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2 TOSHIKAZU ABE

1. Introduction

Let (X1, d1) and (X1, d2) be two metric spaces. A map T : X1 → X2

is called an isometry if it preserves the metric, that is, d2(Ta, Tb) =

d1(a, b) for every pair of points a and b in X1. For a normed space

(N, ‖·‖), the metric d induced by ‖·‖ is defined by d(a, b) = ‖a− b‖ for

every pair of points a and b in N . For two normed spaces (N1, ‖·‖1) and

(N2, ‖·‖2), a map T : N1 → N2 is an isometry if ‖Ta− Tb‖2 = ‖a− b‖

for every pair of points a and b in N1.

The celebrated Mazur-Ulam Theorem [14] states that every bijective

isometry T between two real normed spaces (N1, ‖·‖1) and (N2, ‖·‖2)

is affine, that is, T ((a+ b)/2) = (Ta+ Tb)/2 for every pair of points a

and b in N1. In particular, if T (0) = 0, then T is real linear. In other

words, surjective isometries between noremed spaces are real linear

isomorphisms followed by translations. This theorem asserts that a

bijecion between two real normed spaces which preserves the metric

structure also preserves the algebraic structure automatically. On the

other hand, surjective isometries between two complex normed spaces

are not necessarily complex linear followed by translations.

It is an interesting problem whether the mappings between spaces

which preserve particular objects or properties preserve other objects

or properties. The study of isometries has a long history. It dates back

at least to the Banach-Stone theorem of 1930’s. Let X be a compact

Hausdorff space and C(X) the algebra of all complex-valued continuous

functions on X. The algebra C(X) is a commutative Banach algebra
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equipped with the supremum norm. The Banach-Stone theorem states

that C(X) and C(Y ) are isometrically complex linear isomorphic to

each other if and only if X and Y are homeomorphic. It implies that

C(X) and C(Y ) are isometrically isomorphic as Banach spaces if and

only if C(X) and C(Y ) are isometrically isomorphic as Banach alge-

bras. In [10], Kadison describes the structure of all surjective complex

linear isometries between two unital C∗-algebras. It follows that two

C∗-algebras are isometrically isomorphic as Banach spaces if and only

if they are isometrically isomorphic as Jordan∗-algebras. It is a non-

commutative generalization of the Banach-Stone theorem. There is

vast literature of isometries on various linear spaces.

In this paper, we study the algebraic structures of isometries on

some structures which need not be linear spaces. In 2003, Väisälä gave

a simple proof of the Mazur-Ulam theorem based on the idea of Vogt

[19] and reflections in points. Hatori, Hirasawa, Miura and Molnár

[6] studied algebraic properties of surjective isometries on groups and

proved a Mazur-Ulam theorem on metric groups applying the idea of

Väisälä. Applying this theorem, Hatori and Molnár gave a complete

description of surjective isometries (with respect to the metric induced

by the operator norm) from unitary groups on Hilbert spaces onto

itself. By the result, surjective isometries are group automorphisms or

group anti-automorphisms followed by left multiplications. They [5, 8]

also studied isometries on the unitary groups of unital C∗-algebras. In
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section 2, we study isometries on the special orthogonal group based

on [2].

In special relativity, the set of all relativistically admissible velocities

coincides to R3
c = {u ∈ R3 : ‖u‖ < c}, where c is the speed of light

in vacuum. The Einstein velocity addition ⊕E in R3
c is given by the

equation

u⊕Ev =
1

1 + 〈u,v〉
c2

{
u +

1

γu
v +

1

c2
γu

1 + γu
〈u,v〉u

}
for all u,v ∈ R, where 〈·, ·〉 is the Euclidean inner product and γu

is the Lorentz factor given by γu = (1 − ‖u‖2/c2)− 1
2 . The Einstein

velocity addition ⊕E is not associative in R3
c . Hence, (R3

c ,⊕E) is not a

group. Along with the study of the Einstein’s velocity addition law, it

turned out that (R3
c ,⊕E) has a structure which is called the gyrogroup.

The gyrogroup is a generalization of the group which is not necessarily

associative. Some gyrogroups equipped with their own gyrometrics. In

the Einstein gyrogroup (R3
c ,⊕E), its gyrometric is given by ‖u⊕E(−v)‖

for any pair u,v∈R3
c , where ‖·‖ is the Euclidean norm on R3. In section

3, we study gyrometric preserving maps on some gyrogroups based on

[1].
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2. Isometries of the special orthogonal group

In this section, let n be a positive integer. Denote by Mn(R) the real

algebra of all n×n real matrices with the identity matrix In, O(n)

the group of the all orthogonal matrices and SO(n) the group of the

all special orthogonal matrices in Mn(R). Let Rn
+↓ denote the set of

all nonzero vectors (x1, . . ., xn) ∈ R satisfying x1≥· · ·≥xn≥0. For any

c = (c1, . . ., cn)∈Rn
+↓, we define the c-spectral norm of A∈Mn(R) by

‖A‖c =
n∑
i=1

ciσi(A),

where σ1(A)≥ · · ·≥σn(A) are the singular values of A. Recall that the

singular values of A is the eigenvalues of the square roots of A∗A, where

A∗ is the conjugate transpose of A. In the following of the section, we

assume that c1 = 1 for c = (c1, . . ., cn)∈Rn
+↓. Note that c-spectral norm

is a generalization of the operator norm [when c1 = 1, ci = 0 (i 6=1)]

and the Ky Fan k-norm [when ci = 1 (i≤k), ci = 0 (k < i)].

In the paper [7], Hatori and Molnár gave a complete description of

surjective isometries (with respect to the metric induced by the op-

erator norm) from unitary groups on Hilbert spaces onto itself. By

the result, we can verify that a surjective isometry (with respect to

the metric induced by the operator norm) φ on a unitary group U(H)

on a Hilbert space H with the identity map I is only of the form

φ(·) = φ(I)φ0(·), where φ0 is a group automorphism or a group anti-

automorphism. Furthermore, φ0 can be extended to an algebra isomor-

phism or anti-isomorphism on B(H), where B(H) is the algebra of all
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bounded linear transformations of H. In this section, we give a com-

plete description of all isometries on SO(n) with respect to the metric

induced by the c-spectral norm. We show that there are isometries on

SO(4) which have exceptional forms.

Let Kn(R) be the real linear space of all n×n skew-symmetric ma-

trices of real entries. Note that expKn(R) = SO(n). For A∈K4(R),

the skew-symmetric matrix A+ is obtained from A by interchanging its

(1, 4) and (2, 3) entries, and interchanges the (4, 1) and (3, 2) entries

accordingly.

2.1. The main result of section 2.

The following theorem is the main result of this section.

Theorem 2.1.1. Let T be a map from SO(n) into itself and c∈Rn
+↓.

Then the following (S-i) and (S-ii) are equivalent.

(S-i) T is an isometry with respect to the metric induced by ‖·‖c, that

is, ‖T (X)− T (Y )‖c = ‖X − Y ‖c for every pair X, Y ∈ SO(n).

(S-ii) There exists O∈O(n) such that T is of one of the following

form:

(S-a): T (X) = T (In)OXO−1 for every X∈SO(n),

(S-b): T (X) = T (In)OX−1O−1 for every X∈SO(n),

(S-c): n = 4 and T (exp(A)) = T (I4)O(exp(A+))O−1 for every

A∈K4(R),

(S-d): n = 4 and T (exp(A)) = T (I4)O(exp(A+))−1O−1 for every

A∈K4(R).
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In particular, if T (In) = In, then T is a group automorphism on SO(n)

for (S-a); T is a group anti-automorphism on SO(n) for (S-b); T pre-

serves the Jordan products T (XYX) = T (X)T (Y )T (X) for every pair

of X and Y in SO(4), while T is neither group automorphism nor

group anti-automorphism on SO(4) for (S-c) and (S-d).

Note that for n = 4, exp(A) = exp(B) if and only if exp(A+) =

exp(B+) for A,B∈K4(R). This theorem is proved in later subsection

2.6. Note also that T needs not be surjective in (S-i).

2.2. Preparations of the proof.

In subsection 2.3, we will show that any ismetry (with respect to the

metric induced by the c-spectral norm) on SO(n) is of one of the form

(S-a), (S-b), (S-c) or (S-d) of Theorem 2.1.1. In this subsection, we

exhibit necessary definitions and results which are applied in subsection

2.3.

Any isometry (with respect to the metric induced by ‖ · ‖c) from

SO(n) into itself is surjective as SO(n) is compact. In general, we see

the following.

Lemma 2.2.1. [3, Excerecise 2.4.1] Let (X, d) be a compact metric

space. Suppose that T is an isometry from (X, d) into itself. Then T

is surjective.

Proof. Clearly, Tm(X) is a non-empty compact closed subset of X,

where Tm denotes the m-times composition of T for a positive integer
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m. For any positive integer m, Tm+1(X) ⊆ Tm(x) holds. Thus, we

have
⋂
m∈N T

m(X) is non-empty and compact. Assume now that T

is not surjective. From this assumption, there exists an element x0 ∈

X \
⋂
m∈N T

m(X). Since
⋂
m∈N T

m(X) is compact, we have

d(x0,
⋂
m∈N

Tm(X)) > 0.

Since X is a compact metric space, the sequence {Tm(x0)}m∈N have a

convergent subsequence {T ik(x0)}k∈N and denote

(1) y0 = lim
k→∞

T ik(x0).

We claim that

(2) y0 ∈
⋂
k∈N

T ik(X).

If y0 /∈
⋂
k∈N T

ik(X), then there exists k0 such that y0 /∈ T ik0 (X). Thus,

r = d(y0, T
ik0 (X)) > 0. Hence d(y0, T

ik(X)) ≥ r for all k ≥ k0 because

{T ik(X)}k∈N is a decreasing sequence. It is contradictory to (1) and

we have (2). On the other hand, we have

d(y0,
⋂
m∈N

Tm(X)) = d( lim
k→∞

T ik(x0),
⋂
m∈N

Tm(X))

= lim
k→∞

d(T ik(x0),
⋂
m∈N

Tm(X))

= lim
k→∞

d(x0,
⋂
m∈N

Tm(X))

= d(x0,
⋂
m∈N

Tm(X)) > 0

because T is an isometry. It is contradictory to (2). The proof is

complete. �
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Following Definitions 2.2.2, 2.2.3, Proposition 2.2.4 and Lemma 2.2.5

are described in the paper [7]. Proposition 2.2.4 and Lemma 2.2.5 are

applied to prove Lemma 2.3.2. Definitions 2.2.2, 2.2.3 and Proposition

2.2.4 are studied more generally in the paper [6].

