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1. Introduction

It is a classical problem to investigate the existence of non-trivial pole or the
behavior of geodesics on a complete surface of revolution. Let (M, p) be a pointed
complete Riemannian manifold with a base point at p E M homeomorphic to the
plane. We say that a pointed complete Riemannian manifold (M, p) with dimension
2 is a surface of revolution with the vertex at p if the Gaussian curvature G(q) of
M is constant on the metric t-circle

Sp(t) := {q E M I d(p, q) = t}

around p for t > 0, say G(t). Namely, there exists a polar coordinates (r,8) around
p such that .the Riemannian metric 9 on a surface of revolution M is expressed as

(1.1)

where the smooth function m : [0,(0) ---+ [0,(0) satisfies the differential equation

mil (t) + G(t)m(t) = 0

with the initial condition m(O) = 0, m' (0) = 1 and is extendable to an odd function
around O. Here 21rm(t) implies the length of the parallel circle Sp(t).

Let { : I ---+ M be a geodesic with unit speed in a complete Riemannian manifold
M. We say that {(to) and {(t1 ) are called a conjugate pair along { if there exists a
non-trivial Jacobi field along { that vanishes at {(to) and {(t1). A point q ElY! is
called a pole if there exist no points conjugate to q along every geodesic { : [0, (0) ---+
M emanating from q = {(O). In a surface of revolution At the vertex is a pole if
IV! is homeomorphic to the plane. The vertex p is the unique pole in any elliptic
paraboloid of revolution. On the other hand, H. von 1Vlangoldt ([3]) proved that
the set of all poles of every connected component of two-sheeted hyperboloid of
revolution is a non-trivial closed ball centered at its vertex. We discuss his result
under a general setting. Put

rp(M) := sup{r I If d(p, q) < r, then q E M is a pole.}. (1.2)

If M is a surface of revolution homeomorphic to the plane with the vertex at
p, then rp(M) is equal to the distance between p and the farthest pole in M ([7],
Lemma 1.1). Tanaka ([6]) generalized von Mangoldt's result and showed a necessary
and sufficient condition for r p (IV!) > 0, and found an equation which determines the
rp(M) for a von Mangoldt's surface of revolution. Here a von Mangoldt's surface is
by definition a surface of revolution such that the Gaussian curvature is monotone
non-increasing with respect to the distance to its vertex.

We have some purposes in this article. Our first one is to give an alternative proof
of Tanaka's characterization of rp(M) > 0 for a surface of revolution, moreover, to
make his proof much simpler. Actually, in Section 4 we prove the following theorem.
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Theorem 1.1. ([6], Theorem 1.10) Let (M,p) be a surface of revolution with the
vertex at p. Then rp(M) > °if and only if M satisfies

100 1
-()2 dt < 00 and liminfm(t) > 0.

1 m t t-+oo

Our proof is based on the disconjugate property for the solution of the differential
equation of Jacobi type, and is seemed to be simpler than the original one, whose
proof is mainly based on the geodesic variation. Before the proof, we review the
theory of stabl.e Jacobi fields in Section 2. In particular, we study when we can
extend a disconjugate int~rval for a solution of the equation of Jacobi type. In
Section 3 we also review the theory of Jacobi field on a surface of revolution. We
recall a lemma due to Tanaka([7], [5]).

Lemma 1.2. ([7]) Let (8,0) be a von JVIangoldt's surface of revolution with the
vertex at o. Let q E 8 \ {o}. If the geodesic Tq : [0,(0) --+ 8 emanating from
q = Tq(O) through 0 has no points conjugate to q along Tq, then q is a pole in 8.

In particular, as a result of this lemma we have

r o(8) = max{r(q) I There are no points conjugate to q = Tq(O) along Tq.}

for every von Mangoldt's surface. Here r(q) is the r-coordinate of the point q.
The second purpose is to prove the following theorem as an application of these

theorem and lemma by an independent method. In Section 5 we will prove the
following.

Theorem 1.3. ([6], Theorem 2.1) Let (8,0) be a von Mangoldt's surface of revo-

100 1 100

1lution such that 1 m(r)2 dr < 00. Let yoo(t) = m(t) t m(r)2 dr (t> 0). Then

the constant c(m) := 2y~(0) exists. Set

- 100

1F(x) := c(m) - x m(r)2 dr.

