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2 TOSHIKAZU ABE

1. Introduction

Let (Xi,d;) and (Xi,dy) be two metric spaces. A map T : X; — X,
is called an isometry if it preserves the metric, that is, do(Ta,Th) =
di(a,b) for every pair of points a and b in X;. For a normed space
(N, ||-]]), the metric d induced by ||-|| is defined by d(a,b) = ||a — b]| for
every pair of points a and b in N. For two normed spaces (Ny, ||-||1) and
(N2, ||*ll2), a map T : Ny — Ns is an isometry if ||T'a — Tb||s = ||a — b||
for every pair of points a and b in Nj.

The celebrated Mazur-Ulam Theorem [14] states that every bijective
isometry T between two real normed spaces (Ni, ||-||1) and (Na, ||-]]2)
is affine, that is, T'((a +b)/2) = (Ta+ Tb)/2 for every pair of points a
and b in N;. In particular, if 7°(0) = 0, then 7 is real linear. In other
words, surjective isometries between noremed spaces are real linear
isomorphisms followed by translations. This theorem asserts that a
bijecion between two real normed spaces which preserves the metric
structure also preserves the algebraic structure automatically. On the
other hand, surjective isometries between two complex normed spaces
are not necessarily complex linear followed by translations.

It is an interesting problem whether the mappings between spaces
which preserve particular objects or properties preserve other objects
or properties. The study of isometries has a long history. It dates back
at least to the Banach-Stone theorem of 1930’s. Let X be a compact
Hausdorff space and C'(X) the algebra of all complex-valued continuous

functions on X. The algebra C(X) is a commutative Banach algebra
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equipped with the supremum norm. The Banach-Stone theorem states
that C'(X) and C(Y') are isometrically complex linear isomorphic to
each other if and only if X and Y are homeomorphic. It implies that
C(X) and C(Y) are isometrically isomorphic as Banach spaces if and
only if C'(X) and C(Y) are isometrically isomorphic as Banach alge-
bras. In [10], Kadison describes the structure of all surjective complex
linear isometries between two unital C*-algebras. It follows that two
C*-algebras are isometrically isomorphic as Banach spaces if and only
if they are isometrically isomorphic as Jordan*-algebras. It is a non-
commutative generalization of the Banach-Stone theorem. There is
vast literature of isometries on various linear spaces.

In this paper, we study the algebraic structures of isometries on
some structures which need not be linear spaces. In 2003, Vaisala gave
a simple proof of the Mazur-Ulam theorem based on the idea of Vogt
[19] and reflections in points. Hatori, Hirasawa, Miura and Molnar
(6] studied algebraic properties of surjective isometries on groups and
proved a Mazur-Ulam theorem on metric groups applying the idea of
Viisald. Applying this theorem, Hatori and Molnar gave a complete
description of surjective isometries (with respect to the metric induced
by the operator norm) from unitary groups on Hilbert spaces onto
itself. By the result, surjective isometries are group automorphisms or
group anti-automorphisms followed by left multiplications. They [5, 8]

also studied isometries on the unitary groups of unital C*-algebras. In
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section 2, we study isometries on the special orthogonal group based
on [2].

In special relativity, the set of all relativistically admissible velocities
coincides to R? = {u € R? : ||u|| < ¢}, where c is the speed of light
in vacuum. The Einstein velocity addition @ in R? is given by the

equation

Y 21+,

1 1 L
U@Ev:“—u,v) U+ —v+ - (u,v)u
c2

for all w,v € R, where (-,-) is the Euclidean inner product and -,
is the Lorentz factor given by 7, = (1 — ||u|?/c?)~2. The Einstein
velocity addition @ is not associative in R2. Hence, (R3, &) is not a
group. Along with the study of the Einstein’s velocity addition law, it
turned out that (R?, &x) has a structure which is called the gyrogroup.
The gyrogroup is a generalization of the group which is not necessarily
associative. Some gyrogroups equipped with their own gyrometrics. In
the Einstein gyrogroup (R?, @), its gyrometric is given by ||lu®g(—v)||
for any pair u, v€R3, where ||-|| is the Euclidean norm on R3. In section

3, we study gyrometric preserving maps on some gyrogroups based on

1].
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2. Isometries of the special orthogonal group

In this section, let n be a positive integer. Denote by M, (R) the real
algebra of all nxn real matrices with the identity matrix I,,, O(n)
the group of the all orthogonal matrices and SO(n) the group of the
all special orthogonal matrices in M, (R). Let R}] denote the set of
all nonzero vectors (xy,...,x,) € R satisfying x;>--->2,>0. For any

¢ = (c1,...,¢c,)€RY], we define the ¢-spectral norm of AeM,(R) by

1A= cioi(A),
i=1

where 01(A)>--- >0,(A) are the singular values of A. Recall that the
singular values of A is the eigenvalues of the square roots of A*A, where
A* is the conjugate transpose of A. In the following of the section, we
assume that ¢; = 1 for ¢ = (¢y, ..., ¢,)€R7]. Note that c-spectral norm
is a generalization of the operator norm [when ¢; = 1, ¢; = 0 (i#1)]
and the Ky Fan k-norm [when ¢; =1 (i<k), ¢; =0 (k < 1)].

In the paper [7], Hatori and Molnér gave a complete description of
surjective isometries (with respect to the metric induced by the op-
erator norm) from unitary groups on Hilbert spaces onto itself. By
the result, we can verify that a surjective isometry (with respect to
the metric induced by the operator norm) ¢ on a unitary group U(H)
on a Hilbert space H with the identity map [ is only of the form
o(-) = o(I)do(+), where ¢g is a group automorphism or a group anti-
automorphism. Furthermore, ¢y can be extended to an algebra isomor-

phism or anti-isomorphism on B(H), where B(H) is the algebra of all
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bounded linear transformations of H. In this section, we give a com-
plete description of all isometries on SO(n) with respect to the metric
induced by the ¢-spectral norm. We show that there are isometries on
SO(4) which have exceptional forms.

Let K,(R) be the real linear space of all nxn skew-symmetric ma-
trices of real entries. Note that exp K,(R) = SO(n). For AcK,(R),
the skew-symmetric matrix A" is obtained from A by interchanging its
(1,4) and (2,3) entries, and interchanges the (4,1) and (3,2) entries

accordingly.

2.1. The main result of section 2.

The following theorem is the main result of this section.

Theorem 2.1.1. Let T' be a map from SO(n) into itself and c€R".
Then the following (S-i) and (S-ii) are equivalent.
(S-1) T is an isometry with respect to the metric induced by ||-||., that
is, |T(X)—=TY)| = [|X =Y for every pair X,Y € SO(n).
(S-ii) There exists O€O(n) such that T is of one of the following
form:
(S-a): T(X) =T(I,)0OXO™! for every XeSO(n),
(S-b): T(X) = T(1,)OX O™ for every XeSO(n),
(S-¢): n = 4 and T(exp(A)) = T(I;)O(exp(AT))O~! for every
AeK4(R),
(S-d): n =4 and T(exp(A)) = T(I;)O(exp(AT))LO™ for every
Ae K, (R).
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In particular, if T'(1,) = I,,, then T is a group automorphism on SO(n)
for (S-a); T is a group anti-automorphism on SO(n) for (S-b); T' pre-
serves the Jordan products T(XY X) =T(X)T(Y)T(X) for every pair
of X and Y in SO(4), while T is neither group automorphism nor

group anti-automorphism on SO(4) for (S-c) and (S-d).

Note that for n = 4, exp(A) = exp(B) if and only if exp(A™) =
exp(BT) for A, BEK,(R). This theorem is proved in later subsection

2.6. Note also that T" needs not be surjective in (S-i).

2.2. Preparations of the proof.

In subsection 2.3, we will show that any ismetry (with respect to the
metric induced by the ¢-spectral norm) on SO(n) is of one of the form
(S-a), (S-b), (S-¢) or (S-d) of Theorem 2.1.1. In this subsection, we
exhibit necessary definitions and results which are applied in subsection
2.3.

Any isometry (with respect to the metric induced by | - ||.) from
SO(n) into itself is surjective as SO(n) is compact. In general, we see

the following.

Lemma 2.2.1. [3, Excerecise 2.4.1] Let (X,d) be a compact metric
space. Suppose that T is an isometry from (X,d) into itself. Then T

18 surjective.

