lemma 3.1.10. On the other hand, for

each t > 0, we obtain ‖z(t0) + t(x− y)‖ = ‖z(t0 − t)‖ > α, that is,∥∥∥∥z(t0)

α
+ t

x− y
α

∥∥∥∥ > 1.

Thus, we have α−1z(t0) ∈ E(f) by Proposition 3.1.11 (i), a contradiction which proves

α = 1. Now, we remark that ‖z(t)‖ = 1 for all t ∈ [0, 1] since α = 1. Let f ∈ ν(z(1/2)).

Then, it follows from z(1/2) 6∈ frm(BX) that z(1/2) ∈ F (f) \ E(f). Moreover, from

the fact that f((x+ y)/2) = f(z(1/2)) = 1, one can easily check that f(x) = f(y) = 1.

Hence, by Lemma 3.1.15, we also have x, y ∈ E(f).

We now ready to prove the connectedness of frames.

Theorem 3.1.20 ([80]). Let X be a Banach space with dimX ≥ 3. Then frm(BX) is

connected in X.

Proof. To see the connectivity of frm(BX), suppose contrary that frm(BX) is discon-

nected. Then, there exist two open sets U and V in X such that frm(BX) ⊂ U ∪ V ,

U ∩V ∩ frm(BX) = ∅, U ∩ frm(BX) 6= ∅, and V ∩ frm(BX) 6= ∅. For each x ∈ frm(BX),

let C(x) be the connected component of x in frm(BX), that is,

C(x) =
⋃
{C : C is a connected subset of frm(BX) such that x ∈ C}.

Put A = U ∩ frm(BX) and B = V ∩ frm(BX), respectively. First, we show that A and

B are closed subset of X. Let {xn}∞n=1 be an arbitrary sequence in A that converges to

some x ∈ X. Then, x ∈ frm(BX) since frm(BX) is closed by Theorem 3.1.16. It follows

from U ∩ V ∩ frm(BX) = ∅ that A ⊂ X \ V , which implies that A ⊂ X \ V since X \ V
is closed in X. This and x ∈ frm(BX) ⊂ U ∪ V together imply that x ∈ U . Therefore,

we have x ∈ A. This shows that A is a closed subset of X. Similarly, one has that B

is also closed.

Suppose that x ∈ A and y ∈ B, and that z(t) = (1− t)x+ ty for each t ∈ [0, 1]. We

may assume that {x, y} is linearly independent. Indeed, by Proposition 3.1.9, we have
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co(frm(BX)) = BX . So there exists z ∈ frm(BX) \ [{x, y}] since dimX ≥ 3. Replacing

x or y with z if necessary, we have that {x, y} is linearly independent. Now, let

C =

{
t ∈ [0, 1] :

z(t)

‖z(t)‖
∈ A

}
,

D =

{
t ∈ [0, 1] :

z(t)

‖z(t)‖
∈ B

}
,

respectively. Then, C and D are closed subsets of [0, 1] since A and B are closed in X,

and so are compact in [0, 1], which and C ∩D = ∅ together imply that

d(C,D) = min{|t1 − t2| : t1 ∈ C, t2 ∈ D} > 0.

Let t1 ∈ C and t2 ∈ D such that |t1 − t2| = d(C,D), and let ui = ‖z(ti)‖−1z(ti) for

i = 1, 2. Then, we obtain ‖z(t)‖−1z(t) 6∈ frm(BX) for all t ∈ {(1−λ)t1+λt2 : λ ∈ (0, 1)}.
On the other hand, let w(s) := (1− s)u1 + su2 = ksz(ts) for each s ∈ [0, 1], where

ks =
s‖z(t1)‖+ (1− s)‖z(t2)‖

‖z(t1)‖‖z(t2)‖
,

ts =
(1− s)‖z(t2)‖

s‖z(t1)‖+ (1− s)‖z(t2)‖
t1 +

s‖z(t1)‖
s‖z(t1)‖+ (1− s)‖z(t2)‖

t2.

Then, we have
w(s)

‖w(s)‖
=

z(ts)

‖z(ts)‖
for all s ∈ [0, 1]. In particular, if s ∈ (0, 1) then ts ∈ {(1 − λ)t1 + λt2 : λ ∈ (0, 1)},
and so ‖w(s)‖−1w(s) 6∈ frm(BX) for all s ∈ (0, 1). Thus, by Lemma 3.1.19, there exists

a linear functional f ∈ SX∗ such that u1, u2 ∈ E(f) and F (f) \ E(f) 6= ∅, and then,

Lemma 3.1.17 assures that E(f) is a connected subset of frm(BX), which implies that

u2 ∈ C(u1). However this means that C(u1) ⊂ frm(BX) = A ∪ B, A ∩ B ∩ C(u1) = ∅,
A ∩ C(u1) 6= ∅ and B ∩ C(u1) 6= ∅, which contradicts the connectedness of C(u1) since

A and B are relatively open in frm(BX). Thus, frm(BX) must be connected in X.

Finally, we shall give some examples.

Theorem 3.1.21 ([80]). frm(Bc0) = {(an)∞n=1 ∈ Sc0 : |aman| = 1 for some m,n ∈
N with m 6= n}.

Proof. We first note that for any (an)∞n=1 ∈ Sc0 there exists at least one m ∈ N such

that |am| = 1. For each m ∈ N, let x∗m be the m-th coordinate functional on c0, that is,

x∗m((an)∞n=1) = am for all (an)∞n=1 ∈ c0. Then, one has that x∗m ∈ SF(Bc0) for all m ∈ N
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since ‖x∗m‖ = 1 and it supports Bc0 at em, where em is the m-th standard coordinate

vector. Let (an)∞n=1 be an element of Sc0 such that |an| = 1 only at n = m. Since

frm(Bc0) is symmetric by Proposition 3.1.11 (iii), we may assume that an = 1. Then,

we have x∗m ∈ ν((an)∞n=1). As mentioned above, we remark that

k = ‖(a1, . . . , am−1, 0, am+1, . . .)‖∞ < 1.

Since the kernel of x∗m is given by

kerx∗m = {(bn)∞n=1 ∈ c0 : bm = 0},

it follows that ∥∥∥∥(an)∞n=1 +
1− k

‖(bn)∞n=1‖∞
(bn)∞n=1

∥∥∥∥
∞

= sup
n∈N

∣∣∣∣an +
(1− k)bn
‖(bn)∞n=1‖∞

∣∣∣∣
≤ max

{∣∣∣∣am +
(1− k)bm
‖(bn)∞n=1‖∞

∣∣∣∣ , sup
n6=m

(
|an|+

(1− k)|bn|
‖(bn)∞n=1‖∞

)}
≤ 1.

for each (bn)∞n=1 ∈ kerx∗m \ {0}. By Proposition 3.1.11 (i), we have (an)∞n=1 ∈ F (x∗m) \
E(x∗m). Hence, one obtain (an)∞n=1 6∈ frm(Bc0) by Lemma 3.1.15.

Conversely, suppose that (an)∞n=1 ∈ Sc0 , and that |aman| = 1 for some m,n ∈ N
with m 6= n. Then, one has that (an)∞n=1 ∈ F (amx

∗
m) ∩ F (anx

∗
n). Since amx

∗
m 6= anx

∗
n,

it follows that (an)∞n=1 ∈ frm(Bc0) by Lemma 3.1.14.

Next, we deal with the space `p with 1 ≤ p <∞.

Theorem 3.1.22 ([80]). Let 1 ≤ p <∞. Then frm(B`p) = S`p.

Proof. In the case of 1 < p <∞, the space `p is uniformly convex, and so

S`p = ext(S`p) ⊂ frm(B`p) ⊂ S`p

by Corollary 3.1.12. Thus, we have frm(B`p) = S`p . So, we suppose that p = 1.

Let c00 be the vector space of finitely nonzero sequences. Then, c00 is a dense

subspace of the space `1. Take an arbitrary x ∈ Sc00 . Then, x has the form

x = (a1, . . . , am, 0, 0, . . .).
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Suppose that f ∈ ν(x). Since `∗1 = `∞, there exists y = (bn)∞n=1 ∈ S`∞ such that

f((cn)∞n=1) =
∞∑
n=1

bncn

for all (cn)∞n=1 ∈ `1. We may assume that y also has the form

y = (b1, . . . , bm, 0, 0, . . .).

Then, the kernel of f is given by

ker f =

{
(cn)∞n=1 :

m∑
i=1

bici = 0

}
.

In particular, we have em+1 ∈ ker f \ {0}. On the other hand, since

‖x+ tem+1‖1 =
m∑
i=1

|ai|+ t = 1 + t > 1

for all t > 0, it follows that x ∈ frm(B`1) by Proposition 3.1.11 (i). Therefore, one has

that Sc00 ⊂ frm(B`1). However, frm(B`1) is closed by Theorem 3.1.16, and thus

S`1 = Sc00 ⊂ frm(B`1).

