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1. Introduction

It is a classical problem to investigate the existence of non-trivial pole or the
behavior of geodesics on a complete surface of revolution. Let (M, p) be a pointed
complete Riemannian manifold with a base point at p € M homeomorphic to the
plane. We say that a pointed complete Riemannian manifold (M, p) with dimension
2 is a surface of revolution with the vertex at p if the Gaussian curvature G(gq) of
M is constant on the metric t-circle

Sp(t) :={a € M | d(p,q) =t}

around p for ¢t > 0, say G(t). Namely, there exists a polar coordinates (r, ) around
p such that the Riemannian metric g on a surface of revolution M is expressed as

g : ds? = dr? + m(r)?d6?, (1.1)
where the smooth function m : [0, 00) — [0, c0) satisfies the differential equation

m"(t) + G(t)m(t) =0

with the initial condition m(0) = 0,m’(0) = 1 and is extendable to an odd function
around 0. Here 2wm(t) implies the length of the parallel circle S, (¢).

Let v: I — M be a geodesic with unit speed in a complete Riemannian manifold
M. We say that y(tp) and ~(t;) are called a conjugate pair along «y if there exists a
non-trivial Jacobi field along + that vanishes at y(¢p) and y(¢1). A point ¢ € M is
called a pole if there exist no points conjugate to g along every geodesic v : [0, 00) —
M emanating from g = (0). In a surface of revolution M the vertex is a pole if
M is homeomorphic to the plane. The vertex p is the unique pole in any elliptic
paraboloid of revolution. On the other hand, H. von Mangoldt ([3]) proved that
the set of all poles of every connected component of two-sheeted hyperboloid of
revolution is a non-trivial closed ball centered at its vertex. We discuss his result
under a general setting. Put

rp(M) :=sup{r | If d(p,q) < r, then ¢ € M is a pole.}. (1.2)

If M is a surface of revolution homeomorphic to the plane with the vertex at
p, then 7,(M) is equal to the distance between p and the farthest pole in M ([7],
Lemma 1.1). Tanaka ([6]) generalized von Mangoldt’s result and showed a necessary
and sufficient condition for r,(M) > 0, and found an equation which determines the
(M) for a von Mangoldt’s surface of revolution. Here a von Mangoldt’s surface is
by definition a surface of revolution such that the Gaussian curvature is monotone
non-increasing with respect to the distance to its vertex.

We have some purposes in this article. Our first one is to give an alternative proof
of Tanaka’s characterization of 7,(M) > 0 for a surface of revolution, moreover, to
make his proof much simpler. Actually, in Section 4 we prove the following theorem.



Theorem 1.1. ([6], Theorem 1.10) Let (M, p) be a surface of revolution with the
vertex at p. Then r,(M) > 0 if and only if M satisfies

> 1
/ ——dt <oo and liminfm(t) > 0.
\ mp i

Our proof is based on the disconjugate property for the solution of the differential
equation of Jacobi type, and is seemed to be simpler than the original one, whose
proof is mainly based on the geodesic variation. Before the proof, we review the
theory of stable Jacobi fields in Section 2. In particular, we study when we can
extend a disconjugate interval for a solution of the equation of Jacobi type. In
Section 3 we also review the theory of Jacobi field on a surface of revolution. We
recall a lemma due to Tanaka([7], [5]).

Lemma 1.2. ([7]) Let (S, 0) be a von Mangoldt’s surface of revolution with the
vertex at o. Let ¢ € S\ {o}. If the geodesic 7, : [0,00) — S emanating from
q = 74(0) through o has no points conjugate to ¢ along 7,, then ¢ is a pole in S.

In particular, as a result of this lemma we have

7o(S) = max{r(g) | There are no points conjugate to ¢ = 7,(0) along 7,.}

for every von Mangoldt’s surface. Here r(q) is the r-coordinate of the point g.

The second purpose is to prove the following theorem as an application of these
theorem and lemma by an independent method. In Section 5 we will prove the
following.

Theorem 1.3. ([6], Theorem 2.1) Let (S,0) be a von Mangoldt’s surface of revo-

* 1
lution such that / ——— dr < 00. Let yo(t) = m(t)/ Wdr (t > 0). Then
1 ¢
the constant ¢(m) := ( ) exists. Set
*© 1
F(z) = ¢(m) — /ﬁ ()2 dr.

We then have the following.

(1) If ¢(m) < 0, then 7,(S) = oo.
(2) If ¢(m) > 0, then 7,(S) is the unique zero point of the function F.

Tanaka first proved Theorem 1.3, where he defined the constant ¢(m) as follows:
c(m) = /oo Mdr.
. 0 m(r)?
However, the geometrical meaning of this constant arising in the equation was not
explained. We emphasize that the constant is expressed by means of the stable
Jacobi field. Our method is based on the disconjugate property of Jacobi field along
a ray emanating from the vertex. We will make his proof much simpler and the
geometrical meaning of the equation clearer.



The third purpose is to prove Theorem 1.6 in Section 7 in order to estimate the size
of the set of all poles in a complete Riemannian manifold, combining the immediate
consequence of Theorem 1.4, Lemma 1.2 and Rauch’s comparison theorem. Let M
be a complete Riemannian manifold and T,M the tangent space to M at a point
p € M. Let exp, : T,M — M be the exponential map at p. Let v € T, M be any
unit vector. Then v,(t) = exp,(tv) is the unit speed geodesic with +,(0) = p and
7,(0) = v. Define functions i, and ¢, on the set of all unit tangent vectors at p, say
SpM, as follows: '

(1) ip(v) is the least ilpper bound of those r such that v, is a minimizing geodesic
in [0, 7],
(2) ¢,(v) is the least upper bound of those 7 such that no point is conjugate to
p along v, in [0, 7).
It follows that i,(v) < ¢p(v) for all vectors v € S,M. Set

Clp) = {ip(v)v|veSM},

J(p) = {e(v)v|veS,M}.
We call 5(p) the tangent cut locus at p, C(p) = exppé(p) the cut locus of p and
r € C(p) a cut point of p. We call j(p) the tangent conjugate locus at p and
z € J(p) = exp, j(p) the conjugate point to p. :

Rauch ([2]) conjectured that C(p) N J(p) # 0 for every point p € M if a Rie-
mannian manifold M is compact and simply connected. The conjecture is valid if
M is homeomorphic to the 2-sphere or isometric to a symmetric space. Weinstein
([1]) has given a negative answer to the conjecture, in general, proving that any com-
pact differentiable manifold M not homeomorphic to the 2-sphere has a Riemannian
metric on M such that there exists a point p € M whose tangent conjugate and
tangent cut loci are disjoint. A well known lemma due to Klingenberg states that if
p € M and z, € C(p) are such that d(p, 7o) = d(p, C(p)), then there exists either a
minimizing geodesic connecting p and xy along which z¢ is conjugate to p or else a
geodesic loop at p through xy whose length is 2d( ,C (p)) (cf. [4]). Our contribution
is a generalization of these theorems.