Definition 2.2.2. Let (X, d) be a metric space, where X is a nonempty

subset of a group G with the property that yx−1y ∈ X for every pair

x, y ∈ X. Let a, b ∈ X. We say that B(a, b) holds for (X, d) if the

following are fulfilled:

(B1): d(bx−1b, by−1b) = d(x, y) for every x, y ∈ X.

(B2): There exists a positive real number K > 1 such that

d(bx−1b, x) ≥ Kd(x, b)

for all x ∈ La,b, where

La,b = {x ∈ X : d(a, x) = d(ba−1b, x) = d(a, b)}.

Definition 2.2.3. Let (X, d) be a metric space, where X is a nonempty

subset of a group G with the property that yx−1y ∈ X for every pair

x, y ∈ X. Let a, b ∈ X. We say that C1(a, b) holds for (X, d) if the

following are fulfilled:

(C1): ax−1b, bx−1a ∈ X for any x ∈ X.

(C2): d(ax−1b, ay−1b) = d(x, y) for any pair x, y ∈ X.

Proposition 2.2.4. [7] Let (Xi, di) be a metric space, where Xi is a

nonempty subset of a group Gi with the property that yx−1y ∈ Xi for

every pair x, y ∈ Xi, for 1=1,2. Let φ : X1 → X2 be a surjective
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isometry. Pick a, b ∈ X1. Suppose that B(a, b) holds for (X1, d1) and

C1(φ(a), φ(ba−1b)) holds for (X2, d2). Then we have

φ(ba−1b) = φ(b)(φ(a))−1φ(b).

Lemma 2.2.5. [7] For i=1,2, let Gi be a group and Xi a nonempty

subset of Gi such that yx−1y∈Xi for every pair x, y∈Xi. Suppose that

φ : X1 → X2 is a map, m is a positive integer, and {ak}2
m

k=0 is a finite

sequence in X1 such that we have

ak+1a
−1
k ak+1 = ak+2

and

φ(ak+1a
−1
k ak+1) = φ(ak+1)(φ(ak))

−1φ(ak+1)

for all 0 ≤ k ≤ 2m − 2. Then we have that

a2m−1a−10 a2m−1 = a2m

and

φ(a2m−1a−10 a2m−1) = φ(a2m−1)(φ(a0))
−1φ(a2m−1).

In the paper [12], Li and Tsing studied isometries (with respect to

the metric induced by ‖·‖c) on the space of the symmetric matrices and

the space of the skew-symmetric matrices. Theorem 2.2.6 is a part of

Theorem 4.1 in [12].

Theorem 2.2.6. Let S be a linear map from Kn(R) into itself and

c ∈ Rn
+↓. Then the following (K-i) and (K-ii) are equivalent

(K-i) S is an isometry with respect to the metric induced by ‖ · ‖c,

that is, ‖S(A)− S(B)‖c = ‖A−B‖c for every pair A,B ∈ Kn(R).
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(K-ii) There exists O ∈ O(n) such that S is of one of the following

form:

(K-a): S(A) = OAO−1 for every A ∈ Kn(R),

(K-b): S(A) = −OAO−1 for every A ∈ Kn(R),

(K-c): n = 4 and S(A) = OA+O−1 for every A ∈ K4(R),

(K-d): n = 4 and S(A) = −OA+O−1 for every A ∈ K4(R).

2.3. Necessary conditions for isometries.

Lemma 2.3.1. Let c ∈ Rn
+↓. Suppose that T : SO(n) → SO(n) is an

isometry with respect to the metric d induced by the norm ‖ · ‖c. Then

T (Y X−1Y ) = T (Y )(T (X))−1T (Y )

for every pair X, Y ∈ SO(n) that satisfy ‖X − Y ‖c < 1
2
.

Proof. First, we note that T is surjective by Lemma 2.2.1 since SO(n)

is compact. Clearly, the conditions C1(T (Y ), T (Y X−1Y )) and (B1) of

B(X, Y ) are satisfied. It remains to check (B2). Let X, Y ∈ SO(n)

such that d(X, Y ) < 1
2

and setting K = 2 − 2d(X, Y ) > 1. We assert

that the inequality

d(Y Z−1Y, Z) ≥ Kd(Z, Y )

holds for any Z ∈ LX,Y , where

LX,Y = {Z ∈ SO(n) : d(X,Z) = d(Y X−1Y, Z) = d(X, Y )}.

To prove this, let Z ∈ LX,Y . Then

d(Z, Y ) ≤ d(Z,X) + d(X, Y ) = 2d(X, Y )
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and thus

2− d(Z, Y ) ≥ 2− 2d(X, Y ) = K.

We check

d(Z, Y ) = ‖Z − Y ‖c = ‖Y −1Z − In‖c

and

d(Y Z−1Y, Z) = ‖Y Z−1Y − Z‖c = ‖Y Z−1Y Z−1 − In‖c

= ‖(Y Z−1 + In)(Y Z−1 − In)‖c.

From the assumption that c1 = 1, we have

2‖Y Z−1 − In‖c − ‖(Y Z−1 + In)(Y Z−1 − In)‖c

≤‖
(
2In − (Y Z−1 + In)

)
(Y Z−1 − In)‖c

≤‖Y Z−1 − In‖2c .

Thus,

Kd(Z, Y ) ≤
(
2− d(Z, Y )

)
d(Z, Y )

= 2‖Y Z−1 − In‖c − ‖Y Z−1 − In‖2c

≤ ‖(Y Z−1 + In)(Y Z−1 − In)‖c

= d(Y Z−1Y, Z)

This gives us that the condition (B2) holds. Applying Proposition 2.2.4

we have

T (Y X−1Y ) = T (Y )(T (X))−1T (Y )

for all X, Y ∈ SO(n) with d(X, Y ) < 1
2
. �
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The following lemma asserts that any isometry (with respect to the

metric induced by ‖ · ‖c) on SO(n) preserves the inverted Jordan prod-

uct.

Lemma 2.3.2. Let c ∈ Rn
+↓. Suppose that T : SO(n) → SO(n) is an

isometry with respect to the metric induced by the norm ‖ · ‖c. Then

(3) T (Y X−1Y ) = T (Y )(T (X))−1T (Y )

for every pair X, Y ∈ SO(n).

Proof. Pick X, Y ∈ SO(n). Since X−1Y ∈ SO(n), there exists W ∈

Kn(R) such that exp(W ) = X−1Y . Let m be a positive integer such

that exp
(‖W‖c

2m

)
< 3

2
. Then

‖ exp
W

2m
− In‖c ≤ exp

‖W‖c
2m

− 1 <
1

2

by the assumption c1 = 1. Let

Ak = X exp
kW

2m

for each integer 0 ≤ k ≤ 2m+1. Then A0 = X, A2m = Y , A2m+1 =

Y X−1Y . We have

Ak+1(Ak)
−1Ak+1 = (X exp

(k + 1)W

2m
)(X exp

kW

2m
)−1(X exp

(k + 1)W

2m
)

= (X exp
(k + 1)W

2m
)(
kW

2m
)−1X−1(X exp

(k + 1)W

2m
)

= X exp
(k + 2)W

2m

= Ak+2
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for any 0 ≤ k ≤ 2m+1 − 2. We also have

‖Ak+1 − Ak‖ = ‖X exp
(k + 1)W

2m
−X exp

kW

2m
‖c

= ‖(X exp
kW

2m
)(exp

W

2m
− In)‖c

= ‖ exp
W

2m
− In‖c <

1

2

since X exp kW
2m
∈ SO(n) for any 0 ≤ k ≤ 2m+1 − 1. By Lemma 2.3.1,

it follows that

T (Ak+1(Ak)
−1Ak+1) = T (Ak+1)(T (Ak))

−1T (Ak+1)

for every 0 ≤ k ≤ 2m+1 − 2. Applying Lemma 2.2.5, we deduce that

T (Y X−1Y ) = T (A2m(A0)
−1A2m)

= T (A2m)(T (A0))
−1T (A2m)

= T (Y )(T (X))−1T (Y ).

So we have (3). �

Corollary 2.3.3. Let c ∈ Rn
+↓. Suppose that T0 : SO(n) → SO(n) is

an isometry with respect to the metric induced by the norm ‖ · ‖c and

T0(In) = In. Then

(4) T0(Y XY ) = T0(Y )T0(X)T0(Y )

for every pair X, Y ∈ SO(n).

Proof. By Lemma 2.3.2, T0(Y X
−1Y ) = T0(Y )(T0(X))−1T0(Y ) for any

pair X, Y ∈ SO(n). In particular,

T0(X
−1) = T0(InX

−1In)

= T0(In)(T0(X))−1T0(In) = (T0(X))−1
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for any X ∈ SO(n). Thus

T0(Y XY ) = T0(Y )T0(X)T0(Y )

for any pair X, Y ∈ SO(n). �

Lemma 2.3.4. Let A ∈ Kn(R) and c ∈ Rn
+↓. Suppose that T0 :

SO(n) → SO(n) is an isometry with respect to the metric induced by

the norm ‖ · ‖c and T0(In) = In. Let SA(t) = T0(exp(tA)) for t ∈ R.

Then SA : R→ SO(n) is a one-parameter group.

Proof. As T0(In) = In, for every X ∈ SO(n) and for any non-negative

integer m, we have

T0(X
m) = (T0(X))m

by the equation (4). Moreover,

T0(X
k) = (T0(X))k

for any integer k since T0(X
−1) = (T0(X))−1. We show that SA(t+t′) =

SA(t)SA(t′) holds for any pair t, t′ ∈ R. First, let r = k
m

and r′ = k′

m′
be

rational numbers with integers k, k′ and natural numbers m,m′. We

compute

SA(r + r′) = T0(exp(
km′ + k′m

mm′
A)) = (T0(exp(

1

mm′
A)))km

′+k′m

= (T0(exp(
1

mm′
)))km

′
(T0(exp(

1

mm′
)))k

′m = SA(r)SA(r′).

