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Abstract

This thesis deals with the analysis of multiple angle polarimetric synthetic aperture radar (Pol-

SAR) images in the sense that the radar acquires the data from multiple incidence angles as

well as azimuthal angles. The radar images are known to have strong dependence on these

angular parameters and target physical or geometric characteristics such as the dielectric prop-

erties, roughness, shape, orientation, and so forth. Therefore, the multiple angle observation and

analysis are necessary to aid the understanding of the PolSAR images. We carry out multiple

angle PolSAR observation under well-controlled conditions in an anechoic chamber, and several

characteristics of the multiple angle PolSAR images are revealed.

The major contributions of this thesis are summarized as follows:

1. Experimental investigation on how soil moisture affects the polarimetric backscattering

from forested terrain using the multiple angle measurement data.

2. Comparison of model-based polarimetric decomposition algorithms applied for PolSAR and

tomographic SAR (TomoSAR) images.

3. Introduction of polarimetric concepts to circular synthetic aperture radar (CSAR) obser-

vation and image reconstruction.

In the first contribution, we examine the effects of soil moisture on the double-bounce scattering

occurred between the ground surface and trunks. We conduct simple model experiments in an

anechoic chamber, and show that the co-polarization ratio and phase difference can be used to

estimate the moisture condition of forested terrain.

The second contribution is the comparison of model-based polarimetric decomposition al-

gorithms which are used to decompose a mixture of several scattering mechanisms into some

simple scattering components. Although a number of decomposition algorithms have been de-

veloped, the physical interpretation of the decomposed results are still under investigation. To

xiii



help the understanding of the decomposed results, we provide the qualitative comparison of

these algorithms using the anechoic chamber measurement data. Also the introduction to the

polarimetric decomposition schemes to TomoSAR data reveals the possibility of recovering the

three-dimensional structure and scattering mechanisms of the observing targets.

The last contributions are related to CSAR image analysis. Apart from the conventional SAR

systems which have a linear flight path, CSAR has a circular trajectory to acquire the scattering

of the observing scene for high-resolution radar image reconstruction. The introduction of po-

larimetric concepts to CSAR data becomes challenging due to the diversity of the polarization

basis. In this thesis, we deal with this problem by introducing polarization basis transformation

to CSAR reconstruction algorithm. It is shown that the building structure can be recovered by

this novel CSAR image reconstruction processing.
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Chapter 1

Introduction

Background

Retrieval of structure or physical parameters of the earth surface over wide area is one of the

main interests in various areas of geophysics such as meteorology, hydrology, geodesy, and so

on. For this purpose, remote sensing from an aircraft or satellite have been widely studied

and utilized with several types of onboard sensors. One of the most widely used sensor is the

synthetic aperture radar (SAR) which has been successfully demonstrated for the capability of

the earth observation, being able to provide an all-weather day-and-night supply of the high-

resolution images of the ground surface. With the introduction of the advanced signal processing

algorithms as well as the operational concepts, SAR is expected to be a powerful tool to retrieve

the earth environment or dynamics.

The measured quantity of the SAR is the backscattered wave from ground surface, which

contains physical or geometric information of the targets. Unfortunately, the interpretation of

the SAR images is not always straightforward. Though the backscattering coefficient measured

by SAR has a certain relationship to the physical and geometric parameters of the targets, the

diversity and interaction of these parameters result in the complex variation of the measured SAR

images. Thus, the discrimination of such a complex phenomena into some simple scattering

mechanisms is necessary to well understand SAR images. This can be achieved via utilizing

additional information, namely, the polarization of electromagnetic wave. The technique which

utilizes the polarization for SAR data analysis is called radar polarimetry, and such a SAR system

is referred to as polarimetric synthetic aperture radar (PolSAR).

The other well-known extension of the SAR system is interferometric SAR (InSAR) or tomo-

1
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graphic SAR (TomoSAR). The InSAR is used to recover the topographic information of terrain,

and two independent SAR images at slightly different sensor locations for the same observation

area are acquired for this purpose. The height information can be retrieved by interfering these

SAR signals. The TomoSAR is an extension of InSAR in the sense that the acquisition is made

at three or more sensor locations or flight paths. The high resolution volumetric imaging of

the backscattering is possible by employing direction-of-arrival (DOA) estimation techniques for

array antennas. Needless to say, the combination of radar polarimetry and interferometric or

tomographic SAR is possible.

Although the many algorithms and operational concepts are developed, the actual application

of the SAR data in practical situation is still limited, because of the lack of quantitative validation

of the information derived from SAR image analysis. The SAR images depend on not only the

physical parameters of the targets, but also the geometric parameters such as target orientation,

radar incidence angle, flight path direction, and so forth. Thus, to quantitatively relate physical

parameters to obtained SAR image, it is essential to validate the data extraction algorithms with

various terrain and radar conditions. To do this, the SAR experiments under well-controlled

situation is essential. The objective of this thesis is to establish the relationship between the

physical and geometric parameters to observed SAR images by laboratory experiments. We

carried out indoor and outdoor experiments using simplified terrain models for this purpose.

The SAR measurements are made at multiple incidence and azimuthal angles, and it is revealed

that the multiple angle measurements provide additional information for SAR image analysis.

The Thesis

This thesis is structured as shown in Figure 1.1. In Chapter 2, an introduction to SAR image

formation algorithm based on wavefront reconstruction theory is given. Also we describe the

experimental system used in this research. Chapter 3 describes the basic principles of polarimetric

radar image processing, and the experimental results are presented. Chapter 4 gives an analysis

of multiple angle SAR images. Using the multiple angle SAR images, we discuss the effects

of moisture variation in forested areas, and show that a simple polarimetric parameter called

co-polarization ratio can be used to infer the moisture variation of forested terrain. Chapter

5 gives a basic concept of tomographic SAR (TomoSAR) data processing, and we propose an

application of polarimetric decomposition schemes to three-dimensional tomographic data. In

Chapter 6, polarimetric CSAR image analysis is shown. In the CSAR system, the diversity of

the polarization basis makes the image analysis challenging, however, this means that the image
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Chapter 2: Synthetic Aperture Radar

Chapter 3: Polarimetric SAR

Chapter 1: Introduction

Chapter 4: Multiple Angle SAR Chapter 5: Tomographic SAR

Chapter 6: Circular SAR

Chapter 7: Conclusion and Suggestions

: Thesis contribution

: Patial contribution

Figure 1.1: Thesis structure.

is expected to contains an additional information which does not exist in the conventional SAR

images. Finally, Chapter 7 concludes the overall discussion and makes suggestion for further

study.

The major contributions of this thesis are summarized as follows:

1. Experimental investigation on how soil moisture affects the polarimetric backscattering

from forested terrain using the multiple angle measurement data.

2. Comparison of model-based polarimetric decomposition algorithms applied for PolSAR and

tomographic SAR (TomoSAR) images.

3. Introduction of polarimetric concepts to circular synthetic aperture radar (CSAR) obser-

vation and image reconstruction.

In the first contribution, we examine the effects of soil moisture on the double-bounce scattering

occurred between the ground surface and trunks. We conduct simple model experiments in an

anechoic chamber, and show that the co-polarization ratio and phase difference can be used to

estimate the moisture condition of forested terrain.

The second contribution is the comparison of model-based polarimetric decomposition al-

gorithms which are used to decompose a mixture of several scattering mechanisms into some

simple scattering components. Although a number of decomposition algorithms have been de-

veloped, the physical interpretation of the decomposed results are still under investigation. To
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help the understanding of the decomposed results, we provide the qualitative comparison of

these algorithms using the anechoic chamber measurement data. Also the introduction to the

polarimetric decomposition schemes to TomoSAR data reveals the possibility of recovering the

three-dimensional structure and scattering mechanisms of the observing targets.

The last contributions are related to CSAR image analysis. Apart from the conventional SAR

systems which have a linear flight path, CSAR has a circular trajectory to acquire the scattering

of the observing scene for high-resolution radar image reconstruction. The introduction of po-

larimetric concepts to CSAR data becomes challenging due to the diversity of the polarization

basis. In this thesis, we deal with this problem by introducing polarization basis transformation

to CSAR reconstruction algorithm. It is shown that the building structure can be recovered by

this novel CSAR image reconstruction processing.



Chapter 2

Synthetic Aperture Radar

Introduction

Synthetic aperture radar (SAR) is an imaging radar of which the platform such as an aircraft

or satellite travels along a linear or non-linear trajectory to synthesize a large antenna aperture

for high-resolution image formation. In this thesis, the two kinds of SAR imaging techniques are

dealt with, namely, linear and circular SAR. The term “linear SAR” is used to indicate so-called

stripmap or spotlight mode SAR systems which possess a linear radar trajectory. The linear

SAR is the most widely recognized and used imaging technique, and the majority of SAR image

processing and analysis algorithms assume this type of observation. The circular SAR (CSAR)

literally has a circular radar trajectory, and its antenna beam points toward the center of the

circular path during the acquisition. The CSAR has the capability of produce a high-resolution

image compared to the linear SAR, however, the imaged area is restricted to the antenna beam

swath. In addition, the interpretation of CSAR images is more challenging than that of the linear

SAR images.

As the groundwork for SAR image analysis, this chapter briefly presents the reconstruction

algorithms for the data acquired by the linear SAR systems. Using the results of linear SAR

image analysis obtained until Chapter 5, we try to understand the image measured using the

CSAR system. Unless confusion arises we simply refer to linear SAR as “SAR” in this thesis.

5
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Outline

The outline of this chapter is as follows. In Section 2.1, SAR observation scenario is introduced,

and the global coordinate system is defined for subsequent discussion. We show that, though

SAR measurement is done in three-dimensional space, the formulation of image reconstruction

algorithm only requires two-dimensional representation of the signal. Section 2.2 describes the

reconstruction algorithm for one-dimensional range domain. The commonly used signal models,

that is, pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency wave-

forms are presented and the relationships of these signal models are established. Then, two-

dimensional image formation based on the wavefront reconstruction theory [1] is given in Section

2.3. The images formed via this reconstruction algorithm are the basis of our polarimetric radar

image analysis. For the discussion on the radar image in the later chapters, Section 2.4 summa-

rizes the experimental system used in this research, and Section 2.5 describes the collected data.

Finally, Section 2.6 concludes the chapter.

Mathematical Notations

The notations related to the Fourier transform with respect to time or spatial domain are sum-

marized. We denote the time variable as t and its Fourier counterpart temporal frequency as ω,

where the units of t and ω are seconds (s) and radians (rad./s). The frequency can be represented

by ω/2π that has the unit of Hertz (Hz).

The forward Fourier transform of a time domain signal s(t) with respect to the time t is

defined as

S(ω) = F(t) [s(t)]

=

∫ ∞

−∞
s(t) exp(−jωt)dt. (2.1)

The inverse Fourier transform of Equation (2.1) with respect to the temporal frequency ω is

s(t) = F−1
(ω) [S(ω)] (2.2)

=
1

2π

∫ ∞

−∞
S(ω) exp(jωt)dω. (2.3)

As well as the time domain signal, we can define the forward Fourier transform of a spatial
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variable function f(x), where the unit of the spatial variable x is meters (m), that is,

F (kx) = F(kx) [f(x)] (2.4)

=

∫ ∞

−∞
f(x) exp(−jkxx)dx, (2.5)

where kx is called the spatial frequency or wavenumber domain, the unit of which is radians/meter

(rad./m). The inverse Fourier transform of a spatial frequency domain signal of Equation (2.5)

is

f(x) = F−1
(kx)

[F (kx)] (2.6)

=
1

2π

∫ ∞

−∞
F (kx) exp(jkxt)dkx. (2.7)

For digital implementation, the above Fourier transforms are computed by the discrete Fourier

transform (DFT) and the inverse discrete Fourier transform (IDFT). For a discrete sequence fn

which contains N evenly spaced samples, where n ∈ [−N/2, N/2− 1] is the sample index, DFT

is defined via

Fm =

N/2−1∑
n=−N/2

fn exp

(
−j 2π

N
mn

)
, (2.8)

where m ∈ [−N/2, N/2− 1], and then IDFT is defined by

fn =
1

N

N/2−1∑
m=−N/2

Fm exp

(
j
2π

N
mn

)
. (2.9)

The sample spacing in the time and frequency domain is related via

N∆x∆kx = 2π, (2.10)

where ∆x and ∆kx are the sample spacing of the original sequence fn and its Fourier counterpart

domain, respectively. The above Equation (2.10) is important for digital implementation of the

SAR data acquisition and reconstruction algorithms since it dictates alias-free region of the

sampled signal.

The Fourier transform of a two-dimensional signal can similarly be defined. For example, the
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Fourier transform pair of a signal s(t, u), where u represents spatial domain, is

S(ω, ku) = F(t,u)[s(t, u)]

=

∫
u

∫
t

s(t, u) exp (−jωt− jkuu) dt du (2.11)

and

s(t, u) = F−1
(ω,ku)

[S(ω, ku)]

=
1

(2π)2

∫
u

∫
t

s(t, u) exp (jωt+ jkuu) dω dku (2.12)

where ku is spatial frequency for u. The two-dimensional DFT and IDFT can be defined as well.

2.1 Observation Scenario

The SAR observation scenario is depicted in Figure 2.1. In linear SAR systems such as stripmap

or spotlight SAR, a radar carrying platform (aircraft or satellite) moves along a linear path during

the data acquisition. At a fixed platform location, the radar transmits a pulse and records the

echoed signal. Although the platform has a certain velocity, we assume that the radar stops

during one sequence of its transmission and reception, and then the aircraft moves to the next

observation point. This model is called the stop-and-go assumption.

The high-resolution two-dimensional radar image of the targets is formed via subsequent sig-

nal processing. The target space is represented by (x′, y′, z′), and the resultant two-dimensional

image space is identified by (x, y) in Figure 2.1. The distance in x domain is called slant-range,

while x′-direction is the ground-range. The domain y′ or y is called cross-range or azimuth.

This image, referred to as slant-range image, is a two-dimensional mapping of the three-

dimensional target space (x′, y′, z′). Consider the target located at (x′t, y
′
t, z

′
t), and the radar has

its altitude of z′c. In this case, this target is projected in the image plane at the location (xt, yt)

identified by

(xt, yt) =

(√
x

′2
t + (z′c − z′t)

2, y′t

)
. (2.13)

Thus, the height information of the target is lost by this projection; the height information is

transparent to the user who has only a single-path SAR image. As it is discussed in Chapter 5,

the height information can be recovered from multiple path or multi-angular SAR images. Also

one can infer the target height by using a single-path CSAR measurement which is discussed in
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Figure 2.1: SAR observation scenario.

Chapter 6.

From the above discussion, one can formulate SAR reconstruction problem as the two-

dimensional signal processing without loss of generality. We assume that all the observing targets

are confined into the two-dimensional image plane (x, y), and we just call slant-range as “range”

in this chapter.
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Radiation pattern
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Targets

Figure 2.2: Range reconstruction system geometry.

2.2 Range Reconstruction

Before moving on to the two-dimensional image formation, we examine the one-dimensional tar-

get reconstruction in the range domain x in this section. The main purpose of this section is to

provide range reconstruction algorithm for various signal waveforms using the Fourier transfor-

mation, that is, pulsed, FMCW, and stepped frequency ones. Also we establish the relationship

of these signal models and show that the contained information is equivalent each other.

2.2.1 System model

The system model for range reconstruction is shown in Figure 2.2. In this problem, we assume

that a set of targets are located at a known fixed range Yc. The targets are assumed to be within

a finite spatial region [Xc −X0, Xc +X0], where Xc is the center range of the target area, and

X0 is the half-width of radar swath. The range xn and the target reflectivity or radar cross

section (RCS) σn are unknown constants to be recovered. Our problem here is to reconstruct or

estimate these unknown constants from the measured signal.

2.2.2 Generic Signal Model

Let p(t) be the transmitted signal waveform, where t is time variable, and f(x) be the reflectivity

function at the range x. The echoed signal model for the range imaging system can be described
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Ideal (delta) target function

(a) Ideal target function.

Reconstructed target function

(b) Reconstructed target function.

Figure 2.3: (a) Ideal target function; (b) matched-filtered signal sM (t) and reconstructed target
function f(x).

as

s(t) =

∫
x

f(x)p

[
t− 2x

c

]
dx

= f

(
ct

2

)
∗ p(t) (2.14)

where ∗ denotes convolution operation with respect to the fast-time t. For ideal point scatterer

model, we can define the reflectivity function via

f0(x) =
∑
n

σnδ(x− xn), (2.15)
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where δ(·) is the Dirac delta (impulse) function. The example of the above model of Equation

(2.15) is depicted in Figure 2.3 (a). Substituting the above ideal target function into Equation

(2.14), we have the following echoed signal model for the point scatterers:

s(t) = f0

(
ct

2

)
∗ p(t)

=
∑
n

σnp (t− tn) , (2.16)

with

tn =
2xn
c
. (2.17)

2.2.3 Theoretical reconstruction

Let P (ω) be the Fourier transform of the transmitted waveform p(t), that is,

P (ω) = F(t)[p(t)], (2.18)

where ω represents the fast-time frequency. Then, the Fourier transform of Equation (2.16) can

be denoted by

S(ω) = F(t)[s(t)]

= P (ω)
∑
n

σn exp (−jωtn) . (2.19)

Provided that P (ω) has nonzero values for all fast-time frequency ω (i.e. infinite bandwidth),

one can readily reconstruct the ideal target function via

F−1
(ω)

[
S(ω)

P (ω)

]
=
∑
n

σnδ (t− tn)

= f0

(
ct

2

)
. (2.20)

This operation is also known as the deconvolution. The spatial variable representation of the

above target function is a linear mapping of the fast-time t defined via

f0(x) =
∑
n

σnδ(x− xn), (2.21)
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where

x =
ct

2
. (2.22)

However, this theoretical reconstruction is practically unavailable because realistic radar systems

have finite bandwidth.