Theorem 1.4. Let M be a complete Riemannian manifold and p € M a point with
C(p) # 0. Then one of the following is true.

(1) Clp) N J(p) # 0.
(2) There exist at least two geodesics connecting p and every point ¢ € M.
Here we regard a constant curve as a geodesic when ¢ = p.

In Section 6 we will prove this theorem. The main part of the proof is to find a
geodesic which is not minimizing. It is important in the proof that the ellipsoids



are star-shaped around their foci. We will pay our attention to a point in C'(p) N
E(p, ¢q;r0) where E(p,q;ro) is the smallest ellipsoid with foci p and ¢ intersecting
C(p). We will detail to the geodesics in (2) as Lemma 6.1.

We may equivalently say that a point ¢ € M is a pole if the exponential map
exp, : TyM — M is a diffeomorphism. If there exists a pole ¢ € M and the dimension
of M is n, then M is diffeomorphic to the n-dimensional Euclidean space E" and all
geodesics emanating from ¢ are minimizing, that is, C(¢) = . In particular, there
exists only one geodesic connecting the pole ¢ and every point x € M. Thus, we
have the following as a direct consequence of Theorem 1.4.

Corollary 1.5. Let M be a complete Riemannian manifold with a pole. We then
have C(z) N ( ) # 0 if a point z € M is not a pole.

We use Corollary 1.5 to estimate the size of the set of all poles in a complete
Riemannian manifold with a pole. Poles are useful for the function theory on Rie-
mannian manifolds and have been discussed in many papers. The set of poles has
recently been studied in a complete surface of revolution which is homeomorphic to
the plane, as stated before ([6], [7]).

Let M be a complete Riemannian manifold with a pole p and P the set of all
poles in M. Let B(p,r) be the closed r-ball centered at p. Then it follows from
(1.2), that

B(p,rp(M)) C P.
If M is, in addition, a surface of revolution, then
P= B(p, rp(M)).

Let z € M\ {p}. Let 7, : [0,00) — M be the geodesic with 7,(0) = z and
72(d(p,z)) = p. Let K(m;) denote the sectional curvature of the tangent plane
e C Tu,M at x € M. We will prove the following theorem in Section 7, as an
application of Lemma 1.2, using the Rauch comparison theorem for Jacobi vector
field along minimizing geodesics passing through p and o.

Theorem 1.6. Let M be a complete Riemannian manifold with a pole p and P
the set of all poles in M. Let S be a von Mangoldt’s surface of revolution with the
vertex at o and G its Gaussian curvature function. Then the following are true.

(1) P C B(p,10(9)) if K(m5) > G(d(p, z)) for all points z € M and all tangent
planes 7, C T,M. " .

(2) B(p,r,(5)) C Pif K(r,) < G(d(p,z)) for all points € M and all tangent
planes m, C T, M.



The property in Corollary 1.5, C (z) N J(z) # 0 if z is not a pole, will play the
most important role in the proof of Theorem 1.6. When M is simply connected and
the dimension of M is two, this property is true for all points z € M with C(x) # 0
(1]). Therefore, Theorem 1.6 can be slightly changed by replacing ”with a pole” by
"being simply connected”.

Proposition 1.7. Let M be a complete simply connected Riemannian 2-manifold
with a base point at p € M and G its Gaussian curvature. If S; and S, are von
Mangoldt’s surfaces of revolution with the vertices at 01,0, and G, Gy are their
Gaussian curvature functions, respectively, such that
Gi(d(p,2)) < G(z) < Gy(d(p,2))
for all x € M, then p is a pole. If P is the set of all poles in M, then
B(p,76,(S2)) C P C B(p,76,(S1)), that is, 1o, (S) < r,(M) < 10, (S1).

In Section 8 we will show some examples for Theorem 1.4. This article is merged
with two papers, one of which have been issued as [10], the other will be issued as
[8] before long.



2. Disconjugate properties for Jacobi fields

Let M be a complete Riemannian 2-manifold. Let v : [0,00) — M be a unit speed
geodesic. Let {e; = 7/,es} be an orthonormal parallel frame field along . We say
that a vector field Y along v is a Jacob: field if it satisfies the Jacobi equation

V,YIV,YI}f + R(Y; ’7’)'7, =0,

where R : X(M)? — X (M) denotes the Riemannian curvature tensor. Define a
linear map

Fy: Moy — My , Fy(x) = R(x, /()7 (£).
We then have

Ft(e1) =0,
9(R(e2,7)7,e1) =0,
Q(R(em ’Y’)’Y/, 92) = G(’Y(t))-

Let J, be the set of all Jacobi vector fields along v, which forms a vector space over
R. I Y(t) = z(t)ei(t) + y(t)ex(t) € Jy, we then have

"(t) = 0 <= z(t) = at + ca, (Jo)

y"(t) + G(v(8)y(t) = 0. (Ja)

" We have the following contents on the disconjugate property for later use by
digesting Chapter XI in [9]. The differential equation (Jg) is said to be disconjugate
on [ if every non-trivial solution y : I — R of (Jg) along -y vanishes at most once,
-where y(t) means that Y, (¢) = y(t)es(t) € J,. Then, we regard y of the solution
(Jg) as a Jacobi field along . The disconjugate property is stated as follows:
For each solution y; of (Jg) on I with ys(s) =0 and y.(s) # 0, we have y,(t) # 0

forall t € I'\ {s}.

This property implies that the solution of (Jg) is uniquely determined by its values
at two distinct points in 1.

We have a general solution y of (Jg) from a non-trivial solution z by using the
variation method of constants as following formula:

y(t) = 2(2) ( / #dta + 02) , | (2.1)

where C1, Cy are constants. This is proved as follows:



Let y(t) = 2(¢t)C(t). Then it follows that
0= (1) + G(By(t)
=2"(t)C(t) + 27 (t)C'(t) + z(£)C" (t) + G(t)y(t)
= —G)2(t)C(t) + 22'(1)C'(t) + 2(£)C" (t) + G(t)2(t)C(¢)
=22 (t)C'(t) + z(t)C"(2).

W) —u®Z() g 2O e 2

() = 28 n C"(t) = an
Let C'(t) = 0 Then C"(¢) EOE ’ @
Since (z(t)u(t)) =0, we have u(t) = Eo) and C'(t) = Tk

Assume that (Jg) is disconjugate on I and ¢ € I. Let y. be the solution of (Jg)
with y.(c) = 0 and y.(c) = 1. Then the solution ys of (Jg) with ys(c) = 1 and
ys(s) = 0 is given by the following formula for each s € I'\ {c} from (2.1)

) =0 [ s (22)

w)

for all ¢ such that ¢ ¢ (¢, s). This is proved as follows:
We may put

|
ROEXAC - C
) =uelt) ([ L duci+.a)
for all t € I such that ¢ ¢ (t,s) from (2.1). Since ys(s) = 0 and y.(s) # 0, we see
Cy = 0 by putting t = s. Define
F:I—=R, F(t) =y;()y(t) — ys(0)y.(t)
for allt € I. Then
F'(t) = =G ()ys (t)ye(t) + G (£)ys (H)ye(t) = 0.