This shows frm(B`1) = S`1

From the case p = 1 of the preceding theorem, it turns out that the equality

frm(BM) = frm(BX) ∩ M does not hold in general; see Proposition 3.1.11 (iv). In-

deed, let M be the two-dimensional subspace of `1 given by

M = {(a1, a2, 0, 0, . . .) : a1, a2 ∈ R}.

Then, M is identified with the space (R2, ‖ · ‖1) in a natural manner. Hence, we have

frm(BM) = {(±1, 0, 0, . . .), (0,±1, 0, 0, . . .)}
( {(a1, a2, 0, 0, . . .) : |a1|+ |a2| = 1}
= frm(B`1) ∩M

by Proposition 3.1.2.

Finally, we determine the set frm(B`∞).
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Theorem 3.1.23 ([80]). Let

A = {(an)∞n=1 ∈ S`∞ : |aman| = 1 for some m,n ∈ N with m 6= n} and

B =

{
(an)∞n=1 ∈ S`∞ : lim sup

n→∞
|an| = 1

}
,

respectively. Then frm(B`∞) = A ∪B.

Proof. Let (an)∞n=1 be an element of S`∞ \ (A ∪ B). Then, one can easily show that

there exists a unique m ∈ N such that |am| = 1, and that

k = ‖(a1, . . . , am−1, 0, am+1, . . .)‖∞ < 1.

Hence, as in the proof of Theorem 3.1.21, we have (an)∞n=1 6∈ frm(B`∞).

For the converse, take an arbitrary (an)∞n=1 ∈ A ∪ B. In the case of (an)∞n=1 ∈ A,

an argument similar to that in the latter half of the proof of Theorem 3.1.21 shows

(an)∞n=1 ∈ frm(B`∞). So, we suppose that (an)∞n=1 ∈ B. Then, there exists a subsequence

(ank)
∞
k=1 of (an)∞n=1 such that limk→∞ |ank | = 1. We may assume that ank 6= 0 for all

k ∈ N. For each subsequence N = (nkl)
∞
l=1 of (nk)

∞
k=1, let e(N) = (eN,n)∞n=1 where eN,n

is given by

eN,n =

{
|an|−1an (n ∈ N),

0 (n 6∈ N),

for all n ∈ N. Then, one has that e(N) ∈ `∞ \ {0} for all subsequence N of (nk)
∞
k=1.

Let f be an element of ν((an)∞n=1). First, we assume that f(e(N)) = 0 for some

subsequence N = (nkl)
∞
l=1 of (nk)

∞
k=1. It follows from liml→∞ |ankl | = 1 that for any

t > 0 there exists l ∈ N such that |ankl | > 1− t. Therefore, we have

‖(an)∞n=1 + te(N)‖∞ ≥
∣∣∣ankl + teN,nkl

∣∣∣
=

∣∣∣∣∣ankl + t
ankl
|ankl |

∣∣∣∣∣
= |ankl |+ t > 1.

Since e(N) ∈ ker f \ {0}, we obtain (an)∞n=1 ∈ frm(B`∞) by Proposition 3.1.11 (i).

Next, suppose that f(e(N)) 6= 0 for any subsequence N of (nk)
∞
k=1. Let N1 =

(n2k−1)
∞
k=1 and N2 = (n2k)

∞
k=1, respectively. Then, N1 and N2 are subsequences of

(nk)
∞
k=1 such that N1 ∩N2 = ∅. Putting

u = e(N1)−
f(e(N1))

f(e(N2))
e(N2),
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we have u = (un)∞n=1 ∈ ker f \ {0} and un2k−1
= eN1,n2k−1

for all k ∈ N. From the fact

that limk→∞ |an2k−1
| = 1, as in the preceding paragraph, we have (an)∞n=1 ∈ frm(B`∞).

This completes the proof.

Remark 3.1.24. In a sense, the space `1 is similar to the space `∞. For example, the

spaces `1 and `∞ are neither strictly convex nor smooth. Moreover, each extreme point

of the unit balls of `1 or `∞ is one of its vertices, respectively. Namely, one has that

ext(B`1) = {±em : m ∈ N},
ext(B`∞) = {(εn)∞n=1 : εn = ±1 for all n ∈ N},

where em is the m-th standard coordinate vector. However, Theorems 3.1.22 and 3.1.23

show that the shape of frm(B`1) is completely different from that of frm(B`∞).

3.2 A further property of spherical isometries

Here we will show that every spherical isometries preserves the frames of the unit balls.

We start this section with the following simple characterization of frm(BX).

Theorem 3.2.1 ([81]). Let X be a Banach space, and let x ∈ SX . Then x 6∈ frm(BX)

if and only if (x+ tBX) ∩ SX is convex for some t > 0.

Proof. Suppose that x 6∈ frm(BX). Then x is a smooth point of BX by [80, Lemma

4.1], and we have x + rBker ν(x) ⊂ F (ν(x)) for some r > 0. Putting t = r/(2 + r), it

follows that (x + tBX) ∩ SX = x + tBker ν(x). Indeed, for each y ∈ x + tBX , one has

y = x+ tz for some z ∈ BX , or

(2 + r)y = (2 + r)x+ rz

= (2 + r + r〈z, ν(x)〉)x+ r(z − 〈z, ν(x)〉x)

= (2 + r + r〈z, ν(x)〉)
(
x+

r

2 + r + r〈z, ν(x)〉
(z − 〈z, ν(x)〉x)

)
.

We now remark that

1

2 + r + r〈z, ν(x)〉
(z − 〈z, ν(x)〉x) ∈ Bker ν(x)

since ‖z − 〈z, ν(x)〉x‖ ≤ 2 and 2 + r + r〈z, ν(x)〉 ≥ 2, which implies that

y ∈ 2 + r + r〈z, ν(x)〉
2 + r

(x+ rBker ν(x)) ⊂
2 + r + r〈z, ν(x)〉

2 + r
SX .
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This shows y ∈ SX if and only if 〈z, ν(x)〉 = 0, and hence we obtain (x+ tBX) ∩ SX ⊂
x+ tBker ν(x). The other inclusion is obvious.

Conversely, we assume that (x + tBX) ∩ SX is convex for some t > 0. Suppose

that there exists y ∈ SX such that x ⊥+
B y. Let z(r) = ‖x + ry‖−1(x + ry) for all

r ∈ R. Then we have max{‖z(r) − x‖, ‖z(−r) − x‖} ≤ t for some r > 0, that is,

z(r), z(−r) ∈ (x + tBX) ∩ SX . However, putting k = (‖x + ry‖ + ‖x − ry‖)/2 and

λ = ‖x+ry‖/(‖x+ry‖+‖x−ry‖), one obtains k > 1 and x = k((1−λ)z(r)+λz(−r)).
This is a contradiction, which together with Theorem 3.1.11 (ii) prove the theorem.

As a consequence, we obtain another formulation of frm(BX).

Corollary 3.2.2 ([81]). Let X be a Banach space. Then frm(BX) = {x ∈ SX :

(x+ tBX) ∩ SX is not convex for all t > 0}.

For our purpose, we need three lemmas which can be essentially found in Cheng and

Dong [16]; see also Holmes [31, Exercise 2.18] for the first one. The proofs are given

only for the sake of completeness, and based on the original ones except for the former

half of the third one.

For each x ∈ SX , let st(x, SX) = {y ∈ SX : ‖x + y‖ = 2}. Then we remark that

C ⊂ st(x, SX) whenever C is a convex subset of SX and x ∈ C.

Lemma 3.2.3 (Holmes [31]; Cheng and Dong [16]). Let X be a separable Banach space.

Suppose that C is a maximal convex subset of SX . Then C = st(x, SX) for some x ∈ C.

Proof. Let {xn}∞n=1 be a dense subset of C, and let x0 =
∑

n 2−nxn. Then, for each

f ∈ ν(x0), we have f(xn) = 1 for all n ∈ N, which implies that C ⊂ F (f). This and the

maximality of C together imply that C = F (f). Now, take an arbitrary y ∈ st(x0, SX).

For an element g of ν(2−1(x0 + y)), one has g(x0) = g(y) = 1, or g ∈ ν(x0) and

y ∈ F (g) = C. This completes the proof.

Lemma 3.2.4 (Cheng and Dong [16]). Let X and Y be Banach spaces, and let A be

a separable subset of X. Suppose that T0 : SX → SY is a surjective isometry. Then

there exist separable closed subspaces X0 ⊂ X and Y0 ⊂ Y such that A ⊂ X0 and

T0(SX0) = SY0.