2.2.4 Reconstruction via Matched Filtering

In realistic situations, infinite bandwidth is unavailable and Equation (2.20) cannot be used

to reconstruct the target function from a bandlimited signal. For practical reconstruction, one

can utilize the operation called matched- filtering which also appears in classical communication

problems. The matched filter is designed to recover desirable information from a received signal

corrupted with an additive white noise. In other words, the matched filtering operation maximizes

signal-to-noise ratio (SNR) of the filter output. The matched filtering operation is achieved via

sM (t) = F−1
(ω) [S(ω)P

∗(ω)]

= F−1
(ω)

[∑
n

σn|P (ω)|2 exp (−jωtn)

]
=
∑
n

σnpsft (t− tn) , (2.23)

where [·]∗ is the complex conjugate operation, and

psft(t) = F−1
(ω)

[
|P (ω)|2

]
, (2.24)

is called the point spread function (PSF) of the imaging system. The example of the matched-

filtered signal sM (t) is displayed in Figure 2.3 (b). The matched filtered signal of Equation (2.23)

can also be expressed using the time domain convolution as follows:

sM (t) = s(t) ∗ p∗(−t)

= f0

(
ct

2

)
∗ psft(t). (2.25)

Recalling that the ideal target function is expressed as Equation (2.15), one can consider that

the PSF describes how ideal delta target function spreads out due to the effect of bandlimited

imaging system.
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For example, we consider the following transmitted radar signal spectrum:

P (ω) =

1 for ω ∈ [ωc − ω0, ωc + ω0],

0 otherwise,

(2.26)

where ωc and ω0 are the carrier (center) frequency and the half-size of baseband bandwidth,

respectively. Then, PSF can be represented by

psft(t) = exp(jωct)sinc

(
ω0t

π

)
, (2.27)

where

sinc(t) =
sin(πt)

πt
(2.28)

is the sinc function. From Equation (2.27), PSF becomes sharper with the radar bandwidth 2ω0

increases; the better resolution can be achieved by the wider bandwidth.

The above assumption of the radar signal spectrum of Equation (2.26) can be considered as

the model which describes FMCW and stepped frequency waveform described below.

2.2.5 Reconstruction for FMCW Signaling

The other well-known radar waveform is frequency modulated continuous wave (FMCW), which

is also known as a chirp or linear frequency modulated (LFM) signal. The FMCW radar signal

is defined via

p(t) = exp(jβt+ jαt2), (2.29)

where β and α respectively represent the initial phase and chirp rate of the FMCW signal,

and both variables are assumed to be real quantities. The FMCW signal of Equation (2.29)

continues during the chirp duration Tp. For the FMCW radar measurement, we assume that all

the responses form the targets are observable within this chirp duration.

The instantaneous frequency of Equation (2.29) can be calculated by the following derivative.

ω =
d

dt
(βt+ αt2)

= β + 2αt. (2.30)

The above Equation (2.30) is a linear function of the fast-time t, and thus, Equation (2.29)
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represents a LFM signal; the frequency is linearly swept, starting from β to the end of the sweep.

A positive α means up-chirp that the frequency is increased as time elapses, while decreasing

frequency sweep called down-chirp is described by a negative α. The following discussion assumes

the up-chirp case of positive α. The frequency is within the interval

ω ∈ [β, β + 2αTp]. (2.31)

The carrier (center) frequency ωc is then,

ωc = β + αTp, (2.32)

and the baseband bandwidth ω0 is

±ω0 = ±αTp. (2.33)

The baseband bandwidth of the FMCW signal depends on the two variables of the chirp rate α

and the chirp duration Tp. For a given α, the bandwidth of a FMCW signal increases with the

chirp duration Tp.

The echoed signal model of FMCW radar for the case of point scatterers defined in Equation

(2.16) can be denoted by

s(t) =
∑
n

σnp (t− tn)

=
∑
n

σn exp[jβ(t− tn)] exp
[
j(αt2 − 2αtnt+ αt2n)

]
. (2.34)

The measured quantity of the FMCW radar called beat signal is obtained via mixing the

complex conjugate of Equation (2.34) and the transmitted waveform as a reference signal, that

is,

sb(t) = s∗(t)p(t)

=
∑
n

σn exp(jβtn − jαt2n) exp(j2αtnt)︸ ︷︷ ︸
Sinusoid

(2.35)

The sinusoidal term in the above Equation (2.35) contains the information related to the target

range; as the delay time tn increases with the target range, the frequency of the resultant sinusoid

becomes higher. The time domain compression is achieved by taking the Fourier transform of
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the beat signal sb(t). This procedure is also referred to as the pulse compression or deramping.

The above mentioned FMCW signaling has another characteristic which makes the connection

between FMCW and pulsed waveform. Provided that the targets are within relatively near range,

that is,

tn ≪ 1, (2.36)

the beat signal of Equation (2.35) can be approximated by

sb(t) ≈
∑
n

σn exp [j(β + 2αt)tn] . (2.37)

Recalling that the instantaneous frequency of the FMCW signal is described by Equation (2.30),

one can represent Equation (2.37) via

sb(t) =
∑
n

σn exp (jωtn) . (2.38)

Therefore, we can consider the beat frequency sb(t) as the frequency domain signal sb(ω). Then,

we define the following signal:

S(ω) = P (ω)sb(ω)
∗

= P (ω)
∑
n

σn exp (−jωτn) , (2.39)

where

P (ω) =

1 for ω ∈ [ωc − ω0, ωc + ω0],

0 otherwise.

(2.40)

Equation (2.39) has the same form of Equation (2.19), that is, the fast-time Fourier transform of

received pulse radar signal. Therefore, FMCW beat signal can be considered as a special case of

the pulse radar waveform; the contained information of both waveforms is equivalent. Moreover

Equation (2.40) corresponds to the previous mentioned example of Equation (2.26), and thus the

point spread function of the FMCW radar system can be determined by a sinc function defined

in Equation (2.27).

The reconstruction is done by Equation (2.23) which ends up with the simple inverse Fourier
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transformation defined via

sM (t) = F−1
(ω)[S(ω)]

=
∑
n

σn exp[jωc(t− tn)]sinc

[
ω0(t− tn)

π

]
. (2.41)

2.2.6 Reconstruction for Stepped Frequency Signaling

The stepped frequency signaling is useful when the user does not have an access to a high-speed

A/D converter. Similar to the previous discussion on the FMCW signaling, the stepped frequency

signal contains the same information of the pulsed waveform.

The transmitted signal of the stepped frequency radar is a simple sinusoid, that is,

p(t;ω) = exp(jωt). (2.42)

The echoed signal model of this transmitted waveform for the case of point scatterers defined in

Equation (2.16) can be denoted by

s(t;ω) =
∑
n

σnp

(
t− 2xn

c

)
=
∑
n

σn exp [jω(t− tn)] . (2.43)

The measured quantity of the stepped frequency radar is the ratio of this received signal to the

transmitted signal, that is,

sr(ω) =
s(t;ω)

p(t;ω)

=
∑
n

σn exp (jωtn) , (2.44)

provided that p(t;ω) ̸= 0. The above Equation (2.44) is only a function of frequency variable ω;

the fast-time dependency is suppressed by taking the ratio, provided that the frequency of the

returned signal s(t;ω) is equal to that of the transmitted waveform p(t;ω). For wide-bandwidth

radar measurement, the frequency ω is stepped or swept to the other frequencies. Note that

Equation (2.44) only holds provided that the targets are static over the observation period. If

one observes a dynamic object, the echoed signal s(t;ω) would contain a different frequency

component compared to the transmitted signal p(t;ω) due to so-called the Doppler frequency
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shift.

We define the following signal:

S(ω) = P (ω)s∗r(ω)

= P (ω)
∑
n

σn exp (−jωtn) , (2.45)

where

P (ω) =

1 for ω ∈ [ωc − ω0, ωc + ω0],

0 otherwise.

(2.46)

Equation (2.45) has the same form of Equation (2.19), that is, the fast-time Fourier transform of

pulse radar received signal. Therefore, stepped frequency radar waveform can be considered as a

special case of the pulse radar waveform as well as the FMCW case. Moreover Equation (2.46)

corresponds to the previous mentioned example of Equation (2.26), and thus the point spread

function of the stepped frequency radar system can be determined by Equation (2.27).

The reconstruction equation for the stepped frequency signal is, using Equation (2.23),

sM (t) = F−1
(ω)[S(ω)]

=
∑
n

σn exp[jωc(t− tn)]sinc

[
ω0(t− tn)

π

]
, (2.47)

which is exactly same as the FMCW case of Equation (2.41).

2.2.7 Summary of Signal Models

So far, three types of radar signal model, namely the pulsed waveform, the FMCW, and the

stepped frequency signaling, are discussed. We have shown that, though these waveforms have

the different time-domain representation, the contained information can be considered as the

same in the frequency domain representation. The idea is depicted in Figure 2.4.

For a general pulsed radar case, one has to firstly take the Fourier transform of the received

signal s(t) with respect to the fast-time t, and then, matched filter reconstruction of Equation

(2.23) is used.

In the FMCW case, the time-domain beat signal sb(t) is assigned to the frequency domain

signal via Equation (2.37) to form the Equation (2.39) which has the similar fashion of Equation

(2.19). Then, the user can use the matched filter reconstruction described in Equation (2.23).
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Figure 2.4: Summary of matched-filter reconstruction for each signal models.

Similarly, the stepped frequency radar signal defined in Equation (2.43) can be directly plugged

into Equation (2.23). Because both the FMCW and stepped frequency case correspond to the

example given in Equation (2.26), the matched filter reconstruction defined in Equation (2.23)

ends up to the simple inverse Fourier transform, that is,

sM (t) = F−1
(ω)[S(ω)]

=
∑
n

σn exp[jωc(t− tn)]sinc

[
ω0(t− tn)

π

]
. (2.48)

The maximum of the sinc function occurs when t = tn, and one can determine the target range

xn via

xn =
ctn
2
. (2.49)

2.3 Synthetic Aperture Reconstruction

So far, the basis of the signal modeling and range reconstruction procedure is presented. Now

we develop a SAR image formation algorithm based on the previous discussion.

2.3.1 System Model

The SAR imaging system geometry is depicted in Figure 2.5. The radar carrying aircraft moves

along y-direction. The position of the radar is denoted by u ∈ [−L,L], where L is the half-size of
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Figure 2.5: SAR system geometry.

the synthetic aperture. The radar position u is referred to as slow-time domain, while the time

related to the transmitted pulse is called fast-time t domain; the aircraft motion is relatively

slow compared to the transmitted radio wave which travels at the fast speed of light c.

The radial or line-of-sight (LOS) distance from the radar to the target located at (x, y) is

r(x, y) =
√
x2 + (y − u)2, (2.50)

and the corresponding delay time is

tr(x, y) =
2r(x, y)

c
. (2.51)

We denote the continuous reflectivity function of the location (x, y) as f(x, y). For a discrete

target model, we can write the reflectivity function via

f(x, y) =
∑
n

σnδ(x− xn)δ(y − yn), (2.52)
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where σn is the reflectivity of the nth target, and (xn, yn) is the location of this target, respec-

tively. For this discrete model, we define the following radial distance and the time delay:

rn = r(xn, yn), (2.53)

and

tn = tr(xn, yn). (2.54)

In this model, center of the target region is at (Xc, Yc), and the extent of this region is

x ∈ [Xc −X0, Xc +X0], (2.55a)

y ∈ [Yc − Y0, Yc + Y0], (2.55b)

where X0 and Y0 are the half-width of the target region in x and y domain, respectively.

2.3.2 Signal Model

Let p(t) be the transmitted radar pulse. The echoed signal at the slow-time u for continuous

reflectivity function given in f(x, y) is

s(t, u) =

∫
x

∫
y

f(x, y)p [t− tr(x, y)] dy dx. (2.56)

For the discrete model, plugging Equation (2.52) into the above Equation (2.56) yields

s(t, u) =
∑
n

σnp (t− tn) . (2.57)

In the subsequent discussion, we employ the discrete model in Equation (2.57) is assumed for

simplicity.

One can form a so-called real aperture radar image via the fast-time matched filtering as

follows:

sM (t, u) = s(t, u) ∗ p∗(−t)

=
∑
n

σnpsft

(
t− 2rn

c

)
. (2.58)

The cross-range resolution of the real aperture image is restricted to the antenna beam width,
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and the above equation is used only for displaying the synthetic aperture measurement.

2.3.3 Fourier Transform of the Received Signal

For matched filter reconstruction, it is required to derive the two-dimensional Fourier transform

of the SAR received signal of Equation (2.57) with respect to fast-time t and slow-time u. We

denote the fast-time frequency domain by ω and its wavenumber domain k = ω/c, respectively.

Also we express the Fourier transform of the transmitted pulse p(t) as P (ω).

The one-dimensional Fourier transform of the SAR echoed signal given in Equation (2.57) is

s(ω, u) = P (ω)
∑
n

σn exp(−j2krn). (2.59)

As mentioned in the discussion on the range reconstruction problem, the signal representation in

the above form can be commonly used for various waveforms. For FMCW and stepped frequency

waveform, we can assume the following signal spectrum:

P (ω) =

1 for ω ∈ [ωc − ω0, ωc + ω0],

0 otherwise.

(2.60)

Next we consider the Fourier transform of the Equation (2.59) with respect to slow-time u.

The method of stationary phase states that, ignoring the unimportant amplitude function, the

Fourier transform of the Equation (2.59) has the following form [1, 2]:

S(ω, ku) = F(u) [s(ω, u)]

= P (ω)
∑
n

σn exp
(
−j
√

4k2 − k2uxn − jkuyn

)
, (2.61)

where ku is the Fourier counterpart domain of the slow-time u. Then, the reconstruction algo-

rithm can be developed based on the Equation (2.61).

2.3.4 Reconstruction

Our objective is to recover the target function f(x, y) from the measured SAR signal defined

in Equation (2.56). For this purpose, we present the Fourier properties of the discrete target

function in Equation (2.52). The two-dimensional Fourier transform of Equation (2.52) with
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respect to the fast-time t and slow-time u is

F (kx, ky) =
∑
n

σn exp(−jkxxn − jkyyn), (2.62)

where (kx, ky) is the Fourier counterpart domain of the spatial variables (x, y), called spatial

frequencies. Comparing Equation (2.61) and the above Equation (2.62), we can rewrite Equation

(2.62) by

S(ω, ku) = P (ω)F (kx, ky), (2.63)

with the spatial frequency mapping defined via

kx =
√
4k2 − k2u, (2.64a)

ky = ku. (2.64b)

The spatial frequency mapping defined in Equation (2.64) is so-called the Stolt mapping which

originates the analysis of seismic wave propagation [9]. The nonlinear mapping of kx domain in

Equation (2.64a) implies that we must interpolate the original unevenly spaced samples of kx so

that we have the evenly spaced samples of kx domain to perform DFT or IDFT algorithms for

the digital implementation.

Apart from the digital implementation issues, theoretical synthetic aperture reconstruction

or deconvolution based on Equation (2.63) can be achieved via

F (kx, ky) =
S(ω, ku)

P (ω)
, (2.65)

provided that the signal P (ω) ̸= 0 for all ω. However, since p(t) is a bandlimited signal, this

theoretical reconstruction is not a practical option. Therefore, we should use the following

matched-filter reconstruction:

F (kx, ky) = P ∗(ω)S(ω, ku)

= |P (ω)|2
∑
n

σn exp(−jkxxn − jkyyn). (2.66)

As mentioned earlier, the digital implementation of the above Equation (2.66) involves the one-

dimensional interpolation of unevenly spaced samples of kx.
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Figure 2.6: SAR spatial frequency interpolation (Stolt mapping).

2.3.5 Digital Implementation via Spatial Frequency Interpolation

So far, the reconstruction procedure for SAR measured signal is discussed. Next we deal with

the digital implementation of the reconstruction problem. The key to achieve this is the spatial

frequency mapping which is described in Equation (2.64) and interpolation of unevenly spaced

spatial frequency samples of kx. The idea of the spatial frequency interpolation called Stolt

interpolation is shown in Figure 2.6.

Suppose that we have M discrete synthetic aperture samples of the SAR signal s(ω, u) with

sample spacing ∆u in the slow-time u domain. From the relationship of DFT sample spacing

which is defined in Equation (2.10), we obtain M samples of S(ω, ku) in the slow-time Doppler

ku domain with the following sample spacing:

∆ku =
2π

M∆u
. (2.67)

From the spatial frequency mapping of Equation (2.64), we have the values of S(ω, ku) at

evenly spaced values of ku. However, range spatial frequency is a nonlinear mapping defined as

Equation (2.64a). Since DFT algorithm assumes evenly spaced samples, we have to interpolate
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from unevenly spaced values of kx at

kxmn =
√
4k2n − kum (2.68)

where

kn = n∆k (2.69)

are evenly spaced points in the fast-time wavenumber k domain and ∆k is the sample spacing

in this domain. Once the evenly spaced samples at the grid in (kx, ky) domain are obtained,

one can take the two-dimensional inverse DFT with respect to the spatial frequency variables

(kx, ky) to recover the two-dimensional reflectivity function f(x, y).

2.4 Experimental System

This section summarizes the data acquisition system used in this research. A four-port vec-

tor network analyzer (VNA) is employed for the anechoic chamber measurements. To form a

synthetic aperture, the antennas connected to the VNA is automatically scanned by a X-Y scan-

ner. Inverse SAR (ISAR) measurement data is acquired by rotating the targets deployed on a

turntable with the fixed radar antennas. For multiple angle SAR measurement, the targets are

located on a elevation table which can tilt the targets.

2.4.1 Radar Transmitter and Receiver

In this research, we use a fully polarimetric X-band SAR system based on a vector network

analyzer (VNA). The VNA can generate stepped frequency waveform described in Section 2.2.6.

The simplified structure of a two-port VNA is shown in Figure 2.7. The source generates a

sinusoid with a single frequency. As shown in this figure, we assume that the source is switched

to the port 1 circuit. A part of the source signal is memorized in a1, and the another part is

transfered to the port 1 and then, the wave is transmitted to the target by the transmitting

antenna. The reflected wave from the target arrives at the antenna connected to port 1 and port

2, and this received wave is respectively denoted by b1 and b2. Using these signals, the measured

quantities called the S-parameters for port 1 transmission are formed via

S11 = b1
a1

∣∣∣
a2=0

, S21 = b2
a1

∣∣∣
a2=0

. (2.70)
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Figure 2.7: Simplified structure of a 2-port vector network analyzer.

Also the S-parameters for port 2 transmission is similarly defined by letting a1 = 0. For po-

larimetric measurement, one has to change the combination of the transmitting and receiving

antenna polarization, and therefore, S21 parameter is preferable for polarimetric measurement.

Also S11 parameter would contain the stronger undesired antenna coupling than that of the S21

parameter. Throughout the thesis, we employ S21 parameter as the stepped frequency received

signal, that is,

sr(ω) = S21. (2.71)

2.4.2 System Delay Compensation

In actual measurements, the transmitted and received signal experiences the certain delay due

to the RF cable, amplifier, internal circuits of the receiver, and so on. For precise SAR image

reconstruction, it is essential to remove these effect. The situation in which the system delay

exists is depicted in Figure 2.8.