Therefore, F(t) is constant for all ¢ € I, and F'(c) = —1, F(s) = y.(s)y.(s) = —L.

Since
1 o

ys(t) = (1) /ts o) dwCh — @’

Or = 4 (s)uels) = 1

we have

by putting t = s. O

We have from (2.2)




for all ¢ € [¢, u]. Differentiating it at ¢ = ¢, we have

vl
v, (€) — yi(c :/ —— dw. 2.3
9 =) s Ye(w)? 23)
We get the following.
Lemma 2.1. Let ¢ < s and y; be defined as in (2.2). Then
yi(c) > —o0 as s > c+0.

PROOF. Let y, : [¢,b] — R be the solution of (Jg) with y.(c) = 0 and y’(c) = 1.
Fix u > cin such a way that (Jg) is disconjugate on [¢, u]. By construction of y, we
find y.(w) = (w—-c) y.(c+0(w—c)),0 < 6 < 1. Since yo(c+b8(w—c)) - lasw — ¢,
there exists for every ¢ > 1 a § > ¢ such that if ¢ < w < 4, then y.(w)? < (w — ¢)%.
*Therefore,

y;<c>—y;(c)=/fyc(1) dws [
Z/:@dw
Z%/g (wi—c)de

(1
e §—c s—c/

Thus, y.,(¢) — y.(c) = 0o, and hence, y.(c) > —co as s > ¢+ 0. O
If the orientation of parameter is reversed, then we have y.(c) = +o00 as s — ¢ — 0.

Lemma 2.2. Assume that (Jg) is disconjugate on I. Let ¢ < s{c,s € I) and let y; :
[c,s] = R be defined as in (2.2). If y : [c, s] — R satisfies (Jg) such that y(c) =1
and y(t) # 0 for all ¢ € [c, s], then y(t) > ys(¢) for all t € (¢, s].

PrROOF. Define ,
Files] =R, F(t) =y(t) - ys(t)-
Then F'(t) satisfies (Jg) and F'(c) = 0,F(s) = y(s) > 0. Therefore, F(¢) is non-
trivial. If there exists a ty € (¢, s) such that F(fy) = 0, then ¢ and ¢ form a
conjugate pair, a contradiction. [J

Next, we have a condition which implies the disconjugate property.
Lemma 2.3. Assume that there exists a solution y : I — R of (Jg) with y(¢) # 0
forall t € I. Then (Jg) is disconjugate on I.

Proor. We find
t 1 )
y(t) =yt —— dwC, + C.
(0 y()(/toy(w)z e



is a general solution of (Jg) from (2.1). Let t, € I. If y(tp) = 0, we then have
Cy = 0. Since
! C
~ /
yt)y=vy'(t / ——— dwC; + —,
9], vty ™ e
it follows C; = §'(to)y(to). Let § be non-trivial. Then ¥'(¢9) # 0 and
¢
1
7(t) =79 t t dw.
70) = Ty t0)y(8) | oo dv

to

It follows that % vanishes only at ¢ = to. O

Let G : R — R be the function as defined in (Jg).
Theorem 2.4. Assume that (Jg) is disconjugate on (¢ — &,00) for some positive
e. Let ys, ye_e : R — R be the solutions of (Jg) with ys(c) = 1, ys(s) = 0 and
with y._.(c) = 1, ye_e(c — €) = 0, respectively. Then y,(t) converges to y(t) as
s — oo for each t € R. Moreover, y : R — R is the solution of (Jg) such that
Ye—e(t) > y(t) > ys(t) for all ¢ € (¢, s). (cf. Figure 1 in the case of c < u < s.)

T

0

‘c—¢ c U S

FIGURE 1. The solutions of (Jg).

PROOF. Let y, : R — R be the solution of (Jg) with y.(c) = 0 and y.(c) = 1.
From Lemma 2.2 we have

ys(t) = yc(t)[ Z—/ﬁ‘dw (s>t>c).

$§

Let s > u >t > c¢. Then we have

U (8) = val8) = welt) / gz(iu—ydw S0,

0O - = [ >0

from (2.2) and (2.3). By Lemma 2.1 and the assumption, it follows
Yes(t) > ys(t) > yu(t).

Therefore, there exists a function y(t) such that ys(¢) — y(¢) as s — oo for each

't € [c,00). Let T > 0. By Lemma 2.3 and the assumption, we see that for some

e>0

Yoo(t) > Y5(t) > yrpes (t)



for all s >T +c+ 1 and for all ¢t € [¢,T + ¢]. Since
t/

Yo(t) = us(t) + | Gl(w)ys(w)dw =0
forall t,t' € [-T +¢,T + ¢, we find a ctonstant C such that
| ye(t) =y ()| < Ol —¢].
By Ascoli-Arzela’s Theorem, we have
|Y(t)~y' ()| <COl¥ -t
for all ¢,¢' € [-T' 4+ ¢,T + ¢] as s — oo. Finally, we have that 1/ is continuous on R.
Since ' , )
V&) -0+ [ Gulywidn =0
for all t,¢ € R, we have that ¢ is differéntiable and y satisfies (Jg). O

Combining Theorem 2.4 and (2.2), we have the following.
Corollary 2.5. Assume that (Jg) is disconjugate on (¢ — &, 00) for some positive .
Let y, for each s > ¢ be defined as in (2.2). Then y,(t) for each ¢ € [c, 00) converges
t0 Yoo (t) @8 s — 0o, which is the solution of (Jg). Moreover, y.(t) is given by the
following formula:

veolt) = vel?) / ”mdw (t> o)

< 1
Conversely, /
c+1 yc(w)

(Jg) is disconjugate on (¢ — &,00). The following corollary will play an important

dw < oo shows that there exists a positive £ such that

role in our proof of Theorem 1.1.

Remark 2.6. In the statements in Theorem 1.3, m(t) is equal to yo(t) as above,
that is, m(t)es(t) € J,, where y is some unit speed meridian, and so Yo is the
solution of (Jg) along a ray emanating from the vertex.

Corollary 2.7. Assume that (Jg) is disconjugate on [¢, 00) and

© 1
/ — dw < oo.
c+1 yc(w)

Then [c,00) is extendable to a disconjugate interval [c — &,00) of (Jg) for some
positive €.