Proof. Let M1 = [A] and N1 = [T0(SM1)], respectively. Define the closed subspaces

Mk ⊂ X and Nk ⊂ Y inductively by Mk = [T−10 (SNk−1
)] and Nk = [T0(SMk

)] for all

k ≥ 2. Then one can show that M0 =
⋃
k∈NMk and N0 =

⋃
k∈NNk have the desired

properties.
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Lemma 3.2.5 (Cheng and Dong [16]). Let X and Y be Banach spaces. Suppose that

T0 : SX → SY is a surjective isometry. If C is a maximal convex subset of SX , then

T0(C) is a maximal convex subset of SY .

Proof. Once it has been proved that the lemma is true for separable Banach spaces,

then one can prove the general case from it. Indeed, applying the preceding lemma to

each finite subset A ⊂ C, we have separable subspaces MA ⊂ X and NA ⊂ Y such that

A ⊂ MA and T0(SMA
) = SNA . Let CA = C ∩MA, and let KA be a maximal convex

subset of SMA
such that CA ⊂ KA. Then, the separability of MA ensures that T0(KA)

is a maximal convex subset of SNA , or coT0(CA) ⊂ SNA , which in turn implies that

coT0(C) ⊂ SY . Let K be a maximal convex subset of SY such that T0(C) ⊂ K. Using

the above argument for T−10 and K, we also have C ⊂ T−10 (K) ⊂ coT−10 (K) ⊂ SX .

This shows T0(C) = K, as desired.

Now, suppose that both X and Y are separable. Then Lemma 3.2.3 assures that

C = st(x, SX) for some x ∈ C. Let K be a maximal convex subset of SY such that

T0x ∈ K. Then, similarly by Lemma 3.2.3, there exists y ∈ K such that K = st(y, SY ).

We observe that x ∈ T−10 (K) = st(−T0(−y0), SX) means −T0(−y0) ∈ C. This and the

convexity of C guarantee that C ⊂ T−10 (K), or coT0(C) ⊂ SY . The proof is completed

by an argument similar to that at the end of the preceding paragraph.

Remark 3.2.6. The finite-dimensional case of the preceding lemma is due to Tin-

gley [84, Lemma 13].

We now present a further geometric property of spherical isometries.

Theorem 3.2.7 ([81]). Let X and Y be Banach spaces. Suppose that T0 : SX → SY is

a surjective isometry. Then T0(frm(BX)) = frm(BY ).

Proof. Let x 6∈ frm(BX). Then Theorem 3.2.1 guarantees that (x+ tBX)∩SX is convex

for some t > 0. Let C be a maximal convex subset of SX such that (x+ tBX)∩SX ⊂ C.

From the identity (x+ tBX) ∩ SX = ((x+ tBX) ∩ SX) ∩ C, we obtain

(T0x+ tBY ) ∩ SY = T0((x+ tBX) ∩ SX)

= T0(((x+ tBX) ∩ SX) ∩ C)

= ((T0x+ tBY ) ∩ SY ) ∩ T0(C)

= (T0x+ tBY ) ∩ T0(C).

Applying Lemma 3.2.5, one has that T0(C) is also a maximal convex subset of SY .

Thus the set (T0x + tBY ) ∩ SY is convex, which together with Theorem 3.2.1 imply
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that T0x 6∈ frm(BY ). Finally, since T−10 is also a surjective isometry, we have T0(SX \
frm(BX)) = SY \ frm(BY ), and the theorem follows from the bijectivity of T0.

By Theorems 3.1.5 and 3.2.7, we immediately have the following corollary.

Corollary 3.2.8 ([81]). Let X and Y be n-dimensional Banach spaces. Suppose that

T0 : SX → SY is a surjective isometry. Then T0(extn−1(BX)) = extn−1(BY ).

We wonder whether Theorem 3.2.7 and Corollary 3.2.8 remain true for the sets

of all stronger k-extreme points. Namely, does every spherical isometry T0 satisfy

T0(extk(BX)) = extk(BY ) for all k ∈ N? As a remark, it is known that ext(BX) 6= ∅ if

and only if extk(BX) 6= ∅ for some k ∈ N. Indeed, Let X be a Banach space, and let

k ∈ N. We first show that x 6∈ extk(BX) if and only if there exists a subspace M such

that dimM ≥ k and x+ tBM ⊂ SX for some t > 0. Suppose that x 6∈ extk(BX). Then

x = (k + 1)−1
∑k+1

i=1 xi for some linearly independent subset {xi}k+1
i=1 of SX . We remark

that co({xi}k+1
i=1 ) ⊂ F (f) whenever f ∈ ν(x). Let M = [{−x+ xi}k+1

i=1 ]. It is easy to see

that {−x+xi}ki=1 is linearly independent, and so dimM = k. Moreover, it follows from

the identity x = (k+1)−1
∑k+1

i=1 xi that k−1(x−xj) = k−1
∑

i 6=j(−x+xi) ∈ −x+F (f) for

all 1 ≤ j ≤ k, which together with 0 ∈ −x+ F (f) imply that k−1 aco({−x+ xi}ki=1) ⊂
−x+F (f). This shows tBM ⊂ −x+F (f) for some t > 0, or x+tBM ⊂ SX . Conversely,

assume that there exists a subspace M of X such that dimM ≥ k and x+ tBM ⊂ SX

for some t > 0. We remark that x 6∈M from the assumption. Let {ei}ki=1 be a linearly

independent subset of M , and let ek+1 = −
∑k

i=1 ei. Putting L = t−1 max1≤i≤k+1 ‖ei‖,
one can show that {x + L−1ei}k+1

i=1 ⊂ SX is also linearly independent and that x =

(k + 1)−1
∑k+1

i=1 (x + L−1ei). Hence it follows that x 6∈ extk(BX). We note that this

equivalence easily shows extk(BX) ⊂ extk+1(BX) for all k ∈ N.

Now, suppose that extk(BX) 6= ∅ for some k ∈ N. Take an arbitrary x ∈ extk(BX).

We assume that x 6∈ ext(BX). Then there exist two distinct elements y, z ∈ SX and

s ∈ (0, 1) such that x = (1 − s)y + sz. Let z(t) = (1 − t)y + tz for all t ∈ R. Since

the function t → ‖z(t)‖ is convex, it follows that {t ∈ R : z(t) ∈ SX} = [t1, t2] for

some t1 ≤ 0 and 1 ≤ t2. Without loss of generality, we may assume that t1 = 0 and

t2 = 1. It is enough to prove that y ∈ extk−1(BX). To this end, suppose contrary

that y 6∈ extk−1(BX). As was shown in above, there exists a subspace M of X such

that dimM ≥ k − 1 and y + tBM ⊂ SX for some t > 0. Let {ei}k−1i=1 be a linearly

independent subset of SM . Then one has x ± (1 − s)tei ∈ F (f) for all 1 ≤ i ≤ k − 1

whenever f ∈ ν(x). Putting r = min{1 − s, s, (1 − s)t} and ek = z − y, it follows

that r > 0 and aco({rei}ki=1) ⊂ −x + F (f). This gurantees there exists r0 > 0 such
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that x + r0BN ⊂ SX , where N = [{ei}ki=1]. Since it can be shown that dimN = k, we

have x 6∈ extk(BX) by the argument in the preceding paragraph, a contradiction which

proves y ∈ extk−1(BX). Thus ext(BX) 6= ∅ follows by an induction, and so we should

assume that ext(BX) 6= ∅ when considering the above problem.

We finally mention two problems which naturally arise from Theorem 3.2.7. The

first one is a Mazur-Ulam type problem.

Problem 3.2.9. Let X and Y be Banach spaces. Suppose that T0 : frm(BX) →
frm(BY ) is a surjective isometry. Then, does T0 have a linear isometric extension

T : X → Y ?

Needless to say, this is more difficult than Tingley’s problem unless the following is

solved positively.

Problem 3.2.10. Let X and Y be Banach spaces. Suppose that T0 : frm(BX) →
frm(BY ) is a surjective isometry. Then, does T0 have an isometric extension T̃0 : SX →
SY ?

Remark 3.2.11. If no assumptions are added, both Problems 3.2.9 and 3.2.10 have

negative answers in the case dimX = dimY = 2. Indeed, let X = Y = `2∞.

Then frm(BX) = ext(BX) = {(1, 1), (1,−1), (−1, 1), (−1,−1)}. Define an operator

T0 on frm(BX) by T0(1, 1) = (1, 1), T0(1,−1) = (1,−1), T0(−1, 1) = (−1,−1) and

T0(−1,−1) = (−1, 1). This is a counter example of the problems since T0 does not map

antipodal pairs of points to such pairs. Hence, in the case dimX = dimY = 2, we at

least need an assumption which implies T0(−x) = −T0x for all x ∈ frm(BX).

3.3 Another approach to Tingley’s problem

In this section, we construct new methods for Tingley’s problem on two-dimensional

spaces. We first recall the following result of Tingley [84].

Lemma 3.3.1 (Tingley [84]). Let X and Y be finite dimensional normed spaces. Sup-

pose that T0 : SX → SY is a surjective isometry. Then T0(−x) = −T0x for all x ∈ SX .