In this system model, the transmitter and receiver delay lengths are denoted by Xt
d and Xr

d ,

respectively. For the system delay compensation, one has to deploy a point-like targets such as

conducting sphere or small trihedral reflector at known range Xk. The delayed version of the

transmitted waveform is

pd(t) = p

(
t− Xt

d

c

)
, (2.72)
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Figure 2.8: System delay model.

and the received signal becomes

sd(t) = σK · pd
(
t− 2Xk +Xr

d

c

)
= σK · p

(
t− 2Xk +Xt

d +Xr
d

c

)
. (2.73)

The Fourier transform of the above delayed signal model with respect to the fast-time t is

Sd(ω) = σKP (ω) exp

(
−jωXd

c

)
exp

(
−jω 2Xk

c

)
, (2.74)

where Xd is the total system delay defined by

Xd = Xt
d +Xr

d . (2.75)

Once the total system delay length Xd is estimated or the user has a priori knowledge of the

length, the delay can be removed in the fast-time frequency domain as follows:

S(ω) = Sd(ω) exp

(
jω
Xd

c

)
. (2.76)

Because we assume that the point-like calibration target is deployed in the radar front-end at

known range Xk, one can readily estimate the total system delay length Xd by comparing the

fast-time reconstruction of Equation (2.74) and the known range Xk. The peak position of the
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Figure 2.9: Range reconstruction via IFFT for a conducting sphere in hh-polarization and esti-
mated total system delay length Xd.

reconstructed target function from Equation (2.74), denoted Xp, occurs at

Xp = Xk +Xd, (2.77)

where both Xp and Xk are known constant, and the total system delay Xd is immediately derived

from the above Equation (2.77). In the remaining discussion in this thesis, we assume that the

system delay is properly compensated via the above procedure.

2.4.3 Ground Range Projection

The image obtained by a single-path linear SAR system is a slant plane image rather than a

ground plane image. Even so in certain applications, it is convenient to convert the slant plane

image into the ground plane image by projecting the slant plane pixels onto the ground plane
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Figure 2.10: Ground range projection geometry (X-Y scanner measurement).
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Figure 2.11: Ground range projection geometry (elevation table measurement).

using the geometric relationship between the radar and ground.

Figure 2.10 is the ground range projection geometry for the linear SAR observation using X-Y

antenna scanner. We denote the fixed antenna altitude by Zc. For this situation, the mapping

of the slant range location x to the ground range position x′ is defined via

xi =
√
x

′2
i + Z2

c . (2.78)

The corresponding ground range pixel xi is obtained via one-dimensional interpolation.

Figure 2.11 shows the ground range projection geometry for the forest model using the ele-

vation table to vary an incidence angle. In this case, the antenna location in the ground range
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Figure 2.12: Target geometry (forest model).

direction vary with the rotation of the elevation table. Thus, the origin of the ground range is

set to the center of the ground plate. The mapping is defined via

xi =
√
R2

c + x2g + 2Rcxg sin θi, (2.79)

and this pixel is obtained by one-dimensional interpolation.

2.5 Measured Data

This section provides the measured SAR and inverse SAR (ISAR) data which is referred through-

out the thesis. The detailed analysis for the measured and reconstructed SAR images are dis-

cussed in the later chapters.

2.5.1 Forest Model

The forest model is composed of a cloud of wooden cylinders which stands vertically on a flat

wooden plate. The target geometry is depicted in Figure 2.12. The purpose of this model is to

emulate the scattering from a simple forest of which the foliage can be ignored. Such a situation

is expected to occur when one observes Boreal forest at L-band or a longer wavelength. The

notable feature of this model is that the wooden test pieces are put in water before the overall

observation, and the measurement is made at different moisture conditions. The test pieces are
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Table 2.1: Measurement parameter (forest model).

Center frequency [GHz] 10
Bandwidth [GHz] 2
Synthetic aperture length [m] 2
Trunk radius [cm] 1
Trunk length [cm] 30
Trunk density [m−2] 56
Trunk orientation Vertical
Moisture condition 9 conditions
Polarization hh, hv, vh, vv

packed with plastic film to prevent the inside water from evaporating during one sequence of

measurements. In addition, the trunk distribution density is changed to investigate the effects

of forest biomass. For multiple angle observation, the test pieces are installed on the elevation

table, and SAR measurements is done at each incidence angle.

Measurement Parameter

The measurement parameters of the forest model is listed in Table 2.1. This forest model is

used to investigate the variation of moisture content of forested terrain. For this purpose, we

measured the forest model target in 9 different moisture conditions with the fixed trunk density.

Figure 2.13 shows the measured gravimetric moisture content for the ground plate and wooden

cylinders at each moisture condition. Unfortunately, the deviation of gravimetric moisture of the

ground plate is large and we cannot determine the specific moisture content for each condition.

Instead of using the gravimetric moisture, we use the number from 1 to 9, called Wet-number, to

indicate each moisture condition. For example, Wet-9 means the most wettest condition which

is right after removing the plates from water, whereas Wet-1 indicates the most driest condition.

Reconstructed SAR Image

A reconstructed ground range SAR image of the forest model is shown in Figure 2.14. The wet

condition is Wet-8 and the incidence angle is θi = 45◦. In the figure, the scattering from the

distributed trunks are identified by the boxes.

2.5.2 Building Model

The building model is constructed from concrete blocks as shown in Figure 2.15 (a), and the de-

tails of these blocks are depicted in Figure 2.15 (b). The model is used to imitate the observation
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Figure 2.13: Measured gravimetric moisture contents.

of urban area. Some of the blocks are oriented with respect to the horizontal axis. The numbered

blocks are stack of concrete cubes and each number indicates the number of the stacked cubes

as shown in Figure 2.15 (b). For this model, both linear SAR and circular SAR measurements

are made.

Measurement Parameter

The sets of measurement parameters for the building model is listed in Table 2.2 and 2.3. In the

measurement using the parameters in Table 2.2, the radar altitude measured from the ground

concrete plate is varied from 0.68 m to 1.7 m with 3 cm step. The model is used for the

polarimetric and tomographic reconstruction given in Chapter 5.

Reconstructed SAR Image

A sample reconstructed linear SAR image of the building model is shown in Figure 2.16. The

scattering from the ground plate edge is clearly imaged, and the block wall facing toward the
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Table 2.2: Measurement parameter (building model, linear SAR).

Center frequency [GHz] 10
Bandwidth [GHz] 2
Synthetic aperture length [m] 2
Radar altitude [m] 0.68–1.7
Altitude step [cm] 3
Polarization hh, hv, vh, vv

antenna is also appeared in this image. However, the oriented or shadowed blocks are hardly seen

in this image. The oriented blocks can be imaged using CSAR measurement described in Chapter

6, and the discrimination of the ground plate edge and blocks is possible via Tomographic SAR

in Chapter 5.

2.6 Summary of This Chapter

This chapter described the basics of SAR image formation algorithms. Using the wavefront

reconstruction theory, the high-resolution images can be reconstructed from the wide-bandwidth

SAR measurements. The algorithm can be applied for the different radar waveforms, that is,
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Table 2.3: Measurement parameter (building model, CSAR).

Center frequency [GHz] 10
Bandwidth [GHz] 2
Synthetic aperture length [deg.] 360
Radar altitude [m] 0.68–1.7
Altitude step [cm] 3
Radius of trajectory Rg [m] 2.9
Depression angle θz [deg.] 30
Polarization hh, hv, vh, vv

pulsed, FMCW, and stepped frequency radar signal.

We also explained the stepped frequency measurement system which is able to acquire fully

polarimetric SAR or ISAR data. For image reconstruction from the measured data, the system

delay compensation is necessary and the method to do this is presented. The collected data and

reconstructed SAR images are presented for the discussion in the subsequent chapters.
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Chapter 3

Polarimetric SAR

Introduction

The previous Chapter 2 described how the high-resolution SAR image is formed. Now, we

can easily extend our discussion to the fully polarimetric case. The SAR system which utilizes

the polarized wave is referred to as polarimetric SAR (PolSAR). The use of polarization of

electromagnetic wave for the analysis of radar images aids the understanding of the observing

scene. In this chapter, we present a brief review of radar polarimetry and describes several

polarimetric target decomposition schemes.

The polarimetric radar backscatter from the earth terrain is a mixture of several scattering

mechanisms such as surface scattering, double-bounce scattering, volume scattering, and the

combination of these scattering mechanisms. The objective of the polarimetric target decom-

position is to decompose such a complicated scattering phenomena into some simple scattering

mechanisms using the information of the transmitted and received polarization states.

Until today, a number of polarimetric decomposition algorithms have been proposed and

applied to the PolSAR images acquired by a spaceborne or airborne radar. One commonly used

decomposition scheme is H-Alpha-Anisotropy decomposition developed by Cloude and Pottier

[10], which is based on the eigenvalues of a polarimetric coherency matrix described later. The

other method is called model-based decomposition that is based on physical scattering models

[10, 5].

However, the validity of the decomposition algorithms are still subjected to investigation,

because relating the decomposed results and real physical quantities such as soil moisture or forest

biomass is difficult. In addition, the decomposed result using each decomposition algorithm could

37
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be significantly different from each other, which complicates the understanding of the observing

scene. Therefore, to aid the interpretation of the decomposed results, it could be convenient

that we present the comparison of these decomposition algorithms. The aim of this section is to

provide the reader with the qualitative comparison of the model-based decomposition algorithms

using the measured data of the controlled laboratory experiments given in Chapter 2.

Outline

The outline of this chapter is as follows. Section 3.1 defines the observation scenario of PolSAR

measurement considered in this chapter. In Section 3.2, the fundamental quantity to represent

polarimetric radar data called the Sinclair scattering matrix and relationship between the recon-

structed SAR images and the scattering matrix is given. Also we define several vector and matrix

notations of polarimetric data for further discussion. Based on these polarimetric quantities, we

present model-based polarimetirc decomposition algorithms in Section 3.3. Then, Section 3.4

shows the experimental results using the PolSAR images given in Chapter 2. Finally, Section

3.5 summarizes the discussion in this chapter.

3.1 Observation Scenario

The observation scenario of PolSAR is quite similar to those which is depicted in Figure 2.1 of

Chapter 2 except for utilization of the four combination of transmitting and receiving polariza-

tion channels. The radar carrying platform travels along a straight line along y direction. As

mentioned in Chapter 2, the three-dimensional reflectivity function in (x′, y′, z′) is projected into

the two-dimensional (x, y) image plane.

3.1.1 Signal Model

We denote the transmitted and received polarization state by α and β, respectively. The α-

polarized transmitted pulse at a slow-time location u is represented by pα(t, u), where t is the

fast-time domain. For the lexicographic basis, the polarization states α and β are defined as α, β ∈

h, v, where h represents horizontal polarization channel while v is vertically polarized channel.

Using this notation, the polarimetric target reflectivity function is represented as fβα(x, y). For
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Figure 3.1: SAR observation scenario.

a discrete model, this function can be defined via

fβα(x, y) =
∑
n

σβα
n δ(x− xn)δ(y − yn), (3.1)

where σβα
n is the reflectivity for the nth point target when a α-polarized wave arrives at this

target and then the target scattered back a β-polarized wave. Using this model, polarimetric
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echoed signal model can be represented by

sβα(t, u) =
∑
n

σβα
n pα(t− tn), (3.2)

where tn is the round-trip delay for the nth point target defined in Equation (2.54).

3.1.2 Reconstruction

The objective of the reconstruction is to recover the polarimetric reflectivity function fβα(x, y)

or σβα
n from Equation (3.2). The reconstruction of the polarimetric received signal in Equation

(3.2) is exactly same as the procedure described in Chapter 2. For convenience of the subsequent

discussion, we denote target reflectivity at a pixel location identified by (xi, yj) as fβα(xi, yj).

Then, now we have the SAR images for each combination of the polarization channels, that is,

hh, hv, vh, and vv for the lexicographic basis case. These polarimetric reflectivity functions are

the basis of the development of polarimetric decomposition algorithms.

3.2 Polarimetric Vectors and Matrices

In polarimetric radar image analysis, the most basic quantity can be described as the 4×4 Sinclair

scattering matrix. Using the notational conventions defined in Section 3.1, the polarimetric image

pixel fβα(xi, yj) is linked with the scattering matrix via

S(h,v) =

Shh(xi, yj) Shv(xi, yj)

Svh(xi, yj) Svv(xi, yj)


=

fhh(xi, yj) fhv(xi, yj)

fvh(xi, yj) fvv(xi, yj)

 . (3.3)

For notational simplicity, we arbitrarily omit the image pixel index (xi, yj) in the following

discussion.

If we assume the monostatic configuration (e.g. the transmitter and receiver is located at the

same position), the cross-polarized channels are equivalent to each other, that is,

Shv = Svh. (3.4)

In realistic SAR systems, Equation (3.4) might not be satisfied since the transmitting and receiv-
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ing antenna is located at slightly different positions. In such a case, one can utilize the following

symmetrized scattering matrix S′
(h,v):

S′
(h,v) =

1

2

[
S(h,v) + ST

(h,v)

]
, (3.5)

where [·]T represents the vector or matrix transpose operation. It is reported that the above

symmetrization could achieve 3 dB improvement of the signal-to-noise ratio (SNR) in the cross-

polarized channel [11]. This is due to the fact that the noise component in the cross-polarized

channels are uncorrelated and the above summation suppress the noise component, while the

cross-polarized signals are correlated each other and the above averaging does not weaken the

signal component. Throughout this thesis, we assume that the monostatic assumption defined

in (3.4) is satisfied or the measured matrix is symmetrized via Equation (3.5), and we simply

write the symmetrized matrix S′
(h,v) as S(h,v).

Then, the scattering matrix can be written as

S(h,v) =

Shh Shv

Shv Svv

 . (3.6)

In addition, the following vectorized notation is convenient for further discussion.

kL =
[
Shh

√
2Shv Svv

]T
. (3.7)

We refer to the above vector as scattering vector. Using the scattering vector, we define the

averaged covariance matrix as

⟨C(h,v)⟩ =
1

Np

∑
i,j

kLk
†
L

=


⟨ShhS

∗
hh⟩

√
2⟨ShhS

∗
hv⟩ ⟨ShhS

∗
vv⟩

√
2⟨ShhS

∗
hh⟩ 2⟨ShhS

∗
hv⟩

√
2⟨ShhS

∗
vv⟩

⟨SvvS
∗
hh⟩

√
2⟨SvvS

∗
hv⟩ ⟨SvvS

∗
vv⟩

 , (3.8)

where ⟨·⟩ represents ensemble average. We also define the following Pauli basis matrices:

σP
0 =

1√
2

1 0

0 1

 , σP
1 =

1√
2

1 0

0 −1

 , σP
2 =

1√
2

0 1

1 0

 . (3.9)
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Using the above basis, the scattering matrix is represented by the following Pauli scattering

vector (also known as the coherency vector):

kP =
[
Tr
{
S(h,v)σ

P
0

}
Tr
{
S(h,v)σ

P
1

}
Tr
{
S(h,v)σ

P
2

}]T
=

1√
2

[
Shh + Svv Shh − Svv 2Shv

]T
, (3.10)

where Tr{·} represents the trace of a matrix. Then, we define the averaged coherency matrix via

⟨T (h,v)⟩ =
1

Np

∑
i,j

kPk
†
P

=


⟨|Shh + Svv|2⟩ ⟨(Shh + Svv) (Shh − Svv)

∗⟩ ⟨2S∗
hv(Shh + Svv)⟩

⟨(Shh − Svv) (Shh + Svv)
∗⟩ ⟨|Shh − Svv|2⟩ ⟨2S∗

hv(Shh − Svv)⟩

⟨2Shv(Shh + Svv)
∗⟩ ⟨2Shv(Shh − Svv)

∗⟩ ⟨4 |Shv|2⟩

 .
(3.11)

Theoretically, the above covariance matrix and the coherency matrix contain same informa-

tion since the polarization vector and the Pauli scattering vector defined in Equation (3.7) and

(3.10) is related by the unitary transformation, that is,

kP = UPkL, (3.12)

where UP is the unitary transformation matrix defined by

UP =
1√
2


1 0 1

1 0 −1

0
√
2 0

 . (3.13)

However, from a signal processing point of view, the covariance matrix defined in Equation (3.8)

might be more preferable due to the property of additive noise. Because the additive noise of two

different polarization channels can be considered to be incoherent, the additive noise component

only remains in the diagonal terms of the covariance matrix, while the noise in coherency matrix

may scatter around all the components of the coherency matrix.

Let us assume that the measured (noisy) scattering vector is modeled by

k′
L = kL + nL, (3.14)
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where nL represents the additive noise for each polarization channel. The covariance matrix for

the above measured scattering vector is

⟨C ′
(h,v)⟩ = ⟨k′

Lk
′†
L⟩

= C(h,v) +CN , (3.15)

where CN is the noise covariance matrix defined by

CN = ⟨nLn
†
L⟩. (3.16)

Suppose that the additive noise is the white Gaussian noise of which the average is zero and the

deviation is σ2, the measured covariance matrix in Equation (3.15) becomes

⟨C ′
(h,v)⟩ = C(h,v) + σ2I(3×3), (3.17)

where I(M×N) represents M ×N unit matrix.

Therefore, the noise in the off-diagonal components of the covariance matrix is suppressed

by the ensemble average. This is not true for the components of the coherency matrix which

contains a coherent summation of the element of scattering matrix. In this thesis, we employ

the covariance matrix for ensemble averaging operation. In the case of requiring the coherency

matrix, we arbitrarily convert the averaged covariance matrix into the coherency matrix form

using the unitary transformation.

3.2.1 Pauli Decomposition

The Pauli scattering vector in Equation (3.10) can be viewed as a simple decomposition of the

scattering matrix, since the first component of the Pauli vector Shh + Svv enhances the single

or odd-bounce scattering mechanism, while the second component Shh − Svv intensifies the

double- or even-bounce scattering mechanism. The third component 2Shv can be interpreted as

an indicator of target randomness, and thus the volume scattering such as the scattering from

vegetated terrain would appears in this component.

Under these assumptions, the simplest polarimetric decomposition, referred to as the Pauli

decomposition, is done by just displaying the components of the Pauli scattering vector which is
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Right-handed rotation

Left-handed rotation

(a) Sense of rotation. (b) Elliptic parameter.

Figure 3.2: General elliptic polarization geometry.

given in Equation (3.10) as follows:

fs =
1

2
|Shh + Svv|2, (3.18a)

fd =
1

2
|Shh − Svv|2, (3.18b)

fv = 2|Shv|2, (3.18c)

where fs, fd, and fv represent the surface (odd-bounce) scattering component, double-bounce

(even-bounce) component, and volume scattering component.