3. Properties of Jacobi fields on a surface of revolution

Let M be a complete surface of revolution with the vertex at p homeomorphic
to the plane, whose metric is expressed as (1.1). It is known that the Gaussian
curvature of M at each point ¢ € Sp(t) is given by
m”(t) ’
| m(t)

Let v : [0,00) — M be a unit speed geodesic and put v(¢) := (r(t),0(¢)) for all
t € [0,00). Let v be a constant. The differential equations for a geodesic are as

Gt) = -

follows:

d?uf(t) - dud (t) du®(t) .
ri — —1,2
a2 Z kgt dt 0(i=12),

jk=1
where I/ denotes Christoffel’s symbol. Put 7 := u',8 := u?, then we have
" —mm/(0)? =0,
/
0" + 210’ = 0,
m

since
!

m
1 _ 1l 12 12 1 / 2
I =T =I1=T5n=0,Tp=-mm , I'j=—

From the second equation of the preceding, we have

Y0 = e

Combining this result with (1.1), we have

P(t) = £V ”?ﬁ:éfiiji‘ v (3.1)

A 1-parameter family of geodesics 7 : [0, 00) X (—&¢, &0) — M, 7:(t) = (r(t), 0(t)+
5) is a geodesic variation. Thus,

2) 0 (3)
_ Ye t) = — c ‘7 .
(85 o ®) 00 +(8) 7

(;9%)7&) =: a(t)er(t) + b(t)ea(t),

where {e; = 7/, e;} is an orthonormal parallel frame field along «. Since

w0 (553 ) =)

Put

— 11 —



for all y(t) € M \ {p}, we have the following from (J,)

alt) =gy (021 ) = mr) coselt) =,

b(t) = gy <%,e2) =m(r(t))siné(t) = £/m(r(t))2 — 12,

0
where £(t) denotes the angle between +/(¢) and <%) . The first formula is called
: 7(t)

Clairaut’s relation.

Let 7, : [0,00) — M for each ¢ € M\ {p} be the geodesic emanating from ¢ = 7,(0)
through p and let p, : [0,00) — M denote the meridian emanating from p = 14,(0)
through ¢g. With these notation, we state the following lemmas and proposition.

Lemma 3.1. (Compare Lemma 1.1 in [6].) Let v : [0,00) — M be a geodesic. If
r'(t) = 0 at two distinct parameter values, then v is not a ray. :

PRrROOF. Let the first zero point of 7’ : (0,00) — R be ¢, and the second ¢;. From
(3.1) and that

y(t) = vm(r(t)? - v?

is the solution of (Jg), v(to) and «(¢1) is a conjugate pair along . O

Lemma 3.2. (See Lemma 1.2 in [6].) Let 7 : [0,00) — M be a geodesic. If
ro := tlim d(p,7(t)) < oo, then m/(ro) = 0, that is, the parallel circle Sy(ro) is a
—00

geodesic.

For simplicity, put p := d(p, q).
Lemma 3.3. (See Lemma 1.3 in [6].) If litm infm(t) = 0, then p,y|[p, 00) for every
—00
g € M\ {p} is a unique ray emanating from gq.

We give an alternative proof for the following lemma.

[o0]
: 1
Lemma 3.4. (Compare Lemma 1.4 in [6].) If/ () dr = oo, then 7, is not a
1 m\r

ray for any ¢ € M \ {p}. :
PROOF. Let y,(t) = m(t — p) for all t > 0. Then y, is the solution of (J¢) along

7q with y,(p) = m(0) = 0, y,(p) = m'(0) = 1. From (2.2), the solution y, of (Jg)
with y,(p) = 1 and y,(s) = 0 is written as follows: ‘

ys(t):m(t—p)/:mdw:m(t—p)/ts_pﬁdr

-p



for allt > p. If 7, is a ray, then there exists no conjugate pair along 7,. By Corollary
o0

2.5, we have / 5 dr < 00, a contradiction. U]

t—p W

For a point ¢ € M \ {p} and for each v € [-m(p), m(p)] we define two geodesics
Bu, Y : [0,00) = M emanating from ¢, whose velocity vectors at ¢ = 0 are given by

10\ (55) ()t B 0

respectively. Thus, we have smooth 1-parameter families of geodesics whose varia-
tion vector fields are Jacobi fields

X, (1) = L (Bu(0)) and Yalt) = o (3(0)

along £, and 7, respectively. We denote by v := v, and Y := Y, for an arbitrary
fixed ¢ € ( — m(p), m(p)). With this notation, we have the following.

Proposition 3.5. (Compare Lemma 1.6 in [6].) Let v be the geodesic defined

as above. Assume that tp,%; € [0,00) (fp < t;) are the first and second zeros of
r':]0,00) = R. Then «(s) for s € (t,t1) is a point conjugate to y(0) along + if and

PROOF. Let 7,(1) = (T(t,u), 6(t, u)) Then

Y,(t) = (;iy(’)f,,(t)) = (%(T(t’ v)), 5%(9(75, 1/)))

The point (s) is conjugate to 7(0) along v if and only if

Thus, (—(?—> 6(s,v) = 0 follows.

only if

ov

0 0
Next, we have only to prove that (6—1/) . r(s,v) = 0 when (%)V_C 9(7,,(5)) =0



holds. That g( '(s),Y(s)) = 0 follows by Gauss’ Lemma. Then

9(7(5), Y (s))
e ? 5 (), ez (&), e z)
"0 (5) e @ () o6y

0.
_ 0
Since 5 0(s,v) = 0 by assumption and 7/(s) # 0, it follows that

Namely, Y(s) = 0. O

— 14 —



4. Proof of Theorem 1.1

In this section we give a proof for Theorem 1.1 which is different from Tanaka’s.
Let M be a complete surface of revolution with the vertex at p homeomorphic to the
plane. Combining Lemma 3.3 and 3.4, we have the following. We give a necessary
condition that there exists a pole ¢ € M \ {p}.

oC
1
Corollary 4.1. If litm infm(t) =0 or / dr = 00, then the vertex p is the

m(r)?

We next prove the converse of Corollary 4.1. The following proposition contains

unique pole on M.

Lemma 3.4 as its special case.

o

1

Proposition 4.2. If/ W dr = 00, then for any point ¢ € M\ {p} the geodesic
1

74|[0, 00) is not a ray emanating from ¢ = 7, (0) for any v € ( — m(p), m(p)).

PROOF. When v # 0, if tliglc r(t) = ry < 00, then <, is not a ray by Lemma 3.2.
Let tlir& r(t) = oo. In the case there exist more than one zero points of r', Lemma,
3.1 implies that -, is not a ray. In the case where r’ has a zero only at ¢y, we observe
that

7,2
iy - YT
0)

is the solution of (J¢) along v, with 34, (o) = 0 and y; (to) = 1. If y; is the solution
of (Jg) with y,(s) = 0 and y,(ty) = 1, we then have from (2.2) that

0alt) = M (r (G ) VMG @O 7 [ ——— g

¢ m(r(w))?—v

r(s) mlr
=m/(r(tg))/m(r(t))? — v2 | (_) dr

> ! (r (ta)) M) =72

for all t € (ty,s). By assumption, y,(t) does not converge as s — oo. Therefore,
(Jo) is not disconjugate on (ty — &,00) for any positive €. Thus, 7, is not a ray.
When v = 0, 7, is not a ray by Lemma 3.4. O

(t) m(r)?