So we have SA(r + r′) = SA(r)SA(r′) for any rational numbers r, r′.

Thus SA(t+ t′) = SA(t)SA(t′) holds for any pair t, t′ ∈ R because T0 is

continuous. �



16 TOSHIKAZU ABE

The following proposition gives us the necessary condition for the

isometries on SO(n).

Proposition 2.3.5. Let c ∈ Rn
+↓. Suppose that T : SO(n) → SO(n)

is an isometry with respect to ‖ · ‖c. Then there exists O ∈ O(n) such

that T is of one of the following form:

(S-a): T (X) = T (In)OXO−1 for every X ∈ SO(n),

(S-b): T (X) = T (In)OX−1O−1 for every X ∈ SO(n),

(S-c): n = 4 and T (exp(A)) = T (I4)O(exp(A+))O−1 for every

A ∈ K4(R),

(S-d): n = 4 and T (exp(A)) = T (I4)O(exp(A+))−1O−1 for every

A ∈ K4(R).

Proof. First, we note that T is surjective by Lemma 2.2.1. Put T0(·) =

(T (In))−1T (·). Then T0 is also a surjective isometry on SO(n). Lemma

2.3.4 shows that SA : R→ SO(n) is a one-parameter group for any A ∈

Kn(R), where SA(t) = T0(exp(tA)) for any t ∈ R. It follows that there

exists a unique element f(A) ∈ Kn(R) such that SA(t) = exp(tf(A))

for all t ∈ R. We constitute the map f : Kn(R)→ Kn(R).

We assert that f is surjective. Since T−10 : SO(n) → SO(n) is

surjective isometry, in the same way as above, there is a map g :

Kn(R)→ Kn(R) such that T−10 (exp(tA)) = exp(tg(A)) for every t ∈ R

and A ∈ Kn(R). We have exp(tA) = T0(exp(tg(A))) = exp(tf(g(A)))

for all t ∈ R and A ∈ Kn(R). It follows that f(g(A)) = A for any

A ∈ Kn(R), so f is surjective.
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We next show that f is a real-linear isometry. It is easy to check

f(0) = 0. As T0 is an isometry, we have

‖A−B‖c = lim
t→0

∥∥∥∥exp(tA)− exp(tB)

t

∥∥∥∥
c

= lim
t→0

∥∥∥∥T0(exp(tA))− T0(exp(tB)

t

∥∥∥∥
c

= lim
t→0

∥∥∥∥exp(tf(A))− exp(tf(B))

t

∥∥∥∥
c

= ‖f(A)− f(B)‖c

for any pair A,B ∈ Kn(R). We observe that f : Kn(R) → Kn(R) is a

surjective isometry. Then f is a real-linear isometry by the celebrated

Mazur-Ulam theorem.

By Theorem 2.2.6 there exists O ∈ O(n) such that f is of one of the

form (K-a), (K-b), (K-c) or (K-d). Suppose that f is of the form of

(K-a), then

T0(X) = exp(f(A)) = exp(OAO−1) = O exp(A)O−1 = OXO−1

for any X ∈ SO(n), where X = exp(A) for A ∈ Kn(R). So we have

(S-a). In the same way, (S-b), (S-c) and (S-d) obtained by (K-b), (K-c)

and (K-d) respectively. �

2.4. The B-C-H formula of Fujii and Suzuki.

If a map T on SO(n) is of the form (S-a) or (S-b) in Theorem 2.1.1,

then T is a surjective isometry since c-spectral norm is a unitarily

invariant norm. We will show in subsection 2.5 that if T is of the

form (S-c) or (S-d), then T is also an isometry. For the proof of this,
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we make use of the Baker-Cambell-Hausdorff (B-C-H) formula of Fujii

and Suzuki [4] for SO(4) (Theorem 2.4.2). A special emphasis is on the

range of sin−1 ρ, which is not stated clearly in [4], that 0≤sin−1 ρ≤π

depending not only on ρ itself but also the value

cos|x|cos|y| − sin|x|sin|y|
|x||y|

〈x,y〉.

To prove Theorem 2.4.2, Fujii and Suzuki applied B-C-H formula for

SU(2), the special unitary group of the degree 2 (Theorem 2.4.1).

Let {σ1, σ2, σ3} be Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
and

H0(2;C) = {x1σ1 + x2σ2 + x3σ3 : x1, x2, x3∈R}.

It is well known that

σ2
i = E2 (i = 1, 2, 3),

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2,

σiσj = −σjσi (i, j = 1, 2, 3, i 6= j)

and iH0(2;C) is the Lie algebra of the 2-dimensional special unitary

group SU(2). For any X = x1σ1 + x2σ2 + x3σ3 ∈ H0(2;C), we denote

x =

x1x2
x3

 .

For any x,y ∈ R3, we put

α(x,y) =
sin−1 ρ

ρ

sin |x| cos |y|
|x|

,

β(x,y) =
sin−1 ρ

ρ

cos |x| sin |y|
|y|

,

γ(x,y) =
sin−1 ρ

ρ

sin |x| sin |y|
|x||y|
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with

ρ≡ρ(x,y) =
{

sin2|x|cos2|y|+ sin2|y| − sin2|x|sin2|y|
|x|2|y|2

〈x,y〉2

+
2sin|x|cos|x|sin|y|cos|y|

|x||y|
〈x,y〉

} 1
2

and

0≤sin−1ρ≤π,

cos(sin−1ρ) = cos|x|cos|y| − sin|x|sin|y|
|x||y|

〈x,y〉.
(5)

The following is the B-C-H formula for SU(2). In the paper [4], it is

not stated clearly the condition (5). We restate it with a proof.

Theorem 2.4.1 ([4]). Let X, Y ∈ H0(2;C).Then

exp(iX) exp(iY ) = exp(iZ0),

where Z0 = α(x,y)X + β(x,y)Y + i
2
γ(x,y)(XY − Y X).

Proof. It is well known that

exp(i(a1σ1 + a2σ2 + a3σ3)) = cos rI2 +
sin r

r
i(a1σ1 + a2σ2 + a3σ3),

where r =
√
a21 + a22 + a23, for any triple a1, a2, a3∈R. PickX, Y ∈H0(2;C).

By an elementary calculation, we have

XY = 〈x,y〉I2 +
1

2
(XY − Y X),
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where 〈·, ·〉 is the Euclidean inner product on R3. Thus, we have

exp(iX)exp(iY ) =

{
cos|x|I2 +

sin|x|
|x|

iX

}{
cos|y|I2 +

sin|y|
|y|

iY

}
=

{
cos|x|cos|y| − sin|x|sin|y|

|x||y|
〈x,y〉

}
I2

+ i
sin|x|cos|y|
|x|

X + i
cos|x|sin|y|
|y|

Y

− sin|x|sin|y|
|x||y|

1

2
(XY − Y X).

First, there is Z∈H0(2;C) such that exp(iX)exp(iY ) = exp(iZ) be-

cause exp(iH0(2;C)) = SU(2). Thus, we have

exp(iZ) = cos|z|I2 +
sin|z|
|z|

iZ.

Since {I2, σ1, σ2, σ3} is linearly independent, we have

cos|z| = cos|x|cos|y| − sin|x|sin|y|
|x||y|

〈x,y〉

and

sin|z|
|z|

Z =
sin|x|cos|y|
|x|

X +
cos|x|sin|y|
|y|

Y

+
sin|x|sin|y|
|x||y|

i

2
(XY − Y X).

Hence

∣∣∣∣cos |x| cos |y| − sin |x| sin |y|
|x||y|

〈x,y〉
∣∣∣∣ ≤ 1.
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Moreover,

sin2 |z| =1− cos2 |z|

=1−
{

cos |x| cos |y| − sin |x| sin |y|
|x||y|

〈x,y〉
}2

= sin2 |x| cos2 |y|+ sin2 |y| − sin2 |x| sin2 |y|
|x|2|y|2

〈x,y〉2

+
2 sin |x| cos |x| sin |y| cos |y|

|x||y|
〈x,y〉

=ρ2

Therefore, we can choose 0 ≤ r ≤ π such satisfies

cos r = cos |x| cos |y| − sin |x| sin |y|
|x||y|

〈x,y〉

sin r = ρ,

and denote sin−1 ρ = r. Put

Z0 = αX + βY + γ
i

2
(XY − Y X).

Then

Z0 =
sin−1 ρ

ρ

{sin |x| cos |y|
|x|

X +
cos |x| sin |y|

|y|
Y

+
sin |x| sin |y|
|x||y|

i

2
(XY − Y X)

}
=

sin−1 ρ

ρ

sin |z|
|z|

Z.

It follows that

|z0| =
sin−1 ρ

ρ

| sin |z||
|z|

|z| = sin−1 ρ = r

since ρ = | sin |z||. Thus, we have

sin |z0| = sin r = ρ,

cos |z0| = cos r = cos |x| cos |y| − sin |x| sin |y|
|x||y|

〈x,y〉
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and hence

sin |z|
|z|

Z =
sin |z0|
|z0|

Z0.

It follows that exp(iZ0) = exp(iZ). As desired, we have

exp(iZ0) = exp(iX) exp(iY ).

�

We note that aii = 0 and aij = −aji for any 1 ≤ i, j ≤ 4 for

A = (aij) ∈ K4(R). Put

ϕ1(A) =
a12 + a34

2
, ϕ2(A) =

a13 − a24
2

, ϕ3(A) =
a14 + a23

2
,

ψ1(A) =
a12 − a34

2
, ψ2(A) = −a13 + a24

2
, ψ3(A) =

a14 − a23
2

.

for any A = (aij) ∈ K4(R). For any A = (aij) ∈ K4(R), define the

element of H0(2;C)

Φ(A) = ϕ1(A)σ1 + ϕ2(A)σ2 + ϕ3(A)σ3,

Ψ(A) = ψ1(A)σ1 + ψ2(A)σ2 + ψ3(A)σ3

and

−→
Φ (A) =

ϕ1(A)
ϕ2(A)
ϕ3(A)

 ,
−→
Ψ(A) =

ψ1(A)
ψ2(A)
ψ3(A).