3.2.2 Polarization Basis Transformation

Once polarimetric measurements in (h, v) polarization basis is obtained, one can transform the

scattering matrix into the scattering matrix represented in an arbitrary polarization basis (a, b).

Generally the transformed basis (a, b) represents an elliptic polarized wave as shown in Figure

3.2. In this figure, the parameter τ represents the tilt angle of the polarization ellipse, while ε

describes the ellipticity. As described in [12], the polarization basis transformation is achieved



3.3. MODEL BASED POLARIMETRIC DECOMPOSITIONS 45

bySaa Sab

Sba Sbb

 =
1

1 + ρ1ρ∗1

ejρ2 0

0 e−jρ2

 1 ρ1

−ρ∗1 1

Shh Shv

Svh Svv

 1 −ρ∗1
ρ1 1

ejρ2 0

0 e−jρ2

 ,
(3.19)

where ρ1 and ρ2 are respectively defined as

ρ1 =
tan τ + j tan ε

1− j tan τ tan ε
, (3.20a)

ρ2 = tan−1(tan τ tan ε). (3.20b)

For the special case of circular (l, r) polarization basis, Equation (3.19) takes the following

form by letting ρ1 = j and ρ2 = 0:

S(l,r) =

Sll Slr

Srl Srr

 =
1

2

1 j

j 1

Shh Shv

Svh Svv

1 j

j 1

 . (3.21)

Also we can consider γ-rotated linear polarization basis (h′, v′) by letting ρ1 = tan γ and ρ2 = 0

as follows:

S(h′,v′) =

Sh′h′ Sh′v′

Sv′h′ Sv′v′

 =

cos γ − sin γ

sin γ cos γ

Shh Shv

Svh Svv

 cos γ sin γ

− sin γ cos γ

 . (3.22)

As it is discussed in Chapter 6, the polarization basis of circular SAR (CSAR) measurement

is changed while the radar travels along a circular flight path. The above mentioned polarization

basis transformation can be used to incorporate this effect into the CSAR image reconstruction

algorithm [8].

3.3 Model Based Polarimetric Decompositions

So far, the fundamental quantities for PolSAR image analysis are established. Now we present

the polarimetric decomposition algorithms based on the several polarimetric matrices given in

Section 3.2. Although there are many polarimetric decomposition schemes, namely, physical

or mathematical based decompositions, coherent or incoherent, and so forth, however, this sec-

tion and remaining discussion focus on the physical model based polarimetric decomposition

algorithms.
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3.3.1 Freeman-Durden Decomposition

Freeman and Durden [5] proposed the following decomposition of the covariance matrix defined

as Equation (3.8):

⟨C(h,v)⟩ = fsCs + fdCd + fvCv, (3.23)

where fs, fd, and fv represent the surface, double-bounce, and volume scattering component,

respectively. We refer this decomposition model as Freeman-Durden decomposition (FDD). The

decomposed covariance matrices in Equation (3.23) are

Cs =


|βs|2 0 βs

0 0 0

β∗
s 0 1

 , Cd =


|αd|2 0 αd

0 0 0

α∗
d 0 1

 , Cv =


1 0 1/3

0 2/3 0

1/3 0 1

 , (3.24)

where βs and αd are complex valued constants. The matrix Cv in the above equation is the

model for randomly oriented dipole which represents thin vegetation structure.

From Equation (3.23), the following set of four equations which has five unknowns can be

derived:

⟨|Shh|2⟩ = fs|βs|2 + fd|αd|2 + fv, (3.25a)

⟨|Svv|2⟩ = fs + fd + fv, (3.25b)

⟨|Shv|2⟩ = fv/3, (3.25c)

⟨|ShhS
∗
vv|⟩ = fsβs + fdαd + fv/3. (3.25d)

To solve the above set of equations, Freeman and Durden [5] suggested that the volume scattering

term fv is determined by Equation (3.25c) before solving for the other terms. Once the volume

scattering contribution is determined, one can make the following subtraction:

⟨C ′
(h,v)⟩ = ⟨C(h,v)⟩ −


3⟨|Shv|2⟩ 0 ⟨|Shv|2⟩

0 2⟨|Shv|2⟩ 0

⟨|Shv|2⟩ 0 3⟨|Shv|2⟩

 = fsCs + fdCd (3.26)

Then, the Equation (3.25) becomes the following set of three remaining equations which have
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four unknowns, that is,

⟨|Shh|2⟩′ = fs|βs|2 + fd|αd|2, (3.27a)

⟨|Svv|2⟩′ = fs + fd, (3.27b)

⟨|ShhS
∗
vv|⟩′ = fsβs + fdαd, (3.27c)

where [·]′ means the quantity after the subtraction of the volume scattering component. To

determine the remaining unknowns, the following assumption is made. If the residual co-polarized

phase is closer to zero than π, we assume that the surface scattering component is dominant, and

the constant αd is fixed to αd = −1 (double-bounce scattering). Otherwise, we assume that the

double-bounce component is dominant and the constant βs is set to βs = 1 (surface scattering).

Then, we can solve the other components from Equation (3.27)

3.3.2 Yamaguchi Decomposition

As an extension of FDD, Yamaguchi et al. added the fourth component to Equation (3.23). The

model can be described as

⟨C(h,v)⟩ = fsCs + fdCd + fvCv + fcCc, (3.28)

where the additional matrix Cc takes one of the following two forms:

CR
c =

1

4


1 j

√
2 −1

−j
√
2 2 j

√
2

−1 −j
√
2 1

 , CL
c =

1

4


1 −j

√
2 −1

j
√
2 2 −j

√
2

−1 j
√
2 1

 . (3.29)

Both of these two matrices states that the cross-products ⟨ShhS
∗
vv⟩ and ⟨ShvS

∗
vv⟩ are purely imag-

inary numbers. Since this might not true for real observed images, Yamaguchi et al. suggested

to use the following helix scattering model:

fc
4

=
1

2
|Im {⟨ShhS

∗
vv⟩+ ⟨ShvS

∗
vv⟩}| . (3.30)
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The helix scattering model Cc in Equation (3.28) is determined via

Cc =

CR
c for Im {⟨ShhS

∗
vv⟩+ ⟨ShvS

∗
vv⟩} > 0,

CL
c otherwise.

(3.31)

If we assume that the volume component in Equation (3.28) is modeled by uniformly oriented

wires, we find from Equation (3.28) that the following five equations with six unknowns:

⟨|Shh|2⟩ = fs|βs|2 + fd|αd|2 +
3

8
fv +

1

4
fc, (3.32a)

⟨|Shv|2⟩ =
1

8
fv +

1

4
fc, (3.32b)

⟨|Svv|2⟩ = fs + fd +
3

8
fv +

1

4
fc, (3.32c)

⟨ShhS
∗
vv⟩ = fsβs + fdαd +

1

8
fv −

1

4
fc, (3.32d)

1

2
|Im {⟨ShhS

∗
hv⟩+ ⟨ShvS

∗
vv⟩}| =

fc
4
. (3.32e)

From the above Equation (3.32e), we find

fc = 2 |Im {⟨ShhS
∗
vv⟩+ ⟨ShvS

∗
vv⟩}| . (3.33)

Also from Equation (3.32b), we can write the volume scattering component fv

fv = 8

(
⟨|Shv|2⟩ −

fc
4

)
(3.34)

Then, one can subtract the helix scattering and volume scattering components from Equation

(3.28) as it is similarly done in the Freeman-Durden decomposition which is described in Section

3.3.1 or [5], that is,

fsCs + fdCd = ⟨C(h,v)⟩ −
fv
8


3 0 1

0 2 0

1 0 3

− fc
4


1 ±j

√
2 −1

∓j
√
2 2 ±j

√
2

−1 ∓j
√
2 1

 . (3.35)

Moreover Yamaguchi et al. proposed the following covariance matrices for horizontally or



3.3. MODEL BASED POLARIMETRIC DECOMPOSITIONS 49

vertically oriented wire distribution [6]:

CH
v =

1

15


8 0 2

0 4 0

2 0 3

 , CV
v =

1

15


3 0 2

0 4 0

2 0 8

 , (3.36)

where CH
v and CV

v are the model for vertically and horizontally distributed wire, respectively.

These matrices are derived by assuming the cosine-squared distribution of wire orientation angle

around either vertical or horizontal directions.

For the horizontal case, we have the following set of equations from Equation (3.28):

⟨|Shh|2⟩ = fs|βs|2 + fd|αd|2 +
8

15
fv +

1

4
fc, (3.37a)

⟨|Shv|2⟩ =
2

15
fv +

1

4
fc, (3.37b)

⟨|Svv|2⟩ = fs + fd +
3

8
fv +

1

4
fc, (3.37c)

⟨ShhS
∗
vv⟩ = fsβs + fdαd +

3

15
fv −

1

4
fc, (3.37d)

1

2
|Im {⟨ShhS

∗
hv⟩+ ⟨ShvS

∗
vv⟩}| =

fc
4
. (3.37e)

The helix scattering component fc is determined via Equation (3.33), and the corresponding

volume scattering component fv is

fv =
15

2

(
⟨|Shv|2⟩ −

fc
4

)
. (3.38)

Then, the surface and double-bounce scattering component is derived from the Freeman-Durden

approach [5] after making the following subtraction:

fsCs + fdCd = ⟨C(h,v)⟩ −
fv
15


8 0 2

0 4 0

2 0 3

− fc
4


1 ±j

√
2 −1

∓j
√
2 2 ±j

√
2

−1 ∓j
√
2 1

 . (3.39)

Similarly, for the case of vertical oriented model CV
v , the helix scattering component fc is

determined by Equation (3.33), and the corresponding volume scattering component fv is derived

from Equation (3.38). The surface and double-bounce scattering components are determined
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after making the following subtraction:

fsCs + fdCd = ⟨C(h,v)⟩ −
fv
15


3 0 2

0 4 0

2 0 8

− fc
4


1 ±j

√
2 −1

∓j
√
2 2 ±j

√
2

−1 ∓j
√
2 1

 . (3.40)

To determine which model to employ, i.e. uniform, horizontal, or vertical wire distribution,

Yamaguchi et al. suggested to use the ratio of the vv to hh backscattering coefficients. The

following steps for Yamaguchi decomposition algorithm describes the criterion for the selection

of volume scattering model.

Step 1. Free from the selection of volume scattering model, estimate the helix scattering com-

ponent from Equation (3.33).

Step 2. We denote the ratio of hh to vv backscattering coefficient as HH/VV. The following

criterion is used to estimate the volume scattering component.

Case 1. For (-2 dB < VV/HH < +2 dB), use Equation (3.34)

Case 2. For (-2 dB > VV/HH > +2 dB), use Equation (3.38)

Step 3. Now the helix and volume scattering component is fixed, and the following subtraction

can be made.

Case 1. For (-2 dB < VV/HH < +2 dB), use Equation (3.35)

Case 2. For (-2 dB < VV/HH), use Equation (3.39)

Case 3. For (VV/HH > +2 dB), use Equation (3.40)

Step 4. Determine the surface and double-bounce scattering components from Equation (3.27)

and the procedure in Freeman-Durden decomposition [5].

3.3.3 Adaptive Model-Based Decomposition

The main idea of Yamaguchi decomposition is introducing the additional volume scattering

component which can be adaptively selected. However, the decomposition scheme only has the

finite number of the volume scattering models. To incorporate more accurate volume scattering

models, Arii et al. proposed the adaptive model-based decomposition (AMBD) [27]. In AMBD,

the volume scattering model is adaptively chosen from an infinite number of models represent

various types of vegetation. The detail of this algorithm is presented in [27].
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Figure 3.3: SAR image for each polarization channel (forest model).

3.4 Comparison of Decomposition Algorithms

So far, we have shown three types of model-based decomposition algorithms. The aim of this

section is comparing those decomposition schemes qualitatively by applying the algorithms to

the obtained SAR images which are summarized in the end of Chapter 2. The measured data of

the building model and the forest model is used for this purpose.

3.4.1 Building Model

The measured SAR data of the building model at the highest radar altitude of 1.7 m is employed

for our analysis. The pixel size of the ground range image is 1 cm × 1 cm, and the averaged

covariance matrices are calculated from 5× 5 adjacent pixels.

Figure 3.3 and 3.4 show the obtained SAR image and the Pauli decomposed image for the

building model. The building wall facing toward the radar LOS direction is clearly appeared

in the hh-polarized image while the cross-polarized image is much weaker than that of the co-

polarized image. By utilizing the Pauli decomposition, scattering from the ground plate edge

is shown as the Ps component, while the double-bounce scattering between the ground and

building walls are imaged as Pd component. Because the model structure is simple, the Pauli
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Figure 3.4: Pauli decomposition (forest model).
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Figure 3.5: Freeman-Durden decomposition (forest model).
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Figure 3.6: Yamaguchi decomposition (forest model).
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Figure 3.7: Adaptive model-based decomposition (forest model).
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Figure 3.8: SAR image for each polarization channel (forest model).

decomposition works well for this model.

Figure 3.5, 3.6, and 3.7 are the model-based polarimetric decomposition results, that is, the

Freeman-Durden decomposition, the Yamaguchi decomposition, and the adaptive model-based

decomposition. These images are similar to the Pauli decomposed image. Because the main

difference of these model-based decomposition algorithms is the choice of the volume scattering

component only slight difference can be observed in the building model.

3.4.2 Forest Model

Though multiple incidence angle SAR images in different moisture conditions are available, we

restrict our discussion to the analysis of a single incidence angle image. The discussion on how

the moisture condition of forest and the incidence angle affects to the PolSAR image is studied in

Chapter 4. The pixel size of the ground range image is 1 cm × 1 cm, and the averaged covariance

matrices are calculated from 5× 5 adjacent pixels.

Figure 3.8 and 3.9 are the reconstructed PolSAR image and the Pauli decomposed image,

respectively. As mentioned in Chapter 2, the scattering from this forest model is expected to be

dominated by the double-bounce scattering between the ground and trunk surfaces. However,
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Figure 3.9: Pauli decomposition (forest model).
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Figure 3.10: Freeman-Durden decomposition (forest model).



56 CHAPTER 3. POLARIMETRIC SAR

Ground range (xg) [m]

C
ro
ss

ra
n
g
e
(y

g
)
[m

]

−1 −0.5 0 0.5
−1

−0.5

0

0.5

 

 

Ps Pd

Pv

θi = 30◦

Yamaguchi M
ag

n
it

u
d
e 

[d
B

]

−60

−50

−40

−30

−20

−10

0

Figure 3.11: Yamaguchi decomposition (forest model).

Ground range (xg) [m]

C
ro
ss

ra
n
g
e
(y

g
)
[m

]

−1 −0.5 0 0.5
−1

−0.5

0

0.5

 

 

Ps Pd

Pv

θi = 30◦

AMBD M
ag

n
it

u
d
e 

[d
B

]

−60

−50

−40

−30

−20

−10

0

Figure 3.12: Adaptive model-based decomposition (forest model).
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the Ps and Pd component of the Pauli decomposition show the similar intensity, and thus we can

see that our assumption in the Pauli decomposition does not works well for the forested terrain

observation.

Figure 3.10, 3.11, and 3.12 are the model-based decomposition results, that is, the Freeman-

Durden decomposition, the Yamaguchi decomposition, and the adaptive model-based decompo-

sition, respectively. In FDD image, all the decomposed components have similar image intensity.

Comparing to the FDD image and Yamaguchi decomposed image, the volume scattering com-

ponent of the Yamaguchi decomposed image seems to be dominant, due to the introduction of

the additional volume scattering model. However, both of these results are unexpected since the

forest model consists of the simple orthogonal structures.

For AMBD image in Figure 3.12, volume scattering component is significantly suppressed and

the decomposed image is dominated by the surface and double-bounce scattering component.

This fact implies that the conventional FDD and Yamaguchi decomposition overestimate the

volume scattering component.

3.5 Summary of This Chapter

In this chapter, the basics of PolSAR image analysis is presented by introducing the several

polarimetric quantities for further analysis. The PolSAR is a simple extension of the single-

polarized SAR described in Chapter 2, and similar reconstruction algorithm can be used to form

the SAR image for each polarization channel. The Sinclair scattering matrix is defined for each

image pixel, and further polarimetric analysis is base on this quantity.

The fundamentals of polarimetric model-based decomposition algorithms are described, and

we compare the different decomposition algorithms qualitatively by applying these to the mea-

sured SAR images. By this comparison, AMBD shows the most preferable decomposition results

for the forest model, because the scattering from this forest model is expected to be dominated

by the double-bounce scattering from the ground and vertical trunks, and AMBD predicts that

the double-bounce component is dominant.





Chapter 4

Multiple Angle SAR

Introduction

This chapter presents the analysis of multiple angle SAR (MA-SAR) images. So far the basic

concepts of SAR image reconstruction and its polarimetric analysis is established. Though the

introduction of polarimetric concepts such as the model-based decomposition schemes tell us the

great details of the observing targets, we are still missing the important information, that is, the

angular dependence of the observing scene. For example, as shown in Section 3.4, model-based

decomposition of SAR image of a highly-directive target such as a man-made structure results

in a completely different image when the target is observed from different azimuthal angles.

Therefore, to deal with the diversity of the observing scene, we must investigate the effect of the

angular dependence. In this Chapter, we discuss on the incidence angle dependence of the SAR

images. By utilizing multiple angle angle SAR image acquired in an anechoic chamber, we show

that the SAR images of forested terrain highly depend on the incidence angle. Also we present

the effect of forest moisture condition to the multiple angle SAR image, and propose the index

to infer the moisture condition of forested terrain.

Outline

The discussion starts with the definition of the observation scenario of MA-SAR in Section 4.1.

In Section 4.2, we describe how incidence angle affects the scattered wave by the classical Fresnel

reflection and transmission coefficients. Then, Section 4.4 shows the incidence angle dependence

of forest observation, and we propose a simple index to estimate forest moisture condition.

59
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Figure 4.1: MA-SAR observation scenario.

4.1 Observation Scenario

The MA-SAR observation scenario is depicted in Figure 4.1. In MA-SAR measurement, we

can vary an incidence angle as well as an azimuthal angle to collect the backscattering of the

target from various angles. The image reconstruction is achieved by the algorithms presented

in Chapter 2, and polarimetric extension is also possible as shown in Chapter 3. Similar to

the previous chapter, we denote the reconstructed polarimetric SAR image at the pixel location

(xi, yj) by fβα(xi, yj), where α, β ∈ {h, v} represent the transmitted and received polarization
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Figure 4.2: Reflection and transmission of a plane wave incidence at a flat dielectric interface.

channels, respectively.