Recall that 8,7 : [0,00) = M, B(t),(t) = (r(t),0(t)) are geodesics whose velocity
vectors at t = 0 are given in (3.2) and (3.3), respectively.

Lemma 4.3. (Compare Lemma 1.5 in [2].) If a geodesic 3 : [0,00) — M does not
pass through p, and if 7' (t) # 0 for all t € (0,00), then -3 contains no conjugate pair.



Proor. Clearly, y(t) = +/m(r(t))? —v? is the solution of (Jg) along 8. If
r'(t) # 0 for all ¢ € (0, 00), then y(¢) # 0 on (0,00) from (3.1). By Lemma 2.3, (Jg)
is disconjugate on (0,00). O

From now on, let l'1trr_1> infm(t) := my > 0 and S be a geodesic with
oC

y 1
T(ﬁ(O)) =T and 6 (0) = (0, m)
Fix a k with 0 < k£ < 1. Then there exists a number a; > 0 such that if 0 < r; < a4,
then m(ry) < kmo and m(r1) < m(r) for all r > 7. (cf. Figure 2.) We have the
following.

Lemma 4.4. If 0 <r; < a1 <73 and 73 := r(¢3), then

e 1
dt < oo if and only if / —— dr < oo.
/m m(r(t))? — m(r.)

/

axis of rotation

M

ai|- >

..7'27‘1 )

FIGURE 2. The number 7, a; and Rj.

PROOF; (cf. Figure 2.) Since 7'(t) = \/m(rii)():(t—))m(rl)Q from (3.1),

7(v)
/ dt :/ ! m(r) = dr.
m - m(rl) en) m( —m 7’1 \/m —m 7"1

It follows

v 1 p /7‘(7}) 1 p
t > —— ar.
t2 m(’r(t))2 - m(T1)2 N T2 m(r)2
Therefore, if the right hand side diverges, then the left hand side diverges.
There exists an Ry > 0 such that if Ry < 7, then m(r) < km(r). If Ry < r(u) <
r(v), then

— 16 —



r(v) m(r) 1 r) 1
dr < / dr.
»/r(u) (m(r)2 — m(’l”l)z)g/z (1 - k2)3/2 r(u) m(r)2

Therefore, if the right hand side converges, then the left hand side converges. [

_/m(r(t)? —m(r)?
(t) = A
m (Tl)
y(0) = 0 and y'(0) = 1. From (2.2) the solution y, of (Jg) with y,(0) = 1 and
ys(s) = 0 can be written as follows for each s > 0:

e(t) = m!(r1) /m(r (D)2 — m(r1)? f | m(r (w))

By putting ¢ = 0, we have the following from (2.3).

Recall that y is the solution of (Jg) along 8 with

1
2 —m(ry)

sdw (s >1>0).

Lemma 4.5. Let u > s > 0. Then it follows

! 7"1)2

! o _ u_l__ W — “ m( w
k0-30 = [ = | St 6

*© 1 * 1
In particular, if/ ——— dw < 0o, then y. (0) = / —— dw +y.(0).
. TP 0= ], yap @ rul
Here y,(t) and ye(t) are defined as in (2.2), Corollary 2.5, respectively. The
values y,(t), Yoo (t) and y.(0), v, (0) depend on ;. In order to show that these values,
especially, 44(0),y..(0) are continuous on r; in some neighborhood of p, we use the
following notations:

Yri,00 = Yoo and Yri,s = Ys-

dr < oo. Then

(ee)
Let 0<r <y and/
s m(r)?

« 1
h = dw <
)= | SRR <
by Lemma 4.4. The function y,,  is the solution of (J¢) along f as stated in Remark
2.6.

e e]

1

Lemma 4.6. Assume that / W dr < oo. Then there exists a neighborhood
s mr ‘

U of the vertex p such that h(r(g)) is continuous in U > gq.
PRrOOF. Set U = {q € M | r(q) < a1}. For any € > 0 there exists an Ry > 0 such

that if 0 < r; < ay, then

TR L A WA
/32 (m(r)? —m(r.)?)""* s (1—k2)32 /RQ m(r)? dr <3




We have : '
h(ry) = / m(r

)
i) (m(r)? —m(ry)?

)3/2 dr

" m(r)
r(B(s) (m(r)2 —m(ry)?)*”

Let B : [0,00) — M be the geodesic with r(
Then
Ro ‘ R»>
h(r1) — h(7y) :/ m(r) dr — / m(r)( dr

() (m(r)? — m(r1)2)3/2

™I
—~
[an]
S
SN
Il
=3
—
Tb\]
—
o
SN—
[l
N
p
—~
=3
—
A —
~
=3
—
!
=
—

and
| h(r1) = h(m) |

< b m(r) dr — " m(r) dr |+ —2—8
2 2)3/2 5 2 — \9\3/2 3
r(a(s)) (m(r)? — m(ry)?) rB(s) (m(r)? — m(1)?)
2
There exists a § > 0 such that if |r; — 7, | < 4, then ‘ h(ri) — h(71) ‘ < % + Ea —c.

Thus, h o r is continuous in U. [ -
As u — oo in (4.1), we have

Ur1,00(0) =m0 (r1)*h(r1) + ur, 5(0).
In this consequence, y;, ,,(0) is continuous at r; € [0, a1], where y,, , is the solution

of (J¢) along B with y,, s(s) = 0 and y,, ,(0) =1 for each s > 0. From Corollary 2.5
we have
1

Urioo(t) = m'(r1) /m(r (£))2 — m(r1)? /too m(r(w))? —m(ry)

We remark that the right hand side of the above equation is an expression of a
Jacobi field on the interval (0, 00) and the expression is not available in any interval
containing 0. We think that it is the restriction of a Jacobi vector field y,, o, defined
along a whole geodesic § : (—o0,00) — M. We can extend an interval with no

5 dw (t > 0).

conjugate pair as follows:

Lemma 4.7. Assume that / ﬁdr < oo. If a geodesic f : (—o0,00) > M
. m(r
through ¢ = B(0) € U is tangent to the parallel circle around p at g, that is,

1
B'(0) = (O, ﬁ)’ then there exists a d,, > 0 such that there is no conjugate
m(ry

— 18 —



pair on (—6,,,00) along the geodesic f where r; = r(5(0)). Furthermore, §,, is
continuous on r1.