Proof. Clearly, T™(X) is a non-empty compact closed subset of X,

where T denotes the m-times composition of T" for a positive integer
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m. For any positive integer m, T™(X) C T™(z) holds. Thus, we

have "™(X) is non-empty and compact. Assume now that T

mEN

is not surjective. From this assumption, there exists an element zy €

X\ Npen T™(X). Since ),y T™(X) is compact, we have

d(zo, [ T"(X

meN

Since X is a compact metric space, the sequence {T"™(zo) }men have a

convergent subsequence {1 () }reny and denote

(1) Yo = lim T (xp).

k—o0

We claim that

2) we () T*(X

keN
If yo & (Mpen 77 (X), then there exists ko such that yo ¢ T%0 (X). Thus,
= d(yo, T (X)) > 0. Hence d(yo, T%* (X)) > r for all k > ko because
{T%*(X)}ren is a decreasing sequence. It is contradictory to (1) and

we have (2). On the other hand, we have

d(yo, () T™(X)) = d(lim T"(xo), [ T"(X
meN > meN

:]}Lngod T‘“ (x0), ﬂT
meN

= lim d(zo, () T7(X)

meN

=d(zo, () T™(X

meN
because T' is an isometry. It is contradictory to (2). The proof is

complete. O
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Following Definitions 2.2.2, 2.2.3, Proposition 2.2.4 and Lemma 2.2.5
are described in the paper [7]. Proposition 2.2.4 and Lemma 2.2.5 are
applied to prove Lemma 2.3.2. Definitions 2.2.2, 2.2.3 and Proposition

2.2.4 are studied more generally in the paper [6].

Definition 2.2.2. Let (X, d) be a metric space, where X is a nonempty
subset of a group G with the property that yz~ly € X for every pair
x,y € X. Let a,b € X. We say that B(a,b) holds for (X,d) if the
following are fulfilled:

(B1): d(bx~'b, by~ 'b) = d(x,y) for every z,y € X.

(B2): There exists a positive real number K > 1 such that
d(bx'b, ) > Kd(z,b)
for all z € L,, where

Loy ={r € X :d(a,r) = d(ba'b,x) = d(a,b)}.

Definition 2.2.3. Let (X, d) be a metric space, where X is a nonempty
subset of a group G with the property that yz~'y € X for every pair
xz,y € X. Let a,b € X. We say that C}(a,b) holds for (X,d) if the

following are fulfilled:

(C1): ax™'b, bz ta € X for any z € X.

(C2): d(ax~'b,ay~1b) = d(x,y) for any pair z,y € X.

Proposition 2.2.4. [7] Let (X;,d;) be a metric space, where X; is a
nonempty subset of a group G; with the property that ya—'y € X; for

every pair v,y € X;, for 1=1,2. Let ¢ : X1 — Xy be a surjective
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isometry. Pick a,b € Xy. Suppose that B(a,b) holds for (Xi,d;) and
Ci(¢(a), d(ba=1b)) holds for (Xo,dy). Then we have

¢(ba™'b) = p(b)(d(a)) b (b).

Lemma 2.2.5. [7] For i=1,2, let G; be a group and X; a nonempty
subset of G; such that yx~'yeX; for every pair x,ycX;. Suppose that
¢ : X1 — Xy is a map, m is a positive integer, and {ay}1, is a finite

sequence 1n Xy such that we have
-1 -
Ak+1Qy, Ql+1 = Ak+2
and

Plars1a;, " ary1) = dlapr)(P(ar)) " dlarr)

forall0 <k < 2™ — 2. Then we have that
-1 .
CLmela,O Aom—1 = A9m

and

$(agm-1ag ' agm-1) = p(azgm-1)($(ao)) ™ p(agm-1).

In the paper [12], Li and Tsing studied isometries (with respect to
the metric induced by ||-||¢) on the space of the symmetric matrices and
the space of the skew-symmetric matrices. Theorem 2.2.6 is a part of

Theorem 4.1 in [12].

Theorem 2.2.6. Let S be a linear map from K,(R) into itself and
¢ € RY. Then the following (K-i) and (K-ii) are equivalent
(K-i) S is an isometry with respect to the metric induced by || - ||,

that is, ||S(A) — S(B)||. = ||A — Bl|¢ for every pair A, B € K,(R).
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(K-ii) There exists O € O(n) such that S is of one of the following

form:

-a): S(A) = OAO™! for every A € K,(R),

K

K-b): S(A) = —OAO™! for every A € K,(R),

K-c): n =4 and S(A) = OATO™! for every A € K,(R),
K

-d): n =4 and S(A) = —0OATO™! for every A € K4(R).

2.3. Necessary conditions for isometries.

Lemma 2.3.1. Let ¢ € R%]. Suppose that T : SO(n) — SO(n) is an

isometry with respect to the metric d induced by the norm || -||.. Then
TYX'Y)=TY)T(X)) ')

for every pair X,Y € SO(n) that satisfy | X — Y] < 1.

Proof. First, we note that T is surjective by Lemma 2.2.1 since SO(n)

is compact. Clearly, the conditions C,(T(Y),T(YX~'Y)) and (B1) of

B(X,Y) are satisfied. It remains to check (B2). Let X,Y € SO(n)
such that d(X,Y) < 3 and setting K = 2 —2d(X,Y) > 1. We assert
that the inequality
dYZ7Y,Z)> Kd(Z,Y)
holds for any Z € Lx y, where
Lxy ={Z € SO(n):d(X,Z) =d(YX'Y,Z) = d(X,Y)}.

To prove this, let Z € Lxy. Then

d(Z,Y) < d(Z,X)+d(X,Y) =2d(X,Y)
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and thus
2—d(Z,)Y)>2-2d(X,Y) =K.
We check
dZ,Y)=Z=Y|c=Y""Z - Ll
and

dYZY,2) = |YZY ~ Z||= |[YZ'YZ 7' L.
=Yz + L)Y Z7' = L)
From the assumption that ¢; = 1, we have
ZHS/Zi1 - Ian - H(YZ?l + In)(yzil - In)“c
<N@2L,—(YZ'+ L) (YZ' = L)
SHYZ_I - In”?
Thus,
Kd(Z,Y) < (2 —d(Z, Y))d(Z, Y)
=2lYZ7 = Ll - IYZ™ = L]
< H(YZ_l + In)(YZ_l - In)Hc
=d(YZ'Y, 2)

This gives us that the condition (B2) holds. Applying Proposition 2.2.4

we have
T(YX'Y)=T(Y)T(X)) ')

for all X,Y € SO(n) with d(X,Y) < 3. O
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The following lemma asserts that any isometry (with respect to the
metric induced by || - [|c) on SO(n) preserves the inverted Jordan prod-

uct.

Lemma 2.3.2. Let ¢ € R%]. Suppose that T : SO(n) — SO(n) is an

isometry with respect to the metric induced by the norm || - ||.. Then
(3) TYX'Y)=TY)(T(X))"'T(Y)
for every pair X, Y € SO(n).

Proof. Pick X, Y € SO(n). Since X~'Y € SO(n), there exists W €

K, (R) such that exp(WW) = X'Y. Let m be a positive integer such

that exp (%) < % Then

w w 1
||exp2—m — Il < exp”z—ch —1< 3
by the assumption ¢; = 1. Let
kW
Ak = Xexp 2_m

for each integer 0 < k < 2™, Then Ay = X, Agm =Y, Agmi1 =
YX~1Y. We have

_ kE+1)W kW _ kE+1)W
A (A0 A = (X exp EEI) (e V)24 o xp 12U
= (exp B Byt o e DT
= X exp —(k —;j)W

= Akt2
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for any 0 < k < 2™t — 2. We also have

k+1)W kW
B )
kW w
= [[(X exp Z—m)(eXP om L) |le

W 1
= llexp o — L[l < 5
lexp o = Tulle < 5

since Xexp’;—lﬁf € SO(n) for any 0 < k < 2™t — 1. By Lemma 2.3.1,

it follows that
T (A (Ar) " Appn) = T(Ap)(T(AR)) 7T (Arir)
for every 0 < k < 2™t — 2. Applying Lemma 2.2.5, we deduce that
T(YXYY) =T (A (Ag) " Agm)
— T(Agn)(T(Ao)) T (Azn)
— T(Y)(T(X) M T(Y).

So we have (3). O

Corollary 2.3.3. Let ¢ € R"]. Suppose that Ty : SO(n) — SO(n) is
an isometry with respect to the metric induced by the norm || - ||, and

To(I,) = I,,. Then
(4) Ty(YXY) = To(Y)To(X)To(Y)
for every pair X,Y € SO(n).
Proof. By Lemma 2.3.2, To(YX'Y) = Ty (Y)(To(X))M,(Y) for any
pair X, Y € SO(n). In particular,
To(X™") = To(I,X'1,)

= Ty (L) (To(X)) ' To(1) = (To(X)) ™"
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for any X € SO(n). Thus

To(YXY) =To(Y)To(X)To(Y)

for any pair X,Y € SO(n). O

Lemma 2.3.4. Let A € K,(R) and ¢ € R} |. Suppose that Ty :
SO(n) — SO(n) is an isometry with respect to the metric induced by
the norm || - || and To(I,) = I,. Let Sa(t) = To(exp(tA)) fort € R,

Then Sa: R — SO(n) is a one-parameter group.