It is known that if there exists a surjective isometry between the unit spheres of two

finite dimensional normed spaces then the dimensions of the spaces coincide. Though

this is in fact a topological result, we here give another proof for the two-dimensional

case by using isosceles orthogonality. Recall that an element x of a Banach space is said

to be isosceles orthogonal to another element y, denoted by x ⊥I y, if ‖x+y‖ = ‖x−y‖.
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Recall also that isosceles orthogonality has the uniqueness property; see Lemma 1.1.3.

Let X be a normed space. For each x ∈ SX , define a subset I(x) of SX by I(x) = {y ∈
SX : x ⊥I y}.

Lemma 3.3.2. Let X be a two-dimensional normed space, and let Y be a normed space.

If there exists a surjective isometry T0 : SX → SY , then dimY = 2.

Proof. First we note that SY is compact since it is a continuous image of the compact

set SX . Then it follows that Y is finite dimensional, and hence, we have dimY ≥ 2 by

Lemma 3.3.1. Indeed, if {u, v} is a basis for X then ‖u±v‖ > 0. Since T0(−x) = −T0x
for all x ∈ SX , we also have ‖T0u± T0v‖ > 0, which implies that {T0u, T0v} is linearly

independent.

Take an arbitrary x ∈ SX . Then we have T0(I(x)) = I(T0x), that is, |I(x)| =

|I(T0x)|. To show that dimY = 2, suppose contrary that dimY > 2. Let {T0x, e1, e2}
be a linearly independent set of Y . For each θ ∈ [0, π), define a two-dimensional

subspace Mθ of Y by Mθ = 〈{T0x, cos θe1 + sin θe2}〉. Then Lemma 1.1.3 assures that

there exists yθ ∈ SMθ
such that yθ ∈ I(T0x). From the fact that Mθ1 ∩Mθ2 = 〈{T0x}〉

for θ1, θ2 ∈ [0, π) with θ1 6= θ2, we know that yθ1 6= yθ2 , which in turn implies that

|I(T0x)| =∞. However, this is impossible since |I(x)| = 2 by the uniqueness property

of isosceles orthogonality. This completes the proof.

To prove key lemmas, we make use of the following result of Alonso and Mart́ın [6].

Lemma 3.3.3 (Alonso and Mart́ın [6]). Let (R2, ‖ · ‖) be a normed space, and let

x(θ) =
(cos θ, sin θ)

‖(cos θ, sin θ)‖

for all θ ∈ R. Suppose that θ0 ∈ R. Then the functions θ → ‖x(θ) + x(θ0)‖ and

θ → ‖x(θ)− x(θ0)‖ are, respectively, decreasing and increasing on [θ0, θ0 + π].

For each x, y ∈ SX with x+ y 6= 0, let A(x, y) be the arc of SX from x to y, that is,

A(x, y) =

{
(1− t)x+ ty

‖(1− t)x+ ty‖
: t ∈ [0, 1]

}
.

Then we have the following lemma.

Lemma 3.3.4 ([82]). Let X be a two-dimensional normed space. Suppose that x, y ∈
SX , and that x± y 6= 0. Then there exists an element z ∈ A(x, y) such that ‖z − x‖ =

‖z − y‖ ≤ ‖x− y‖. Furthermore, such an element is unique in A(x, y).
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Proof. For each t ∈ R, let z(t) = (1 − t)x + ty and w(t) = ‖z(t)‖−1z(t), respectively.

Define two functions f, g : [0, 1] → R by the formulas f(t) = ‖w(t) − x‖ and g(t) =

‖w(t) − y‖. Then the preceding lemma assures that f and g are, respectively, non-

decreasing and non-increasing on [0, 1]. Define a function h : [0, 1] → R by h(t) =

f(t)− g(t). Then h is continuous and

h(0) = −‖x− y‖ < 0 < ‖x− y‖ = h(1).

Therefore the intermediate value theorem assures that there exists t0 ∈ (0, 1) such that

h(t0) = 0, that is, ‖w(t0) − x‖ = ‖w(t0) − y‖ ≤ ‖x − y‖. So what remains is to prove

the uniqueness of such an element. If ‖z(t)‖ = 1 for some t ∈ (0, 1), then it follows that

‖z(t)‖ = 1 for all t ∈ [0, 1]. The uniqueness is obvious in this case. So we assume that

‖z(t)‖ < 1 for all t ∈ (0, 1). To see the uniqueness, suppose contrary that there exist

t1, t2 ∈ (0, 1) such that t1 < t2 and h(t1) = h(t2) = 0. Then we have

0 = h(t2)− h(t1) = f(t2)− f(t1) + g(t1)− g(t2).

By the preceding paragraph, it follows that f(t1) = f(t2) = g(t2) = g(t1) = k > 0. For

i = 1, 2, put

xi =
w(ti)− x

k
and yi =

w(ti)− y
k

,

respectively. Then xi, yi ∈ SX for i = 1, 2. Since

t1z(t2)− ‖z(t2)‖t1x = ‖z(t1)‖t2w(t1)− (t2 − (1− ‖z(t2)‖)t1)x,

we first note that x1 = α((1− λ)x2 + λw(t1)), where

α =
(1− ‖z(t1)‖)t2 − (1− ‖z(t2)‖)t1 + k‖z(t2)‖t1

k(t2 − (1− ‖z(t2)‖)t1)
,

λ =
(1− ‖z(t1)‖)t2 − (1− ‖z(t2)‖)t1

(1− ‖z(t1)‖)t2 − (1− ‖z(t2)‖)t1 + k‖z(t2)‖t1
.

Then we remark that λ ∈ [0, 1]. Indeed, since

t1 =

(
1− t1

t2

)
· 0 +

t1
t2
· t2,

one has that

‖z(t1)‖ ≤
(

1− t1
t2

)
‖z(0)‖+

t1
t2
‖z(t2)‖

= 1− (1− ‖z(t2)‖)t1
t2

,
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which implies that (1 − ‖z(t1)‖)t2 − (1 − ‖z(t2)‖)t1 ≥ 0. This shows that λ ∈ [0, 1].

Therefore we obtain

1 = ‖x1‖ = α‖(1− λ)x2 + λw(t1)‖ ≤ α,

and so

(1− k − ‖z(t1)‖)t2 − (1− k − ‖z(t2)‖)t1
= (1− ‖z(t1)‖)t2 − (1− ‖z(t2)‖)t1 + k‖z(t2)‖t1 − k(t2 − (1− ‖z(t2)‖)t1)
≥ 0.

We next remark that w(t2) = β((1− µ)x2 + µw(t1)), where

β =
‖z(t1)‖t2 + k(t2 − t1)
‖z(t2)‖t1 + t2 − t1

and µ =
‖z(t1)‖t2

‖z(t1)‖t2 + k(t2 − t1)
.

It follows from µ ∈ [0, 1] that β ≥ 1, which implies that

(1− k − ‖z(t2)‖)t1 − (1− k − ‖z(t1)‖)t2
= ‖z(t1)‖t2 + k(t2 − t1)− (‖z(t2)‖t1 + t2 − t1) ≥ 0.

Hence one has (1− k − ‖z(t1)‖)t2 − (1− k − ‖z(t2)‖)t1 = 0 and α = β = 1.

Similarly, putting

γ =
‖z(t2)‖(1− t1) + k(t2 − t1)
‖z(t1)‖(1− t2) + t2 − t1

and ν =
‖z(t2)‖(1− t1)

‖z(t2)‖(1− t1) + k(t2 − t1)

we have w(t1) = γ((1− ν)y1 + νw(t2)). Since ν ∈ [0, 1], one has that γ ≥ 1. Therefore

we obtain

0 ≤ ‖z(t2)‖(1− t1) + k(t2 − t1)− (‖z(t1)‖(1− t2) + t2 − t1)
= (1− k − ‖z(t2)‖)t1 − (1− k − ‖z(t1)‖)t2 + ‖z(t2)‖ − ‖z(t1)‖
= ‖z(t2)‖ − ‖z(t1)‖.

On the other hand, since

(1− t2)z(t1)− ‖z(t1)‖(1− t2)y
= ‖z(t2)‖(1− t1)w(t2)− (t2 − t1 + ‖z(t1)‖(1− t2))y,

it follows that y2 = δ((1− ξ)y1 + ξw(t2)), where

δ =
(1− ‖z(t1)‖)t2 − (1− ‖z(t2)‖)t1 + ‖z(t1)‖ − ‖z(t2)‖+ k‖z(t1)‖(1− t2)

k(t2 − t1 + ‖z(t1)‖(1− t2))
,

ξ =
(1− ‖z(t1)‖)t2 − (1− ‖z(t2)‖)t1 + ‖z(t1)‖ − ‖z(t2)‖

(1− ‖z(t1)‖)t2 − (1− ‖z(t2)‖)t1 + ‖z(t1)‖ − ‖z(t2)‖+ k‖z(t1)‖(1− t2)
.
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Form the identity

t2 =
1− t2
1− t1

· t1 +
t2 − t1
1− t1

· 1,

we have

‖z(t2)‖ ≤
1− t2
1− t1

‖z(t1)‖+
t2 − t1
1− t1

‖z(1)‖

= 1− (1− ‖z(t1)‖)(1− t2)
1− t1

,

which implies that
1− ‖z(t1)‖

1− t1
≤ 1− ‖z(t2)‖

1− t2
.