PRrOOF. We observe from Lemma 4.5 and Lemma 4.6 that y,, . (0) exists and
that h(ry) is continuous on 71 € [0,a1). Since Y, (0) = 1 and y;, (0) exists, we
can extend the disconjugate interval of y,, o, as follows:

If there are zeros of y,, «, we then put 6,, := —t(r1), where ¢(r;) is the maximum
zero of zeros of y,, o . Clearly, ¢(r;) < 0. If there are no zeros, we put 6,, = oo. In
this consequence, the interval which has no conjugate pairs extends from [0, c0) to
(—=6,,,00) as showed in Corollary 2.7 and this is the maximal disconjugate interval.
- Since the solution of (Jg) depends continuously on the initial condition, the function
d,,is continuous on 1. O (cf. Figure 3.)

FIGURE 3. The maximum zero of zeros of y,, .

We enter our final stage to the proof of Theorem 1.1.
Lemma 4.8. Assume that

: *© 1
liminfm(¢) >0 and / ——— dr < .
t—o0 1 m(r)2

Then there exists a positive b such that any point ¢ with d(p,¢) < b is a pole.
oC
1 .
PROOF. By assumption that / ——er < 00, we have a §y > 0, where §; is
. m(r
given by putting r; = 0 for d,, in Lemma 4.7. There exists an as > 0 such that if

) ) )
0<r <a < a1, then |5r1 — 50’ < —99, that iS, (57-1 > —29 Put b := min (a2,~20—>.

For any point ¢ in the b-neighborhood of p, there is no conjugate pair along any
geodesic emanating from gq.

For a geodesic 8 : [0,00) — M with 7(8(0)) = r1 < b whose velocity vector at
t = 0 is defined as (3.2), we have

y(t) = vm(r(t))? — 2 #0
on (0,00) for any fixed ¢ € [0,m(r1)]. Therefore, (Jg) is disconjugate on (0, 00)
along 8 by Lemma 2.3.
For a geodesic v : [0,00) — M whose velocity vector at t = 0 is defined as
(3.3), the following is true. Let go be a point such that 7'(go) = 0, that is, d(p, qo) =
d(p, y([0, oo))) with r(go) < 71. Let ¢; be a point such that d(p, ¢1) = d(p,q), ¢1 # ¢



and ¢; € ¥([0,00)). Since

d((L Q1)
= <
there also exist no points conjugate to ¢ along v by Lemma 4.7. (cf. Figure 4.)

7.
Therefore, every point ¢ in the b-neighborhood of p is a pole. O

d(g,p) + d(p, q1)

T1 9

§b§@<6
(

FIGURE 4. The geodesics 3,y emanate from gq.

By Corollary 4.1 and Lemma 4.8, we have Theorem 1.1.
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5. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Let (S,0) be a von Mangoldt’s surface
of revolution with the vertex at 0. We determine the number 7,(S). The proof is
based on Lemma 1.2. We ﬁnd the equation whose solution is 7,(S). Since m(0) =
0,m'(0) = 1 and from (2.3) we have

%.(0) = /m /m —/lsﬁdr
y;(o>—/1“m%5drzy;(0)_/lsﬁdr

This shows that these values do not depend on parameter s. Then we can set
S
. 1
C=y.(0)— ——dr =y;(0
30) = [ s dr = 44(0)
where C is a constant. From Corollary 2.5 and the assumption, both

Yoo(£) = m(t) /too 51%5 dr (t > 0)

Thus,

and
<1
' (0) = / 1 sic
Yoo (0) CmaE |
exist. Let an x > 0 be a number such that the maximal disconjugate interval of
(Jg) along 7, is (—x,00). Then

y;ow):ﬂwﬁdrw(m—fﬁ;m:/j@mwggw»

Since the Gaussian curvature G(Tq(t)) along 7, is symmetric with respect to the
vertex p, the z satisfies y/ (0) = —y,(0). (cf. Figure 5.) Since y,(0) is monotone
increasing on s, we have y_(0) > ¢.(0).

In the case where ¢(m) < 0, we have —y.(0) < 0, a contradiction. Namely,
(—00, 00) is the disconjugate interval of (Jg). We then have r,(S) = cc.

In the case where ¢(m) > 0, it follows that

4o (0) = / wmlqn);drﬂLy;(U):—yé(O)-

Therefore,

(r )
Thus, we have the equation F'(z) = 0 and the results. O



The geometrical meaning of the constant c(m) is 2y’ (0) as above.

F1GURE 5. The relation of y, t0 yo.

Remark 5.1. Furthermore, put c(m,r1) = 2y, .(0), and
00 U 2
F(ry,z) :=c(m,ry) —/x m(r(t?;z(r—l)m(rlﬁ dt.
If ¢(m,r1) > 0, then there exists an z = z(r;) such that
F(ri,z(r1)) =0 and 6, = z(r).
Then, ( — z(ry), oo) is the maximal disconjugate interval along a geodesic S such
that 7(8(0)) = 1 and r'(B8(0)) = 0.




6. Proof of Theorem 1.4

In this section we will prove Theorem 1.4. We assume that (1) of Theorem 1.4 is
not true, that is, C(p) N J(p) = 0. Then there are at least two minimizing geodesics
connecting p and every point x € C(p) (cf. [4]). Thus, we may assume that ¢ ¢ C(p).

Let U denote the set of all v € T,M such that v,(f) = exp,tv is a minimizing
geodesic in ¢ € [0, 1]. Let ¢ be the restriction of exp, to U, Notice that ¢ is injective
in the interior of U and the boundary of U is 5(p) The map ¢ : Int U — M is
bi-Lipschitz diffeomorphism on any bounded set where Int U is the interior of U.
Let Zy be a sequence of minimizing geodesics from a point ¢ € M and contained
in M \ C(p). Let Z, be a sequence of curves in T,M one of whose endpoints is a
point § such that ¢(Z) = Z and () = ¢. It follows from bi-Lipschiz continuity
of ¢ that if Z; converges to a minimizing geodesic Z, then Zk converges to a curve

Z C T,M such that ¢(Z) = Z. This fact will be used later.
Let F be a function on M given by
F(z) :=d(p,z) + d(q,z)
forallz € M. Then F~! ((d(p, q), r}), r > d(p, q), is star-shaped around both p and g,
that is, all minimizing geodesics T'(p, z) and T(g, z) are contained in F~* ((d(p, q), r])
for every point # € F~'((d(p,q),r]). Since C(p) is closed, there exists a point
zo € C(p) such that
F(zy) = min{F(z) |z € C(p)}.

The following lemma shows the details of Theorem 1.4 (2).

Lemma 6.1. Let M be a complete Riemannian manifold and p,q € M with
C(p) # 0, Cp)NJ(p) =0 and ¢ ¢ C(p). If 2o € C(p) is the point given as above,
then the following hold.

(1) If zo ¢ C(q), then the number of minimizing geodesics from p to z is exactly
two, say T1(p, zo) and Ta(p, zo). Moreover, one of T3 (p, zo) U T (20, ¢) and
Ty (p, o) U T(xg,q) is a geodesic crossing C(p) and the other is a geodesic
reflecting against C(p) at zp.