We then have the following.

(1) If c(m) :; 0, then r o(8) = 00.

(2) If c(m) > 0, then ro (8) is the unique zero point of the function P.
Tanaka first proved Theorem 1.3, where he defined the constant c(m) as follows:

( )
.=100

m(r) - rm'(r) d
em. ( )3 r.o m r

However, the geometrical meaning of this constant arising in the equation was not
explained. VVe emphasize that the constant is expressed by means of the stable
Jacobi field. Our method is based on the disconjugate property of Jacobi field along
a ray emanating from the vertex. We will make his proof much simpler and the
geometrical meaning of the equation clearer.
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The third purpose is to prove Theorem 1.6 in Section 7 in order to estimate the size
of the set of all poles in a complete Riemannian manifold, combining the immediate

consequence of Theorem 1.4, Lemma 1.2 and Rauch's comparison theorem. Let M
be a complete Riemannian manifold and TpM the tangent space to M at a point

p E M. Let expp : TpM ---+ M be the exponential map at p. Let v E TpM be any

unit vector. Then lv(t) = expp(tv) is the unit speed geodesic with 'JIv(O) = p and
'JI~(O) = v. Define functions ip and cp on the set of all unit tangent vectors at p, say

SpM, as follows:

(1) ip(v) is the least upper bound of those r such that 'JIv is a minimizing geodesic

in [0, r],
(2) cp (v) is the least upper bound of those r such that no point is conjugate to

p along 'JIv in [0, r).

It follows that ip(v) ::; cp(v) for all vectors v E SpM. Set

C(p) {ip(v)v I v E SpM},

J(p) {cp(v)v I v E SpM}.

We call C(p) the tangent cut locus at p, C (p) = exppC(p) the cut locus of p and

x E C (p) a cut point of p. We call J(p) the tangent conjugate locus atp and

x E J(p) = exppJ(p) the conjugate point to p.

Rauch ([2]) conjectured that C(p) n J(p) -# 0 for every point p E M if a Rie

mannian manifold M is compact and simply connected. The conjecture is valid if
M is homeomorphic to the 2-sphere or isometric to a symmetric space. Weinstein
([1]) has given a negative answer to the conjecture, in general, proving that any com
pact differentiable manifold M not homeomorphic to the 2-sphere has a Riemannian

metric on M such that there exists a point p E M whose tangent conjugate and
tangent cut loci are disjoint. A well known lemma due to Klingenberg states that if

p E M and Xo E C(p) are such that d(p, xo) = d(p, C(p)), then there exists either a
minimizing geodesic connecting p and Xo along which Xo is conjugate to p or else a

geodesic loop at p through Xo whose length is 2d(p, C(p)) (cf. [4]). Our contribution
is a generalization of these theorems.

Theorem 1.4. Let M be a complete Riemannian manifold and p E M a point with

C(p) -# 0. Then one of the following is true.

(1) C(p) n J(p) -# 0.
(2) There exist at least two geodesics connecting p and every point q E M.

Here we regard a constant curve as a geodesic when q = p.

In Section 6 we will prove this theorem. The main part of the proof is to find a
geodesic which is not minimizing. It is important in the proof that the ellipsoids
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are star-shaped around their foci. We will pay our attention to a point in C(p) n
E(p, q; TO) where E(p, q; TO) is the smallest ellipsoid with foci p and q intersecting
C(p). We will detail to the geodesics in (2) as Lemma 6.1.

We may equivalently say that a point q E M is a pole if the exponential map
eXPq : TqM --+ M is a diffeomorphism. If there exists a pole q E M and the dimension
of M is n, then M is diffeomorphic to the n-dimensional Euclidean space lEn and all
geodesics emanating from q are minimizing, that is, C(q) = 0. In particular, there
exists only one geodesic connecting the pole q and every point x EM. Thus, we
have the following as a dir~ct consequenQe of Theorem 1.4.

Corollary 1.5. Let M be a complete Riemannian manifold with a pole. We then
have C(x) n J(x) i- 0 if a point x E M is not a pole.

We use Corollary 1.5 to estimate the size of the set of all poles in a complete
Riemannian manifold with a pole. Poles are useful for the function theory on Rie
mannian manifolds and have been discussed in many papers. The set of poles has
recently been studied in a complete surface of revolution which is homeomorphic to
the plane, as stated before ([6], [7]).