Since ‖z(t)‖ < 1 for all t ∈ [0, 1], we obtain

1− t2
1− ‖z(t2)‖

≤ 1− t1
1− ‖z(t1)‖

.

Then it follows that

t1 − ‖z(t1)‖
1− ‖z(t1)‖

= 1− 1− t1
1− ‖z(t1)‖

≤ 1− 1− t2
1− ‖z(t2)‖

=
t2 − ‖z(t2)‖
1− ‖z(t2)‖

.

This shows

(1− ‖z(t1)‖)t2 − (1− ‖z(t2)‖)t1 + ‖z(t1)‖ − ‖z(t2)‖
= (t2 − ‖z(t2)‖)(1− ‖z(t1)‖)− (t1 − ‖z(t1)‖)(1− ‖z(t2)‖) ≥ 0.

Thus we have ξ ∈ [0, 1] and δ ≥ 1. Moreover, form the fact that δ ≥ 1, one has

0 ≤ (1− ‖z(t1)‖)t2 − (1− ‖z(t2)‖)t1 + ‖z(t1)‖ − ‖z(t2)‖+ k‖z(t1)‖(1− t2)
− k(t2 − t1 + ‖z(t1)‖(1− t2))

= (1− k − ‖z(t1)‖)t2 − (1− k − ‖z(t2)‖)t1 + ‖z(t1)‖ − ‖z(t2)‖
= ‖z(t1)‖ − ‖z(t2)‖,

which in turn implies that ‖z(t1)‖ = ‖z(t2)‖ = ` ∈ (0, 1) and γ = δ = 1. This also

means (1−k− `)t2 = (1−k− `)t1. However, since t1 < t2, it follows that 1−k− ` = 0.

Now, putting

z1 =
1 + `

2
y1 −

1− `
2

x2 and z2 =
1 + `

2
x2 −

1− `
2

y1,

then z1, z2 ∈ BX and z2 − z1 = x2 − y1 = m(y − x), where

m =
1

k

(
1 +

t2 − t1
`

)
.
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We remark that m > 1 since k ∈ (0, 1). Furthermore, put

τ =
mk2 + 2(`− t1)

2mk
.

Then we obtain x = (1−τ)z1+τz2 since 1−k−` = 0. Therefore one has that zi = z(si)

for i = 1, 2, where s1 = −τm and s2 = s1 +m, respectively. It follows from m > 1 that

s1 < 0 or 1 < s2.

We first assume that s1 < 0. Then x = (1 − κ1)z(t1) + κ1z(s1), where κ1 =

t1/(t1 − s1) ∈ (0, 1). However, we have

1 = ‖x‖ ≤ (1− κ1)‖z(t1)‖+ κ1‖z(s1)‖
≤ (1− κ1)`+ κ1 < 1

since ` = 1− k ∈ (0, 1). This is a contradiction.

Finally, suppose that 1 < s2. Putting κ2 = (1 − t2)/(s2 − t2), we have κ2 ∈ (0, 1)

and y = (1− κ2)z(t2) + κ2z(s2). Then, similarly, we obtain

1 = ‖y‖ ≤ (1− κ2)‖z(t2)‖+ κ2‖z(s2)‖
≤ (1− κ2)`+ κ2 < 1,

a contradiction, which proves the lemma.

The following three technical lemmas will be needed.

Lemma 3.3.5 ([82]). Let X be a two-dimensional normed space. Suppose that x, y ∈
SX , and that x ± y 6= 0. If z ∈ SX , ‖z − x‖ = ‖z − y‖ ≤ min{‖z + x‖, ‖z + y‖}, and

‖z − x‖ = ‖z − y‖ < ‖x− y‖, then z ∈ A(x, y).

Proof. Without loss of generality, we may assume that X = R2, and that x = (1, 0)

and y = (0, 1) since the set {x, y} is linearly independent. Define x(θ) for all θ ∈ R
as in the preceding lemma. We remark that A(x, y) = {x(θ) : θ ∈ [0, π/2]}. Let

θ ∈ [0, 2π) such that ‖x(θ) − x‖ = ‖x(θ) − y‖ ≤ min{‖x(θ) + x‖, ‖x(θ) + y‖} and

‖x(θ)− x‖ = ‖x(θ)− y‖ < ‖x− y‖. We show that θ ∈ [0, π/2].

We first assume that θ ∈ [π/2, π]. Then by Lemma 3.3.3, it follows that

‖x− y‖ = ‖x(0)− x(π/2)‖ ≤ ‖x(0)− x(θ)‖ = ‖x(θ)− x‖ < ‖x− y‖,

a contradiction. Similarly, if θ ∈ [3π/2, 2π), we obtain

‖x− y‖ > ‖x(θ)− y‖ = ‖x(θ) + x(3π/2)‖ ≥ ‖x(2π) + x(3π/2)‖ = ‖x− y‖.
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So we assume that θ ∈ [π, 3π/2]. Then we have

‖x(θ) + x‖ = ‖x(θ) + x(2π)‖ ≤ ‖x(θ) + x(3π/2)‖ = ‖x(θ)− y‖

and

‖x(θ) + y‖ = ‖x(θ)− x(3π/2)‖ ≤ ‖x(θ)− x(2π)‖ = ‖x(θ)− x‖.

These imply that

‖x(θ)− x‖ = ‖x(θ)− y‖ ≤ min{‖x(θ) + x‖, ‖x(θ) + y‖}
≤ max{‖x(θ) + x‖, ‖x(θ) + y‖}
≤ ‖x(θ)− x‖ = ‖x(θ)− y‖.

Hence we have ‖x(θ)−x‖ = ‖x(θ)−y‖ = ‖x(θ)+x‖ = ‖x(θ)+y‖. However, this means

that x(θ) ⊥I x and x(θ) ⊥I y, which implies that x = ±y. This is a contradiction.

Thus θ must be in [0, π/2].

Lemma 3.3.6 ([82]). Let X be a two-dimensional normed space. Suppose that x, y ∈
SX , and that x±y 6= 0. If z ∈ A(x, y) and ‖z−x‖ = ‖z−y‖, then ‖z−x‖ = ‖z−y‖ ≤
min{‖z + x‖, ‖z + y‖}.

Proof. We assume that X = R2 and define x, y, x(θ) as in the preceding lemma. Sup-

pose that z ∈ A(x, y) and that ‖z−x‖ = ‖z− y‖. Let θ0 be an element of [0, π/2] such

that z = x(θ0). Then, By Lemma 3.3.3, it follows that

‖x(θ0)− x‖ = ‖x(θ0) + x(π)‖ ≤ ‖x(θ0) + x(π/2)‖ = ‖x(θ0) + y‖

and

‖x(θ0)− y‖ = ‖x(θ0)− x(π/2)‖ ≤ ‖x(θ0)− x(π)‖ = ‖x(θ0) + x‖.

Thus we have ‖x(θ0)− x‖ = ‖x(θ0)− y‖ ≤ min{‖x(θ0) + x‖, ‖x(θ0) + y‖}.

Lemma 3.3.7 ([82]). Let X be a two-dimensional normed space. Suppose that x, y ∈
SX , that x± y 6= 0, and that ‖x− y‖ = 2. If z ∈ A(x, y) and ‖z − x‖ = ‖z − y‖, then

‖z − x‖ = ‖z − y‖ < 2.

Proof. Keep the notations as in Lemma 3.3.6. If ‖z − x‖ = ‖z − y‖ = 2, we have

‖z − x‖ = ‖z − y‖ = ‖z + x‖ = ‖z + y‖ = 2 by the preceding lemma. Then, as in

the proof of Lemma 3.3.5, we obtain x = ±y. This is a contradiction. Thus one has

‖z − x‖ = ‖z − y‖ < 2.
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The following is the second key ingredient for our approach.

Lemma 3.3.8 ([82]). Let X be a two-dimensional normed space, and let Y be a normed

space. Suppose that T0 : SX → SY is a surjective isometry. Then T0(A(x, y)) =

A(T0x, T0y) whenever x, y ∈ SX and x± y 6= 0.

Proof. We first assume that ‖x− y‖ < 2. Then we have

diam(T0(A(x, y))) = diam(A(x, y)) ≤ ‖x− y‖ < 2.