Proof. As Ty(1,,) = I,,, for every X € SO(n) and for any non-negative

integer m, we have

To(X™) = (To(X))™
by the equation (4). Moreover,

To(X*) = (To(X))"*

for any integer k since Ty(X 1) = (Tp(X))~!. We show that Sa(t+t') =
Sa(t)Sa(t') holds for any pair t,t" € R. First, let r = % and 1 — % be

rational numbers with integers k, k¥’ and natural numbers m,m’. We

compute
Salr + 1) = To(exp(E I 4)) — (Tyfep( )
= (Tolesp( )™ (Tyfexp( ) = S2()Sa0r).

mm mm/
So we have Sy(r 4+ 1') = Sa(r)Sa(r’) for any rational numbers r, 7.
Thus Sa(t+1t') = Sa(t)Sa(t') holds for any pair ¢, € R because Tj is

continuous. O
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The following proposition gives us the necessary condition for the

isometries on SO(n).

Proposition 2.3.5. Let ¢ € R|. Suppose that T : SO(n) — SO(n)
is an isometry with respect to || - ||c. Then there exists O € O(n) such

that T is of one of the following form:

(S-a): T(X) = T(I,)0OXO™" for every X € SO(n),

(S-b): T(X) = T(I,)OX 07" for every X € SO(n),

(S-c): n = 4 and T(exp(A)) = T(I;)O0(exp(AT))O™! for every
A e K4(R),

(S-d): n =4 and T'(exp(A)) = T(1,)O(exp(AT)) O™ for every
A e Ky(R).

Proof. First, we note that T is surjective by Lemma 2.2.1. Put Ty(-) =
(T(I,))"'T(-). Then Ty is also a surjective isometry on SO(n). Lemma
2.3.4 shows that S4 : R — SO(n) is a one-parameter group for any A €
K,(R), where Sy(t) = To(exp(tA)) for any ¢t € R. It follows that there
exists a unique element f(A) € K,(R) such that Sa(t) = exp(tf(A))
for all t € R. We constitute the map f : K,(R) — K,(R).

We assert that f is surjective. Since T, : SO(n) — SO(n) is
surjective isometry, in the same way as above, there is a map ¢ :
K,(R) — K,(R) such that T, ! (exp(tA)) = exp(tg(A)) for every t € R
and A € K,(R). We have exp(tA) = To(exp(tg(A))) = exp(tf(g(A)))
for all t € R and A € K,(R). It follows that f(g(A)) = A for any

A€ K, (R), so f is surjective.
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We next show that f is a real-linear isometry. It is easy to check
f(0) =0. As T} is an isometry, we have

exp(tA) — exp(tB)

t c

_ lir% To(exp(tA)) t— To(exp(tB)
t—

i R (A) — exp(tf(B)

t—0 t

= [17(A) = F(B)lc

A — B||; = lim
t—0

for any pair A, B € K,(R). We observe that f : K,(R) = K,(R) is a
surjective isometry. Then f is a real-linear isometry by the celebrated
Mazur-Ulam theorem.

By Theorem 2.2.6 there exists O € O(n) such that f is of one of the
form (K-a), (K-b), (K-c) or (K-d). Suppose that f is of the form of
(K-a), then

To(X) = exp(f(A)) = exp(OAO™) = Oexp(A) O™t = 0OXO™*
for any X € SO(n), where X = exp(A) for A € K,,(R). So we have

(S-a). In the same way, (S-b), (S-c¢) and (S-d) obtained by (K-b), (K-c)

and (K-d) respectively. O

2.4. The B-C-H formula of Fujii and Suzuki.

If a map T on SO(n) is of the form (S-a) or (S-b) in Theorem 2.1.1,
then T' is a surjective isometry since c¢-spectral norm is a unitarily
invariant norm. We will show in subsection 2.5 that if 7" is of the

form (S-c) or (S-d), then T is also an isometry. For the proof of this,
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we make use of the Baker-Cambell-Hausdorff (B-C-H) formula of Fujii
and Suzuki [4] for SO(4) (Theorem 2.4.2). A special emphasis is on the
range of sin~! p, which is not stated clearly in [4], that 0<sin™' p<m

depending not only on p itself but also the value
sin|x|sin|y|

2yl Y

To prove Theorem 2.4.2, Fujii and Suzuki applied B-C-H formula for

cos|x|cos|y| —

SU(2), the special unitary group of the degree 2 (Theorem 2.4.1).

Let {01, 09,03} be Pauli matrices
(01 (0 —i (10
1= o0) 27 0) B0 1

HO(Q,C) = {51710'1 + X909 + X307 : $1,$2,$3ER}.

and

It is well known that
ol =F, (i=1,23),

i
0109 = iUg, 0903 = iUl, 0301 = ’iO'Q,

0,05 = —0,0; (Zaj = 17273a i 7é ])
and iHy(2;C) is the Lie algebra of the 2-dimensional special unitary
group SU(2). For any X = 101 + 2209 + 2303 € Hy(2;C), we denote

xq
xr = i)
I3
For any x,y € R3, we put

sin™! psin |z cos |y|

alz,y) = ;
T
sin™! p cos || sin |y|
B, y) = :
p Yl
- . .
sin”! psin || sin |y
Yay) - ]

p ||yl
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with

sin?|x|sin?|y|
|z |*[y[?
25111|:1:|cos|a:|sin|y|cos|y|< >}§
e ’

p=p(@,y) = {sin?|alcos?ly| + sinly| - (x,y)’

and

1
0<sin™ p<m,

(5)

sin|x|sin|y|
e

(z,y).

cos(sin ' p) = cos|x|cos|y| —

The following is the B-C-H formula for SU(2). In the paper [4], it is

not stated clearly the condition (5). We restate it with a proof.

Theorem 2.4.1 ([4]). Let X,Y € Hy(2;C).Then

exp(iX) exp(iY) = exp(iZy).

where Zy = a(x,y)X + Bz, y)Y + Ly(z,y)(XY — Y X).

Proof. Tt is well known that

sinr

exp(i(ay01 + ag09 + azos)) = cosrly + i(a101 + asoy + azos),

where r = \/a} + a3 + a3, for any triple ay, as, az€R. Pick X, Y eHy(2;C).

By an elementary calculation, we have

1
XY = (@,y) L + 5 (XY —VX),
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where (-, -) is the Euclidean inner product on R*. Thus, we have

exp(iX)exp(iY) = {COS|£B|IQ + Sm|m|iX} {cos|y|lg + Sm|y|iY}

x| Yl
sin|x|sin
SECTIY
|||yl
_sin|x|cos|y| Z,cos|a3]s1n\y|y
x| Yl

_ sin|x|sin[y| E(XY _vx)
zllyl 2

= {cos|a:|cos|y| —

First, there is Z€Hy(2;C) such that exp(iX)exp(1Y) = exp(iZ) be-
cause exp(iHy(2;C)) = SU(2). Thus, we have

sm|z\iZ
]

exp(iZ) = cos|z|ly +

Since {5, 01, 09,03} is linearly independent, we have

B sin|x|sin|y|
cos|z| = cos|x|cos|y| — W(w,w
and
sin|z| _sin\m|cos|y\X n cos|w|sin\y\y
2| x| Yl
sin|x|sin|y| E(XY _vx)
zlly| 2
Hence

sin || sin |y|

(x,y)| < L
|||y

cos |x| cos |y| —



Moreover,
sin? |z| =1 — cos? |z

=1- {cos|m|cos|y| R

sin? || sin® |y|

sin || sin |y| (@ y>}2

=sin’ [z cos? [y| + sin® [y| — |z [2[y]?
(@,y)

2sin || cos || sin |y| cos |y|
||yl

:p2

Therefore, we can choose 0 < r < 7 such satisfies
sin || sin |y
cosr = cos|x|cos|y| — —————

||y

sinr = p,

1

and denote sin” " p =r. Put

Zo=aX +BY + vé(XY —YX).

(z,y)?