Let M be a complete Riemannian manifold with a pole p and P the set of all
poles in M. Let J3 (p, T) be the closed T-ball centered at p. Then it follows from

(1.2), that

J3(p, Tp(M)) C P.

If M is, in addition, a surface of revolution, then

P = J3(p,Tp(M)).

Let x E M \ {pl. Let Tx : [0,(0) --+ M be the geodesic with Tx(O) = x and
Tx(d(p, x)) = p. Let]( (1rx) denote the sectional curvature of the tangent plane
1rx C TxM at x E M. We will prove the following theorem in Section 7, as an
application of Lemma 1.2, using the Rauch comparison theorem for Jacobi vector
field along minimizing geodesics passing through p and o.

Theorem 1.6. Let M be a complete Riemannian manifold with a pole p and P

the set of all poles in M. Let S be a von NIangoldt's surface of revolution with the
vertex at 0 and G its Gaussian curvature function. Then the following are true.

(1) P C J3(p, ~o(S)) if ]((1rx) 2:: G(d(p, x)) for all points x E M and all tangent
planes 1rx C TxM.

(2) J3(p, To(S)) c P if ]((1rx) :::; G(d(p, x)) for all points x E M and all tangent
planes 1rx C Txlvl.
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The property in Corollary 1.5, C(x) n J(x) i- 0 if x is not a pole, will play the
most important role in the proof of Theorem 1.6. \Vhen ]V! is simply connected and
the dimension of M is two, this property is true for all points x E M with C(x) f:. 0
([1]). Therefore, Theorem 1.6 can be slightly changed by replacing "with a pole" by
"being simply connected" .

Proposition 1.7. Let M be a complete sirnply connected Riemannian 2-manifold
with a base point at p E M and G its Gaussian curvature. If SI and S2 are von
Nlangoldt's surfaces of revolution with the vertices at 01,02 and G l , G2 are their
Gaussian curvature functions, respectively, such that

. Gl (d(p, x)) ~ G(x) ~ G2 (d(p, x))

for all x E 1!'v1, then p is a pole. If P is the set of all poles in 1\11, then

B(p,r02 (S2)) C P c B(p,r01 (SI)), that is, r02 (S2) ~ rp (lv1):::; r01 (SI).

In Section 8 we will show some examples for Theorem 1.4. This article is merged
with two papers, one of which have been issued as [10], the other will be issued as
[8] before long.
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2. Disconjugate properties for Jacobi fields

Let M be a complete Riemannian 2-manifold. Let, : [0,00) -+ }..I[ be a unit speed
geodesic. Let {e1 = ,', e2} be an orthonormal parallel frame field along ,. \Ve say
that a vector field Y along, is a Jacobi field if it satisfies the Jacobi equation

\7"(' \7"(, Y + R(Y, ,')ry' = 0,

where R : X(}..1[)3 -+ X(}..I[) denotes the Riemannian curvature tensor. Define a

linear map

We then have

Ft (e1) = 0,

g(R(e2' ,'),', e1) = 0,

9 (R(e2, ,'),', e2) = G(,(t)).

Let J"( be the set of all Jacobi vector fields along " which forms a vector space over
JR. If Y"(t) = x(t)e1 (t) + y(t)e2(t) E J"(, we then have

y" (t) + G (,(t) )Y(t) = o.

\Ve have the following contents on the disconjugate property for later use by
digesting Chapter XI in [9]. The differential equation (JG ) is said to be disconjugate
on I if every non-trivial solution y : I -+ JR of (JG ) along, vanishes at most once,
where y(t) means that Y..L(t) = y(t)e2(t) E J"(. Then, we regard y of the solution
(JG) as a Jacobi field along ,. The disconjugate property is stated as follows:

For each solution Ys of (JG ) on I with ys(s) = 0 and y~(s) -1= 0, we have ys(t) -1= 0
for all tEl \ {s}.
This property implies that the solution of (JG) is uniquely determined by its values
at two distinct points in I.