Moreover, since A(x, y) is connected in SX , it follows that T0(A(x, y)) is also a connected

subset of SY . On the other hand, dimY = 2 by Lemma 3.3.2, and hence T0(A(x, y)) =

A(T0x, T0y) or T0(A(x, y)) = (SY \A(T0x, T0y)) ∪ {T0x, T0y}. However, it follows from

T0x,−T0x ∈ (SY \A(T0x, T0y))∪{T0x, T0y} that diam((SY \A(T0x, T0y))∪{T0x, T0y}) =

2. Thus we have T0(A(x, y)) = A(T0x, T0y).

Suppose next that ‖x− y‖ = 2. Let z be the element of A(x, y) such that ‖z−x‖ =

‖z−y‖. Then Lemmas 3.3.6 and 3.3.7 assure that ‖z−x‖ = ‖z−y‖ ≤ min{‖z+x‖, ‖z+

y‖} and ‖z−x‖ = ‖z−y‖ < 2. Since T0 is an isometry, one has that T0z ∈ A(T0x, T0y)

by Lemma 3.3.5. Furthermore, as was shown in the preceding paragraph, it follows

that T0(A(x, z)) = A(T0x, T0z) and T0(A(z, y)) = A(T0z, T0y). Thus we have

T0(A(x, y)) = T0(A(x, z) ∪ A(z, y))

= A(T0x, T0z) ∪ A(T0z, T0y)

= A(T0x, T0y).

This completes the proof.

Remark 3.3.9. Wang [86] proved Lemma 3.3.8 under the additional assumption that

both X and Y are two-dimensional and strictly convex. However, we have shown that

those assumptions are redundant except dimX = 2.

We now present a new method for Tingley’s problem on two-dimensional spaces.

Theorem 3.3.10 ([82]). Let X be a two-dimensional normed space, and let Y be a

normed space. Suppose that T0 : SX → SY is a surjective isometry. If there exists

an isometric isomorphism T : X → Y such that T0x = Tx and T0y = Ty for some

x, y ∈ SX with x± y 6= 0, then T0 = T |SX .

Proof. Let x, y ∈ SX such that x± y 6= 0, T0x = Tx, and T0y = Ty. As in the proof of

Lemma 3.3.5, we may assume that X = R2, and that x = (1, 0) and y = (0, 1). Define

x(θ) as in Lemma 3.3.3.
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Let I be a subset of [0, π] defined by I = {θ ∈ [0, π] : T0x(θ) = Tx(θ)}. It is

enough to prove that I = [0, π]. We first take arbitrary θ1, θ2 ∈ I such that 0 <

θ2 − θ1 < π. Then there exists θ ∈ (θ1, θ2) such that ‖x(θ) − x(θ1)‖ = ‖x(θ) − x(θ2)‖
by Lemma 3.3.4, which implies that ‖T0x(θ) − T0x(θ1)‖ = ‖T0x(θ) − T0x(θ2)‖ and

‖Tx(θ) − T0x(θ1)‖ = ‖Tx(θ) − T0x(θ2)‖ since T0x(θi) = Tx(θi) for i = 1, 2. However,

according to Lemma 3.3.8, both T0x(θ) and Tx(θ) must be in A(T0x(θ1), T0x(θ2)).

These and Lemma 3.3.4 show that T0x(θ) = Tx(θ).

Now, to see I = [0, π], suppose to the contrary that I 6= [0, π]. Let ϕ ∈ [0, π] \ I.

Since I is closed, there exists a positive number ε such that (ϕ−ε, ϕ+ε) ⊂ [0, π]\I. From

the compactness of [0, ϕ]∩ I and [ϕ, π]∩ I, there exist ϕ1 ∈ [0, ϕ]∩ I and ϕ2 ∈ [ϕ, π]∩ I
satisfying

ϕ2 − ϕ1 = min{θ2 − θ1 : θ1 ∈ [0, ϕ] ∩ I, θ2 ∈ [ϕ, π] ∩ I}.

We remark that 0 < 2ε ≤ ϕ2 − ϕ1 ≤ π/2 since 0, π/2, π ∈ I. Then, by the preceding

paragraph, there exists a ϕ3 ∈ (ϕ1, ϕ2) such that ϕ3 ∈ I. However, this contradicts to

the choice of ϕ1 and ϕ2. Thus the set I must coincide with [0, π]. This completes the

proof.

Suppose that T is a map from a set C into itself. Then an element x ∈ C is said to

be a fixed point of T if Tx = x. The set of all fixed points of T is denoted by F (T ).

Applying the preceding theorem, we immediately have the following result.

Corollary 3.3.11 ([82]). Let X be a two-dimensional normed space. Suppose that

T0 : SX → SX is a surjective isometry. If there exist x, y ∈ SX ∩ F (T0) such that

x± y 6= 0, then T0 = I|SX , where I is the identity map on X.

3.4 Applications of geometric constants

Finally, we present some new sufficient conditions for Tingley’s problem on symmetric

absolute normalized norms on R2 as applications of the results in the preceding section.

We first note the following two properties.

Lemma 3.4.1 ([82]). Let ψ ∈ ΨS
2 . Then ‖ · ‖ψ is π/4 rotation invariant if and only if

2− 2t

ψ(t)
ψ

(
1

2− 2t

)
=
√

2

for all t ∈ [0, 1/2].
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Proof. Let

R(π/4) =
1√
2

(
1 −1

1 1

)
.

Then we have∥∥∥∥∥R(π/4)
1

ψ(t)

(
1− t
±t

)∥∥∥∥∥
ψ

=
1√

2ψ(t)

∥∥∥∥∥
(

1− t∓ t
1− t± t

)∥∥∥∥∥
ψ

=
1√

2ψ(t)

∥∥∥∥∥
(

1− 2t

1

)∥∥∥∥∥
ψ

=


2− 2t√

2ψ(t)
ψ

(
1

2− 2t

)
if t ∈ [0, 1/2],

2t√
2ψ(t)

ψ

(
1

2t

)
if t ∈ [1/2, 1],

since ‖ · ‖ψ is symmetric. Moreover, it follows from ψ ∈ ΨS
2 that

2− 2t

ψ(t)
ψ

(
1

2− 2t

)
=
√

2

for all t ∈ [0, 1/2] if and only if

2t

ψ(t)
ψ

(
1

2t

)
=
√

2

for all t ∈ [1/2, 1]. Thus ∥∥∥∥∥R(π/4)
1

ψ(t)

(
1− t
±t

)∥∥∥∥∥
ψ

= 1

for all t ∈ [0, 1] if and only if

2− 2t

ψ(t)
ψ

(
1

2− 2t

)
=
√

2

for all t ∈ [0, 1/2]. This shows the lemma.

Lemma 3.4.2 ([82]). Let ψ ∈ ΨS
2 . Suppose that T0 is an isometry from the unit

sphere of (R2, ‖ · ‖ψ) onto itself. If ‖ · ‖ψ is not π/4 rotation invariant, then T0(1, 0) 6=
ψ(1/2)−1(1/2, 1/2).
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Proof. Put x(t) = ψ(t)−1(1 − t, t) and y(t) = ψ(t)−1(1 − t,−t) for all t ∈ [0, 1]. We

remark that I(x(t)) = {y ∈ SX : x(t) ⊥I y} = {±y(1 − t)} for all t ∈ [0, 1]. To

see T0x(0) 6= x(1/2), suppose contrary that T0x(0) = x(1/2). Since x ⊥I y if and

only if T0x ⊥I T0y, we obtain T0x(1) = ±y(1/2). From the symmetry of ‖ · ‖ψ,

it may be assumed that T0x(1) = y(1/2). Then Lemmas 3.3.4 and 3.3.8 imply that

T0x(1/2) = x(0), which guarantees there exists a strictly decreasing continuous function

κ on [0, 1/2] such that T0x(t) = x(κ(t)) for all t ∈ [0, 1/2].

We now consider the function f given by

f(t) = ‖x(t)± y(1− t)‖ψ =
2− 2t

ψ(t)
ψ

(
1

2− 2t

)
for all t ∈ [0, 1/2]. Then one easily has

f(t)f

(
1− 2t

2− 2t

)
= 2

for all t ∈ [0, 1/2], which implies that

min
0≤t≤1/2

f(t) max
0≤t≤1/2

f(t) = 2.

Hence, from the assumption, we have

min
0≤t≤1/2

f(t) <
√

2 < max
0≤t≤1/2

f(t).

Let

t1 = min

{
t ∈ [0, 1] : f(t) = min

0≤t≤1/2
f(t)

}
,

t2 = min

{
t ∈ [0, 1] : f(t) = max

0≤t≤1/2
f(t)

}
,

respectively. Then it follows that

1− 2t2
2− 2t2

= max

{
t ∈ [0, 1] : f(t) = min

0≤t≤1/2
f(t)

}
,

1− 2t1
2− 2t1

= max

{
t ∈ [0, 1] : f(t) = max

0≤t≤1/2
f(t)

}
.

since the function t 7→ (1− 2t)/(2− 2t) is strictly decreasing and continuous.