4.2 Effect of Incidence Angle

We present how radar incidence angle affects to the resultant SAR image using a simple dielectric

surface model as shown in Figure 4.2. A plane wave impinges a flat dielectric interface at an

incidence angle θi, and a part of this wave is reflected at the interface, while the another part

transmits the interface. We denote medium permittivity as ε1 and ε2, and permeability as µ1 and

µ2, respectively. We denote the magnitude of the incidence, reflected, and transmitted electric

vector by Ei, Er and Et.

4.2.1 Fresnel Coefficient

We assume that the dielectric medium is non-magnetic substance, that is, µ1 ≈ 1 and µ2 ≈ 1.

Classical electromagnetic theory states that, for the H-polarized case shown in Figure 4.2 (a),
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Figure 4.3: Illustration of Brewster angle effect.

the transmission and reflection coefficient are respectively expressed by

rH(θi; εr) =
Er

Ei
=

cos θi −
√
εr − sin2 θi

cos θi +
√
εr − sin2 θi

, (4.1a)

tH(θi; εr) =
Et

Ei
=

2 cos θi

cos θi +
√
εr − sin2 θi

, (4.1b)

where εr is the medium permittivity defined via

εr =
ε2
ε1
. (4.2)

Similarly, for the V-polarized case shown in Figure 4.2 (b) we have

rV (θi; εr) =
Er

Ei
=
εr cos θi −

√
εr − sin2 θi

εr cos θi +
√
εr − sin2 θi

, (4.3a)

tV (θi; εr) =
Et

Ei
=

2
√
εr cos θi

εr cos θi +
√
εr − sin2 θi

. (4.3b)

These coefficients are known as Fresnel coefficients and functions of the incidence angle θi and

the medium relative permittivity εr.
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4.2.2 Brewster Angle

The Fresnel reflection coefficient for V-polarize case defined in Equation (4.3a) has an important

characteristic. When an incidence angle satisfies the condition

tan θi =
√
εr, (4.4)

The V-polarized reflection coefficient Equation (4.3a) becomes zero; the incidence wave perfectly

transmits the interface, and no reflection can be observed at this angle. This angle is known as

Brewster angle or polarization angle, and we denote this angle as θB. Rigorously, the Brewster

angle θB exists provided that the medium relative permittivity εr is a pure real quantity. Oth-

erwise, the reflection coefficient drops off around the Brewster angle. If one has a knowledge of

the Brewster angle θB, one can readily invert the medium relative permittivity εr, though direct

measurement of Brewster angle using SAR system might be difficult. As it is discussed later,

estimating the dielectric constant is important for soil moisture estimation, because dielectric

constant of soil surfaces depends on its moisture content.

The schematic description of the Brewster angle is shown in Figure 4.3. In general, a V-

polarized incident wave is reflected and transmitted at the dielectric interface as depicted in

Figure 4.3 (a), and the intensity of the transmission Et and reflection Er can be described by the

Fresnel coefficients given in Equation (4.3). The reflected electric vector Er
V is the component

of the transmitted electric vector Et
V along the orthogonal line of reflected vector kr. However,

at the Brewster angle θB shown in 4.3 (b), the transmitted electric vector Et
V is parallel with

the reflected wave vector kr; the reflected electric vector Er
V has no orthogonal component to

the reflected wave vector kr, and therefore no reflection can be observed at the Brewster angle.

From the above discussion, the scattering of a dielectric object depends on the radar incidence

angle, especially the V-polarized case, even if the object has a simple structure such as flat surface

as shown in Figure 4.3. In other words, the V-polarized scattering conveys the information related

to the medium permittivity.

4.2.3 Brewster Angle for Double-Bonce Case

In the previous discussion, we have shown that the scattering of V-polarized incident wave

strongly depends on not only the medium permittivity but also the incidence angle. To extend

this idea to the monostatic radar case, we consider the two situations as shown in Figure 4.4. Both

of the cases have a pair of orthogonal surfaces, and an incidence wave strikes the bottom surface
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Figure 4.4: Geometry of double-bounce between ground surface and trunk surface.

at an incidence angle θi. Clearly, the scattering mechanism is dominated by the double-bounce

scattering caused between the ground surface and the another dielectric surface.

In Figure 4.4, a flat dielectric object stands on a flat conducting surface. In this case, the

backscattering coefficient for hh-polarized case σhh and vv-polarized case σvv can be described

as the Fresnel reflection coefficient defined in Equation (4.3), that is,

σhh = rH

(π
2
− θi

)
, (4.5a)

σvv = rV

(π
2
− θi

)
. (4.5b)

The only one Brewster angle for this case θtB exists and is expressed as

θtB =
π

2
− tan−1

√
εtr. (4.6)

Replacing the conducting ground surface as the dielectric surface shown in Figure 4.4, the

reflection can be described by the two Fresnel reflection coefficients as

σhh = rH (θi; εg) rH

(π
2
− θi; εt

)
, (4.7a)

σvv = rV (θi; εg) rV

(π
2
− θi; εt

)
. (4.7b)

In addition to the Brewster angle defined in Equation (4.6), one more Brewster angle for the

ground surface appears at

θgB = tan−1
√
εgr . (4.8)



4.2. EFFECT OF INCIDENCE ANGLE 65

Incidence angle [deg.]

M
ag

n
it

u
d
e 

[d
B

]

0 10 20 30 40 50 60 70 80 90

-60

-50

-40

-30

-20

-10

0

v-polarization

h-polarization

Brewster angle

(a) Magnitude.

Incidence angle [deg.]

P
h

as
e 

[d
eg

.]

0 10 20 30 40 50 60 70 80 90

-200

-150

-100

-50

0

50

100

150

200

v-polarization

h-polarization

Phase flipping zone

(b) Phase.

Figure 4.5: Fresnel reflection coefficient (conducting ground surface, εv = 4).
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Figure 4.6: Fresnel reflection coefficient (εg = 10, εv = 4).
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Figure 4.7: Fresnel reflection coefficient (εg = 3, εv = 2).

4.2.4 Numerical Example

A numerical example of the magnitude and phase of the double-bounce Fresnel reflection coeffi-

cient are respectively shown in Figure 4.5 (a) and (b) for the case of conducting ground surface.

Similarly, Figure 4.6 (a) and (b) show the case of dielectric ground surface. The dielectric con-

stants are set to εg = 10 and εv = 4.

In Figure 4.5 (a), we can recognize the sharp dips due to the Brewster angle effect in the

v-polarized magnitude while the h-polarized magnitude doest not vary significantly compared

to the v-polarization. Because the ground surface is considered to be a conducting surface, only

one dip at the Brewster angle for trunk surface can be observed. In addition, we can see that

the v-polarized phase in Figure 4.5 (b) flips at the Brewster angle.

Let us move on to the second case, that is, both ground and trunk surface are dielectric

surface. In this case, additional Brewster angle for the ground surface is appeared as shown in

Figure 4.6 (a). Also from 4.6 (b), one more phase flipping occurs at the second Brewster angle.

Because of this, the phase flipping zone is restricted between these two Brewster angles; when

phase flipping occurs, one can notice that the incidence angle is between two Brewster angles.

The another notable characteristic of the double-bounce Fresnel reflection coefficient is the
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ratio between h and v polarized coefficient. Figure 4.7 shows the double-bounce Fresnel reflection

coefficient when the dielectric constants are set to smaller compared to the previous examples.

The dielectric constants are εg = 3 and εv = 2 for this example, and comparing to Figure 4.6,

one can notice that the co-polarization ratio around 45◦ becomes larger as the decrease of the

dielectric constants. This fact implies that the co-polarization ratio is sensitive to the variation

of the dielectric constants, and we can use the ratio as an indicator of the permittivity of the

target which has an orthogonal structure.

4.3 Soil Moisture Effects of Forested Terrain

In Section 4.2, we have shown that the significance of the incidence angle and medium permit-

tivity. As mentioned in the previous discussion, the variation of moisture content corresponds

to the variation of permittivity. This section utilizes the concept of the double-bounce Fresnel

reflection coefficient to estimate soil moisture condition of forested terrain.

Soil moisture is one of the key parameters to characterize the global climate system in nu-

merous environmental studies, including hydrology, meteorology, and agriculture, since the flux

of water in soil plays an important role in the hydrological cycle. Several satellite missions are

being conducted or planned for the earth observation, some of which are specialized to provide

global hydrological information [14]–[16].

The difficulty of soil moisture retrieval using PolSAR is that the radar observables usually

do not have a straightforward interpretation. It is well-known that the radar backscatter is

affected not only by terrain moisture content, but also by other surface characteristics such

as roughness, correlation length, local topography or incidence angle, and so forth [17, 18].

In addition, the perturbation in the backscatter due to vegetation complicates the problem

exceedingly, as commonly reported that the sensitivity of the backscatter to soil moisture is

degraded by vegetation cover.

The retrieval of soil moisture from radar imagery usually relies on an empirical relationship

to convert the backscattering coefficient into volumetric soil moisture [21]–[23], and most of the

algorithms are at their best when monitoring bare soil surface moisture. However soil moisture

algorithms should be designed to compensate for the effects of vegetation cover as much as

possible, since approximately 31% of the total land surface of the earth is occupied by forests

[24], and the ratio reaches to more than 76% when taking other types of vegetation into account

[25, 26]. Although some algorithms to deal with this problem have been proposed, they are still
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subjected to investigation because the lack of sufficient quantitative validation.

To quantitatively examine how the moisture content affects the radar backscattering from

forests, both surface characteristics and vegetation cover should be considered simultaneously.

One effective approach is the utilization of microwave scattering models for vegetated terrain

[27]–[29], and appropriate experimental validation under well-controlled conditions. In general,

the scattering models can express arbitrary types and conditions of vegetated terrain without lim-

itation by introducing several kinds of input parameters as a forward model. However, with the

increase in the number of model inputs, model complexity also expands, and therefore deriving

physical interpretations from the computation result, a complex mixture of several backscat-

tering components, becomes a difficult task. Furthermore, experimental validation of such a

complicated model is usually out of control since natural terrain has many uncertainties of sur-

face conditions and vegetation structure, and indoor measurement has a number of practical

limitations for constructing an experimental model.

Hence, from the perspective of understanding how terrain physical parameters affect the

resultant backscattering, and to assist well-controlled experimental validation, it is essential

to have a microwave scattering model with moderate complexity by which it is sufficient to

describe the main contributors of vegetation backscattering. For this objective, we employ a

simplified Discrete Scatterer Model (DSM) in which vegetation is considered as an assemblage of

primitive scatterers [27], [28], which we expect the model to be convenient for both theoretical

and experimental consideration. From both the simplified DSM and a series of experiments, it

is shown that the co-polarization ratio can be an index to monitor the relative variation of forest

moisture content. Since relative soil moisture is of much interest for climate system modeling

[31], the co-polarization ratio can be an useful parameter to understand the global climate system

from SAR imagery.

4.3.1 Soil and Vegetation Permittivity Model

This section provides permittivity models for soil and vegetation components, which are (semi-)

empirically derived from various measurement data.

Permittivity Model for Soil

The permittivity model derived by Hallikainen et al. is summarized as follows. The relative

permittivity of soil which contains percent sand and clay content of Sc and Cc, respectively, is
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modeled by

εS = ε′s + jε′′s , (4.9)

where ε′s and ε′′s are the real and imaginary part of the soil relative permittivity, respectively.

These are determined via

ε′s = (a′0 + a′1Sc + a′2Cc) + (b′0 + b′1Sc + b′2Cc)ms + (c′0 + c′1Sc + c′2Cc)m
2
s, (4.10)

ε′′s = (a′′0 + a′′1Sc + a′′2Cc) + (b′′0 + b′′1Sc + b′′2Cc)ms + (c′′0 + c′′1Sc + c′′2Cc)m
2
s, (4.11)

where ms is the volumetric moisture, and the other constants are given by

a′0 = 2.862, a′1 = −0.012, a′2 = 0.001,

b′0 = 3.803, b′1 = 0.462, b′2 = −0.341,

c′0 = 119.006, c′1 = −0.500, c′2 = −0.633,

(4.12)

and

a′′0 = 0.356, a′′1 = −0.003, a′′2 = −0.008,

b′′0 = 5.507, b′′1 = 0.044, b′′2 = −0.002,

c′′0 = 17.753, c′′1 = −0.313, c′′2 = 0.206.

(4.13)

Permittivity Model for Vegetation

Ulaby et al. developed a permittivity model for vegetation components described below. The

vegetation relative permittivity εV can be modeled by

εv = εR + vf

(
4.9 +

75.0

1 + jf/18
− j

18σv
f

)
+ vb

(
2.9 +

55.0

1 +
√
jf/0.18

)
, (4.14)

f =
ω

2π
· 10−9, (4.15)

Ss = 8.5, (4.16)

σv = 0.16Ss − 0.0013S2
s , (4.17)

εR = 1.7 + 3.2mv + 6.5M2
V , (4.18)

vf = (0.82mv + 0.166)mv, (4.19)

vb =
31.4m2

v

1 + 59.5m2
v

, (4.20)
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Figure 4.8: Calculated relative permittivity for vegetation.

where f is the frequency in gigahertz, and Ss is the percent salinity of the vegetation. The

volumetric moisture is represented by mv.

Numerical Example

The numerical example of the vegetation permittivity model is shown in Figure 4.8 in terms of

volumetric moisture content. We can see that the relative permittivity increases as an increase

of volumetric moisture content. Thus, once the relative permittivity of the target is obtained,

one can estimate the moisture content from the relative permittivity.

4.4 Modeling of Forested Terrain

Many microwave scattering models [27]–[29] for forested terrain have been developed to better

understand microwave interaction within forests, and to assist forest parameter retrieval from

SAR imagery. A vast majority of them are dedicated to precisely simulate forest backscattering

behavior, requiring many input parameters for which it is difficult to determine suitable values.

However, for physical parameter inversion from SAR imagery, a microwave model should be

designed so that the number of inputs is limited as little but sufficient to represent the main
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Figure 4.9: Generic DSM geometry.

scattering contributors of forested terrain as possible.

For this reason, we employ a Discrete Scatterer Model (DSM) [27] which is originally proposed

by Durden et al. [28]. In this model, discrete canonical scatterers such as discs, cylinders, and

needles can be used to represent vegetation components. In this study, further simplification is

necessary to better understand an individual scattering behavior. The detailed description of the

DSM used in this chapter is given in [27], and this section provides the brief explanation only.

As shown in Figure 4.9, the generic DSM is composed of a stack of layers containing canopy,

trunk, and ground, in which the vegetation components are represented as a cloud of dielectric

inclined cylinders so that its angular distribution obeys a prescribed probability density function

(pdf). The ground layer is expressed as a rough dielectric surface with roughness parameters of

root-mean-square (rms) height and correlation length. The model takes first-order scattering plus

ground-trunk interaction into account, and other higher-order multiple scattering components

are ignored by assuming that the vegetation components are sparsely distributed, and an incident

wave is well attenuated during the multiple scattering process.

4.4.1 Model Simplification

To demonstrate how terrain physical parameters, particularly soil moisture, contribute to for-

est backscattering, it is necessary to simplify the above general model to isolate a individual

scattering component.

When a radar uses L-band or P-band wavelength, which are commonly preferred in forest

monitoring applications, to observe over forested terrain, an incident wave is supposed to pene-

trate the layers of canopy components to probe the physical characteristics of the underlying soil

surface. Thus, the resultant backscattering is a mixture of interactions with not only the canopy
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Figure 4.10: Simplified DSM geometry.

structure, but also soil surfaces and trunks. However, the coherent double-bounce scattering

in ground-trunk interaction can be significant in the radar backscatter from the boreal forest

which occupies about 60% of the land area of Canada, as reported in [32]. Therefore, model

simplification should be made so as to leave this particular scattering component in the model,

and additionally to be easily validated by well-controlled indoor laboratory experiments.

The canopy layer is removed to suppress the volume scattering component, and thus volume

scattering occurs only from a cloud of dielectric cylinders for the trunk model, and from a

rough ground surface at this step. To emphasize the ground-trunk interaction, the roughness

parameters, the rms height, and the correlation length are selected so that the soil surface is

considered to be flat, and the pdf of trunk inclination is a delta function which means all the

trunks are vertically stood on the smooth soil surface. The pair of orthogonal surfaces of the

ground and the trunks are obviously the source of double-bounce backscattering.

According to the above simplification, the scattering mechanisms considered in the model are

illustrated in Figure 4.10 and are represented as follows:

1. the direct backscattering from the trunks (σ0
t ),

2. the direct backscattering from the ground (σ0
g),

3. scattering by the trunk followed by scattering by the ground (σ0
gt),

4. the same scattering path taken place in the opposite direction (σ0
tg).

Computation of these scattering components includes the attenuation due to the trunk layer,

through which an electromagnetic wave passes twice as an incoming wave from the transmit-

ter, and as an outgoing wave left from the layer that returns back to the receiver. The total
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Figure 4.11: Brewster angle shown in the double-bounce scattering.

backscattering coefficient is given by the incoherent sum of each scattering contribution:

σ0 = σ0
t + σ0

g + σ0
gt + σ0

tg. (4.21)

Though this simplified model seems to be slightly different from actual forests, the model can be

viewed as an idealized boreal forest model to isolate the double-bounce scattering component.

We can expect that the model prediction can be successfully applied to understand the scattering

of real boreal forest since the scattering is usually dominated by the double-bounce scattering

for L-band or P-band observation [32].

In addition, this model can be easily validated under well-controlled laboratory environments.

Now that the main scattering contributor is the ground-trunk interaction, the effect of the

moisture content on the double-bounce scattering can be revealed at this step. The backscattering

coefficient is calculated for each linear polarization combination. In the following discussion,

qp ∈ {hh, hv, vh, vv} accounts for p-polarized transmission and q-polarized receiving, where h

and v indicate horizontal and vertical polarization, respectively.

Figure 4.4 shows the geometry of the ground-trunk interaction which is expected to be the

dominant scattering component in this simplified model. As discussed in Section 4.2, if we treat

the two orthogonal surfaces as flat surfaces which have infinite extent, the total reflection from

the orthogonal structure rt can be expressed as the double-bounce Fresnel reflection coefficient

in Equation (4.7).

Figure 4.11 shows the total reflection coefficient at horizontal and vertical polarization for

εg = 2.9 + 0.4j and εt = 3.5 + 0.7j. These permittivities are derived from semi-empirical

permittivity models given in Equations (4.9) and (4.14), and correspond to the trunk volumetric
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Table 4.1: DSM calculation parameters of (a) a typical boreal forest and (b) parameters for
experimental validation.