We have a general solution y of (JG ) from a non-trivial solution z by using the
variation method of constants as following formula:

y(t) = z(t) (1 Z(~)2 dtG, + G2) ,

where c1 , C2 are constants. This is proved as follows:

-6-
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Let y(t) = z(t)C(t). Then it follows that

o= y" (t) + G(t)y(t)

= z" (t)C(t) +2z' (t)C' (t) + z(t)C" (t) + G(t)y(t)

= -G(t)z(t)C(t) + 2z'(t)C'(t) + z(t)C"(t) + G(t)z(t)C(t)

= 2z'(t)C'(t) + z(t)C"(t).

L C' ( ) = u(t) Th C" ( ) = u' (t)z(t) - u(t)z' (t) d z' (t)u(t) ,( ) = 0
et t z (t) . en t z (t) 2 an z(t) + u t .

. ()' C1 , C1
SInce z(t)u(t) = 0, we have u(t) = z(t) and C (t) = z(t)2 . D

Assume that (JG ) is disconjugate on I and eEl. Let Yc be the solution of (JG )

with Yc(c) = 0 and y~(c) = 1. Then the solution Ys of (JG ) with Ys(c) = 1 and
ys(s) = 0 is given by the following formula for each s E 1\ {c} from (2.1)

1
s 1

ys(t) = yc(t) ()2 dw
t Yc W

for all t such that c ~ (t, s). This is proved as follows:
We may put

(2.2)

ys(t) = yc(t) ([ yc(~)2 dwC1+ C2)

for all tEl such that c ~ (t, s) from (2.1). Since Ys(s) = 0 and Yc(s) =I 0, we see
C2 = 0 by putting t = s. Define

F : I --+ JR, F(t) = y~(t)Yc(t) - Ys(t)y~(t)

for all tEl. Then

F'(t) = -G(t)ys(t)yc(t) + G(t)Ys(t)Yc(t) = O.

Therefore, F(t) is constant for all tEl, and F(c) = -1, F(s) = y~(s)Yc(s) = -1.

Since ,() ,()1s
1 C1

Ys t = Yc t t yc(W)2 dwC1 - yc(t) ,

we have

by putting t = s. D

We have from (2.2)

l
u 1

yu(t) - ys(t) = yc(t) ( )2 dw
s Yc w
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for all t E [c, u]. Differentiating it at t = c, we have

y~(c) - y:(c) = r / )2 dw.is Yc w
(2.3)

We get the following.
Lemma 2.1. Let c < sand Ys be defined as in (2.2). Then

y~ (c) ---+ - 00 as s ---+ c + O.

PROOF. Let Yc: [c,b] ---+ IR be the solution of (JG ) with Yc(c) = 0 and y~(c) = 1.

Fix u > c in such a way that (JG) is disconjugate on [c, u]. By construction of Yc we
find Yc(w) = (w-c) y~(c+e(w-c)),0 < () < 1. Since y~(c+()(w-c)) ---+ 1 as w ---+ c,
there exists for every c > 1 a 6 > c such that if c < w < 6, then yc(W)2 :::; (w - c)2c.

'Therefore,

1° 1 lu
1y~(c) - y~(c) = ( )2 dw + ( )2 dw

s Yc w ° Yc w

1° 1
~ ( )2 dw

s Yc w

11° 1> - dw
- c s (W-C)2

=~(~o~c+s~J
Thus, y~(c) - y~(c) ---+ 00, and hence, y~(c) ---+ -00 as s ---+ c + O. D
If the orientation of parameter is reversed, then we have y~(c) ---+ +00 as s ---+ c - o.

Lemma 2.2. Assume that (JG ) is disconjugate on I. Let c < s (c, s E I) and let Ys :
[c, s] ---+ IR be defined as in (2.2). If y : [c, s] ---+ IR satisfies (JG) such that y(c) = 1
and y(t) i= 0 for all t E [c, s], then y(t) > ys(t) for all t E (c, s].

PROOF. Define

F : [c, s] ---+ IR, F(t) = y(t) - ys(t).

Then F(t) satisfies (JG) and F(c) = O,F(s) = y(s) > O. Therefore, F(t) is non
trivial. If there exists a to E (c, s) such that F(to) = 0, then c and to form a
conjugate pair, a contradiction. D

Next, we have a condition which implies the disconjugate property.
Lemma 2.3. Assume that there exists a solution y : I ---+ IR of (JG) with y(t) i= 0
for all tEl. Then (JG) is disconjugate on I.