On the other hand, since T0 is an isometry, we obtain

f(t) = ‖x(t)− y(1− t)‖ψ
= ‖T0x(t)− T0y(1− t)‖ψ
= ‖x(κ(t))± y(1− κ(t))‖ψ
= f(κ(t))
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for all t ∈ [0, 1/2], which implies that

κ(t1) = max

{
t ∈ [0, 1] : f(t) = min

0≤t≤1/2
f(t)

}
,

κ(t2) = max

{
t ∈ [0, 1] : f(t) = max

0≤t≤1/2
f(t)

}
,

that is,

κ(t1) =
1− 2t2
2− 2t2

and κ(t2) =
1− 2t1
2− 2t1

.

This is a contradiction. The proof is complete.

To present sufficient conditions for Tingley’s problem, the following two geometric

constants of a normed space X play important roles.

C ′NJ(X) = sup

{
‖x+ y‖2 + ‖x− y‖2

4
: x, y ∈ SX

}
,

c′NJ(X) = inf

{
‖x+ y‖2 + ‖x− y‖2

4
: x, y ∈ SX

}
.

These constants were introduced by Gao [25], and are naturally strongly related to the

von Neumann-Jordan constant CNJ(X). In particular, the constant C ′NJ(X) is called

the modified von Neumann-Jordan constant, and has been studied in [7, 27, 63].

Define a partial order ≤ on Ψ2 by declaring that ϕ ≤ ψ if ϕ(t) ≤ ψ(t) for all

t ∈ [0, 1]. We need the following two propositions.

Proposition 3.4.3 (Mizuguchi and Saito [63]). Let ψ ∈ Ψ2. If ψ ≤ ψ2, then

C ′NJ((R2, ‖ · ‖ψ)) = max
0≤t≤1

ψ2(t)
2

ψ(t)2
.

Proposition 3.4.4 ([82]). Let ψ ∈ Ψ2. If ψ ≥ ψ2, then

c′NJ((R2, ‖ · ‖ψ)) = min
0≤t≤1

ψ2(t)
2

ψ(t)2
.

Proof. We first note that m‖ ·‖ψ ≤ ‖·‖2 ≤ ‖·‖ψ, where m = min0≤t≤1 ψ2(t)/ψ(t). Take

arbitrary x, y ∈ R2 such that ‖x‖ψ = ‖y‖ψ = 1. Then we have

‖x+ y‖2ψ + ‖x− y‖2ψ ≥ ‖x+ y‖22 + ‖x− y‖22
= 2(‖x‖22 + ‖y‖22)
≥ 4m2,
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which implies that c′NJ((R2, ‖ · ‖ψ)) ≥ m2. On the other hand, let t0 be an element of

[0, 1] satisfying m = ψ2(t0)/ψ(t0). If we put x = ψ(t0)
−1(1− t0, t0) and y = ψ(t0)

−1(1−
t0,−t0), then it follows that ‖x‖ψ = ‖y‖ψ = 1 and

‖x+ y‖2ψ + ‖x− y‖2ψ = 4m2.

This completes the proof.

We now present the following two sufficient conditions.

Theorem 3.4.5 ([82]). Let ψ ∈ ΨS
2 . Then Tingley’s problem is solved positively if

X = Y = (R2, ‖ · ‖ψ) and either of the following statements holds.

(i) ψ ≤ ψ2 and the function ψ2/ψ on [0, 1/2] takes the maximum only at t0 ∈ (0, 1/2].

(ii) ψ ≥ ψ2 and the function ψ2/ψ on [0, 1/2] takes the minimum only at t0 ∈ (0, 1/2].

Proof. We denote (R2, ‖ · ‖ψ) by Xψ for short. Put x(t) and y(t) as in the proof of

Lemma 3.4.2. Let T0 be an isometry from SXψ onto itself. Suppose first that (i) holds.

Define the subset A of SXψ by

A =

{
x ∈ SXψ :

‖x+ y‖2 + ‖x− y‖2

4
= C ′NJ(Xψ) for some y ∈ SXψ

}
.

Putting M = max0≤t≤1 ψ2(t)/ψ(t) = ψ2(t0)/ψ(t0), we have C ′NJ(Xψ) = M2 by Propo-

sition 3.4.3. We remark that A = {±x(t0),±x(1− t0),±y(t0),±y(1− t0)}. Indeed, it is

obvious that A ⊃ {±x(t0),±x(1− t0),±y(t0),±y(1− t0)}. For the converse, note that

the inequality

‖x+ y‖2ψ + ‖x− y‖2ψ ≤ ‖x+ y‖22 + ‖x− y‖22
= 2(‖x‖22 + ‖y‖22)
≤ 4M2

holds for all x, y ∈ SXψ , which guarantees ‖x‖2 = M if x ∈ A. We now take an

arbitrary x ∈ A. Then there exists t ∈ [0, 1] such that x = ±ψ(t)−1(1 − t,±t). It

follows from the assumption and M = ‖x‖2 = ψ2(t)/ψ(t) that t = t0, 1− t0. This shows

A ⊂ {±x(t0),±x(1− t0),±y(t0),±y(1− t0)}.
We next prove that T0 has a linear isometric extension. Remark that T0(A) = A.

Without loss of generality, we may assume that T0x(t0) = x(t0). Indeed, for any x ∈ A,

there exists an isometric isomorphism S from Xψ onto itself such that Sx = x(t0)
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since the norm is absolute and symmetric. In particular, if S is such an operator for

T0x(t0) ∈ A then it follows that ST0 is an isometry from SXψ onto itself satisfying

ST0x(t0) = x(t0). Once it has been proved that ST0 has a linear isometric extension

U , we have an affirmative answer T0 = S−1U |SXψ .

As in the proof of Lemma 3.4.2, we have T0y(1− t0) = ±y(1− t0). If t0 = 1/2, one

can easily check that T0 has a linear isometric extension since ψ ∈ ΨS
2 . Let t0 ∈ (0, 1/2).

If T0y(1− t0) = y(1− t0), one has T0 = I|SXψ by Corollary 3.3.11. So we consider the

case of T0y(1− t0) = −y(1− t0). Then it follows that

T0y(t0) ∈ T0(A ∩ A(x(t0), y(1− t0))) = T0(A) ∩ T0(A(x(t0), y(1− t0)))
= A ∩ A(T0x(t0), T0y(1− t0))
= A ∩ A(x(t0),−y(1− t0))
= {x(1− t0)}

by Lemma 3.3.8. Therefore we have T0y(t0) = x(1 − t0). Moreover, since x(0) ∈
A(x(t0), y(t0)) and ‖x(0)− x(t0)‖ψ = ‖x(0)− y(t0)‖ψ, one has

‖T0x(0)− x(t0)‖ψ = ‖T0x(0)− T0x(t0)‖ψ
= ‖x(0)− x(t0)‖ψ
= ‖x(0)− y(t0)‖ψ
= ‖T0x(0)− T0y(t0)‖ψ
= ‖T0x(0)− x(1− t0)‖ψ,

and T0x(0) ∈ A(x(t0), x(1− t0)). However, from the facts that x(1/2) ∈ A(x(t0), x(1−
t0)) and ‖x(1/2) − x(t0)‖ψ = ‖x(1/2) − x(1 − t0)‖ψ, we obtain T0x(0) = x(1/2) by

Lemma 3.3.4. This shows the case of T0y(1 − t0) = −y(1 − t0) does not occur by

Lemma 3.4.2 if the norm ‖ · ‖ψ is not π/4 rotation invariant.

Finally, suppose that ‖ · ‖ψ is π/4 rotation invariant. Since T0x(0) = x(1/2), one

has T0x(1) = ±y(1/2). It may be assumed that T0x(1) = −y(1/2). Then we obtain

T0x(0) = R(π/4)x(0) and T0x(1) = R(π/4)x(1), which in turn implies that T0 = R(π/2)

by Theorem 3.3.10. This shows the sufficiency of the condition (i).

The proof of the case (ii) is omitted since it is shown by an argument similar to that

in the above.

Applying this theorem, we can obtain many examples easily. Though the following

three examples are special cases of known results, they are shown by extremely simple

arguments.
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Example 3.4.6 (Ding [21, 22, 23]). Let 1 ≤ p ≤ ∞ such that p 6= 2. Then Tingley’s

problem is solved positively if X = Y = `2p.

Example 3.4.7 (Kadets and Mart́ın [37]). Let 1/2 < β ≤ 1/
√

2, and let ψβ,1−β(t) =

max{1−t, t, β}. Then Tingley’s problem is solved positively if X = Y = (R2, ‖·‖ψβ,1−β).

Example 3.4.8 (Kadets and Mart́ın [37]). Let 1/
√

2 ≤ α < 1, and let ψα,α(t) =

max{1− 2(1− α)t, 2α− 1 + 2(1− α)t}. Then Tingley’s problem is solved positively if

X = Y = (R2, ‖ · ‖ψα,α).