(x,y)

Then
Z, :S.in_1 p{sin || cos |y]X | cos || sin |y|Y
p |z| |
sin || sin |y| E(XY B YX)}
zllyl 2

_sin™! psin |z
p |2

It follows that

sin™! p | sin |z|| 2] =sin~lp = r

|z0| =

since p = |sin |z||. Thus, we have

2]

sin |zg| = sinr = p,

cos |zg| = cosr = cos |x| cos |y| — (]
Ty

sin || sin |y|

(z,y)

21
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and hence

sin|z| ,  sin|zo|

EIE

It follows that exp(iZy) = exp(iZ). As desired, we have
exp(1Zy) = exp(iX) exp(iY').
U

We note that a; = 0 and a;; = —aj; for any 1 < ¢,5 < 4 for

A= (CLZ‘]‘> c K4(R> Put

pr(d) = LTI gy (4) = W ) = T
a9 — a a1z + a 14 — Q
%(A) = %7 %(A) = _¥7 ws(A) = %~

for any A = (a;;) € K4(R). For any A = (a;;) € K4(R), define the

element of Hy(2;C)
(A) = p1(A)or + p2(A)os + ¢3(A)os,

U(A) = v1(A)or + P2(A)oz + ¥3(A)os

and
o1(A) ¥ (A)
'&m(wmgxﬂm(%mgeR3
©Y3 (A) V3 (A)
Put
a1(4, B) = a(B(A), B(B)), az(A, B) = a(T (A), ¥(B)),
Bi(A, B) = B(B(A), B(B)), Ba(A, B) = B(T(A), ¥ (B)),

(A, B) = 1(B(A4), B(B)), 1a(A, B) = (T (A), ¥(B)),

for any pair A, B € K4(R). Let R be the unitary matrix which is called

the magic matrix by Makhlin

—_
o
o
d

po Lo =i -1 0
2o - 1o

—
o
o
~



s
Put
fs(A,B) = {al(A,B)CI)(A) + p1(A, B)®(B)
Fyn(A.B) (@(2(B) - o(B2(A) | o B,
+FE® {ag(A, B)V(A) + 52(A, B)¥(B)
54, B) (BAV(E) - V(BB |
and define

(6) BCH(A,B) = iR*fs(A, B)R.

The following is the B-C-H formula for SO(4). It was proved by ap-

plying Theorem 2.4.1.

Theorem 2.4.2 ([4]). Let A, B € K4(R). Then

exp(A) exp(B) = exp(BCH(A, B)).

2.5. Exceptional forms of isometries on SO(4).

In this subsection, we prove that the map exp(A)—exp(A™T) is an
isometry (with respect to the metric induced by ||||) on SO(4) (The-

orem 2.5.3).

The following proposition is easily proved by an elementary calcula-

tion. We can apply to prove Lemma 2.5.2.
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Proposition 2.5.1.

o g

det

O o

vl g o

— Al

(=)

O w 9

w z —a

=M\ — {a® + 0%+ 2(]2)* + [w]*)IN? + (ab + |w]* — |2]*)?

for every a,b € R, z,w, A € C.

Proof.
a— A Zz w 0
z b— A 0 w
w 0 —b—A z
0 w z —a— A
b— A\ 0 w
=(a—AN)| O -b—A z
w z —a— A
z w 0 z w 0
— 2|10 —=b—AX z +wlb—X 0 w
w z —a— A w zZ —a— A

=(a = ){0 =N (=b=N(=a—X) = (b= N)]z]" = (b= N)|w]*}
— 2{(=a = AN)(=b— Nz + [w'z| — Z|2[*}
+w{@lw® — @[z — (—a = A)(b - Nw}

=(a® = X?)(0* — N?) — {ab — (a + b + A?)}|z|?
+{ab+ (@ — D)X — N }Hw|* — {ab+ (a + bX + A?)}|z|?
+{ab— (a = o)A = NHwl* + [2|* — 2|2*Jw|* + |w]*

={\ — (a® + b*)\* + a*b*}
— 2ab|z|* — 2|22\ + 2abjw|? — 2Jw[*\* + (|z|* — |w|*)?

=\ —{a® +0* +2()2* + |w]*) I+ (ab + |w]* — |2]?)?
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For any matrix X, let Px denote the characteristic polynomial of X.

Lemma 2.5.2.
Ppcr(a,B) = Ppon(a+,B+)

holds for every pair of A, B € K4(R).

Proof. To begin the proof, we describe the form of Py 4 p) for A, B €
K4(R). Pick A, B € K4(R). It is easy to check

D(A)P(B) — ©(B)P(A) =2i{p2(A)p3(B) — @3(A)p2(B)}oy
+ 2i{p3(A)p1(B) — p1(A)ps(B)} o

+ 2i{p1(A)p2(B) — pa(A)p1(B)}os

and hence
ai(A, B)®(A) + By (A, B)d(B)
+5(A,B) (B(A)B(B) - B(B)B(4))
= ixj(A, B)o;,
where -

Xi(A, B) =an(A, B)p1(A) + Bi(A, B)ei(B)

— (A4, B)(p2(A)ps(B) — ws3(A)pa(B)),
X3(A, B) =an(A, B)p2(A) + Bi(A, B)p2(B)

—1(A4, B)(ps(A)p1(B) — p1(A)ps(B)),
X3(A, B) =an(A, B)es(A) + Bi(A, B)es(B)

— (A, B)(p1(A)pa(B) — @2(A)p1(B)).
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In the same way,
0s(A, B)U(A) + (A, B)W(B)

+ L90(A,B) (W(A)2(B) — W(B)U(4))

= ZY}'(A,B)U]',

j=1
where

Yi(A, B) =a(A, B)Y1(A) + f2(A, B)ih(B)

—72(A, B)(¢2(A)Y3(B) — ¢3(A)¢2(B)),
Ya(A, B) =a(A, B)Y2(A) + f2(A, B)ih(B)

— 72(A, B)(¢3(A)91(B) — 1 (A)ys(B)),
Y3(A, B) =az(A, B)Ys(A) + f2(A, B)s(B)

- 72(14; B)(l/}l(A)%(B) - 1/)2(14)@/)1(3))-
Then

fs(A, B)

=2, Xi(4 B)o) @b +12®Z Y;(A, B)o;

_ X,(A, B) X1(A, B) — iXy(A, B) 0
(s man AR A e (g 1)
(o De(nusiman s )

Xg(A,B)+Y3(A,B) Yl(A,B)f’L'YQ(A,B) Xl(A,B)fiXQ(A,B) 0
. Y1 (A, B) + iY2(A, B) X3(A,B) —Y3(A, B) 0 X1(A,B) —iX2(A, B)
— | X1(A,B)+1iX2(A,B) 0 —X3(A,B)+Ys(A, B) Y1 (A, B) —iY2(A, B)

0 Xl(A,B)+iX2(A7B) Yl(A,B)-'riYQ(A,B) —Xg(A7B)—Y3(A,B)

By applying proposition 2.5.1, we obtain

Pryan(N) = —Q{ZX (A, B)? Z (AB)}A2

Jj=1

{ZX (A, B)? Z (AB)Q}Q.

Jj=1
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We assert that

ZX A, B)? ZX At B*)?,

7=1
ZY (A, B)? ZY (AT, B*)?
for any pair A, B € K4(R). By deﬁmtlon, it is apparent that
¢1(C™) ¢1(C)
— —
¢ (CT) = (902(0+) = | 2(C) | = 2(C),
©3(CT) ¢3(C)
for C € K4(R) and hence

CY1(A+,B+) = al(A7 B)? 61(A+7B+) = 61(/47 B)v 71(A+7B+) = 71(‘47 B)

It follows that X;(A*", BY) = X;(A, B) for i = 1,2,3. Hence

23: X;(A*, BY) = i X;(A, B).

N P1(CT) ¢1(0>
U (CT) = | ¢o(CH) Va(C) |,
¥3(CT) —1p3(C)
(

(C)| for C' € K4(R). Hence
a2(A+,B+) = O(Q(A, B)7 52(A+7B+) = 62(14, B)7 72<A+,B+) _ 72(147 B)

Moreover, by an elementary calculation, we see that
3 3 3
D V(A B)? = aa(A, B)? Y (A + Ba(A, B)* Y 4(B)
j=1 j=1 j=1

(A, B { (a(A)s(B) — Us(A)a(B))’
+(Us(A)(B) — ¥a(As(B))” + (er(A)a(B) — ta(A)in(B))*}
+ 205(A, B)B2(A, B) (¥1(A)1(B) + 1o (A)iha(B) + 13(A)e)s(B)).
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We have

3
Z Yi(A*, B*)? ZYAB
=1

Thus, we obtain Prya+ p+) = Prs(a,B)- It follows that Ppcopa+ p+) =

Ppcr(a,p) since (6). O

Theorem 2.5.3. For every pair of A, B € K4(R)
| exp(A) — exp(B)||c = || exp(AT) — exp(B7)]..