PROOF. We find

fi(t) = y(t) (1,' y(: )2 dwC[ + C2)

-8-



is a general solution of (JG ) from (2.1). Let to E I. If y(to) = 0, we then have
O2 = O. Since -'( ) '( )it 1 0 1

Y t = Y t .-()2 dW01 + -() ,
to Y w . Y t

it follows 0 1 = y'(to)y(to). Let ybe non-trivial. Then y'(to) -10 and

y(t) = y'(to)y(to)y(t) i.t

_(1)2 dw.
to Y w

It follows that y vanishes only at t = to. 0

Let G : ~ ---+ ~ be the function as defined in (JG)'
Theorem 2.4. Assume that (JG ) is disconjugate on (c - E, 00) for some positive

E. Let Ys, YC-E: : ~ ---+ ~ be the solutions of (JG ) with Ys(c) = 1, ys(s) = 0 and
with YC-E:(c) = 1, YC-E:(c - E) = 0, respectively. Then Ys(t) converges to y(t) as
s ---+ 00 for each t E~. ]\!Ioreover, Y : ~ ---+ ~ is the solution of (JG ) such that
YC-E:(t) ~ y(t) > ys(t) for all t E (c, s). (cf. Figure 1 in the case of c < u < s.)

y
YC-E:

c
--t----1l~----------4Il-----+---~to c - E

1

FIGURE 1. The solutions of (JG ).

PROOF. Let Yc : ~ ---+ ~ be the solution of (JG ) with Yc(c) = 0 and y~(c) = 1.

From Lemma 2.2 we have

1
s 1

ys(t) = YC (t) ()2 dw (s > t > c).
t Yc w

Let s > u > t > c. Then we have

Is 1
ys(t) - yu(t) = Yc(t) ()2 dw > 0,

u Yc w

y~(c) - y~(c) = 1.8 t)2 dw > 0
u Yc w

from (2.2) and (2.3). By Lemma 2.1 and the assumption, it follows

YC-E:(t) > Ys(t) > Yu(t).
Therefore, there exists a function y(t) such that ys(t) ---+ y(t) as s ---+ 00 for each

, t E [c, 00). Let T > O. By Lemma 2.3 and the assumption, we see that for some
E>O

-9-



for all s > T + c + 1 and for alIt E [c, T + c]. Since
t'

y~(t') - y;(t) +1G(W)Ys(w)dw = 0

for all t, t' E [-T + c, T + c], we find a constant 0 such that

I y~(t') - y~(t) I :s; 0/ t' - t I·
By Ascoli-Arzela's Theorem, we have

I y' (t') - y' (t) I :s; 0 I t' - t I

for all t, t' E [-T + c, T + c] as s ---+ 00. Finally, we have that y' is continuous on IIt
Since

t'

y'(t') - y'(t) +1G(w)y(w)dw = 0

for all t, t' E JR, we have that y' is differentiable and y satisfies (JG)' D

Combining Theorem 2.4 and (2.2), we have the following.
Corollary 2.5. Assume that (JG ) is disconjugate on (c- c, 00) for some positive c.
Let Ys for each s> c be defined as in (2.2). Then ys(t) for each t E [c,oo) converges
to yoo(t) as s ---+ 00, which is the solution of (JG). lVIoreover, Yoo(t) is given by the
following formula:

100 1
yoo(t) = Yc(t) ( )2 dw (t > c).

t Yc w

Conversely, roo t)2 dw < 00 shows that there exists a positive c such that
}C+l Yc W ,

(JG ) is disconjugate on (c - c, 00). The following corollary will play an important
role in our proof of Theorem 1.1.

Remark 2.6. In the statements in Theorem 1.3, m(t) is equal to Yo(t) as above,
that is, m(t)e2(t) E :lj.L' where J-L is some unit speed meridian, and so Yoo is the
solution of (JG ) along a ray emanating from the vertex.

Corollary 2.7. Assume that (JG ) is disconjugate on [c,oo) and

100 1
( )2 dw < 00.

c+l Yc W

Then [c, 00) is extendable to a disconjugate interval [c - c, 00) of (JG) for some
positive c.