 ∈ R3.

Put

α1(A,B) = α(
−→
Φ (A),

−→
Φ (B)), α2(A,B) = α(

−→
Ψ(A),

−→
Ψ(B)),

β1(A,B) = β(
−→
Φ (A),

−→
Φ (B)), β2(A,B) = β(

−→
Ψ(A),

−→
Ψ(B)),

γ1(A,B) = γ(
−→
Φ (A),

−→
Φ (B)), γ2(A,B) = γ(

−→
Ψ(A),

−→
Ψ(B)),

for any pair A,B ∈ K4(R). Let R be the unitary matrix which is called

the magic matrix by Makhlin

R =
1√
2


1 0 0 −i
0 −i −1 0
0 −i 1 0
1 0 0 i

 .
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Put

fs(A,B) =

{
α1(A,B)Φ(A) + β1(A,B)Φ(B)

+
i

2
γ1(A,B) (Φ(A)Φ(B)− Φ(B)Φ(A))

}
⊗ E2

+ E2 ⊗
{
α2(A,B)Ψ(A) + β2(A,B)Ψ(B)

+
i

2
γ2(A,B) (Ψ(A)Ψ(B)−Ψ(B)Ψ(A))

}
and define

(6) BCH(A,B) = iR∗fs(A,B)R.

The following is the B-C-H formula for SO(4). It was proved by ap-

plying Theorem 2.4.1.

Theorem 2.4.2 ([4]). Let A,B ∈ K4(R). Then

exp(A) exp(B) = exp(BCH(A,B)).

2.5. Exceptional forms of isometries on SO(4).

In this subsection, we prove that the map exp(A)7→exp(A+) is an

isometry (with respect to the metric induced by ‖·‖c) on SO(4) (The-

orem 2.5.3).

The following proposition is easily proved by an elementary calcula-

tion. We can apply to prove Lemma 2.5.2.
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Proposition 2.5.1.

det



a z w 0
z b 0 w
w 0 −b z
0 w z −a

− λI4


=λ4 − {a2 + b2 + 2(|z|2 + |w|2)}λ2 + (ab+ |w|2 − |z|2)2

for every a, b ∈ R, z, w, λ ∈ C.

Proof.∣∣∣∣∣∣∣∣
a− λ z w 0
z b− λ 0 w
w 0 −b− λ z
0 w z −a− λ

∣∣∣∣∣∣∣∣
=(a− λ)

∣∣∣∣∣∣
b− λ 0 w

0 −b− λ z
w z −a− λ

∣∣∣∣∣∣
− z

∣∣∣∣∣∣
z w 0
0 −b− λ z
w z −a− λ

∣∣∣∣∣∣+ w

∣∣∣∣∣∣
z w 0

b− λ 0 w
w z −a− λ

∣∣∣∣∣∣
=(a− λ){(b− λ)(−b− λ)(−a− λ)− (b− λ)|z|2 − (b− λ)|w|2}

− z{(−a− λ)(−b− λ)z + |w2z| − z|z|2}

+ w{w|w|2 − w|z|2 − (−a− λ)(b− λ)w}

=(a2 − λ2)(b2 − λ2)− {ab− (a+ bλ+ λ2)}|z|2

+ {ab+ (a− b)λ− λ2}|w|2 − {ab+ (a+ bλ+ λ2)}|z|2

+ {ab− (a− b)λ− λ2}|w|2 + |z|4 − 2|z|2|w|2 + |w|4

={λ4 − (a2 + b2)λ2 + a2b2}

− 2ab|z|2 − 2|z|2λ2 + 2ab|w|2 − 2|w|2λ2 + (|z|2 − |w|2)2

=λ4 − {a2 + b2 + 2(|z|2 + |w|2)}λ2 + (ab+ |w|2 − |z|2)2

�
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For any matrix X, let PX denote the characteristic polynomial of X.

Lemma 2.5.2.

PBCH(A,B) = PBCH(A+,B+)

holds for every pair of A,B ∈ K4(R).

Proof. To begin the proof, we describe the form of Pfs(A,B) for A,B ∈

K4(R). Pick A,B ∈ K4(R). It is easy to check

Φ(A)Φ(B)− Φ(B)Φ(A) =2i{ϕ2(A)ϕ3(B)− ϕ3(A)ϕ2(B)}σ1

+ 2i{ϕ3(A)ϕ1(B)− ϕ1(A)ϕ3(B)}σ2

+ 2i{ϕ1(A)ϕ2(B)− ϕ2(A)ϕ1(B)}σ3

and hence

α1(A,B)Φ(A) + β1(A,B)Φ(B)

+
i

2
γ1(A,B) (Φ(A)Φ(B)− Φ(B)Φ(A))

=
3∑
j=1

Xj(A,B)σj,

where

X1(A,B) =α1(A,B)ϕ1(A) + β1(A,B)ϕ1(B)

− γ1(A,B)(ϕ2(A)ϕ3(B)− ϕ3(A)ϕ2(B)),

X2(A,B) =α1(A,B)ϕ2(A) + β1(A,B)ϕ2(B)

− γ1(A,B)(ϕ3(A)ϕ1(B)− ϕ1(A)ϕ3(B)),

X3(A,B) =α1(A,B)ϕ3(A) + β1(A,B)ϕ3(B)

− γ1(A,B)(ϕ1(A)ϕ2(B)− ϕ2(A)ϕ1(B)).
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In the same way,

α2(A,B)Ψ(A) + β2(A,B)Ψ(B)

+
i

2
γ2(A,B) (Ψ(A)Φ(B)−Ψ(B)Ψ(A))

=
3∑
j=1

Yj(A,B)σj,

where
Y1(A,B) =α2(A,B)ψ1(A) + β2(A,B)ψ1(B)

− γ2(A,B)(ψ2(A)ψ3(B)− ψ3(A)ψ2(B)),

Y2(A,B) =α2(A,B)ψ2(A) + β2(A,B)ψ2(B)

− γ2(A,B)(ψ3(A)ψ1(B)− ψ1(A)ψ3(B)),

Y3(A,B) =α2(A,B)ψ3(A) + β2(A,B)ψ3(B)

− γ2(A,B)(ψ1(A)ψ2(B)− ψ2(A)ψ1(B)).

Then

fs(A,B)

=
(∑3

j=1
Xj(A,B)σj

)
⊗I2 + I2⊗

∑3

j=1
Yj(A,B)σj

=

(
X3(A,B) X1(A,B)− iX2(A,B)

X1(A,B) + iX2(A,B) −X3(A,B)

)
⊗
(

1 0
0 1

)
+

(
1 0
0 1

)
⊗
(

Y3(A,B) Y1(A,B)− iY2(A,B)
Y1(A,B) + iY2(A,B) −Y3(A,B)

)
=

(
X3(A,B) + Y3(A,B) Y1(A,B) − iY2(A,B) X1(A,B) − iX2(A,B) 0
Y1(A,B) + iY2(A,B) X3(A,B) − Y3(A,B) 0 X1(A,B) − iX2(A,B)
X1(A,B) + iX2(A,B) 0 −X3(A,B) + Y3(A,B) Y1(A,B) − iY2(A,B)

0 X1(A,B) + iX2(A,B) Y1(A,B) + iY2(A,B) −X3(A,B) − Y3(A,B)

)
.

By applying proposition 2.5.1, we obtain

Pfs(A,B)(λ) = λ4 − 2

{
3∑
j=1

Xj(A,B)2 +
3∑
j=1

Yj(A,B)2

}
λ2

+

{
3∑
j=1

Xj(A,B)2 −
3∑
j=1

Yj(A,B)2

}2

.
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We assert that
3∑
j=1

Xj(A,B)2 =
3∑
j=1

Xj(A
+, B+)2,

3∑
j=1

Yj(A,B)2 =
3∑
j=1

Yj(A
+, B+)2

for any pair A,B ∈ K4(R). By definition, it is apparent that

−→
Φ (C+) =

ϕ1(C
+)

ϕ2(C
+)

ϕ3(C
+)

 =

ϕ1(C)
ϕ2(C)
ϕ3(C)

 =
−→
Φ (C),

for C ∈ K4(R) and hence

α1(A
+, B+) = α1(A,B), β1(A

+, B+) = β1(A,B), γ1(A
+, B+) = γ1(A,B).

It follows that Xi(A
+, B+) = Xi(A,B) for i = 1, 2, 3. Hence

3∑
i=1

Xi(A
+, B+) =

3∑
i=1

Xi(A,B).

In the same way, we have

−→
Ψ(C+) =

ψ1(C
+)

ψ2(C
+)

ψ3(C
+)

 =

 ψ1(C)
ψ2(C)
−ψ3(C)

 ,

and |
−→
Ψ(C+)| = |

−→
Ψ(C)| for C ∈ K4(R). Hence

α2(A
+, B+) = α2(A,B), β2(A

+, B+) = β2(A,B), γ2(A
+, B+) = γ2(A,B).

Moreover, by an elementary calculation, we see that

3∑
j=1

Yj(A,B)2 = α2(A,B)2
3∑
j=1

ψj(A)2 + β2(A,B)2
3∑
j=1

ψj(B)2

+ γ2(A,B)2
{(
ψ2(A)ψ3(B)− ψ3(A)ψ2(B)

)2
+
(
ψ3(A)ψ1(B)− ψ1(A)ψ3(B)

)2
+
(
ψ1(A)ψ2(B)− ψ2(A)ψ1(B)

)2}
+ 2α2(A,B)β2(A,B)

(
ψ1(A)ψ1(B) + ψ2(A)ψ2(B) + ψ3(A)ψ3(B)

)
.
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We have
3∑
i=1

Yi(A
+, B+)2 =

3∑
i=1

Yi(A,B)2.