Proof. Pick A, B € K4(R). By Lemma 2.5.2, we have Pgopa+,—pt+) =
Ppcra—p). We see that the eigenvalues of exp(BCH(AY, BY)) — I4
agree with the eigenvalues of exp(BCH (A, B)) — I, by applying the
spectral mapping theorem. Since exp(BCH (A", B*)) and exp(BCH (A, B))
are special orthogonal matrices, these are also normal matrices. Hence,
exp(BCH (AT, B*))—1, and exp(BCH (A, B))— 1, are also normal ma-
trices. For any normal matrix, the singular values coincide with the

absolute values of the eigenvalues. It follows that
lexp(A)exp(—B) — Iu[|c = [[exp(AT)exp(~=B") — I4|c
Since ||-|| is a unitarily invariant norm, we have

lexp(A) — exp(B)||c = [lexp(A™) — exp(B™)|c

as desired. O

2.6. The proof of the main result of section 2.

Proof of Theorem 2.1.1. (S-i)=(S-ii): By Proposition 2.3.5.
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(S-ii)=-(S-i): It is clear that 7" is an isometry if T is of the form (S-a)
or (S-b) because ||| is a unitarily invariant norm. Suppose that 7" is
of the form (S-c). Note that Theorem 2.5.3 implies that exp(AT) =
exp(B™) if and only if exp(A) = exp(B) for A, B € K4(R). Hence, T
is well defined map on SO(n). Since ||| is a unitarily invariant norm,

by Theorem 2.5.3, we have that
17 (exp(A) — T(exp(B)))l|e = [|O exp(AT)O™" — Oexp(BT)O™ ¢
= [lexp(A™) — exp(B7)|c
= [lexp(A) — exp(B)]|c
as desired. If T is of the form (S-d), in a way similar to the case of
(S-¢), we have
IT(exp(A) — T(exp(B)))lle = |0 exp(~=A*)O™" = Oexp(=B*)O™'||;
= [lexp(=A") — exp(=B7)|c
= [lexp(=A) — exp(=B)|c
= [[exp(A) — exp(B)].-

The proof is complete. U
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3. Gyrometric preserving maps

In Newtonian mechanics, the set of all velocities coincides with 3-
dimensional Euclidean space R?® and can treat as an inner product
space. On the other hand, in special relativity, the magnitude of a
velocity must not exceed the speed of light in vacuum c. The set of
all Einstein velocities coincides to R? = {u € R3 : ||u|| < ¢} and the

Einstein velocity addition @ in R? is given by the equation

- ! - ! + L _ (u,v)
u V= ———""——73U —v — u,v)u
RSN (TXC) PN

for all u,v € R, where (-,-) is the Euclidean inner product and =, is

the Lorentz factor given by

The Einstein velocity addition &g is non-commutative and

non-associative on R? and hence (R?, ®x) does not have a group struc-
ture. Thus, it is not appropriate to treat the set of all Einstein velocities
as a linear space. However, (R, ®) has a gyrocommutative gyrogroup
structure and is called the Einstein gyrogroup. The (gyrocommutative)
gyrogroup is a generalization of the (commutative) group. Some gyro-
commutative gyrogroups can be treated as a gyrovector space with a
scalar multiplication. The gyrovector space is a generalization of the
positive definite real inner product space. The gyrovector space has
several linds of structures. Especially, we consider the gyrometric in

this section.
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In this section, we give a complete description of all gyrometric pre-
serving self-maps on the models of the gyrovector space, the Einstein
gyrovector spaces, the Mébius gyrovector spaces and the PV (Proper
Velocity) gyrovector spaces. We can show that the gyrometric preserv-
ing self-maps on these models preserve their gyrovector space struc-
tures.

In the following of the section, V denotes a real inner product space
with the vector addition + and a positive definite inner product (-, -).
We say that an inner product (-,-) is positive definite if the following
holds; (u,v) = 0 for all w € V implies v = 0. We denote by || - || the
norm on V induced by (-,-) and B denotes the open unit ball of V;
B={uecV:|ul| <1}

3.1. Gyrogroups.

In the book [16], Ungar studied gyrocommutative gyrogroups. In this
subsection, we recall the definition of (gyrocommutative) gyrogroups

and some examples based on [16].

Definition 3.1.1. A groupoid (S,+) is a nonempty set, S, with a
binary operation, 4+ : S x .S — S. An automorphism ¢ of a groupoid
(S,+) is a bijective self-map of S, ¢ : S — S, which preserves its
groupoid operation, that is, ¢(a + b) = ¢(a) + ¢(b) for all a,b € S.

Aut(S,+) is the set of all automorphism of a groupoid (.S, +).

A gyrogroup is defined as follows in [16].
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Definition 3.1.2. A groupoid (G, ®) is a gyrogroup if it satisfies the

following axioms.

(G1): There is an element, 0 € G, called a left identity, satisfying
0Pa=0,

for all a € G,

(G2): There is an element 0 satisfying axiom (G1) such that for
each a € G there is an element ©a, called a left inverse of a,
satisfying

cada=0;

(G3): For any triple a,b,c € G there exists a unique element

gyrla,ble € G such that the binary operation obeys the left

gyroassociative law
a®(bdc)=(adb)®gyr[a,blc;
(G4): The map gyr[a,b] : G — G given by ¢ — gyr[a, b]c is an
automorphism of the groupoid (G, ®),
gyrla, b] € Aut(G, ®).
The automorphism gyr[a, b] of G is called gyroautomorphism
of G generated by a,b € G. The operator gyr : G x G —
Aut(G, ®) is called gyrator of Gj

(G5): The gyroautomorphism gyr[a, b] generated by any a,b € G

possesses the left loop property
gyrla & b, b] = gyr[a, b]

for any a,b € G.
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As in group theory, we use the notation
acb = a®(6b)

in gyrogroup theory as well.

Definition 3.1.3. [16] A gyrogroup (G, ®) is gyrocommutative if its

binary operation obey the gyrocommutative law
(G6): a ® b= gyr[a,b](b® a).

for all a,b € G.

By definition, it is easy to see that a (commutative) group is a (gyro-
commutative) gyrogroup which all of gyroautomorphisms are the iden-
tity map on G. The following examples are studied in [16] and an

object of our study in this section.

Example 3.1.4. Let s > 0 and V, be the s-ball of V. Einstein addition

@ is the binary operation in V, given by the equation

| o), 1L
—_— 1+————Ju+—v
1+M{< 52 I+ Yu

S

1 1+1(u,v> N
= — U + Qv
1_,_<'U;_72'U> s21+ ay

where 7, is the gamma factor ~, = (1 — ”1:—2”2)’% in the s-ball V, and

U Ppv=

a, = 7, (Vy,®g) is a gyrocommutative gyrogroup and called the
Einstein gyrogroup. The identity of (Vg, @g) is the zero vector of V

and ©pu = —u for any u € V.
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Example 3.1.5. Mcébius addition @), is the binary operation in the
open unit disc D = {z € C : |z] < 1} given by the equation

a+b
1+ ab

CLEBMb:

(D, @) is a gyrocommutative gyrogroup. The identity of (D, ®yy) is

0 and the inverse element of a € (D, &) is —a.

Let us identify the complex plane C with the Euclidean plane R? in
the usual sense, we have a natural extension of Example 3.1.5 as the

following.

Example 3.1.6. Let s > 0 and V, be the s-ball of V. M&bius addition
@y is the binary operation in V, given by the equation

1+ 3w, v) + Zlv]*)u+ (1 - Fllul*)v
L+ 5w, ) + Slul?v]?

UDy V=

(Vs, ) is a gyrocommutative gyrogroup and called the Mobius gy-
rogroup. The identity of (V, @,/) is the zero vector of V and &yu =

—u for any u € V.

Example 3.1.7. Let s > 0 and V be a real inner product space. PV
(Proper Velocity) addition @p is the binary operation in V given by

the equation

B (u,v 1
U@Pv:{1+5u< 2 >+E}u+v
1

_ (u,v)
_{1+5u = + 0, pu+v

where f3,, called the beta factor, is given by the equation 5, = (1 +

”’l:’—Q‘P)’% and §, = 3,1, (V,®p) is a gyrocommutative gyrogroup and
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called the PV (Proper Velocity) gyrogroup. The identity of (V,®p) is

the zero vector of V and ©pu = —u.