We show several new examples below.

Example 3.4.9 ([82]). Let 1 ≤ p < q ≤ ∞, and let 21/q−1/p < λ < 1. Suppose that

ψp,q,λ = max{λψp, ψq}. Then it is easy to check that the function ψq/ψp is strictly

decreasing on [0, 1/2], and so there exists a unique tλ ∈ [0, 1/2] such that

ψp,q,λ(t) =


ψq(t) if t ∈ [0, tλ],

λψp(t) if t ∈ [tλ, 1− tλ],
ψq(t) if t ∈ [1− tλ, 1].

In the case of 2 < p < q ≤ ∞, we have ψp,q,λ ≤ ψ2 and ψ2/ψp,q,λ is strictly increasing

on [0, 1/2]. On the other hand, if 1 ≤ p < q < 2, it follows that ψp,q,λ ≥ ψ2, and that

the function ψ2/ψp,q,λ is strictly decreasing on [0, 1/2]. Thus Tingley’s problem is solved

positively if X = Y = (R2, ‖ · ‖ψp,q,λ) by Theorem 3.4.5.

Example 3.4.10 ([82]). Define the function ϕp ∈ ΨS
2 by

ϕp(t) =

{
max{21/2−1/pψp(t), 1− t, t} if 1 ≤ p < 2,

max{ψp(t), 1/
√

2} if 2 < p ≤ ∞.

Remark that ϕp ≤ ψ2 for all p. We first consider the case of 1 ≤ p < 2. Let tp be the

unique solution of the equation 21/2−1/pψp(t) = 1 − t such that tp ∈ [0, 1/2]. Then the

function ψ2/ϕp on [0, 1/2] takes the maximum only at tp.

In the case of 2 < p < ∞, suppose that tp is the unique solution of the equation

ψp = 1/
√

2 such that tp ∈ [0, 1/2]. Then it is easy to see that the function ψ2/ϕp on

[0, 1/2] takes the maximum only at tp. Thus we have an affirmative answer to Tingley’s

problem in the case of X = Y = (R2, ‖ · ‖ϕp).

Example 3.4.11 ([82]). Let 0 ≤ t1 < t2 ≤ 1/2, and let ϕt1,t2 be the function given by

ϕt1,t2(t) = max{ψ2(t), αt+ β, α(1− t) + β}
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where

α =
ψ2(t2)− ψ2(t1)

t2 − t1
and β =

t2ψ2(t1)− t1ψ2(t2)

t2 − t1
Then we have ϕt1,t2 ≥ ψ2 and

ϕt1,t2(t) =



ψ2(t) if t ∈ [0, t1],

αt+ β if t ∈ [t1, t2],

ψ2(t) if t ∈ [t2, 1− t2],
α(1− t) + β if t ∈ [1− t2, 1− t1],
ψ2(t) if t ∈ [1− t1, 1].

Hence there exists a unique element t0 ∈ [0, 1/2] such that t1 < t0 < t2 and the function

ψ2/ϕt1,t2 on [0, 1/2] takes the minimum only at t0. This shows that if X = Y =

(R2, ‖ · ‖ϕt1,t2 ), Tingley’s problem is solved positively.

Up to this time, we only have considered functions that are comparable with ψ2. In

what follows, we present sufficient conditions for incomparable cases.

Proposition 3.4.12 (Mizuguchi and Saito [63]). Let ψ ∈ ΨS
2 . If ψ2/ψ takes the

minimum at 1/2, then

C ′NJ((R2, ‖ · ‖ψ)) =
ψ(1/2)2

ψ2(1/2)2
max
0≤t≤1

ψ2(t)
2

ψ(t)2
.

Proposition 3.4.13 ([82]). Let ψ ∈ ΨS
2 . If ψ2/ψ takes the maximum at 1/2, then

c′NJ((R2, ‖ · ‖ψ)) =
ψ(1/2)2

ψ2(1/2)2
min
0≤t≤1

ψ2(t)
2

ψ(t)2
.

Proof. Let m = min0≤t≤1 ψ2(t)/ψ(t) and M = ψ2(1/2)/ψ(1/2). Then m‖ · ‖ψ ≤ ‖ ·‖2 ≤
M‖ · ‖ψ. For each x, y ∈ R2 such that ‖x‖ψ = ‖y‖ψ = 1, we have

‖x+ y‖2ψ + ‖x− y‖2ψ ≥M−2(‖x+ y‖22 + ‖x− y‖22)
= 2M−2(‖x‖22 + ‖y‖22)
≥ 4M−2m2.

Hence we obtain c′NJ((R2, ‖ · ‖ψ)) ≥ M−2m2. On the other hand, let t0 ∈ [0, 1/2] such

that ψ2(t0)/ψ(t0) = m. Putting x = ψ(t0)
−1(1− t0, t0) and y = ψ(t0)

−1(t0, 1− t0), one

has

‖x+ y‖2ψ + ‖x− y‖2ψ = 4M−2m2,

which shows the proposition.
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Using these results, we obtain the following theorem that presents sufficient condi-

tions for incomparable cases. The proof is almost the same as that of Theorem 3.4.5,

and so is omitted.

Theorem 3.4.14 ([82]). Let ψ ∈ ΨS
2 . Then Tingley’s problem is solved positively if

X = Y = (R2, ‖ · ‖ψ) and either of the following statements holds.

(i) The function ψ2/ψ on [0, 1/2] takes the minimum at 1/2 and the maximum only

at t0 ∈ (0, 1/2].

(ii) The function ψ2/ψ on [0, 1/2] takes the maximum at 1/2 and the minimum only

at t0 ∈ (0, 1/2].

The rest of this paper is devoted to giving further examples.

Example 3.4.15 ([82]). Let 1 ≤ p < 2 < q ≤ ∞, and let 21/q−1/p < λ < 1. Then the

function ψ2/ψp,q,λ is increasing on [0, tλ], and decreasing on [tλ, 1/2]. Hence it takes the

maximum only at tλ. We remark that ψp,q,λ ≤ ψ2 if and only if 21/q−1/p < λ ≤ 21/2−1/p.

If 21/2−1/p < λ < 1, it turns out that ψ2/ψp,q,λ takes the minimum at 1/2. Thus, in

both cases, Tingley’s problem is affirmative if X = Y = (R2, ‖ · ‖ψp,q,λ).

Example 3.4.16 ([82]). Let 0 < ω < 1 and 1 < q < ∞. Recall that the two-

dimensional Lorentz sequence space d(2)(ω, q) is defined as the space R2 endowed with

the norm

‖(x, y)‖ω,q = (max{|x|q, |y|q}+ ωmin{|x|q, |y|q})1/q.

Then ‖ · ‖ω,q is a symmetric absolute normalized norm on R2, and the function ψω,q

associated with this norm is given by

ψω,q(t) =

{
((1− t)q + ωtq)1/q if 0 ≤ t ≤ 1/2,

(tq + ω(1− t)q)1/q if 1/2 ≤ t ≤ 1.

We now consider the function ψ2/ψω,q on [0, 1/2]. Then the first derivative is given by(
ψ2

ψω,q

)′
(t) =

((1− t)q + ωtq)1/q−1(t(1− t)q−1 − ωtq−1(1− t))
ψ2(t)ψω,q(t)2

for all t ∈ (0, 1/2). From this, one can easily check that the function ψω,q satisfies

the assumption of Theorems 3.4.5 or 3.4.14. Thus, we have an affirmative answer to

Tingley’s problem in the case of X = Y = d(2)(ω, q).
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Example 3.4.17 ([82]). Let 0 < ω < 1 < q < ∞. By Proposition 1.2.4, the space

d(2)(ω, q)∗ is isometrically isomorphic to the space R2 endowed with the norm ‖ · ‖∗ω,q
defined by

‖(x, y)‖∗ω,q =


(|x|p + ω1−p|y|p)1/p if |y| ≤ ω|x|,
(1 + ω)1/p−1(|x|+ |y|) if ω|x| ≤ |y| ≤ ω−1|x|,
(ω1−p|x|p + |y|p)1/p if ω−1|x| ≤ |y|,

where 1/p+ 1/q = 1. The norm ‖ · ‖∗ω,q is symmetric, absolute and normalize, and the

corresponding function ψ∗ω,q is given by

ψ∗ω,q(t) =


((1− t)p + ω1−ptp)1/p if 0 ≤ t ≤ ω/(1 + ω),

(1 + ω)1/p−1 if ω/(1 + ω) ≤ t ≤ 1/(1 + ω),

(tp + ω1−p(1− t)p)1/p if 1/(1 + ω) ≤ t ≤ 1.

We can conclude that Tingley’s problem is solved positively if X = Y = d(2)(ω, q)∗ by

an argument similar to that in the preceding example.
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