Thus, we obtain Pfs(A+,B+) = Pfs(A,B). It follows that PBCH(A+,B+) =

PBCH(A,B) since (6). �

Theorem 2.5.3. For every pair of A,B ∈ K4(R)

‖ exp(A)− exp(B)‖c = ‖ exp(A+)− exp(B+)‖c.

Proof. Pick A,B ∈ K4(R). By Lemma 2.5.2, we have PBCH(A+,−B+) =

PBCH(A,−B). We see that the eigenvalues of exp(BCH(A+, B+)) − I4

agree with the eigenvalues of exp(BCH(A,B)) − I4 by applying the

spectral mapping theorem. Since exp(BCH(A+, B+)) and exp(BCH(A,B))

are special orthogonal matrices, these are also normal matrices. Hence,

exp(BCH(A+, B+))−I4 and exp(BCH(A,B))−I4 are also normal ma-

trices. For any normal matrix, the singular values coincide with the

absolute values of the eigenvalues. It follows that

‖exp(A)exp(−B)− I4‖c = ‖exp(A+)exp(−B+)− I4‖c

Since ‖·‖ is a unitarily invariant norm, we have

‖exp(A)− exp(B)‖c = ‖exp(A+)− exp(B+)‖c

as desired. �

2.6. The proof of the main result of section 2.

Proof of Theorem 2.1.1. (S-i)⇒(S-ii): By Proposition 2.3.5.
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(S-ii)⇒(S-i): It is clear that T is an isometry if T is of the form (S-a)

or (S-b) because ‖·‖c is a unitarily invariant norm. Suppose that T is

of the form (S-c). Note that Theorem 2.5.3 implies that exp(A+) =

exp(B+) if and only if exp(A) = exp(B) for A,B ∈ K4(R). Hence, T

is well defined map on SO(n). Since ‖·‖c is a unitarily invariant norm,

by Theorem 2.5.3, we have that

‖T (exp(A)− T (exp(B)))‖c = ‖O exp(A+)O−1 −O exp(B+)O−1‖c

= ‖ exp(A+)− exp(B+)‖c

= ‖ exp(A)− exp(B)‖c

as desired. If T is of the form (S-d), in a way similar to the case of

(S-c), we have

‖T (exp(A)− T (exp(B)))‖c = ‖O exp(−A+)O−1 −O exp(−B+)O−1‖c

= ‖ exp(−A+)− exp(−B+)‖c

= ‖ exp(−A)− exp(−B)‖c

= ‖ exp(A)− exp(B)‖c.

The proof is complete. �
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3. Gyrometric preserving maps

In Newtonian mechanics, the set of all velocities coincides with 3-

dimensional Euclidean space R3 and can treat as an inner product

space. On the other hand, in special relativity, the magnitude of a

velocity must not exceed the speed of light in vacuum c. The set of

all Einstein velocities coincides to R3
c = {u ∈ R3 : ‖u‖ < c} and the

Einstein velocity addition ⊕E in R3
c is given by the equation

u⊕Ev =
1

1 + 〈u,v〉
c2

{
u +

1

γu
v +

1

c2
γu

1 + γu
〈u,v〉u

}
for all u,v ∈ R, where 〈·, ·〉 is the Euclidean inner product and γu is

the Lorentz factor given by

γu =

√
1

1− ‖u‖2
c2

.

The Einstein velocity addition ⊕E is non-commutative and

non-associative on R3
c and hence (R3

c ,⊕E) does not have a group struc-

ture. Thus, it is not appropriate to treat the set of all Einstein velocities

as a linear space. However, (R3
c ,⊕E) has a gyrocommutative gyrogroup

structure and is called the Einstein gyrogroup. The (gyrocommutative)

gyrogroup is a generalization of the (commutative) group. Some gyro-

commutative gyrogroups can be treated as a gyrovector space with a

scalar multiplication. The gyrovector space is a generalization of the

positive definite real inner product space. The gyrovector space has

several linds of structures. Especially, we consider the gyrometric in

this section.
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In this section, we give a complete description of all gyrometric pre-

serving self-maps on the models of the gyrovector space, the Einstein

gyrovector spaces, the Möbius gyrovector spaces and the PV (Proper

Velocity) gyrovector spaces. We can show that the gyrometric preserv-

ing self-maps on these models preserve their gyrovector space struc-

tures.

In the following of the section, V denotes a real inner product space

with the vector addition + and a positive definite inner product 〈·, ·〉.

We say that an inner product 〈·, ·〉 is positive definite if the following

holds; 〈u,v〉 = 0 for all u ∈ V implies v = 0. We denote by ‖ · ‖ the

norm on V induced by 〈·, ·〉 and B denotes the open unit ball of V;

B = {u ∈ V : ‖u‖ < 1}.

3.1. Gyrogroups.

In the book [16], Ungar studied gyrocommutative gyrogroups. In this

subsection, we recall the definition of (gyrocommutative) gyrogroups

and some examples based on [16].

Definition 3.1.1. A groupoid (S,+) is a nonempty set, S, with a

binary operation, + : S × S → S. An automorphism φ of a groupoid

(S,+) is a bijective self-map of S, φ : S → S, which preserves its

groupoid operation, that is, φ(a + b) = φ(a) + φ(b) for all a, b ∈ S.

Aut(S,+) is the set of all automorphism of a groupoid (S,+).

A gyrogroup is defined as follows in [16].
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Definition 3.1.2. A groupoid (G,⊕) is a gyrogroup if it satisfies the

following axioms.

(G1): There is an element, 0 ∈ G, called a left identity, satisfying

0⊕ a = 0,

for all a ∈ G;

(G2): There is an element 0 satisfying axiom (G1) such that for

each a ∈ G there is an element 	a, called a left inverse of a,

satisfying

	a⊕ a = 0;

(G3): For any triple a, b, c ∈ G there exists a unique element

gyr[a, b]c ∈ G such that the binary operation obeys the left

gyroassociative law

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c;

(G4): The map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an

automorphism of the groupoid (G,⊕),

gyr[a, b] ∈ Aut(G,⊕).

The automorphism gyr[a, b] of G is called gyroautomorphism

of G generated by a, b ∈ G. The operator gyr : G × G →

Aut(G,⊕) is called gyrator of G;

(G5): The gyroautomorphism gyr[a, b] generated by any a, b ∈ G

possesses the left loop property

gyr[a⊕ b, b] = gyr[a, b]

for any a, b ∈ G.
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As in group theory, we use the notation

a	b = a⊕(	b)

in gyrogroup theory as well.

Definition 3.1.3. [16] A gyrogroup (G,⊕) is gyrocommutative if its

binary operation obey the gyrocommutative law

(G6): a⊕ b = gyr[a, b](b⊕ a).

for all a, b ∈ G.

By definition, it is easy to see that a (commutative) group is a (gyro-

commutative) gyrogroup which all of gyroautomorphisms are the iden-

tity map on G. The following examples are studied in [16] and an

object of our study in this section.

Example 3.1.4. Let s > 0 and Vs be the s-ball of V. Einstein addition

⊕E is the binary operation in Vs given by the equation

u⊕E v =
1

1 + 〈u,v〉
s2

{(
1 +

1

s2
γu〈u,v〉
1 + γu

)
u +

1

γu
v

}
=

1

1 + 〈u,v〉
s2

{(
1 +

1

s2
〈u,v〉
1 + αu

)
u + αuv

}
where γu is the gamma factor γu = (1 − ‖u‖

2

s2
)−

1
2 in the s-ball Vs and

αu = γ−1u . (Vs,⊕E) is a gyrocommutative gyrogroup and called the

Einstein gyrogroup. The identity of (Vs,⊕E) is the zero vector of V

and 	Eu = −u for any u ∈ Vs.
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Example 3.1.5. Möbius addition ⊕M is the binary operation in the

open unit disc D = {z ∈ C : |z| < 1} given by the equation

a⊕M b =
a+ b

1 + ab

(D,⊕M) is a gyrocommutative gyrogroup. The identity of (D,⊕M) is

0 and the inverse element of a ∈ (D,⊕M) is −a.

Let us identify the complex plane C with the Euclidean plane R2 in

the usual sense, we have a natural extension of Example 3.1.5 as the

following.

Example 3.1.6. Let s > 0 and Vs be the s-ball of V. Möbius addition

⊕M is the binary operation in Vs given by the equation

u⊕M v =
(1 + 2

s2
〈u,v〉+ 1

s2
‖v‖2)u + (1− 1

s2
‖u‖2)v

1 + 2
s2
〈u,v〉+ 1

s4
‖u‖2‖v‖2

(Vs,⊕M) is a gyrocommutative gyrogroup and called the Möbius gy-

rogroup. The identity of (Vs,⊕M) is the zero vector of V and 	Mu =

−u for any u ∈ Vs.

Example 3.1.7. Let s > 0 and V be a real inner product space. PV

(Proper Velocity) addition ⊕P is the binary operation in V given by

the equation

u⊕P v =

{
βu

1 + βu

〈u,v〉
s2

+
1

βv

}
u + v

=

{
1

1 + δu

〈u,v〉
s2

+ δv

}
u + v

where βu, called the beta factor, is given by the equation βu = (1 +

‖u‖2
s2

)−
1
2 and δu = β−1u . (V,⊕P ) is a gyrocommutative gyrogroup and
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called the PV (Proper Velocity) gyrogroup. The identity of (V,⊕P ) is

the zero vector of V and 	Pu = −u.