Model (a) L (b) X
Wavelength [cm] 24 3
Trunk radius [cm] 8 1
Trunk length [m] 2.4 0.3
Trunk layer height [m] 2.4 0.3
Trunk density [#/m2] 0.39 55.6
Trunk volumetric water content [%] 4.5 (Dry) – 46 (Wet)
Trunk orientation Vertical
Volumetric soil moisture [%] 1.5 (Dry) – 58 (Wet)
Amount of sand in soil [%] 50
Amount of clay in soil [%] 15
Surface roughness [cm] 10−6

Correlation length [cm] 0.1

moisture content of 4.5% and the volumetric soil moisture of 1.5%.

The moisture contents are selected to simulate a typical dry forest. The curves of the vertical

polarization drops off at certain incident angles due to Brewster angle at which a vertically-

polarized wave perfectly transmits though a surface, and no reflection occurs at this angle. Since

the model has a pair of the orthogonal surfaces, two Brewster angles, the smaller one for the trunk

and the larger one for the ground surface, are given in Equations (4.6) and (4.8), respectively.

In addition, the vertically-polarized phase flips at the dips, and thus the phase indicates if

an incident angle is within or without the interval between the two dips at the Brewster angles.

We discuss the possibility of these characteristics as a indicator of moisture conditions later.

4.4.2 DSM Simulation Parameters

In forest monitoring applications, L-band or P-band wavelength is preferred, so ideally simulation

and experimental validation should be conducted at a similar wavelength with actual forest

geometry. Even so, laboratory measurements are more conveniently done on smaller scale models

because a microwave anechoic chamber is spatially limited, and it is usually impossible to hold

a large, real-scale forest model. The scaling of a nondispersive, lossless object, or a perfectly

conducting object is readily accomplished by scaling the entire dimensions in inverse proportion

to a scaled wavelength. However, for a lossy object such as soil or a tree, permittivity scaling is

additionally required to maintain the entire electrical properties of an original model. Because

the operation is difficult in practice, we employ the geometric scaling only in this study.
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To examine the validity of our geometric scaling approach, DSM computation is conducted

at two wavelengths of L-band and X-band for an actual forest model, and for a scaled forest

model geometry, respectively. Table 4.1 lists the two set of simulation parameters. Model-L is a

typical forest geometry for L-band observation, and Model-X is the scaled version of the Model-

L geometry for the X-band experimental validation. Although the simulation model accepts

ground and trunk moisture contents as independent parameters, it has been reported that we

can assume a correlation between them as discussed in [35]. Therefore, we simply assume a linear

relationship, and each volumetric moisture content is given by the following parametric form in

terms of a variable “wetness” w ∈ [0, 1]:

mα =
(
wwet

α − wdry
α

)
w + wdry

α , (4.22)

where α ∈ {g, t} accounts for ground or trunk, wwet
α , wdry

α is the volumetric moisture contents

at the wettest and the driest conditions. According to Table 4.1, these parameters are set to

wwet
g = 0.58, wdry

g = 0.015, wwet
t = 0.46, and wdry

t = 0.045.

To adopt a flat soil surface model, the surface roughness is selected to a numerically small

value compared to the wavelength, and a typical correlation length of a soil surface is selected

here. The effect of the correlation length is not significant in this case because the surface

roughness is negligibly small.

4.4.3 Numerical Result and Discussion

Figure 4.12 shows simulated backscattering coefficient for Model-L, and Figure 4.13 is for Model-

X as well. Two types of wetness are shown in these figures to examine the effects of the moisture

variation. Although the scaling of the permittivities cannot be taken into account, the following

characteristics can be recognized in both models. The curves of the vv backscatter have the

dips at certain incident angles due to the Brewster angle effects, and the co-polarized phase

difference, that is, the phase difference between hh and vv polarization channels, flips at the

dips, whereas hh relatively slowly fluctuates except for a large angle at the vicinity of 80◦ where

both polarization curves touch a bottom simultaneously. Note that as all the phase values are

constrained to the range from −180◦ to 180◦, the phase values beyond this range are put on the

opposite side of the figure. The dip at 80◦ appears because the incident wave propagates a longer

distance within the trunk layer at a grazing angle and experiences greater attenuation. After

exceeding 80◦ incidence, an incident wave strikes the cylinder surface almost perpendicularly, and
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Figure 4.12: DSM simulation result (Model-L).
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(b) Wetness w = 1.0.

Figure 4.13: DSM simulation result (Model-X).
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the direct backscattering from the trunks increases the total backscattering coefficient. Brewster

angle is a function of surface permittivity, and the dips move away from 45◦ with an increase in

the permittivity, which corresponds to an increase in the moisture content. Therefore, we can

emulate L-band observation using the X-band model without appropriate permittivity scaling.

One can invert real-valued permittivity from the direct measurement of the dips, however, such

measurement is unavailable in practice because the requirement of multiple angle observation.

In addition, Brewster angle is correlated by other parameters such as surface roughness [36]

and the randomness in the trunk angular distribution [37], and Brewster angle no longer has an

one-to-one correspondence to permittivity in such a situation.

From a comparison of the backscattering coefficient at the drier and the wetter conditions,

the difference between each polarization channel, that is referred to as co-polarization ratio,

becomes small when an incident angle is around 45◦ as the wetness increases. Since the dips at

the Brewster angles move away from 45◦ for a higher wetness, the co-polarization ratio at the

angles except for 45◦ can be influenced by the dips, but the ratio still has a relationship to the

variation of the moisture content. These facts imply that the co-polarization ratio can be an

index to estimate the moisture content of the forested terrain without requiring multiple angle

observation. Figure 4.14 and 4.15 show the co-polarization ratio and the co-polarized phase

difference at 20◦, 45◦, and 70◦ incidence in terms of wetness. Note that 70◦ incidence is selected

as the largest incident angle for spaceborne SAR systems, as it has been reported that JAXA

ALOS-2 has the maximum incident angle of 70◦ [38], for example.

At 45◦ incidence, the ratio almost monotonically decreases with an increase in the wetness.

Thus, the ratio can be an indicator of the relative variation in the moisture content. Apart from

the 45◦ incidence, the ratio at 70◦ incidence is influenced by the dip at a Brewster angle which

cross over the incident angle at a certain wetness. When the phase difference is near 0◦, the ratio

becomes larger with an increase in the wetness. Conversely, the ratio becomes smaller when

the phase difference is near 180◦. In Figures 4.14 and 4.15 at 70◦ incidence, we can interpret

the variation of the co-polarization ratio as follows. When the co-polarized phase difference is

near 0◦, which means that the dip at the Brewster angle sits on the angle less than 70◦, the

ratio becomes larger because the dip approaches 70◦ with an increase in wetness. Conversely,

the ratio becomes smaller when the phase difference is near 180◦, because the dip moves away

from 70◦. In the region of extremely small wetness around 0 through 0.1 where an incident wave

well penetrates the layer of the trunks, these tendency cannot be observed because of the weak

double-bounce scattering contribution.
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Figure 4.14: DSM simulation result (Model-L).

The fact that the co-polarized phase difference at the 45◦ incidence is near 180◦ indicates

that the incidence angle is always between the dips at the two Brewster angles, as it is previously
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Figure 4.15: DSM simulation result (Model-X).

mentioned in the model description. In conclusion, both the co-polarization ratio and the phase

difference are important parameters to characterize the relative variation of the forest moisture
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content. The ratio at 45◦ incidence is moderate for monitoring the moisture because the mag-

nitude of the ratio is directly related to the variation in the moisture content. More general

situations in which the trunks have a certain randomness in their inclination is discussed in [37],

and the similar conclusion can be derived for a small randomness.

4.5 Experimental Validation

A laboratory experiment in an anechoic chamber under well-controlled conditions is carried out

to validate the DSM simulation results. As discussed in the previous section, we employ a scaled

forest model due to the spatial limitation of the chamber. The details of this experiment is

summarized in Chapter 2.

4.5.1 Experimental Results

Figure 4.16 shows the measured average RCS calculated from each SAR image for Wet-4 and

Wet-8 conditions. Similar to the simulation results, the hh- and vv-polarized RCS around 45◦

incidence approach each other with an increase in the moisture content. In the Wet-8 condition,

the two dips at the Brewster angles, as well as phase flipping at the dips are clearly recognized,

whereas the dip at a smaller incidence angle cannot be recognized in the Wet-4 condition. Because

an incident wave tends to well penetrate the layer of the wooden structure as the test pieces get

drier, the reflection from the supporting structure of the ground plate may strongly contribute

to the resultant backscattering, overlaying the weak reflection from the trunks. Although the dip

at the Brewster angle collapses, the co-polarization ratio can still indicate the relative variation

of the moisture content.

Figure 4.17 shows the measured co-polarization ratio and the co-polarized phase differences

in terms of Wet-number. At 45◦ incidence, the ratio simply decreases with an increase in Wet-

number. As mentioned in the previous simulation, this is because the dip at a Brewster angle

does not cross over the incident angle, and 45◦ incidence is moderate for estimating moisture

conditions. The ratio measured at 70◦ incidence has a spike at the Wet-2 condition in which the

dip at a Brewster angle crosses over the incident angle, and also this can be clearly recognized

in the phase difference variation. The phase difference at 70◦ drastically goes away from 180◦

and approaches 0◦ incidence when the Wet-number becomes small, while the phase difference at

45◦ incidence stays above 90◦. The tendency of these experimental results agrees well with DSM

simulation, and therefore, it is shown that both the ratio and the phase difference are important
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(a) Wet-4.
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Figure 4.16: Measured average radar cross section and co-polarized phase difference.

parameters to monitor the relative variation of the forest moisture conditions.
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Figure 4.17: Measured co-polarization ratio and co-polarized phase difference.

4.6 Summary of This Chapter

This chapter have presented the multiple angle SAR image analysis. As an example of the

multiple angle measurement, the estimation of the moisture condition of forested terrain is dis-
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cussed, and we have shown that the co-polarization ratio can be used to infer the forest moisture

condition.





Chapter 5

Tomographic SAR

Introduction

If only a single path image is given, all we are able to reconstruct is an image of virtual scatterers.

To decompose these virtual scatterers into the distribution of actual scatterers, one has to perform

additional processing such as SAR interferometry or SAR tomographic reconstruction. SAR

interferometry is widely recognized as a tool to extract topographic information of a terrain

surface, however, only two scattering points can be resolved due to the limitation that the system

has only two distinct flight paths. TomoSAR, the rapidly developing technology which exploits

multiple flight path information, can resolve the difficulties of SAR interferometry. TomoSAR

uses array signal processing to extract the actual scatterer location, i.e. height information, from

the images of virtual scatterers observed from slightly different radar altitude. Thus, TomoSAR

can be considered as an extension of SAR interferometry. Because the variety of array signal

processing algorithms, TomoSAR reconstruction can be expected as a high resolution and high-

precision topographic mapper.

The introduction of the high-resolution spectrum estimators which have developed for direc-

tion finding problem of array antenna opened a new branch in SAR three-dimensional recon-

struction problem.

Outline

This chapter provides the groundwork for polarimetric TomoSAR reconstruction problem. First,

Section 5.2 redefines the slant plane SAR image reconstruction described in Chapter 2 so that

87
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Figure 5.1: SAR observation scenario.

the system model is appropriate for tomographic reconstruction problem. In Section , we first

present the observation scenario of TomoSAR system.

5.1 Observation Scenario

The well-known height information recovering is the interferometric SAR (InSAR) [39] of which

the radar has two receiving antenna at different locations, or two repeat-path measurement data

could be used for InSAR analysis. However, image reconstructed from InSAR image is pseudo

three-dimensional image in the sense that only a single height can be estimated for each image
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pixel.

The TomoSAR is an extension of the conventional InSAR measurement, utilizing the multiple

path observation. TomoSAR observation scenario is depicted in Figure 5.1. The radar carrying

aircraft flies over the observing terrain repeatedly. Then, the standard slant-plane SAR image

is formed by the algorithm given in Chapter 2. As discussed in the beginning of Chapter 2,

the height information cannot be recovered from a single slant-plane SAR image because all the

three-dimensional target locations are projected onto a two-dimensional image plane.

Once multiple images are reconstructed, several spectrum estimation algorithms developed

for array antenna, that is, DOA estimation methods, is applied on each image pixel to estimate

the angular or height spectrum.

5.2 System Model

This section redevelops SAR signal model presented in Chapter 2. The reconstruction is quite

similar to those developed for conventional single-path SAR.

5.2.1 Signal Model

The radial distance to the radar to the nth target is

r′n =
√
x′2
n + (yn − u)2 + (zn − v)2. (5.1)

The echoed signal is then represented by

s(t, u, v) =
∑
n

σnp

(
t− 2r′n

c

)
. (5.2)

The Fourier transform of the SAR signal with respect to the fast-time variable t is

s(ω, u, v) = P (ω)
∑
n

σn exp (−j2kr′n) . (5.3)

Using the above signal model, we can formulate a three-dimensional reconstruction algorithm

via matched filtering like two-dimensional reconstruction described in Chapter 2, provided that

the linear synthetic aperture in the elevation domain v is available. However, it is difficult to

form an elevation synthetic aperture in the airborne or spaceborne observation, requiring precise
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control of the platform attitude and paths. Thus, we do not utilize matched filtering operation

in the elevation domain, and we recover three-dimensional scatterer location via multiple two-

dimensional slant plane SAR images.

The two-dimensional slant plane SAR reconstruction procedure is described in Chapter 2. In

the slant plane reconstruction, the scatterer altitude is transparent to the user because all the

scatterers which have the same slant range are projected on the (x, y) plane in Figure X. The

slant range of the nth target can be calculated by

xn =
√
x′2
n + (Zc − zn)2. (5.4)

Then, the radial distance to the radar to the nth target is

rn =
√
x2n + (yn − u)2, (5.5)

and the signal model becomes

s(t, u) =
∑
n

σnp

(
t− 2rn

c

)
. (5.6)

Or, its fast-time frequency domain representation is

s(ω, u) = P (ω)
∑
n

σn exp (−j2krn) . (5.7)

The above two-dimensional signal model is exactly same as the model described in Chapter 2,

and similar reconstruction procedure can be utilized.

5.3 Basics of DOA Estimation

Before moving on to the discussion on tomographic reconstruction problems, this section a brief

introduction to the direction-of-arrival (DOA) estimation methods which have been used in array

antenna signal processing.

5.3.1 System Model

Figure 5.2 (a) and (b) show the system models of array DOA estimation problem for active

and passive case, respectively. In the former case, our problem is to identify the location of the
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Figure 5.2: DOA estimation using an array antenna for (a) passive and (b) active case.

source in terms of depression angle or angle of arrival (AOA) θz. Thus, all the antenna elements

works as receivers. The latter case has the similar geometry of the passive case, however, the

antenna elements transmit an electromagnetic wave and then receives the reflected wave from

the scatterer.

5.3.2 Signal Model

We denote the location of nth array element by vn, and arbitrary chosen reference point on

the v-axis by Vc. The radial distance from the reference point to the nth source or scatterer

is represented by rn, and AOA for this source or scatterer is denoted by θnz . Although general

three-dimensional formulation is possible, however, the two-dimensional treatment is sufficient

for our TomoSAR reconstruction problem as discussed later.

Let s(t) be the complex amplitude of the received signal at time t, and ni be the additive

noise imposed on the ith array element. The received signal for an array antenna can be modeled

via

x(t) = a(θz)s+ n(t), (5.8)

where a(θz) is called the array steering vector which represents the phase difference between a

reference point and each array element. For linear array configuration, the array steering vector
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becomes

a(θz) =
[
exp(−jkzv1) exp(−jkzv2) · · · exp(−jkzvK),

]T
(5.9)

where kz is spatial frequency for the z domain defined via

kz =


2π

λ
sin θz for passive problem,

4π

λ
sin θz for active problem,

(5.10)

where λ is wavelength. The difference of the above spatial frequency definition dictates the

spatial sampling constraints in the z-direction. Theory of classical array signal processing states

that, for source estimation (passive sensing) using a uniform linear array (ULA), the element

spacing ∆v must satisfy

∆v ≤ λ

2
(5.11)

to arias-free (i.e. without grating robe) spectrum estimation. However, as shown in Equation

(5.10), active sensing problem has equivalently twice as higher frequency as that of the pas-

sive sensing problem. Therefore, for an active sensing problem such as TomoSAR requires the

following spatial sampling criteria to achieve alias-free reconstruction.

∆v ≤ λ

4
. (5.12)

Note that this is the worst case that the antenna has an omni-directional beam pattern and the

target area extends infinitely in the altitude direction.

Obviously, Equation (5.12) is difficult to satisfy in the case of airborne or spaceborne SAR

observation because the requirement of sub-wavelength control of the platform flight paths.

However, in TomoSAR reconstruction problem, we have a priori knowledge or estimate about

the scatterer location. Thus, we can tolerate the existence of aliasing or grating-robe at a target-

free region, and the arias-free condition of Equation (5.12) is unnecessary to satisfy.

Assuming that the array reference point is located at the first array element at v1 (i.e. master

path), the array steering vector can be further simplified as

a(θz) =
[
1 exp(−jkz∆v) exp(−jkz2∆v) · · · exp[−jkz(K − 1)∆v]

]T
. (5.13)
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5.3.3 Correlation Matrix

The data correlation matrix is defined via

Rxx =
⟨
x(t)x(t)†

⟩
, (5.14)

where [·]† represents conjugate (Hermitian) transpose operation, and ⟨·⟩ denotes ensemble av-

erage. Provided that the additive noise is incoherent to the arriving wave, the data correlation

matrix can be represented as

Rxx = RS +RN

= ASA† +RN , (5.15)

where Rs, RN , and S are the signal, noise, and source correlation matrix, respectively, and they

are defined as

RS = ASA†, (5.16a)

RN = ⟨n(t)n(t)†⟩, (5.16b)

S = ⟨s(t)s†⟩. (5.16c)

In addition, these are Hermitian matrices which satisfy

Rxx = R†
xx. (5.17)

Assuming that the additive noise is white Gaussian noise, the noise correlation matrix can

be expressed as

RN = ⟨n(t)n†(t)⟩

= σ2I, (5.18)

where I is an unit matrix. One may recall that the noise components of the polarimetric covari-

ance matrix of Equation (3.8) in Chapter 3 only remain in the diagonal term.

Practically, the following estimates of the data correlation matrix is used for DOA estimation
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problem.