3.2. Gyrovector spaces and gyrometrics.

Ungar also studied the gyrovector space in his book [16]. A gyrovec-

tor space is defined as follows in [16]

Definition 3.2.1. Let G be a subset of a real inner product space V
(V is called the carrier of GG). A real inner product gyrovector space
(gyrovector space, in short) (G, @, ®) is a gyrocommutative gyrogroup
(G,®) with a scalar multiplication ® : R x G — G that satisfy the

following axioms:

<
=

(gyr|u, v]a, gyr[u, v]b) = (a, b) for all u,v,a,b € G,

S

1®a=a for all a € G;

(ri+r)®a=(r1®a)®(r,®a) forall a € G, r,ry € R;

" ® a a
— for all @ € G\ {0}, r e R\ {0};
[r@all |la

gyru, v](r ® a) = r @ gyr[u,v]a for all u,v,a € G, r € R;

t(rr)®a=r®(rz®a) foralla € G\, 1,73 €R;

<
=

(V0)

(V1)

(V2)

(V3)

(V4)

(V5)

(V6): gyr[r @ v,17 ® v]| =idg for all v € G, 11,79 € R;

(VV): |G|l = {£lla]] € R : a € G} is an one-dimensional real
vector space with vector addition & and scalar multiplication
®;

(V7): Ir@a| =|r| @ |la| for all @ € G, r € R;

(V8): |la ® b|| < |la|| & ||b]| for all @,b € G.
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A bijective self-map on a gyrovector space is called an automorphism

if the map preserves its structure as follows.

Definition 3.2.2. [16] An automorphism 7 of a gyrovector space (G, ®, ®)
is a bijective self-map of G, 7 : G — G which preserves its structure,

that is,
(a): T(@a®b) =71a @& 7d for any a,b € G,
(b): 7(r®a) =r®T7a for any r € R, a € G,
(¢c): (ra,7b) = (a,b) for any a,b € G.
Denote Aut(G,®,®) the set of all automorphism of the gyrovector

space (G, &, ®).

Gyrovector spaces have the structure which is called the gyrometric.

The gyrometric of a gyrovector space is defined in [16] as follows.
Definition 3.2.3. [16] Let (G, ®,®) be a gyrovector space. Its gyro-
metric g is given by the function o : G x G — R,

o(a,b) = |[cadb| =|boal.

For any gyrovector space, the gyrometric is invariant under the au-

tomorphisms and the left gyrotranslations as follows.
Theorem 3.2.4. [16] Suppose that o is the gyrometric on a gyrovector
space (G, ®,®). We have
ola®@b,a®c) = o(b c),
o(tb,7c) = o(b, c)

for any a,b,c € G, T € Aut(G, P, ®).
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A real inner product space (V, 4+, ) is a gyrovector space and its gy-
rometric is the metric induced by its norm. The Einstein gyrogroups,
the Mobius gyrogroups and the PV gyrogroups admit the scalar mul-
tiplications are turning themselves into gyrovector spaces as following

examples.

Example 3.2.5. [16] The Einstein gyrogroup (Vy, ®g) is a gyrovec-
tor space (Vi, @p, ®p) with the scalar multiplication ® g on (Vy, )
defined by

o]\ v

r ®pv = stanh(rtanh ™' ) —
s vl

where r € R, v € V,\{0}; and r®z0 = 0. The gyrometric gog(u,v) =

|| — u ®g v|| on the Einstein gyrogroup is called Einstein gyrometric.

Let dp(u,v) = tanh ™ M then dg is the metric on V.

Example 3.2.6. [16]. The M&bius gyrogroup (V,, @,/) is a gyrovector
space (Vg @y, ®pr) with the scalar multiplication ®), on (Vg, ®a)
defined by

1@) v

r @y v = stanh(r tanh™
s vl

where r € R, v € V,\{0}; and r®,,0 = 0. The gyrometric gy (u,v) =
|| —u @ v|| on the Mobius gyrogroup is called the Mébius gyrometric.
Let dy;(u,v) = tanh™" M. Then (Vs, dyr) is the metric space and
we call dj; the Mobius metric. In the special case when we consider
the Mobius gyrogroup on the complex open unit disc (D, @), Mdébius

gyrometric reduces to

a—>

om(a,b) =| —a®y bl = Tl
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The Mobius gyrometric on D is known as the pesudo-hyperbolic metric

and Mobius metric dy; on D is also known as the Poincaré metric.

Example 3.2.7. [16] The PV gyrogroup (V,@p) is a gyrovector space

(V,®p, ®p) with the scalar multiplication ® p on (V, ®p) defined by

r ®p v = ssinh(rsinh™! M)L,
s vl

where r € R, v € V\ {0}; and r ®p 0 = 0. gp denotes the gyrometric

on the PV gyrogroup; gp(u,v) = || — u ®p v||.

The following of the section, we consider the Einstein gyrogroups,
the Mobius gyrogroups and the PV gyrogroups with the assumption
s = 1 for simplicity. Indeed, Vi, = B if s = 1.

The gyrometrics og, o and op can be represented as in the equa-

tions of the following proposition.

Proposition 3.2.8. For any u,v € B,

CR A PR (T E et

. o) = {1 - {00 o) A

Lt [ulPlol? - 2(u, v

For any uw,v €V,

(9) op(u,v) = ((u,0)” = 26,8, (u, v) + [|ul> + [v]* + [lu|?[v]).
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Proof. Put a = ||ul|, b = ||v|| and x = (u,v). By elementary calcula-

tion, we have
JE— 2 JE—
l-worol = | { (14 552 )+ 0]

(oo

(1—1+a > a?+ (1 —a? )b2—2au<1—lfau>x
i
2? —2x 4 a® + (1 — a?)b?
(1—=)?
_ (1—2)2—=(1-a*)(1-1?)
(1 —=)?
(1—a?)(1—b?)
(1—a)2 7

2

—1—

(1+2(~u,v) + |[v]*)(~w) + (1 — [lul*)o]*
14 2(=u, v) + [Jul?[lv]?

n—u@MmP:H

—(140* = 22)u+ (1 — a®)v
1+ a2b? — 2z
(1+ b2 —22)%a® + (1 — a?)?? — 2(1 + b — 22)(1 — a?)x

(1 + a?b? — 2x)?
422 — 2(1 4+ a®)(1 + b*)x + (a® + b*)(1 + aV?)
- (1+ a2b? — 22)?
(1+a?h* —2x)? — (1 —a®)(1 — b*)(1 + a?b* — 22)
- (1 + a?b? — 2x)?
(1—a)(1- )
1+ a?h? — 2z’

1
[ —uGprHQZ H{l+§ (—u,v)+5v}(—u)~l—v

2
:{1j5u+5”} a2+2{ _335 +(5v}(—x)+b2
_—(1—5u)—|—2 9
= 2% — 20,0,7 + a® + b* + a*b.

+{20,(1 — 6,) — 26, } 2 + a®6% + b
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The Bergman metric § on the open unit ball in C" is given by

1+ p(z,w)

1
5(z,w) = élog 1 —QO(Z,’U))7

where

(1= (|21 = Jlw]?) }5

ot = 1= g

for any points z, w of the open unit ball in C" [20, Lemma 1.2, Proposi-
tion 1.20]. Moreover, ¢ is also a metric on the open unit ball in C™ |20,
Corollary 1.22] and called the pesudo-hyperbolic metric. By Proposi-
tion 3.2.8, if V = R", then Einstein gyrometric og on (B, ®g, ®) is the

restriction of ¢ and hence dg is the restriction of .

3.3. The main results of section 3.

The following Theorems 3.3.1, 3.3.2 and 3.3.3 are the main results

in this section.

Theorem 3.3.1. Let T be a self-map on the Finstein gyrovector space
(B,®g,®g). Then the following conditions (E-1), (E-2) and (E-3) are
equivalent.
(E-1) T satisfies the following conditions (E-a), (E-b) and (E-c):
(E-a): T(0) =0,
(E-b): T is a surjection,
(E-c): T is an Einstein gyrometric preserving map,

that is, op(Tu, Tv) = pp(u,v) for all u,v € B.
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(E-2) There exists a surjective inner product preserving linear map
O :V =V such that T = O| g.
(E-3) T € Aut(B, @p, ©p).
In particular, if dimV < oo, then the conditions (E-a) and (E-c) to-

gether imply the condition (E-Db).

Theorem 3.3.2. Let T be a self-map on the Mobius gyrovector space
(B, @, ®uar). Then the following conditions (M-1), (M-2) and (M-3)
are equivalent.
(M-1) T satisfies the following conditions (M-a), (M-b) and (M-c):
(M-a): T(0) =0,
(M-b): T is a surjection,
(M-c): T is a Mébius gyrometric preserving map,
that is, op(Tu, Tv) = op(w,v) for all u,v € B.
(M-2) There exists a surjective inner product preserving linear map
O:V =V such that T = O| g.
(M-3) T' € Aut(B, &, Q).
In particular, if dimV < oo, then the conditions (M-a) and (M-c)

together imply the condition (M-D).

Theorem 3.3.3. Let T be a self-map on the PV gyrovector space
(V,®p,®). Then the following conditions (PV-1), (PV-2) and (PV-
3) are equivalent.