3.2. Gyrovector spaces and gyrometrics.

Ungar also studied the gyrovector space in his book [16]. A gyrovec-

tor space is defined as follows in [16]

Definition 3.2.1. Let G be a subset of a real inner product space V

(V is called the carrier of G). A real inner product gyrovector space

(gyrovector space, in short) (G,⊕,⊗) is a gyrocommutative gyrogroup

(G,⊕) with a scalar multiplication ⊗ : R × G → G that satisfy the

following axioms:

(V0): 〈gyr[u,v]a, gyr[u,v]b〉 = 〈a, b〉 for all u,v,a, b ∈ G;

(V1): 1⊗ a = a for all a ∈ G;

(V2): (r1 + r2)⊗a = (r1⊗a)⊕ (r2⊗a) for all a ∈ G, r1, r2 ∈ R;

(V3): (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a) for all a ∈ G\, r1, r2 ∈ R;

(V4):
|r| ⊗ a

‖r ⊗ a‖
=

a

‖a‖
for all a ∈ G \ {0}, r ∈ R \ {0};

(V5): gyr[u,v](r⊗a) = r⊗ gyr[u,v]a for all u,v,a ∈ G, r ∈ R;

(V6): gyr[r1 ⊗ v, r2 ⊗ v] = idG for all v ∈ G, r1, r2 ∈ R;

(VV): ‖G‖ = {±‖a‖ ∈ R : a ∈ G} is an one-dimensional real

vector space with vector addition ⊕ and scalar multiplication

⊗;

(V7): ‖r ⊗ a‖ = |r| ⊗ ‖a‖ for all a ∈ G, r ∈ R;

(V8): ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖ for all a, b ∈ G.
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A bijective self-map on a gyrovector space is called an automorphism

if the map preserves its structure as follows.

Definition 3.2.2. [16] An automorphism τ of a gyrovector space (G,⊕,⊗)

is a bijective self-map of G, τ : G → G which preserves its structure,

that is,

(a): τ(a⊕ b) = τa⊕ τb for any a, b ∈ G,

(b): τ(r ⊗ a) = r ⊗ τa for any r ∈ R, a ∈ G,

(c): 〈τa, τb〉 = 〈a, b〉 for any a, b ∈ G.

Denote Aut(G,⊕,⊗) the set of all automorphism of the gyrovector

space (G,⊕,⊗).

Gyrovector spaces have the structure which is called the gyrometric.

The gyrometric of a gyrovector space is defined in [16] as follows.

Definition 3.2.3. [16] Let (G,⊕,⊗) be a gyrovector space. Its gyro-

metric % is given by the function % : G×G→ R,

%(a, b) = ‖ 	 a⊕ b‖ = ‖b	 a‖.

For any gyrovector space, the gyrometric is invariant under the au-

tomorphisms and the left gyrotranslations as follows.

Theorem 3.2.4. [16] Suppose that % is the gyrometric on a gyrovector

space (G,⊕,⊗). We have

%(a⊕ b,a⊕ c) = %(b, c),

%(τb, τc) = %(b, c)

for any a, b, c ∈ G, τ ∈ Aut(G,⊕,⊗).
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A real inner product space (V,+, ·) is a gyrovector space and its gy-

rometric is the metric induced by its norm. The Einstein gyrogroups,

the Möbius gyrogroups and the PV gyrogroups admit the scalar mul-

tiplications are turning themselves into gyrovector spaces as following

examples.

Example 3.2.5. [16] The Einstein gyrogroup (Vs,⊕E) is a gyrovec-

tor space (Vs,⊕E,⊗E) with the scalar multiplication ⊗E on (Vs,⊕E)

defined by

r ⊗E v = s tanh(r tanh−1
‖v‖
s

)
v

‖v‖
,

where r ∈ R, v ∈ Vs \{0}; and r⊗E 0 = 0. The gyrometric %E(u,v) =

‖ − u ⊕E v‖ on the Einstein gyrogroup is called Einstein gyrometric.

Let dE(u,v) = tanh−1 %E(u,v)
s

then dE is the metric on Vs.

Example 3.2.6. [16]. The Möbius gyrogroup (Vs,⊕M) is a gyrovector

space (Vs,⊕M ,⊗M) with the scalar multiplication ⊗M on (Vs,⊕M)

defined by

r ⊗M v = s tanh(r tanh−1
‖v‖
s

)
v

‖v‖
,

where r ∈ R, v ∈ Vs\{0}; and r⊗M0 = 0. The gyrometric %M(u,v) =

‖−u⊕M v‖ on the Möbius gyrogroup is called the Möbius gyrometric.

Let dM(u,v) = tanh−1 %M (u,v)
s

. Then (Vs, dM) is the metric space and

we call dM the Möbius metric. In the special case when we consider

the Möbius gyrogroup on the complex open unit disc (D,⊕M), Möbius

gyrometric reduces to

%M(a, b) = | − a⊕M b| =
∣∣∣∣ a− b1− ab

∣∣∣∣ .
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The Möbius gyrometric on D is known as the pesudo-hyperbolic metric

and Möbius metric dM on D is also known as the Poincaré metric.

Example 3.2.7. [16] The PV gyrogroup (V,⊕P ) is a gyrovector space

(V,⊕P ,⊗P ) with the scalar multiplication ⊗P on (V,⊕P ) defined by

r ⊗P v = s sinh(r sinh−1
‖v‖
s

)
v

‖v‖
,

where r ∈ R, v ∈ V \ {0}; and r ⊗P 0 = 0. %P denotes the gyrometric

on the PV gyrogroup; %P (u,v) = ‖ − u⊕P v‖.

The following of the section, we consider the Einstein gyrogroups,

the Möbius gyrogroups and the PV gyrogroups with the assumption

s = 1 for simplicity. Indeed, Vs = B if s = 1.

The gyrometrics %E, %M and %P can be represented as in the equa-

tions of the following proposition.

Proposition 3.2.8. For any u,v ∈ B,

(7) %E(u,v) =

{
1− (1− ‖u‖2)(1− ‖v‖2)

(1− 〈u,v〉)2

} 1
2

,

(8) %M(u,v) =

{
1− (1− ‖u‖2)(1− ‖v‖2)

1 + ‖u‖2‖v‖2 − 2〈u,v〉

} 1
2

.

For any u,v ∈ V,

(9) %P (u,v) = (〈u,v〉2 − 2δuδv〈u,v〉+ ‖u‖2 + ‖v‖2 + ‖u‖2‖v‖2)
1
2 .
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Proof. Put a = ‖u‖, b = ‖v‖ and x = 〈u,v〉. By elementary calcula-

tion, we have

‖ − u⊕E v‖2 =

∥∥∥∥ 1

1 + 〈−u,v〉

{(
1 +
〈−u,v〉
1 + α−u

)
(−u) + α−uv

}∥∥∥∥2
=

∥∥∥∥ 1

1− x

{(
−1 +

x

1 + αu

)
u + αuv

}∥∥∥∥2

=

(
1− x

1+αu

)2
a2 + (1− a2)b2 − 2αu

(
1− x

1+αu

)
x

(1− x)2

=
x2 − 2x+ a2 + (1− a2)b2

(1− x)2

=
(1− x)2 − (1− a2)(1− b2)

(1− x)2

= 1− (1− a2)(1− b2)
(1− x)2

,

‖ − u⊕M v‖2 =

∥∥∥∥(1 + 2〈−u,v〉+ ‖v‖2)(−u) + (1− ‖u‖2)v
1 + 2〈−u,v〉+ ‖u‖2‖v‖2

∥∥∥∥2
=

∥∥∥∥−(1 + b2 − 2x)u + (1− a2)v
1 + a2b2 − 2x

∥∥∥∥2
=

(1 + b2 − 2x)2a2 + (1− a2)2b2 − 2(1 + b2 − 2x)(1− a2)x
(1 + a2b2 − 2x)2

=
4x2 − 2(1 + a2)(1 + b2)x+ (a2 + b2)(1 + a2b2)

(1 + a2b2 − 2x)2

=
(1 + a2b2 − 2x)2 − (1− a2)(1− b2)(1 + a2b2 − 2x)

(1 + a2b2 − 2x)2

= 1− (1− a2)(1− b2)
1 + a2b2 − 2x

,

‖ − u⊕P v‖2 =

∥∥∥∥{ 1

1 + δu
〈−u,v〉+ δv

}
(−u) + v

∥∥∥∥
=

{
−x

1 + δu
+ δv

}2

a2 + 2

{
−x

1 + δu
+ δv

}
(−x) + b2

=
−(1− δu) + 2

1 + δu
x2 + {2δv(1− δu)− 2δv}x+ a2δ2v + b2

= x2 − 2δuδvx+ a2 + b2 + a2b2.
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�

The Bergman metric β on the open unit ball in Cn is given by

β(z,w) =
1

2
log

1 + ϕ(z,w)

1− ϕ(z,w)
,

where

ϕ(z,w) =

{
1− (1− ‖z‖2)(1− ‖w‖2)

‖1− 2〈z,w〉‖2

} 1
2

,

for any points z,w of the open unit ball in Cn [20, Lemma 1.2, Proposi-

tion 1.20]. Moreover, ϕ is also a metric on the open unit ball in Cn [20,

Corollary 1.22] and called the pesudo-hyperbolic metric. By Proposi-

tion 3.2.8, if V = Rn, then Einstein gyrometric %E on (B,⊕E,⊗) is the

restriction of ϕ and hence dE is the restriction of β.

3.3. The main results of section 3.

The following Theorems 3.3.1, 3.3.2 and 3.3.3 are the main results

in this section.

Theorem 3.3.1. Let T be a self-map on the Einstein gyrovector space

(B,⊕E,⊗E). Then the following conditions (E-1), (E-2) and (E-3) are

equivalent.

(E-1) T satisfies the following conditions (E-a), (E-b) and (E-c):

(E-a): T (0) = 0,

(E-b): T is a surjection,

(E-c): T is an Einstein gyrometric preserving map,

that is, %E(Tu, Tv) = %E(u,v) for all u,v ∈ B.
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(E-2) There exists a surjective inner product preserving linear map

O : V→ V such that T = O|B .

(E-3) T ∈ Aut(B,⊕E,⊗E).

In particular, if dimV < ∞, then the conditions (E-a) and (E-c) to-

gether imply the condition (E-b).

Theorem 3.3.2. Let T be a self-map on the Möbius gyrovector space

(B,⊕M ,⊗M). Then the following conditions (M-1), (M-2) and (M-3)

are equivalent.

(M-1) T satisfies the following conditions (M-a), (M-b) and (M-c):

(M-a): T (0) = 0,

(M-b): T is a surjection,

(M-c): T is a Möbius gyrometric preserving map,

that is, %M(Tu, Tv) = %M(u,v) for all u,v ∈ B.

(M-2) There exists a surjective inner product preserving linear map

O : V→ V such that T = O|B .