R̂xx =
1

Ns

Ns∑
i

x(ti)x(ti)
† (5.19)

5.3.4 Classical Beamformer

The classical beamformer is the simplest DOA estimator which is defined as the problem of

maximizing the array output power by scanning the array main beam in entire angular domain.

The beamformer is equivalent to the Fourier transform, and the angular resolution is restricted

to the array aperture length.

The maximization problem is defined by

max
w

E
[
w†x(t)x(t)†w

]
(5.20)

max
w

w†Rxxw = max
w

(
P1

∣∣w†a(θ)
∣∣2 + σ2 |w|2

)
(5.21)

In this condition, the optimum weight is

wB =
a(θ)√

a(θ)†a(θ)
. (5.22)

Therefore, the beamformer spectrum estimator is defined via

PB(θ) =
a(θ)†Rxxa(θ)

a(θ)†a(θ)
. (5.23)

The example of the beamformer spectrum is described below.

PB(θ) =
1

K

(
P1

∣∣a(θ)†a(θ1)∣∣2 +Kσ2
)

(5.24)

= LP1

 sin
[

π
λc
L∆v(sin θ − sin θ1)

]
K sin

[
π
λc
L∆v(sin θ − sin θ1)

]


2

+ σ2 (5.25)

The maximum (or maxima) of the sinc-like function in the above equation dictates the direction

of arrival.
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Figure 5.3: Beamformer and Capon spectrum for passive case (K = 7, ∆z = λ/2, θz1 = 20◦,
θz2 = 60◦, SNR=30 dB).

5.3.5 Capon Estimator

The optimization problem of the Capon estimator is defined via

min
w

w†Rxxw, subject to w†a(θ) = 1. (5.26)

The optimum weight for the Capon estimator can be derived using the method of Lagrange

multiplier (MLM) as follows:

wC =
R−1

xxa(θz)

a(θ)†R−1
xxa(θ)

. (5.27)

Then, the Capon angular spectrum is defined by

PC(θz) =
a(θz)

†a(θz)

a(θ)†R−1
xxa(θ)

. (5.28)

5.3.6 Numerical Examples

The numerical examples of the beamformer and Capon spectrum estimators are shown here.
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Figure 5.4: Beamformer and Capon spectrum for passive case (K = 7, ∆z = λ/2, θz1 = 20◦,
θz2 = 60◦, SNR=30 dB).

5.4 TomoSAR Reconstruction

In this section, we extend DOA estimation concepts presented in Section 5.3. The concept of DOA

estimator based TomoSAR reconstruction problem is depicted in 5.5. As mentioned in Chapter

2, three-dimensional scatterer location is projected onto the two-dimensional image plane. In

Figure 5.5, the projected scatter location is identified by virtual scatter which is composition of

the actual scatterers having three-dimensional location. Our task is to decompose the virtual

scatterers into the individual actual scatterers. From Figure 5.5, we must identify the target

range xn and the depression angle of an actual scatterer θm,n
z to recover the three-dimensional

location of the actual scatterer. We already have the target range xn in the image plane by the

synthetic aperture reconstruction presented in 2. And now, we can utilize DOA estimator to

determine the depression angle θm,n
z .

5.4.1 Array Steering Vector

Although one can employ the array steering vector of Equation (5.9), we present more accurate

form of the near-field array steering vector. Consider that the situation depicted in Figure x.
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Figure 5.5: Virtual scatterers and actual scatterers

We denote the range of the nth scatterer by xn, and the depression angle by θz which is to be

scanned by the DOA estimators. Then, the distance from the radar at an altitude zi to the

actual scatterer can be represented by

rs(zi, θz) =
√
z2i + x2n + 2zixn sin θz. (5.29)

Then, the array steering vector is denoted by

a(θz) =
[
exp [−jkzrs(z1, θz)] exp [−jkzrs(z2, θz)] . . . exp [−jkzrs(zK , θz)]

]T
, (5.30)

where we use the spatial frequency kz for active sensing case. Also far-field array steering vector

can be written by

a(θz) =
[
exp (−jkzz1) exp (−jkzz2) . . . exp (−jkzzK)

]T
. (5.31)

5.4.2 Reconstruction

Once the appropriate array steering vector is determined, we can apply DOA estimator to the

slant-plane SAR images. We denote the discrete SAR image pixel by fzm(xi, yj), where zm is
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radar location in the altitude domain z, and (xi, yj) represent discrete spatial variables in the

image plane. The TomoSAR reconstruction algorithm is summarized below:

Step 1. For each image pixel at (xi, yj), form a received signal vector x(xi, yj) by

x(xi, yj) =
[
fz1(xi, yj) fz2(xi, yj) . . . fzK (xi, yj)

]T
. (5.32)

Step 2. Determine the depression angle θz to be reconstructed.

Step 3. Form array steering vector defined in Equation (5.30) for a near-field problem and

Equation (5.31) for a far-field problem.

Step 4. Compute the angular spectrum at the specified depression angle θz as discussed in Sec-

tion 5.3.

Step 5. Repeat Step 2. to Step 4. for all the image pixel at (xi, yj).

Step 6. The resultant samples are within polar coordinate (xi, θz), so one might assign the polar

sample to the rectangular sample in the (x, z) plane via

(x, z) = (xi cos θz,−xi sin θz). (5.33)

5.4.3 Experimental Validation

The experimental validation is done by using the linear SAR images presented in Chapter 2.

Figure 5.6 shows the tomographic reconstruction using the beamformer for building model.

The image shows the three-dimensional rendering of the isosurface at -10 dB, and hh-polarized

SAR images are used for this tomographic reconstruction. The scattering from the ground plate

edge, stack of concrete cubes, concrete cylinder, and an array of concrete cubes are properly

imaged.

Figure 5.8 shows the tomographic reconstruction using the Capon estimator. Because the

radiometric accuracy of the Capon estimator is worse compared to the beamformer spectrum,

the estimated three-dimensional spectrum is normalized by its maximum value for displaying

purpose. Although the spatial resolution seems to be improved, one can hardly recognize the

structure of the target from the three-dimensional rendering image of Capon spectrum.



5.4. TOMOSAR RECONSTRUCTION 99

Edge of ground plate

Cylinder

Stack of cubes

Figure 5.6: Three-dimensional rendering image (building model, beamformer, hh-polarization)

Cross range (y’) [m]

H
ei

g
h
t 

(z
’)

 [
m

]

Slice plane [m]: x = 2.80, beamformer

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.7: Slice image at x′ = 2.8 m plane (building model, beamformer, hh-polarization).
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Figure 5.8: Three-dimensional rendering image (building model, Capon, hh-polarization)
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Figure 5.9: Slice image at x′ = 2.8 m plane (building model, Capon, hh-polarization).
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5.5 Polarimetric TomoSAR

Once a single-polarization TomoSAR reconstruction algorithms is developed, one can readily

extend to the fully polarimetric case. To conclude this chapter, we examine the fully polarimetric

TomoSAR reconstruction using classical Pauli decomposition which is described in Chapter 3.

5.5.1 Three-Dimensional Pauli Decomposition

We can readily introduce the Pauli decomposition described in 3 into the TomoSAR reconstruc-

tion. This can be simply achieved via the following steps:

Step 1 Reconstruct slant-plane SAR image via the algorithm presented in Chapter 2 for each

polarization and radar altitude.

Step 2 Compute the Pauli Decomposed image as described in Equation x in Chapter 3.

Step 3 Applying the DOA estimator based TomoSAR reconstruction algorithms given in Section

5.4

5.5.2 DFT-Based Tomographic Reconstruction

The tomographic reconstruction using the conventional DOA estimators which are described in

Section 5.4 is impossible to preserve the coherent information of the SAR image. Although Pauli

decomposition can be simply extended to the tomographic case, this is not the case for other

advanced polarimetric concepts such as the model-based decomposition described in Chapter 3.

Therefore, the phase-preserving formulation of DOA estimation problem is necessary. This is

readily done by employing the following alternate form of the beamformer spectrum:

PD(θ) =
a(θ)†x√

K
. (5.34)

The above equation is equivalent to the DFT, and the phase information is preserved. Then, we

can construct the polarimetric covariance or coherency matrix at each three-dimensional pixel

for the model-based decomposition algorithms in Chapter 3.

5.5.3 Experimental Validation

We now present the experimental validation of the polarimetric TomoSAR reconstruction. Figure

5.10, 5.11, and 5.12 show the three-dimensional version of model-based decomposition algorithms
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(a) Surface scattering. (b) Double-bounce.

(c) Volume scattering.

Figure 5.10: Three-dimensional polarimetric decomposition (FDD).

for FDD, Yamaguchi decomposition, and AMBD, respectively. The angular spectrum estimator

defined in Equation (5.34) is used for three-dimensional tomographic reconstruction. As it is ex-

pected from the result presented in Chapter 3, all the decomposition algorithms provide similar

results. We can see that the double-bounce scattering occurred between the ground surface and

building blocks is dominated. From these results, the combination of the model-based decom-

position algorithms and tomographic SAR is able to provide the three-dimensional scattering

mechanisms of the observing targets.

5.6 Summay of This Chapter

In this chapter, tomographic reconstruction algorithm using DOA spectrum estimators is pro-

vided. We have shown a simple extension of TomoSAR to the fully polarized case, and it has

shown that the polarimetric analysis provides us an additional information to understand the
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(a) Surface scattering. (b) Double-bounce.

(c) Volume scattering.

Figure 5.11: Three-dimensional polarimetric decomposition (Yamaguchi).

observing scene in three-dimensional fashion.
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(a) Surface scattering. (b) Double-bounce.

(c) Volume scattering.

Figure 5.12: Three-dimensional polarimetric decomposition (AMBD).



Chapter 6

Circular SAR

Introduction

This chapter is dedicated to the analysis of polarimetric circular SAR (CSAR) image analysis.

CSAR is an imaging technique of which the radar trajectory takes a circular form, and the

antenna beam illuminates the center of the circular path to acquire the backscattering of targets.

Comparing to the conventional SAR systems which have a linear trajectory such as stripmap

SAR or spotlight SAR, CSAR has an advantage of being able to image the radar cross section

(RCS) of the targets from various azimuthal angles to obtain the high-resolution image.

Once a CSAR image is reconstructed, one can apply several SAR image processing schemes

on the image to extract desired information. Theory of radar polarimetry such as polarimetric

target decomposition algorithms [10, 5], introduced in Chapter 3, is a potential candidate for

this purpose. Although a number of polarimetric decomposition algorithms have been proposed

and applied to linear SAR images, only a few researches on the polarimetric characteristics of

the CSAR image can be found.

Because CSAR takes advantage of the wide azimuthal angle measurement over full rotation

(360◦) synthetic aperture, the resultant polarimetric CSAR image is composed of a mixture of

the scattering from the targets observed in various polarization basis. This fact makes the po-

larimetric CSAR image analysis challenging, but gives a new insight in polarimetric radar image

analysis simultaneously. To deal with this problem, we propose a novel CSAR image processing

method designed to enhance a wire-like target within the spotlighted area via transforming the

polarization basis as a function of the slow-time synthetic aperture prior to reconstruct CSAR

images.

105
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Outline

This chapter is organized as follows. In Section 6.1, CSAR observation scenario is introduced.

Section 6.2 defines the CSAR coordinate system and several quantities used for the CSAR signal

modeling and reconstruction. The CSAR signal model and reconstruction algorithms are given

in Section 6.3 and 6.5, respectively. We present two CSAR reconstruction algorithm, namely,

wavefront reconstruction and direct correlation. In Section 6.6, polarimetric extension of CSAR

image is presented, and the effects of polarization basis transformation is discussed. Finally,

Section 6.8 concludes the chapter.

6.1 Observation Scenario

The CSAR observation scenario is shown in Figure 6.1. In the CSAR observation, the radar

carrying aircraft travels along a circular trajectory to form slow-time synthetic aperture. The

antenna beam is maintained so that it points toward the center of the circular trajectory. The

observable target area is restricted to the antenna beamwidth or footprint.

In linear SAR systems, reconstructed image depends on the target orientation viewed from

the radar, especially for highly-directive targets such as buildings or ships. In addition, the linear

SAR image could be subjected to so-called the shadowing effect in which the radar beam could

not illuminate the small objects masked by the other larger targets. The CSAR system is able

to circumvent these problems, utilizing full-rotation aspect angle measurement.

As discussed in Chapter 3, one can simply extend this observation scenario to the fully

polarimetric case. A straightforward extension is achieved by just forming the Sinclair scattering

matrix for reconstructed polarimetric CSAR image pixels. However, one should keep in mind

that the polarization basis is significantly changed during the data acquisition. For polarimetric

CSAR image analysis, we must compensate for this effect to better understand the reconstructed

CSAR images. Or one can use small subaperture CSAR data which can be approximated as linear

spotlight SAR measurement to ignore the polarization basis variation.

6.2 System Model

The CSAR system geometry is shown in Fig. 6.2. The radar carrying aircraft moves along

a circular path of radius Rg to form a slow-time aspect angle (synthetic aperture) θ domain.

The antenna main beam is pointed at the center of the circular path during the overall data
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Figure 6.1: CSAR observation scenario.

acquisition. The aircraft altitude is considered to be fixed at z = Zc in the current discussion.

The radar coordinate in the spatial domain can be represented in terms of the slow-time aspect

angle variable θ ∈ [0, 2π) via

(x, y, z) = (Rg cos θ,Rg sin θ, Zc). (6.1)

The slant-range of the scnene center, that is, the distance from the radar to the spatial coordinate

(x, y, z) = (0, 0, 0) is written by

Rc =
√
R2

g + Z2
c , (6.2)
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Figure 6.2: CSAR imaging system geometry.

and the slant depression or grazing angle is defined by

θz = tan−1 Zc

Rg
. (6.3)

If the antenna beamwidth is ϕd, the radius of the spotlighted target area can be described by

R0 =
Rc tanϕd
sin θz

. (6.4)

Besides this actual spotlighted area, one can arbitrarily select a desired radius for imaging pur-

pose. Also we define the following along-track target angle via

θx = sin−1 R0

Rg
. (6.5)

6.3 Signal Model

The echoed signal model for the CSAR system can be developed in a similar fashion of the linear

SAR. We can write the radial distance from the radar to the location (x, y) via

r(x, y) =
√
(x−Rg cos θ)2 + (y −Rg sin θ)2 + Zc, (6.6)
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and the corresponding round-trip time via

tr(x, y) =
2r(x, y)

c
. (6.7)

Let p(t) be the transmitted radar signal, where t represent fast-time, and f(x, y) be the

continuous reflectivity function at the location (x, y).

s(t, θ) =

∫
y

∫
x

f(x, y)p [t− tr(x, y)] dxdy. (6.8)

Also a discretized model can be constructed by letting

f(x, y) =
∑
n

σnδ(x− xn)δ(y − yn), (6.9)

where σn is the reflectivity of the nth point target, and xn and yn are the location of this target,

respectively. Then plugging Equation (6.9) into Equation (6.8), the signal model becomes

s(t, θ) =
∑
n

σnp [t− tr(xn, yn)] . (6.10)

The continuous signal model of Equation 6.8 is convenient for the subsequent analysis, while the

discretized signal model of Equation (6.10) is used for numerical simulations.

The Fourier transform of Equation (6.8) with respect to the fast-time t is

s(ω, θ) = P (ω)

∫
x

∫
y

f(x, y) exp[−j2kr(x, y)]dxdy

= P (ω)

∫
x

∫
y

f(x, y)g∗θ(ω, x, y)dxdy, (6.11)

where

gθ =

exp[j2kr(x, y)], for
√
x2 + y2 ≤ R0

0 otherwise

(6.12)

is called the slant plane Green’s function of the CSAR system at the slow-time variable θ and the

fast-time frequency ω. As discussed in Chapter 2, the fast-time frequency domain representation

of Equation (6.11) is a common signal model for pulsed, FMCW, and stepped frequency radar.
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For the FMCW and the stepped frequency radar, one can assume that the following model.

P (ω) =

1 for ω ∈ [ωc − ω0, ωc + ω0],

0 otherwise,

(6.13)

where ωc and ω0 are the center (carrier) frequency and the half size of bandwidth, respectively.

6.4 Fourier Transform of Slant Plane Green’s Function

For the matched-filter operation in CSAR image reconstruction, we need the Fourier transform

of the slant plane Green’s function which is given in Equation (6.12). In this section, we present

the result derived in [3, 1].

To begin with, we define the following notational conventions. The rectilinear spatial fre-

quency domain (kx, ky) has its polar form representation (ϕ, ρ) as follows:

ϕ = tan−1 ky
kx
, (6.14a)

ρ =
√
k2x + k2y. (6.14b)

We denote the two-dimensional Fourier transforms of the target function and the slant plane

Green’s function with respect to the spatial variable (x, y) by

F (kx, ky) = F(x,y)[f(x, y)], (6.15)

and

Gθ(ω, kx, ky) = F(x,y)[gθ(ω, x, y)]. (6.16)

The polar coordinate transformation of Equation (6.15) and (6.16) in the spatial frequency

domain are defined as

Fp(ρ, ϕ) = F (kx, ky), (6.17)

and

Gθp(ω, ρ, ϕ) = Gθ(ω, kx, ky). (6.18)

Using the above notation, one can show that the Green’s function in the polar spatial fre-
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quency (ρ, ϕ) has the following form [3, 1]:

Gθp(ω, ρ, ϕ) =W1(θ − ϕ)W2(ω, ρ) exp
[
−j
√

4k2 − ρ2Zc − jρRg cos(θ − ϕ)
]
, (6.19)

where the window functions W1(ϕ) and W2(ω, ρ) are defined by

W1(ϕ) =

1 for |ϕ| ≤ θx,

0 otherwise,

(6.20)

and

W2(ω, ρ) =

1 for |ρ− 2k cos θz| ≤ 2k sin2 θz sin θx,

0 otherwise.

(6.21)

6.5 Reconstruction

The CSAR image formation algorithm based on the wavefront reconstruction given in [3, 1]

consists of the two steps, namely, the slant plane to ground plane transformation and the matched

filtering operation for the ground plane CSAR signal. In this section, we firstly present the slant

plane to ground plane transformation of CSAR data, and then we develop the ground plane

CSAR reconstruction algorithm using matched filtering.