(2) If zo € C(g), then the numbers of minimizing geodesics from p to zg
and zy to ¢ are exactly two, respectively. Moreover, two of Ti(p,zq) U
T1(z0,q), T1(p, zo) U Ta(zo, q), To(p, xo) U T1(z0,¢q) and To(p, zo) U Ta(zo, q)
are geodesics crossing C(p) and the others are geodesics reflecting against
C(p) at zo.

Here we say that a unit speed and broken geodesic 7 : [0, a] — M reflects against
a hypersurface H C M at x = y(b) € H if

7(b+0)#~'(b—0) and g(v'(b—0),v) = g(v(b+0),v)



for all tangent vectors v € T, H where 7/(b+0) = tmfo v (b£t).
—

PROOF. In order to prove (1) we treat the case zo ¢ C(g). Let T' = T'(zg, g) be the
unique minimizing geodesic connecting xy and ¢q. Suppose in addition that there exist
at least three minimizing geodesics connecting p and xg. Choose two of them, 77 and
T5, such that neither of TUT; and TUT5 is a geodesic. Namely, TUT) and TUT}; are
broken at xo. Since d(g,y) < d(q, o) + d(xe, y) for every point y € 11 UT3 \ {p, 2o},
we find points y; € T; sufficiently close to zo such that F(y;) < F(zo) for i = 1,2,
meaning that T'(¢,y;) N C(p) = 0. Let the curves T, C U,i = 1,2, be such that
Tg joins the origin O of T,M and a point Zo; € ¢~ () with cp(ﬁ) = T;. We then
have new curves ¢~ '(T(g,1;)) connecting § and 7; = ¢~ (y;) € T;. Since g is
not conjugate to p, the points y; are close to zy;. Letting y; — x¢ we have two
curves /I/\V/Z-,i = 1,2, connecting ¢ and Zy;, respectively, such that w(ﬁ/}) = T. This
is impossible. In fact, let y(t),w;(¢) and wq(t),t € [0,1], be parameterizations of
T, W, and W, respectively, such that 7(0) = ¢ and p(@1(t)) = (@(t)) = ()
for all t € [0,1]. Let ¢, = max{t € [0,1] | @wi(s) = Wa(s) for all s € [0,¢]}. Then
to > 0 because ¢ is injective in the interior of U. Since ¢ is diffeomorphic on
some neighborhood around @ (to) = @s(ts) because of C(p) N J(p) = 0, we have
to = 1, contradicting that @;(1) = Zo1 # Zo2 = W2(1). Thus there are exactly two
minimizing geodesics Ly and L connecting p and z,. From above argument, we
may assume that L; UT is a geodesic L connecting p and ¢. Let 77 : [0,a] — M and
Y2 : [0,b] = M be the parameterizations of geodesics L and Lo, respectively, where
a = F(zy) and b = d(p,zg). The cut locus C(p) is smooth in some neighborhood of
xo because xg is not conjugate to p along both 7; and . Therefore, we have

g(7(b—0),v) = g(71(b—0),v) = g(11(b+0),v)

for all tangent vectors v € T,,C(p). Where the first equality follows from F'(z) =
min{F(z) | z € C(p)} and the second equality follows from ~;(b — 0) = (b + 0).
This proves that (1) is true.

In order to prove (2) we treat the case 2o € C(g). Let T' be a minimizing geodesic
connecting ¢ and zy. Let ¢; € T \ {zo, ¢} be such that ¢; ¢ C(p). We can choose
such a point q; because of ¢ ¢ C(p). Moreover, the point ¢; satisfies 2o ¢ C(q1).
Let F; be a function defined by

Fi(z) :=d(p,z) + d(q1, x)
for all x € M. We will prove

Fi(z9) = min{Fi(z) | z € C(p)}.




In order prove this, we suppose there exists a point z; € C(p) with Fy(z1) < F(z).
We then have
F(z1) = d(p, z1) + d(g, 71)

< d(p, 1) + d(g, q1) + d(qu, 21) = Fi(21) + d(g, q1)

< Fi(@o) + d(q, 1) = d(p, %o) + d(q1, 7o) + d(g, 1)

= d(p, o) + d(g, o) = F(z0).
This contradicts the choice of zy. If we use ¢ anf F} instead of ¢ and F, respectively,
then (1) is true. Letting ¢, — ¢, we have one geodesic stated in (2). To complete
the proof we have to show the number of minimizing geodesics connecting ¢ and
xo is exactly two. Suppose first that the number is one. Then the argument for
(1) is valid to get a contradiction, since any minimizing geodesic connecting ¢ and
z € Ti(p, o) \ {zo} is not contained in any T;(p, zo) UT (2o, q) because of o € C(q),
meaning that F'(z) < F(x,). Suppose there exist at least three minimizing geodesics
connecting ¢ and xy. We then find at least two broken geodesics with break point
at zo which are a union of T;(p, z9) and some T = T'(z, g). Thus the argument for
(1) is valid to get a contradiction again-when we use a point ¢; € T\ {¢} instead of
q as before. This completes the proof of (2). O



7. Proof of Theorem 1.6

In this section we prove Theorem 1.6.

PrOOF of (1). Let ¢ € M\{p} be a pole. Take a point s € S with d(o, s) = d(p, ).
Then 7, : [0,00) = M is a ray with 7,(0) = ¢, 7, (d(p,q)) = p, and 7 : [0,00) = S
is a geodesic with 7,(0) = s and 7,(d(0,s)) = o. Since 7, lies in a union of two
meridians, we have

A(p,7o(0) = d(o, 7, (1)
for all ¢ € [0, 00). It follows from the assumption,

K(Wfq ) > G( (p, Tq( ))) = G(d(o, TS(t))) = G(TS(t))

for all ¢t € [0, c0), where

(R(u,v)v,u)
[ullPllv]l* = (u, v)?
denotes the sectional curvature of the tangent plane 7, at x € M, being spanned by
two independent tangent vectors u,v € T, M, by putting (-,-) := g(-,). It follows
that K (7, ) at 7,(t) € M is greater than or equal to the Gaussian curvature
G(7s(t)) at 5(t) € S. Since there is no point conjugate to ¢ along 7,, the Rauch
comparison theorem for Jacobi vector fields ([4]) shows that 7, has no point conjugate
to s. Lemma 1.2 proves that s is a pole in S and

rp(M) < 1,(S), that is, P C B(p,7o(9)).
This completes the proof of (1).

K(m,) =

M Tq S Ts
v(a)

7s(t)

o]

FIGURE 6. In the case of K(r,) < G(d(p,z)).