(M-3) T ∈ Aut(B,⊕M ,⊗M).

In particular, if dimV < ∞, then the conditions (M-a) and (M-c)

together imply the condition (M-b).

Theorem 3.3.3. Let T be a self-map on the PV gyrovector space

(V,⊕P ,⊗). Then the following conditions (PV-1), (PV-2) and (PV-

3) are equivalent.

(PV-1) T satisfies the following conditions (PV-a), (PV-b) and (PV-

c):

(PV-a): T (0) = 0,
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(PV-b): T is a surjection,

(PV-c): T is a PV gyrometric preserving map,

that is, %P (Tu, Tv) = %P (u,v) for all u,v ∈ V.

(PV-2) T is a surjective inner product preserving linear map on V.

(PV-3) T ∈ Aut(V,⊕P ,⊗P ).

In particular, if dimV < ∞, then the conditions (PV-a) and (PV-c)

together imply the condition (PV-b).

3.4. Lemmas.

In this subsection, we give necessary lemmas to prove the main re-

sults in this section. For any a > 0, put πa = {u ∈ V : ‖u‖ = a}.

The following Lemmas 3.4.1, 3.4.2 and 3.4.3 state that The Einstein

gyrometric preserving maps, the Möbius gyrometric preserving maps

and the PV gyrometric preserving maps preserve the inner products,

respectively.

Lemma 3.4.1. Let T be an Einstein gyrometric preserving self-map

on the Einstein gyrovector space (B,⊕E,⊗E). Suppose that T (0) = 0.

Then T is an inner product preserving map.

Proof. We first note that T (πa) ⊆ πa for any 0 ≤ a < 1 since ‖Tu‖ =

%E(T0, Tu) = %E(0,u) = ‖u‖ for all u ∈ B. Let 0 ≤ a, b < 1 be

arbitrary. Put

f [a, b](x) =

{
1− (1− a2)(1− b2)

(1− x)2

} 1
2

.
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Then the function f [a, b] : [−ab, ab] → R is a monotone decreasing

function because x ≤ ab < 1 for any x ∈ [−ab, ab]. Thus f [a, b] is

injective. Let u ∈ πa,v ∈ πb. Note that −ab ≤ 〈u,v〉 ≤ ab. We

have %E(u,v) = f [a, b](〈u,v〉) by the equation (7). We also have

%E(Tu, Tv) = f [a, b](〈Tu, Tv〉) because Tu ∈ πa, Tv ∈ πb. Hence

f [a, b](〈Tu, Tv〉) = f [a, b](〈u,v〉) as %E(Tu, Tv) = %E(u,v). It im-

plies that 〈Tu, Tv〉 = 〈u,v〉 because f is injective. �

Lemma 3.4.2. Let T be a Möbius gyrometric preserving self-map on

the Möbius gyrovector space (B,⊕M ,⊗M). Suppose that T (0) = 0.

Then T is an inner product preserving map.

Proof. Note T (πa) ⊆ πa for any 0 ≤ a < 1 since ‖Tu‖ = %M(T0, Tu) =

%M(0,u) = ‖u‖ for all u ∈ B. Let 0 ≤ a, b < 1 be arbitrary. Put

g[a, b](x) =

{
1− (1− a2)(1− b2)

1 + a2b2 − 2x

} 1
2

.

Then the function g[a, b] : [−ab, ab] → R is a monotone decreasing

function. Thus g[a, b] is injective. Let u ∈ πa,v ∈ πb. Note that

−ab ≤ 〈u,v〉 ≤ ab. We have %M(u,v) = g[a, b](〈u,v〉) by the equation

(8). We also have %M(Tu, Tv) = g[a, b](〈Tu, Tv〉) because Tu ∈ πa,

Tv ∈ πb. Hence g[a, b](〈Tu, Tv〉) = g[a, b](〈u,v〉) as %M(Tu, Tv) =

%M(u,v). It implies that 〈Tu, Tv〉 = 〈u,v〉. �

Lemma 3.4.3. Let T be a PV gyrometric preserving self-map on the

PV gyrovector space (V,⊕P ,⊗P ). Suppose that T (0) = 0. Then T is

an inner product preserving map.



44 TOSHIKAZU ABE

Proof. Note T (πa) ⊆ πa for any 0 ≤ a since ‖Tu‖ = %P (0, Tu) =

%P (T0, Tu) = %P (0,u) = ‖u‖ for any u ∈ V. Let a, b ≥ 0 be arbitrary.

Put

h[a, b](x) = (x2 − 2δuδvx+ a2 + b2 + a2b2)
1
2 .

We show that h[a, b] : [−ab, ab]→ R is a monotone decreasing function.

We have

(h2[a, b])′(x) =
dh2[a, b](x)

dx
= 2x− 2δuδv.

Thus (h2[a, b])′(x) < 0 for any x ∈ [−ab, ab] because x ≤ ab <

δuδv. It implies that h2[a, b] is a monotone decreasing function and

hence h[a, b] is also monotone decreasing. Therefore h[a, b] is injec-

tive. Let u ∈ πa,v ∈ πb. Note that −ab ≤ 〈u,v〉 ≤ ab. We

have %P (u,v) = h[a, b](〈u,v〉) by the equation (9). We also have

%P (Tu, Tv) = h[a, b](〈Tu, Tv〉) because Tu ∈ πa and Tv ∈ πb. Hence

h[a, b](〈Tu, Tv〉) = h[a, b](〈u,v〉) as %P (Tu, Tv) = %P (u,v). It im-

plies that 〈Tu, Tv〉 = 〈u,v〉. �

The following lemma shows that an inner product preserving map

on B is extendible to the whole space.

Lemma 3.4.4. Let B be the open unit ball of a real inner product

space V. Suppose that T : B → B is an inner product preserving map.

Then T can be extended to an inner product preserving map S : V→ V

defined by

S(w) = 2‖w‖T
(

w

2‖w‖

)
for any w ∈ V \ {0}; and S(0) = 0. Moreover, S is a linear operator

if T is surjective.
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Proof. First we show that T = S|B . Let u ∈ B \ {0}, r > 0 which

satisfy ru ∈ B. We have

〈T (ru), Tu〉 = 〈ru,u〉 = r‖u‖2 = ‖ru‖‖u‖ = ‖T (ru)‖‖Tu‖.

It follows that T (ru) and Tu are parallel by the Cauchy-Schwarz in-

equality. Hence there exists a real number s such that T (ru) = sTu.

We have s = t as

r‖u‖2 = 〈ru,u〉 = 〈T (ru), Tu〉 = 〈sTu, Tu〉 = s‖Tu‖2 = s‖u‖2.

Therefore, T (ru) = rT (u) for any u ∈ B \{0} and r > 0 which satisfy

ru ∈ B. In particular,

S(u) = 2‖u‖T
(

u

2‖u‖

)
= T (u)

for any u ∈ B \ {0}.

Next we show that S is an inner product preserving map. It is

clear that 〈Sw, Sz〉 = 0 = 〈w, z〉 if w = 0 or z = 0. For any pair

w, z ∈ V \ {0}, we have

〈Sw, Sz〉 =

〈
2‖w‖T

(
w

2‖w‖

)
, 2‖z‖T

(
z

2‖z‖

)〉
= 2‖w‖2‖z‖

〈
T

(
w

2‖w‖

)
, T

(
z

2‖z‖

)〉
= 2‖w‖2‖z‖

〈
w

2‖w‖
,

z

2‖z‖

〉
= 〈w, z〉.

We can prove that S(tv) = tS(v) for any t > 0 and v ∈ V in a way

similar to the case where T (ru) = rT (u) for any r > 0 and u ∈ V such

that ru ∈ B.
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Finally, we show that S is a linear map if T is surjective. Suppose

that T is surjective. T−1 is also an inner product preserving map and

hence T−1(ru) = rT−1(u) for any r > 0 and u ∈ V such that ru ∈ B.

Therefore, for any y ∈ V, we have

y = TT−1(y)

= 2‖y‖T (T−1(
y

2‖y‖
))

= 2‖y‖S(T−1(
y

2‖y‖
))

= S(2‖y‖T−1( y

2‖y‖
)).

Thus we have that S is surjective. Hence S is a surjective isometry

from a normed space onto itself. The Mazur-Ulam Theorem asserts

that S is a real linear map since S(0) = 0. �

3.5. The proofs of the main results of section 3.

Proof of Theorem 3.3.1. (E-2)⇒(E-3): Suppose that T = O|B for a

surjective inner product preserving linear operator O : V → V. For

any u,v ∈ B, r ∈ R, we have

〈Tu, Tv〉 = 〈Ou, Ov〉 = 〈u,v〉,

r ⊗E T (u) = tanh(r tanh−1 ‖Tu‖) Tu

‖Tu‖

= tanh(r tanh−1 ‖Ou‖) Ou

‖Ou‖

= O

(
tanh(r tanh−1 ‖u‖) u

‖u‖

)
= T

(
tanh(r tanh−1 ‖u‖) u

‖u‖

)
= T (r ⊗E u),
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T (u)⊕E T (v) =
1

1 + 〈Tu, Tv〉

{(
1 +
〈Tu, Tv〉
1 + αTu

)
Tu + αTuTv

}
=

1

1 + 〈u,v〉

{(
1 +
〈u,v〉
1 + αu

)
Ou + αuOv

}
= O

(
1

1 + 〈u,v〉

{(
1 +
〈u,v〉
1 + αu

)
u + αuv

})
= T (u⊕E v).

Finally, O(B) = B since O is surjective and satisfies ‖Ou‖ = ‖u‖ for

any u ∈ V. It follows that T is surjctive.

(E-3)⇒(E-1): Suppose that T ∈ Aut(B,⊕E,⊗E). Clearly, T is

surjective. T is a gyrometric preserving map by Theorem 3.2.4. T (0) =

0 because T is an inner product preserving map.

(E-1)⇒(E-2): Suppose that T satisfies the condition (E-1). Then

Lemma 3.4.1 asserts that T is a surjective inner product preserving

map. Furthermore, Lemma 3.4.4 asserts that T can be extended to a

surjective inner product preserving linear operator O : V→ V.