(PV-1) T satisfies the following conditions (PV-a), (PV-b) and (PV-
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(PV-b): T is a surjection,
(PV-c): T is a PV gyrometric preserving map,
that is, op(Tu, Tv) = pp(u,v) for allu,v € V.
(PV-2) T is a surjective inner product preserving linear map on V.
(PV-3) T € Aut(V, ®p,®p).
In particular, if dimV < oo, then the conditions (PV-a) and (PV-c)

together imply the condition (PV-b).

3.4. Lemmas.

In this subsection, we give necessary lemmas to prove the main re-

sults in this section. For any a > 0, put 7, = {u € V : ||u|| = a}.

The following Lemmas 3.4.1, 3.4.2 and 3.4.3 state that The Einstein
gyrometric preserving maps, the Mobius gyrometric preserving maps
and the PV gyrometric preserving maps preserve the inner products,

respectively.

Lemma 3.4.1. Let T be an Finstein gyrometric preserving self-map
on the Finstein gyrovector space (B, ®g, ®g). Suppose that T(0) = 0.

Then T is an inner product preserving map.

Proof. We first note that T'(m,) C 7, for any 0 < a < 1 since ||[Tu| =
0(T0,Tu) = 0r(0,u) = ||u|| for all w € B. Let 0 < a,b < 1 be

arbitrary. Put

e - - =)

(1—=xz
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Then the function fla,b] : [—ab,ab] — R is a monotone decreasing
function because # < ab < 1 for any = € [—ab,ab]. Thus fla,b] is
injective. Let u € m,,v € m. Note that —ab < (u,v) < ab. We
have ggp(u,v) = fla,b]({(u,v)) by the equation (7). We also have
oe(Tu, Tv) = fla,b]((Tu, Tv)) because Tu € m,, Tv € m,. Hence
fla,b]((Tw,Tv)) = fla,bl({u,v)) as op(Tu,Tv) = op(u,v). It im-

plies that (T'w, Tv) = (u,v) because [ is injective. O

Lemma 3.4.2. Let T be a Mobius gyrometric preserving self-map on
the Mdébius gyrovector space (B, @y, Q). Suppose that T(0) = 0.

Then T is an inner product preserving map.

Proof. Note T'(m,) C 7, forany 0 < a < 1since ||Tu|| = oy (70, Tu) =

01 (0,u) = ||u| for all w € B. Let 0 < a,b < 1 be arbitrary. Put

(1—a?)(1—b?))?
14 a?b? — 22 )

dla.t) = {1 -

Then the function g[a,b] : [—ab,ab] — R is a monotone decreasing
function. Thus gla,b] is injective. Let u € m,,v € m,. Note that
—ab < (u,v) < ab. We have gy (u,v) = g[a, b]({(u, v)) by the equation
(8). We also have oy (Tuw,Tv) = gla,b|((T'u, Tv)) because Tu € 7,
Tv € m. Hence gla,b]((Tu,Tv)) = gla,b]((u,v)) as o (Tu, Tv) =

oy (w,v). Tt implies that (Tu, Tv) = (u,v). O

Lemma 3.4.3. Let T be a PV gyrometric preserving self-map on the
PV gyrovector space (V,@®p,®p). Suppose that T(0) = 0. Then T is

an inner product preserving map.



44 TOSHIKAZU ABE
Proof. Note T(m,) C m, for any 0 < a since ||Tu|| = 0p(0,Tu) =

op(T0,Tu) = pp(0,u) = ||ul| for any w € V. Let a,b > 0 be arbitrary.

Put
hla,b](z) = (2% — 20,07 + a® + b* + a®b?)2.
We show that hla, b] : [—ab, ab] — R is a monotone decreasing function.
We have
(h*[a, b)) (z) = w = 2% — 20,0,.

Thus (h*[a,b])(z) < 0 for any = € [—ab,ab] because z < ab <
0u0y. It implies that h?[a,b] is a monotone decreasing function and
hence hla,b] is also monotone decreasing. Therefore hla,b] is injec-
tive. Let u € m,,v € m. Note that —ab < (u,v) < ab. We
have gp(u,v) = hla,b]((u,v)) by the equation (9). We also have
op(Tu, Tv) = hla,b]({T'u, Tv)) because Tu € 7, and Tv € m,. Hence
hla,b]((Tw, Tv)) = hla,b]((u,v)) as op(Tu,Tv) = op(u,v). It im-
plies that (T'u, Tv) = (u,v). O

The following lemma shows that an inner product preserving map

on B is extendible to the whole space.

Lemma 3.4.4. Let B be the open unit ball of a real inner product
space V. Suppose that T : B — B is an inner product preserving map.

Then T can be extended to an inner product preserving map S : V — V

defined by
w
S(w) = 2||lw T(—)
(w) = 2T 52

for any w € V\ {0}; and S(0) = 0. Moreover, S is a linear operator

of T is surjective.
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Proof. First we show that T = S|g. Let w € B\ {0}, r > 0 which

satisfy ru € B. We have
(T(ru), Tu) = (ru,u) = rllul® = [rull|u] = |T(rw)||Tull.

It follows that T'(ru) and T'u are parallel by the Cauchy-Schwarz in-
equality. Hence there exists a real number s such that T'(ru) = sTu.

We have s =t as
rllull® = (ru,u) = (T(ru), Tu) = (sTu, Tu) = s||Tu|* = s|jul*.

Therefore, T'(ru) = rT(u) for any u € B\ {0} and r > 0 which satisfy

ru € B. In particular,

() = 2lull7 (5t ) = T(w)

2|
for any uw € B\ {0}.
Next we show that S is an inner product preserving map. It is
clear that (Sw,Sz) = 0 = (w, z) if w = 0 or z = 0. For any pair
w,z € V\ {0}, we have

(Sw, 5=) = <2HwIIT (ﬁ) 2T <2||z ||)>

—2wle] (T (5 ) T (2|>>

w z
= 2lwlizil=] <2||w||’ 2||z||>

= (w, z).

We can prove that S(tv) = tS(v) for any t > 0 and v € V in a way
similar to the case where T'(ru) = rT'(u) for any r > 0 and w € V such

that ru € B.
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Finally, we show that S is a linear map if T is surjective. Suppose
that 7T is surjective. 7! is also an inner product preserving map and
hence T~ (ru) = rT~*(u) for any r > 0 and u € V such that ru € B.
Therefore, for any y € V, we have

y=TT"(y)

— 2||y||T<T-1<ﬁ>>

— 2HyHS<T-1<ﬁ>>

1, Y
= SQIYIT (57 7)-
2||yl|
Thus we have that S is surjective. Hence S is a surjective isometry
from a normed space onto itself. The Mazur-Ulam Theorem asserts

that S is a real linear map since S(0) = 0. O

3.5. The proofs of the main results of section 3.

Proof of Theorem 8.3.1. (E-2)=(E-3): Suppose that T = O|g for a
surjective inner product preserving linear operator O : V — V. For

any u,v € B, r € R, we have

(Tu, Tv) = (Ou, Ov) = (u,v),

Tu
[Tl

Ou
[Oull

r @p T(u) = tanh(r tanh ™" || Tu||) ——

= tanh(r tanh ™" [|Ou|)——
. u
= O ( tanh(r tanh~ IIUH)W

- (tanh(rtanh ! HuH)ﬁ)

- T(T QF ’U,),
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) € T0) = 1 (U T ) T anT

- <1u7v> {(1 4 fi?) Ou + ozuO'v}

o {52

=T(u®gv).

—_

Finally, O(B) = B since O is surjective and satisfies ||Ou| = ||ul| for
any u € V. It follows that T is surjctive.

(E-3)=(E-1): Suppose that T' € Aut(B,®pg,®g). Clearly, T is
surjective. T'is a gyrometric preserving map by Theorem 3.2.4. T'(0) =
0 because 7' is an inner product preserving map.

(E-1)=(E-2): Suppose that T satisfies the condition (E-1). Then
Lemma 3.4.1 asserts that 7' is a surjective inner product preserving
map. Furthermore, Lemma 3.4.4 asserts that 7' can be extended to a
surjective inner product preserving linear operator O : V — V.