PROOF of (2). (cf. Figure 6.) Let ¢ € M be a point with d(p,q) < r,(S). We
will prove C(q) = @ which implies that ¢ is a pole in M. Suppose for indirect
proof that C(g) # 0. Then it follows from Corollary 1.5 that C(g) N J (q) # 0,
say ¥ € C(g) N J(q) and z = exp,z. Therefore, we have a minimizing geodesic
v : [0,a] = M with v(0) = ¢ and (a) = x such that z is conjugate to ¢ along
where a = d(g, z). Let s € S be a point with d(o, s) = d(p, ¢). Then s is a pole and
75+ [0,00) — S is a ray with 7,(0) = s and 7,(d(0, s)) = 0. We then have from the
triangle inequality

d(p,7(t)) > [t —d(p,q)| = |t = d(o,5)| = d(0,7:(1))
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for all t € [0,a]. Thus, we have
K (1) < G(d(p,7(1)) < G(d(o, (1)) = G(n(t))

for all t € [0, al], since S is a von Mangoldt’s surface of revolution. It follows that
K () at () € M is less than or equal to G(7,(t)) at 7,(t) € S for all ¢ € [0, q].
Since s is a pole, it follows from the Rauch comparison theorem for Jacobi vector
fields that - has no point conjugate to ¢, a contradiction. We then have C(q) = 0.
Namely, ¢ is a pole. Hence,

rp(M) > 7,(S), that is, P D B(p,r,(S5)).
This completes the proof of (2). O



8. Some examples

The examples in this section are helpful to understand the role of the assumption
in the argument in Section 6.

(1) Lift of curves meeting a conjugate point.
Here we discuss what happens when C(p) N J(p) # (. (cf. Figure 7.) Let

M ={(z,y,2) e B |2+ y*+ 22 =1} and p=(0,0,1).
Let (r,8) be the polar coordinates in T,M such that

exp,(r,0) = (sinr cosd,sinrsin 0, cosr).

Then C(p) = J(p) = {(r,0) | r = 7, 0 < 6 < 27} and C(p) = {(0,0,-1)}.
Let U = {(r,0) | 0 <7 < 1} C T,M. Set 2 = (0,0, —1). Let g = exp,(ro,0) for
ro € (0,7). Then it is of course that F(zo) = min{d(p, z)+d(¢,z) | x € C(p)}. Take
a point 7 = (m,6p) € T,M where 0 < 6y < 7 or m < 6 < 27 such that exp, Zo = 0.
Let y(r) = exp,(r,6,),0 < r < m. Then y(r) € T = exp, ([0,7] x {65}). We have a
curve W(fr) = exp, ' (T(q, y(r))) C U which can be parameterized by 6, connecting
q = exp,'q and y(r) = exp,'y(r). As y(r) — o, the sequence of curves W (r)
converges to the union of curves {(r,0) | ro < r < 7} and {(m,0) | 0 <0 < 6} C
C(p) or {(m,0) | 6y < 6 < 21} C C(p). Those curves for 0 < 6y < wand 7 < 6 < 27

branch at (m,0). This does not happen when C(p) N J(p) = 0, as was seen in the

Y
T,M
N N |
Clp) =J ()" o = (m,60)
y(r) In the case of 0 < 8 < .
o),
: z
O 1q=(ro,0) 7
- \In the case of 7 < Oy < 2.

’ zy = (m,60)
FIGURE 7. The curve to which W (r) converges in T,M as y(r) — zo
in M.

proof of Theorem 1.4.

(2) Lift of ellipses in a flat cylinder.
Here we discuss what happens when ellipses meet C(p) as being larger in 7, M.
(cf. Figure 8.) Let

M ={(z,y,2) € B |2+ 2> =1} and p=(1,0,0),¢=(0,2,-1).
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Then C(p) = {(-1,y,0) | y € R} and C(q) = {(0,y,1) | y € R}. Since the Gaussian
curvature G(p) at every point p € M equals 0, there are no points conjugate to p
along a minimizing geodesic, that is, C (p) N J (p) = 0. We identify M with E? /T
where E? = {(z,%) | z,y € R} and T"is the isometry group generated by a translation
(z,y) — (=, y+2m), that is, the identification is given by M > (cos b, y,sinf) — (y, 0
mod 27) € E2. The tangent plane T,M is identified with E* also. Then C (p) =
{(z,£m) |z e R} and U = {(z,9) | # € R,—7 <y < 7w}, If o = exp, |U, then
¢~ p) = (0,0) =: Po and ¢ *(¢) = (2,—m/2) =: go by this identification. Set
g1 = (2,37/2), meaning ¢(g;) = ¢. Furthermore, »~'(C(q)) = {(=,7/2) | = € R}.
Let E(p,¢;7) = {w | F(w) := d(p, w)+d(q,w) = r} and D(p, ¢;7) = {w | F(w) < r}
for each r > d(p,q). Then go_l(E(p, q; 7")) changes for r as follows:

Y
T,M A
b & = (2,37/2)
A.Z'vo‘lr' ~
.................. T C(p)
U 7r/2 a ~
................. / ~~ O(q)
” E (Do, Go; o)
Do To -
7o qo (27 —7T/2)
Vo T TN 5’(2))
Toz .
~(2,-37/2)

FIGURE 8. At the moment when the ellipse just meets C(p) on M.

(1) ¢ Y(E(p,q;7)) = E(Po,qo;) if 7 satisfies d(p,q) < 7 < ro, where 7y =
min{F(w) |w € C(p)} = \/4+97r2/
(2) ¢ (E(p, g;70)) = E(Po, Go; o) UT (@, To1) where @ = E(po, qo; o) VT (Po, 71)
and {Zo1} = C(p) N T(Po, @) (cf. Figure 8.)
(3) ¢ Y (E(p,q;7)) = 8(D(po, do;7) UD(Po, q1;7)) NU if r satisfies r > ro where
0X is the boundary of X.

Let Too = Zo1 — (0,27). If 2o € C(p) satisfies F(z) = min{F(z) | z € C(p)},
then ¢~ (zo) = {Zo1,To2}. Moreover, (T (Po, Zo1) U T(To2, o)) is a geodesic con-
necting p and ¢ in M. The geodesic reflecting against C'(p) at z, is identified with
gp(T (Po, To2) U T(:%’OQ,qNg)). It is remarkable that any sequence of points y; such
that y; € E(p,q;rj) for r; < ro with r; = 19 cannot converge to any point in

T(a, o) \ {a, zo}.
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Let p = (1,0,0),¢ = (1,2,0). Then C(p) = C(q) = {(-1,4,0 | y € R)} and z, €
C(q). The geodesics crossing C(p) are identified with (T (Po, Zo1) UT (Zo2, §o)) and
©(T(Po, Toz) UT (Zo1,Go))- The geodesics reflecting against C(p) at zo are identified
with ¢(T'(Po, Zo1) UT (Zo1, q0)) and @ (T (Bo, Toz) U T(Zo2, Go))- (cf. Figure 9.)

Y
.M
T ~ -
................... Tl C(p) :C(q)
U
ﬁ[) ffo = (27 ) -
E(Po, Go; 7o)

e P M a(p) :5(q)

-m Zo2

FIGURE 9. In the case of zy € C(g).
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