The CSAR signal model of Equation (6.8) can be rewritten using the generalized Parseval’s

theorem as follows:

s(ω, θ) = P (ω)

∫
ky

∫
kx

F (kx, ky)G
∗
θ(kx, ky, ω)dkx dky. (6.22)

The variable transformation of the above Equation (6.22) yields

s(ω, θ) = P (ω)

∫
ϕ

∫
ρ

ρFp(ρ, ϕ)G
∗
θp(ω, ρ, ϕ)dρ dϕ. (6.23)

Substituting the Fourier transform of the slant plane Green’s function given in Section 6.4, the

CSAR signal model of Equation (6.22) can be expressed as the following form:

s(ω, θ) =P (ω)

∫
ϕ

∫
ρ

ρFp(ρ, ϕ)W1(θ − ϕ)W2(ω, ρ)

· exp
[
−j
√
4k2 − ρ2Zc − jρRg cos(θ − ϕ)

]
dρ dϕ. (6.24)
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Our objective is to recover Fp(ρ, ϕ) from the inversion of the above Equation (6.24).

6.5.1 Slant Plane to Ground Plane Transformation

The first step, the ground plane transformation, is the operation in which slant plane CSAR data

is converted to a CSAR data of the target area which is measured at the ground plane (Zc=0).

For this purpose, we rewire the CSAR signal model in Equation (6.24) as

s(ω, θ) =

∫
ω

Λ(ω, ρ)sg(ρ, θ)dω, (6.25)

where

Λ(ω, ρ) = P (ω)W2(ω, ρ) exp
(
−j
√
4k2 − ρ2Zc

)
, (6.26)

and

sg(ω, θ) = ρ

∫
ϕ

Fp(ρ, ϕ)W1(θ − ϕ) exp [−jρRg cos(θ − ϕ)] dϕ. (6.27)

The signal sg(ω, θ) is referred to as the ground plane CSAR signal. In fact, the above Equation

(6.27) is identical to letting the radar altitude Zc = 0 in the general CSAR signal model given

by Equation (6.8).

One can interpret the slant plane CSAR echoed signal in Equation (6.25) result from the

transformation of the ground plane CSAR signal by integral kernel defined in Equation (6.26).

Thus, the ground plane transformation is the operation in which the measured signal in (6.25)

is transformed back to the ground plane CSAR signal of Equation (6.27). Therefore, the slant

plane to ground plane transformation is defined via

sg(ω, θ) =

∫
ω

Λ−1(ω, ρ)s(ω, θ)dω. (6.28)

For the digital implementation, the above integral equation is replaced by a matrix product.

Let us assume that we have M discrete samples in the fast-time frequency ω domain, that is,

ωm = ωc − ω0 + (m− 1)∆ω for m ∈ [1, 2, . . . ,M ] , (6.29)

where ωc, ω0, and ∆ω are the center frequency, baseband bandwidth, and sampling interval,

respectively. Similarly, assuming that we have N discrete samples in the slow-time θ domain,



6.5. RECONSTRUCTION 113

these samples are represented by

θn = θc − θ0 + (n− 1)∆θ for n ∈ [1, 2, , . . . N ] , (6.30)

where θc, θ0, and ∆θ are the center aspect angle, the half width of aspect angle, and slow-time

sampling interval, respectively. Using these notation, we can define the following matrices:

S(ω,θ) =
[
s(ωm, θn)

]
, (6.31a)

Λ(ω,ρ) =
[
Λ(ωm, ρn)

]
, (6.31b)

sg(θ,ρ) =
[
sg(ρn, θn)

]
. (6.31c)

Using the above matrices, we can express the discretized system model via

S(ω,θ) = Λ(ω,ρ)sg(θ,ρ). (6.32)

Thus, our inversion can be done by the following:

sg(θ,ρ) = Λ−1
(ω,ρ)S(ω,θ). (6.33)

The inverse system kernel Λ−1 can be computed by pseudo-inverse matrix. However, we can use

the following useful approximation to avoid the computation of inverse matrix [3].

Λ−1 ≈ ΛH , (6.34)

where [·]H represents the conjugate transpose (Hermitian transpose) operation. The slant plane

to ground plane conversion is finally expressed via

sg(θ,ρ) = ΛH
(ω,ρ)S(ω,θ). (6.35)

6.5.2 Ground Plane CSAR Reconstruction

Once the ground plane CSAR signal is derived, one can formulate the matched filtering operation

to recover the target function. We begin with the ground plane CSAR signal defined in Equation

(6.27) by expressing it as

sg(ω, θ) = Fp(ρ, θ) ∗ sg0(ω, θ), (6.36)
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where the ground plane reference function sg0(ω, θ) is

sg0(ω, θ) =W1(θ) exp(−jρRg cos θ). (6.37)

We denote the Fourier transform of the polar formatted target function with respect to the

slow-time variable θ by

Fp(ρ, ξ) = F(θ)[Fp(ρ, θ)], (6.38)

where ξ is the Fourier counterpart domain of θ, and Fourier transform of the ground plane CSAR

reference signal in Equation (6.37) can be expressed as

Sg0(ω, ξ) = F(θ)[sg0(ω, θ)] (6.39)

=

H
(2)
ξ (2kRg cos θz) exp

(
−j πξ2

)
for |ξ| ≤ 2kR0 cos θz

, 0 otherwise,

(6.40)

where H
(2)
ξ (·) is the Hankel function of the second kind, ξ order. Then, the matched-filter

reconstruction is

F(θ) = F(θ)[s1(θ, ω)]H
(1)
ξ (2kR cos θz) exp

(
j
πξ

2

)
. (6.41)

Similar to the linear SAR discussed in Chapter 2, CSAR reconstruction requires spatial

frequency interpolation. The concept is illustrated in Figure 6.3, and the mapping is defined via

kx(θ, ω) = ρ cos θ, (6.42a)

kx(θ, ω) = ρ sin θ. (6.42b)

6.5.3 Digital Implementation

Based on the discussion thus far, we can summarize the digital implementation of the CSAR

image reconstruction as follows.

Step 1. As presented in Chapter 2, form the fast-time frequency domain representation of the

CSAR received signal.

Step 2. Compute the discrete samples of the CSAR system kernel Λ in Equation (6.31b). The

result is M × N matrix, and calculate pseudo-inverse of the system kernel as Equation

(6.34).
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Original sample points

Interpolated sample points

Figure 6.3: CSAR spatial frequency interpolation.

Step 3. From Equation (6.35), compute sg(θ, 2k cos θz) (slant plane to ground-plane transfor-

mation).

Step 4. Compute the one-dimensional Fourier transform of Equation (6.35) with respect to the

slow-time variable θ, and perform the matched filtering operation as described in Equation

(6.41).

Step 5. The inverse Fourier transform produces the polar samples of Fp(ρ, ξ), and the two di-

mensional spatial frequency samples at the rectangular sample points are obtained via in-

terpolation as shown in Figure 6.3.

Step 6. The two-dimensional inverse Fourier transform of the resultant samples is the desired

target function.
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6.6 Polarimetric CSAR

We have described the polarimetric extension of linear SAR image in Chapter 3 by introducing

the Sinclair scattering matrix for each image pixel. The similar extension can be employed for

CSAR image, and this section shows the polarimetric model-based decomposition applied for

reconstructed CSAR image.

Let fβα(xi, yj) be the reconstructed CSAR image pixel at the index (xi, yj), where β, α ∈

{h, v} for lexicographic polarization basis. The Sinclair scattering matrix for this image pixel is

defined via

S(h,v) =

Shh(xi, yj) Shv(xi, yj)

Svh(xi, yj) Svv(xi, yj)


=

fhh(xi, yj) fhv(xi, yj)

fvh(xi, yj) fvv(xi, yj)

 . (6.43)

Also we can form the several types of scattering vector or matrices defined in Chapter 3, and the

polarimetric decomposition schemes can be applied as well.

Although this polarimetric extension is quite straightforward, however, the resultant de-

composed image might differ from the linear SAR results. This is due to the variation of the

polarization basis during the data acquisition; as the radar travels along a circular trajectory,

the targets could be irradiated from a significantly different aspect angle. It is needless to say

that the measured data of linear SAR also experiences the aspect angle variation, but the change

of polarization basis can be considered as negligibly small.

6.6.1 Polarization Basis Transformation

Appearance of an Oriented Wire

We consider a simple polarization basis transformation to take the variation of polarization basis

during the acquisition into account. Let us assume that a thin oriented wire is located at the

center of the circular trajectory of CSAR as shown in Fig. 6.4. The wire orientation is described

by the two angular parameters (ϕw, ψw). However, the wire orientation angle which only we can

observe is the orientation angle γw in the (h, v) polarization plane that is perpendicular to the

line of sight (i.e. n-direction). Apparently, the orientation angle γ is a function of the slow-time

variable θ.
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Oriented wire

Radar

(a) Oriented wire.

Polarization plane

(b) Wire orientation viewed in polariza-
tion plane.

Figure 6.4: An oriented wire located at the center of the circular trajectory, and the appearance
of the orientation in the (h, v) basis polarization plane.

To show this, let a(ϕ, ψ) be the unit vector along the oriented wire, that is,

a(ϕw, ψw) =
[
cosψw cosϕw cosψw sinϕw sinψw

]T
, (6.44)

where [·]T is the vector or matrix transpose operation. The transformation of the vector a(ϕ, ψ)

within the global (x, y, z) coordinate system into the local (n, h, v) coordinate system is expressed

as 
n

h

v

 =


cos θz 0 − sin θz

0 1 0

sin θz 0 cos θz



cos θ − sin θ 0

sin θ − cos θ 0

0 0 1

a(ϕw, ψw). (6.45)

Then, the wire orientation in the (h, v) polatization plane can be calculated by

γw(θ) = Tan−1(v, h), (6.46)
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Oriented wire

(a) Original (h, v) basis. (b) γ-rotated linear (h′, v′) basis.

Figure 6.5: Original (h, v) basis and γ-rotated linear (h′, v′) basis. Clearly, h′-polarized scattering
is dominant in this situation.

where the function Tan−1(v, h) is the four-quadrant inverse tangent defined as

Tan−1(v, h) =



tan−1 v
h for h > 0,

tan−1 v
h + π for v ≥ 0, h < 0,

tan−1 v
h − π for v < 0, h < 0,

+π
2 for v > 0, h = 0,

−π
2 for v < 0, h = 0,

0 for v = 0, h = 0.

(6.47)

Polarization Basis Transformation

We use the angle γ(θ) to enhance the scattering from a wire which has a specific orientation

(ϕ, ψ). At a fixed slow-time variable θ, the wire is appeared to be oriented within the (h, v)

polarization plane as shown in Figure 6.5 (a). To enhance the reflection from this oriented wire,

the original (h, v) polarization basis should be rotated around the line of sight (i.e. n-axis) by

the angle γ(θ) as shown in Figure 6.5 (b). We refer to the rotated linear polarization basis

as the linear (h′, v′) basis that is a function of the slow-time variable θ. In this situation, the

v′-polarized scattering could be dominant. In other words, we can intensify the scattering from

the oriented wire by this polarization basis transformation.

To do this, we consider the scattering matrix for the polarimetric CSAR received signal (i.e.
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NOT for the reconstructed image) in the time domain representation as

s(t, θ) =

shh(t, θ) shv(t, θ)

svh(t, θ) svv(t, θ)

 . (6.48)

The generic form of polarization basis transformation is given in Chapter 3 and [12]. Only we

need here is the rotation of the linear (h, v) basis into the rotated linear (h′, v′) basis. Thus, the

rotation of the scattering matrix s(t, θ) by the angle γ(θ) can be expressed as

sR(γ; t, θ) =

sh′h′(t, θ) sh′v′(t, θ)

sv′h′(t, θ) sv′v′(t, θ)


= R(γ)s(t, θ)R(γ)T , (6.49)

with the rotation matrix R(γ) defined via

R(γ) =

cos γ − sin γ

sin γ cos γ

 . (6.50)

After making the rotated polarimetric CSAR signal sR(γ; t, θ) for all the available slow-time

variable θ, the CSAR image reconstruction algorithm (e.g. wavefront reconstruction, backpro-

jection, or DCA) can be used for each polarization channel sβ′α′(t, θ) where α′, β′ ∈ {h′, v′} to

form the basis transformed CSAR image. We refer to this preprocessing as the wire structure

intensifier (WSI).

The CSAR reconstruction algorithm with WSI preprocessing can be summarized as the fol-

lowing steps.

Step 1. Specify the wire direction to be intensified by selecting the angular parameters (ϕ, ψ).

Step 2. For a fixed slow-time variable θ, compute the orientation angle γ(θ).

Step 3. Transform the CSAR received signal in the (h, v) linear polarization basis s(t, θ) into

γ-oriented linear (h′, v′) basis to derive sR(γ; t, θ).

Step 4. Reconstruct the CSAR target function in the spatial (x, y) domain from the basis-

transformed signal sβ′α′(t, θ) using the CSAR reconstruction algorithm (e.g. wavefront

reconstruction, backprojection, or DCA). The wavefront reconstruction algorithm is used

in this paper.
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30 cm 30 cm

Figure 6.6: Building wall model.

Metallic wires

Styrene foam plate

90 cm

90 cm

5 cm

6 cm

Figure 6.7: Distributed wire model.

6.7 Experimental Validation

We conduct X-band indoor CSAR experiments in an anechoic chamber to validate the effects of

WSI preprocessing. The detail of the CSAR measurement system is given in Chapter 2.

6.7.1 Targets

In addition to the building model which is described in Chapter 2, we employ the other targets

shown in Figure 6.6 and 6.7 are used to examine the effect of WSI preprocessing. Figure 6.6 is

the building (man-made structure) model composed of a concrete ground plate and blocks. The

center of the ground plate is adjusted to the center of the circular path. The dominant scattering

from the building walls and edges is expected to be observed.

The another target, a distributed wire model, is depicted in Fig. 6.7. The wire diameter is 2

mm. This can be considered as a simple model of the vegetation components such as stems or
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twigs. Positions of these wires are determined by computer-generated uniform random numbers.

However, all the wire orientation angles are adjusted to be along the spatial x-axis. To enhance

the scattering from these wires, WSI preprocessing should be imposed on the received CSAR

signal Sβα(ω, θ) with the angular parameters (ϕ, ψ) = (0◦, 0◦).

Figure 6.8 (a) shows the reconstructed CSAR images in the original linear (h, v) basis for

the building model. In this figure, the dominant scattering from the building walls and edges

appears in the hh-polarized image. The intensity of the vv-polarized image is much weaker

than that of the hh-polarized image. As mentioned in Chapter 4, when one observes a pair of

orthogonal dielectric surfaces at vv-polarization, there exists the Brewster angle at which the

vertically polarized reflection approaches to zero. Therefore, the weak vv-polarized reflection

can be interpreted as the Brewster angle effect caused in the double-bounce interaction between

the ground surface and the building walls.

Figure 6.8 (b) is the basis transformed image using WSI preprocessing for the same building

model. To enhance the building walls or edges which are parallel to the spatial x-axis, we choose

the angular parameters (ϕ, ψ) = (0◦, 0◦) (see Fig. 6.4). As it is expected, the building walls which

are parallel to the x-axis are clearly shown in the h′h′-polarized image. Also we can observe that

the building walls which are perpendicular to the x-axis are appeared in the v′v′-polarized image.

Hence, WSI preprocessing can potentially be used to decompose the building walls facing toward

the different directions. This is the unique feature of the CSAR image reconstruction with WSI

preprocessing.

The similar images for the distributed wire target can be found in Fig. 6.9. Comparing to the

hh-polarized image and the vv-polarized image in Fig. 6.9 (a), the hh image intensity is stronger

than the vv intensity. The reason for this difference can be described by the effective length

of the metallic wires viewed from the polarization planes. Except for the extreme case of the

depression angle θz = 90◦, the effective length of the wire becomes shorter than the actual wire

length as the depression angle decreases. In the worst situation that θz = 0◦ (i.e. the ground

plane CSAR measurement), the scattering from the distributed wires positioned horizontally to

the (x, y) plane like this experiment can not be observed at the vv-polarized channel.

The wire enhanced images are shown in Fig. 6.9 (b). Similar to the previous analysis for the

building model, the distributed wires which are parallel to the x-axis are intensified and appeared

as the h′h′-polarized image. Apart from the building model, the wires which are perpendicular

to the x-axis does not exist in this wire model. Therefore, the v′v′-polarized image shows weaker

intensity than that of the h′h′-polarized image.
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Figure 6.8 shows the similar result for building model described in Chapter 2. The building

wall paralleled x-axis are intensified as the h′h′-polarized image.

6.8 Summary of This Chapter

In this chapter, an analysis for the fully polarimetric CSAR images is given. Although CSAR

provides the high-resolution image of the targets, however, conventional polarimetric analysis

might not be directory applied on the CSAR image due to the diversity of the slow-time as-

pect (azimuthal) angle. To incorporate the variation of the polarization basis in the CSAR

measurements, a preprocessing scheme called wire structure intensifier (WSI) is proposed.

We conduct the laboratory experiments using the simple man-made structure model and

the distributed wire model, and it has shown by the laboratory experiments that the proposed

method can successfully intensify the desired wire or edge structure of the targets.
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(a) Original linear (h, v) basis images.
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(b) Transformed linear (h′v′) basis images with the angular parameters (ϕ, ψ) =
(0◦, 0◦).

Figure 6.8: Reconstructed CSAR target functions for the building wall model at each polarization
channel.
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(a) Original linear (h, v) basis images.
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(b) Transformed linear (h′v′) basis images with the angular parameters (ϕ, ψ) =
(0◦, 0◦).

Figure 6.9: Reconstructed CSAR target functions for the distributed wire model at each polar-
ization channel.
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(b) Transformed linear (h′v′) basis images with the angular parameters (ϕ, ψ) =
(0◦, 0◦).

Figure 6.10: Reconstructed CSAR target functions for the building model at each polarization
channel.





Chapter 7

Conclusion and Suggestion

This thesis presented the analysis of multi angle synthetic aperture radar image. The multi

angular observation reveals new insight to understand the observed scene which is unavailable

in the single angle SAR image.

In Chapter 3, we compared model-based polarimetric decomposition algorithms qualitatively

by using anechoic chamber measurement data. It has shown that the AMBD produces differ-

ent decomposition result when one observes forested terrain. Chapter 4 extended conventional

PolSAR images to the multiple angle observation, and it has shown that the co-polarization

ratio can be used to estimate moisture condition of forested terrain. Chapter 5 described the

basic concepts of TomoSAR three-dimensional reconstruction, and polarimetric decomposition

algorithms described in Chapter 3 is used to recover three-dimensional scattering mechanisms

of the observing targets. Finally in Chapter 6, polarimetric CSAR analysis is presented, and it

has shown that the polarimetric basis transformation plays an important role to deal with the

polarimetric CSAR image reconstruction and analysis.

For further analysis, the result presented in this thesis should be validated by airborne or

spaceborne radar images.
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