Finally, suppose that dimV < co. Assume that the conditions (E-a)
and (E-c) are satisfied. Clearly, T'(m,) C 7, for any 0 < a < 1 since
IT(u)|| = ||ul| for all w € B. As dimV < oo, 7, is compact for all
0 <a < 1. Lemma 2.2.1 asserts that T'(w,) = 7, for all 0 < a < 1 and

hence T(B) = B. O

Proof of Theorem 3.3.2. (M-2)=-(M-3): Suppose that T' = O| g for a
surjective inner product preserving linear operator O : V — V. For

any u,v € B, r € R, we have

(Tu, Tv) = (Ou, Ov) = (u,v),
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Tu

r @u T(u) = tanh(r tanh™ 1||Tu||)||T ||

= tanh(r tanh ™" ||Ou||)—

=0 (tanh(r tanh ™ Hu|\)m>

=T (tanh(r tanh ™! Hu||)w>
- T(T’ Om ’U,),

(1 +2(Twu, Tv) + | Tv|]*)Tu + (1 — ||Tul|/*)Tv
14+ 2(Tu, Tv) + || Tu|]?||Tv||?
(1 +2(u,v) + [v]|*)Ou + (1 — |[ul?)Ov
N 1+ 2{u, v) + [ul?[v]?
0 ((1 +2(u,v) + ||v|P)u + (1 - IIuH2)v>
1+ 2(u,v) + [ul[v]?
=T(udyv).

T(u) oy T(v) =

Finally, O(B) = B since O is a surjective and satisfies ||[Tu| = ||u]|
for all uw € V.

(M-3)=(M-1): Suppose that T" € Aut(B, @y, ®p). Clearly, T is
surjective. T is a gyrometric preserving map by Theorem 3.2.4. T'(0) =
0 because T is an inner product preserving map.

(M-1)=-(M-2): Suppose that T" satisfies the condition (M-1). Then
Lemma 3.4.2 asserts that 7' is a surjective inner product preserving
map. Furthermore, Lemma 3.4.4 asserts that T can be extended to a
surjective inner product preserving linear operator O : V — V.

Finally, suppose that dimV < co. Assume that the conditions (M-a)
and (M-c) are satisfied. Clearly, T'(m,) C 7, for any 0 < a < 1 since
IT(u)|| = ||ul| for all w € B. As dimV < oo, 7, is compact for all

0 <a < 1. Lemma 2.2.1 asserts that T'(m,) = 7, for all 0 < a < 1,
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hence T'(B) = B. O

Proof of Theorem 3.3.3. (PV-2)=(PV-3): Suppose that T is a sur-
jective inner product preserving linear operator 7' : V — V. For any

u,v € V, r € R, we have

(Tu, Tv) = (u,v),

T
r @p T(u) = sinh (rsinh ™" | Tul|) ﬁ
T
= sinh (rsinh ™" ||ul|) il
[l
. . 1 u
=T ( sinh (rsinh™" ||ul|) Tal
- T(T’ p ’U,)7
T(u) ®pT(v) = ( (Tu, Tv}) Tu+Tv
+5Tu
1
( ( >) Tu+Tv
_I._
r{(gte) o)
=T(u®pv).

(PV-3)=(PV-1): Suppose that T' € Aut(B,®p,®p). Clearly, T is
surjective. T is a gyrometric preserving map by Theorem3.2.4. T'(0) =
0 because T is an inner product preserving map.

(PV-1)=(PV-2): Suppose that T satisfies the condition (PV-1).
Then Lemma 3.4.3 asserts that 7" is an inner product preserving map.
Moreover, T' is surjective and hence the Mazur-Ulam theorem asserts
that T" is a linear operator. Indeed, T': V — V is a surjective inner

product preserving linear operator.
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Finally, suppose that dimV < oo. Assume that the conditions (PV-
a) and (PV-c) are satisfied. Clearly, T'(7,) C 7, for any 0 < a since
IT(u)|| = |Jul| for all w € V. As dimV < oo, then 7, is compact for
all 0 < a. Lemma 2.2.1 asserts that T'(7,) = 7, for all 0 < a and hence

T(V)=V. O

3.6. Gyrometric preserving maps on the Einstein gyrovector
space, the Mobius gyorovector space and the PV gyrovector

space.

In subsection 3.3, we have the representation of the surjective gyro-
metric preserving maps under the hypothesis 7(0) = 0. In general, a
gyrometric preserving map does not necessarily fix the point 0. How-
ever, the general forms of the surjective gyrometric preserving self-maps
is obtained as corollaries of our main results in this section.

Any gyrogroup (G, ®) satisfies a ® (©a & b) = b for any a,b € G
(the left cancellation law [16])). Let T' be a self-map on a gyrovector
space (G, ®,®). Put Ty(-) = &T(0) & T(-). Then T'(-) = T(0)®T,(0)
as the left cancellation law. Moreover, Theorem 3.2.4 shows that
o(To(a), To(b)) = o(T(a), T(b)) for any pair a,b € G. Thus, Tj is
a gyrometric preserving map if and only if so is T. Also, Ty is sur-
jective if and only if so is 7. Needless to say, Tp(0) = 0. Applying
Theorems 3.3.1, 3.3.2 and 3.3.3 to Ty we obtain Corollaries 3.6.1, 3.6.2

and 3.6.3, respectively. These corollaries give us complete descriptions
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of all surjective gyrometric preserving self-maps on our models without

the assumption 7'(0) = 0.

Corollary 3.6.1. Let T be a self-map on an Einstein gyrogroup (B, ®g).
Then the following conditions are equivalent.

(E-A) T is a surjective Einstein gyrometric preserving map,
that is, op(Tu, Tv) = op(u,v) for u,v € B

(E-B) There ezists a surjective inner product preserving linear oper-
ator O : V—V such that T(u) = T(0) &g Ou for any u € B.

(E-C) T is a surjective isometry with respect to the metric dg,

that is, dg(Tw, Tv) = dg(u,v) for u,v € B

Proof. (E-A)<(E-C): It is obvious since dp = tanh™'ogg.

(E-A)<(E-B): Let T' be a self-map on (B, @&g). Put Ty(-) = —7(0)&g
().

First, we assume that 7T satisfies the condition (E-A). Then we have
To(0) = 0 and Tj is a surjective Einstein gyrometric preserving map.
Theorem 3.3.1 shows that T} is the restriction of some surjective inner
product preserving linear operator O : V — V. It follows that T'(u) =
T(0) ®g Ou for any u € B.

Conversely, let O : V — V be a surjective inner product preserving
linear operator and T(u) = T(0) &g Ou for any u € B. Then we
have To(u) = O(u) for all w € B. Theorem 3.3.1 asserts that Tj is a

surjective Einstein gyrometric preserving map and hence 7’ is. U

Corollary 3.6.2. Let T be a self-map on the Mébius gyrogroup (B, @xy).

Then the following conditions are equivalent.
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(M-A) T is a surjective Mobius gyrometric preserving map,
that is, op(Tu, Tv) = pp(u,v) for u,v € B
(M-B) There exists a surjective inner product preserving linear op-
erator O : V — V such that T'(u) = T(0) &y Ou for any u € B.
(M-C) T is a surjective isometry with respect to the Mdobius metric

dy, that is, dy(Tu, Tv) = dy(u,v) for u,v € B

Proof. (M-A)<(M-C): It is obvious since dy; = tanh™ogy,.

(M-A)&(M-B): Let T be a self-map on (B,®y). Put Ty(-) =
—=T(0) ©m T(:).

First, we assume that T satisfies the condition (M-A). Then we have
T6(0) = 0 and Tj is a surjective Mébius gyrometric preserving map.
Theorem 3.3.2 asserts that T is the restriction of some surjective inner
product preserving linear operator O : V — V. It follows that T'(u) =
T(0) &g Ou for any u € B.

Conversely, let O : V — V be a surjective inner product preserving
linear operator and T'(u) = T'(0) &y Ou for any w € B. Then we
have Ty(u) = O(u) for any w € B. Theorem 3.3.2 shows that T is a

surjective Mobius gyrometric preserving map and hence 7' is. U

Corollary 3.6.3. Let T be a self-map on the PV gyrovector space
(V,@p). Then the following conditions are equivalent.

(P-A) T is a surjective gyrometric preserving map on (V,®p),
that is, op(Tu, Tv) = op(u,v) for allu,v € V.

(P-B) There ezists a surjective inner product preserving linear oper-

ator O : V — V such that T(u) = T(0) @p Ou for any u € V.
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Proof. Let T be a self-map on (B, ®p). Put To(-) = =T(0) ®&p T(+).

First, we assume that T satisfies the condition (P-A). Then we have
To(0) = 0 and Tj is a surjective PV gyrometric preserving map. Theo-
rem 3.3.3 shows that T} is a surjective inner product preserving linear
operator on V. Since T'(-) = T(0) ®p To(-), T satisfies the condition
(P-B).

Conversely, let O : V — V be a surjective inner product preserving
linear operator and T(u) = T(0) ®p Ou for any u € V. Then we
have Th(u) = O(u) for any w € V. Theorem 3.3.3 asserts that Tj
is surjective and preserves the gyrometric on the PV gyrogroup and

hence so is T. O
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