Finally, suppose that dimV <∞. Assume that the conditions (E-a)

and (E-c) are satisfied. Clearly, T (πa) ⊂ πa for any 0 ≤ a < 1 since

‖T (u)‖ = ‖u‖ for all u ∈ B. As dimV < ∞, πa is compact for all

0 ≤ a < 1. Lemma 2.2.1 asserts that T (πa) = πa for all 0 ≤ a < 1 and

hence T (B) = B. �

Proof of Theorem 3.3.2. (M-2)⇒(M-3): Suppose that T = O|B for a

surjective inner product preserving linear operator O : V → V. For

any u,v ∈ B, r ∈ R, we have

〈Tu, Tv〉 = 〈Ou, Ov〉 = 〈u,v〉,
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r ⊗M T (u) = tanh(r tanh−1 ‖Tu‖) Tu

‖Tu‖

= tanh(r tanh−1 ‖Ou‖) Ou

‖Ou‖

= O

(
tanh(r tanh−1 ‖u‖) u

‖u‖

)
= T

(
tanh(r tanh−1 ‖u‖) u

‖u‖

)
= T (r ⊗M u),

T (u)⊕M T (v) =
(1 + 2〈Tu, Tv〉+ ‖Tv‖2)Tu + (1− ‖Tu‖2)Tv

1 + 2〈Tu, Tv〉+ ‖Tu‖2‖Tv‖2

=
(1 + 2〈u,v〉+ ‖v‖2)Ou + (1− ‖u‖2)Ov

1 + 2〈u,v〉+ ‖u‖2‖v‖2

= O

(
(1 + 2〈u,v〉+ ‖v‖2)u + (1− ‖u‖2)v

1 + 2〈u,v〉+ ‖u‖2‖v‖2

)
= T (u⊕M v).

Finally, O(B) = B since O is a surjective and satisfies ‖Tu‖ = ‖u‖

for all u ∈ V.

(M-3)⇒(M-1): Suppose that T ∈ Aut(B,⊕M ,⊗M). Clearly, T is

surjective. T is a gyrometric preserving map by Theorem 3.2.4. T (0) =

0 because T is an inner product preserving map.

(M-1)⇒(M-2): Suppose that T satisfies the condition (M-1). Then

Lemma 3.4.2 asserts that T is a surjective inner product preserving

map. Furthermore, Lemma 3.4.4 asserts that T can be extended to a

surjective inner product preserving linear operator O : V→ V.

Finally, suppose that dimV <∞. Assume that the conditions (M-a)

and (M-c) are satisfied. Clearly, T (πa) ⊂ πa for any 0 ≤ a < 1 since

‖T (u)‖ = ‖u‖ for all u ∈ B. As dimV < ∞, πa is compact for all

0 ≤ a < 1. Lemma 2.2.1 asserts that T (πa) = πa for all 0 ≤ a < 1,
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hence T (B) = B. �

Proof of Theorem 3.3.3. (PV-2)⇒(PV-3): Suppose that T is a sur-

jective inner product preserving linear operator T : V → V. For any

u,v ∈ V, r ∈ R, we have

〈Tu, Tv〉 = 〈u,v〉,

r ⊗P T (u) = sinh
(
r sinh−1 ‖Tu‖

) Tu

‖Tu‖

= sinh
(
r sinh−1 ‖u‖

) Tu
‖u‖

= T

(
sinh

(
r sinh−1 ‖u‖

) u

‖u‖

)
= T (r ⊗P u),

T (u)⊕P T (v) =

(
1

1 + δTu
〈Tu, Tv〉

)
Tu + Tv

=

(
1

1 + δu
〈u,v〉

)
Tu + Tv

= T

((
1

1 + δu
〈u,v〉

)
u + v

)
= T (u⊕P v).

(PV-3)⇒(PV-1): Suppose that T ∈ Aut(B,⊕P ,⊗P ). Clearly, T is

surjective. T is a gyrometric preserving map by Theorem3.2.4. T (0) =

0 because T is an inner product preserving map.

(PV-1)⇒(PV-2): Suppose that T satisfies the condition (PV-1).

Then Lemma 3.4.3 asserts that T is an inner product preserving map.

Moreover, T is surjective and hence the Mazur-Ulam theorem asserts

that T is a linear operator. Indeed, T : V → V is a surjective inner

product preserving linear operator.
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Finally, suppose that dimV <∞. Assume that the conditions (PV-

a) and (PV-c) are satisfied. Clearly, T (πa) ⊂ πa for any 0 ≤ a since

‖T (u)‖ = ‖u‖ for all u ∈ V. As dimV < ∞, then πa is compact for

all 0 ≤ a. Lemma 2.2.1 asserts that T (πa) = πa for all 0 ≤ a and hence

T (V) = V. �

3.6. Gyrometric preserving maps on the Einstein gyrovector

space, the Möbius gyorovector space and the PV gyrovector

space.

In subsection 3.3, we have the representation of the surjective gyro-

metric preserving maps under the hypothesis T (0) = 0. In general, a

gyrometric preserving map does not necessarily fix the point 0. How-

ever, the general forms of the surjective gyrometric preserving self-maps

is obtained as corollaries of our main results in this section.

Any gyrogroup (G,⊕) satisfies a ⊕ (	a ⊕ b) = b for any a, b ∈ G

(the left cancellation law [16])). Let T be a self-map on a gyrovector

space (G,⊕,⊗). Put T0(·) = 	T (0)⊕ T (·). Then T (·) = T (0)⊕T0(0)

as the left cancellation law. Moreover, Theorem 3.2.4 shows that

%(T0(a), T0(b)) = %(T (a), T (b)) for any pair a, b ∈ G. Thus, T0 is

a gyrometric preserving map if and only if so is T . Also, T0 is sur-

jective if and only if so is T . Needless to say, T0(0) = 0. Applying

Theorems 3.3.1, 3.3.2 and 3.3.3 to T0 we obtain Corollaries 3.6.1, 3.6.2

and 3.6.3, respectively. These corollaries give us complete descriptions
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of all surjective gyrometric preserving self-maps on our models without

the assumption T (0) = 0.

Corollary 3.6.1. Let T be a self-map on an Einstein gyrogroup (B,⊕E).

Then the following conditions are equivalent.

(E-A) T is a surjective Einstein gyrometric preserving map,

that is, %E(Tu, Tv) = %E(u,v) for u,v ∈ B

(E-B) There exists a surjective inner product preserving linear oper-

ator O : V→ V such that T (u) = T (0)⊕E Ou for any u ∈ B.

(E-C) T is a surjective isometry with respect to the metric dE,

that is, dE(Tu, Tv) = dE(u,v) for u,v ∈ B

Proof. (E-A)⇔(E-C): It is obvious since dE = tanh−1◦%E.

(E-A)⇔(E-B): Let T be a self-map on (B,⊕E). Put T0(·) = −T (0)⊕E

T (·).

First, we assume that T satisfies the condition (E-A). Then we have

T0(0) = 0 and T0 is a surjective Einstein gyrometric preserving map.

Theorem 3.3.1 shows that T0 is the restriction of some surjective inner

product preserving linear operator O : V→ V. It follows that T (u) =

T (0)⊕E Ou for any u ∈ B.

Conversely, let O : V → V be a surjective inner product preserving

linear operator and T (u) = T (0) ⊕E Ou for any u ∈ B. Then we

have T0(u) = O(u) for all u ∈ B. Theorem 3.3.1 asserts that T0 is a

surjective Einstein gyrometric preserving map and hence T is. �

Corollary 3.6.2. Let T be a self-map on the Möbius gyrogroup (B,⊕M).

Then the following conditions are equivalent.



52 TOSHIKAZU ABE

(M-A) T is a surjective Möbius gyrometric preserving map,

that is, %M(Tu, Tv) = %M(u,v) for u,v ∈ B

(M-B) There exists a surjective inner product preserving linear op-

erator O : V→ V such that T (u) = T (0)⊕M Ou for any u ∈ B.

(M-C) T is a surjective isometry with respect to the Möbius metric

dM , that is, dM(Tu, Tv) = dM(u,v) for u,v ∈ B

Proof. (M-A)⇔(M-C): It is obvious since dM = tanh−1◦%M .

(M-A)⇔(M-B): Let T be a self-map on (B,⊕M). Put T0(·) =

−T (0)⊕M T (·).

First, we assume that T satisfies the condition (M-A). Then we have

T0(0) = 0 and T0 is a surjective Möbius gyrometric preserving map.

Theorem 3.3.2 asserts that T0 is the restriction of some surjective inner

product preserving linear operator O : V→ V. It follows that T (u) =

T (0)⊕E Ou for any u ∈ B.

Conversely, let O : V → V be a surjective inner product preserving

linear operator and T (u) = T (0) ⊕M Ou for any u ∈ B. Then we

have T0(u) = O(u) for any u ∈ B. Theorem 3.3.2 shows that T0 is a

surjective Möbius gyrometric preserving map and hence T is. �

Corollary 3.6.3. Let T be a self-map on the PV gyrovector space

(V,⊕P ). Then the following conditions are equivalent.

(P-A) T is a surjective gyrometric preserving map on (V,⊕P ),

that is, %P (Tu, Tv) = %P (u,v) for all u,v ∈ V.

(P-B) There exists a surjective inner product preserving linear oper-

ator O : V→ V such that T (u) = T (0)⊕P Ou for any u ∈ V.
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Proof. Let T be a self-map on (B,⊕P ). Put T0(·) = −T (0)⊕P T (·).

First, we assume that T satisfies the condition (P-A). Then we have

T0(0) = 0 and T0 is a surjective PV gyrometric preserving map. Theo-

rem 3.3.3 shows that T0 is a surjective inner product preserving linear

operator on V. Since T (·) = T (0) ⊕P T0(·), T satisfies the condition

(P-B).

Conversely, let O : V → V be a surjective inner product preserving

linear operator and T (u) = T (0) ⊕P Ou for any u ∈ V. Then we

have T0(u) = O(u) for any u ∈ V. Theorem 3.3.3 asserts that T0

is surjective and preserves the gyrometric on the PV gyrogroup and

hence so is T . �
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