-10-



(3.1)

3. Properties of Jacobi fields on a surface of revolution

Let M be a complete surface of revolution with the vertex at p homeomorphic
to the plane, whose metric is expressed as (1.1). It is known that the Gaussian
curvature of M at each point q E Sp(t) is given by

G ( )
= _ mil (t)

t m(t) .

Let, : [0, (0) -+ M be a unit speed geodesic and put ,(t) := (r(t),O(t)) for all
t E [0, (0). Let v be a constant. The differential equations for a geodesic are as
follows:

where fA denotes Christoffel's symbol. Put r := ul, 0 := u2
, then we have

r" - mm' (0' )2 = 0,

m'0" + 2-rI 0' = 0,
m

sInce

From the second equation of the preceding, we have

B'(t) = m(:rt))2 .

Combining this result with (1.1), we have

1 ( ) _ Jm (r (t) )2
- v2

r t - ± m(r(t))

A I-parameter 'family of geodesics ,C: : [0,(0) x (-Eo, Eo) -+ M, 'c:(t) = (r(t), O(t) +
E) is a geodesic variation. Thus,

Put

(:B) =: a(t)el (t) + b(t)e2(t),
')'(t)

where {el = ,', e2} is an orthonormal parallel frame field along ,. Since

g~(t) (:0, :B) = m(r(t))2

-11-



for all ,(t) E M \ {p}, we have the following from (Jo)

a(t) = g7(t) (:0' e1) = m(r(t)) cos~(t) = v,

b(t) = g7(t} (:0, e2) = m(r(t)) sinW) = ±y'm(r(t))2 - v2 ,

where ~(t) denotes the angle between ,'(t) and (:0) .The first formula is called
"((t)

Clairaut's relation.
Let Tq : [0,00) ~ M for each q E M\ {p} be the geodesic emanating from q = Tq(O)

through p and let J-Lq : [0,00) ~ M denote the meridian emanating from p = J-Lq(O)
through q. With these notation,we state the following lemmas and proposition.

Lemma 3.1. (Compare Lemma 1.1 in [6].) Let,: [0, 00) ~ M be a geodesic. If
r'(t) = °at two distinct parameter values, then, is not a ray.

PROOF. Let the first zero point of r' : (0, 00) ~ ~ be to and the second t 1 . From
(3.1) and that

y(t) = Jm(r(t))2 - v2

is the solution of (JG), ,(to) and ,(t1 ) is a conjugate pair along ,. 0

Lemma 3.2. (See Lemma 1.2 in [6].) Let,: [0, 00) ~ M be a geodesic. If
ro := lim d(p, ,(t)) < 00, then m'(ro) = 0, that is, the parallel circle Sp(ro) is a

t-+oo
geodesic.

For simplicity, put p := d(p, q).
Lemma 3.3. (See Lemma 1.3 in [6].) If liminfm(t) = 0, then J-Lq![p, 00) for every

t-+oo
q E M \ {p} is a unique ray emanating from q.

We give an alternative proof for the followirig lemma.
. roo 1

Lemma 3.4. (Compare Lemma 1.4 in [6].) If 11 m(r)2 dr = 00, then Tq is not a

ray for any q E M \ {pl.
PROOF. Let Yp(t) = m(t - p) for all t ~ 0. Then Yp is the solution of (JG ) along

T q with Yp(p) = m(O) = 0, y~(p) = m'(O) = 1. From (2.2), the solution Ys of (JG )

with Ys(p) = 1 and Ys(s) = °is written as follows:

1
s

1 1s
-

p
1Ys(t) = m(t - p) (-)2 dw = m(t - p) -()2 dr

t m w p t-p m r

-12-



for all t > p. If Tq is a ray, then there exists no conjugate pair along Tq • By Corollary

100 1
2.5, we have -()2 dr < 00, a contradiction. D

t-p m r

For a point q E M \ {p} and for each v E [-m(p), m(p)] we define two geodesics
(3v"v : [0,(0) ~ M emanating from q, whose velocity vectors at t = 0 are given by

j3~(O) =. 1 - (m~p)) 2 (:r)fJv(O) + mrp)2 (:0) fJv(O) ,

, ( v)2(8) v (8)I (0) = -, 1 - - - +-- -
v m(p) 8r I'v(O) m(p)2 88 I'v(O) ,

(3.2)

(3.3)

respectively. Thus, we have smooth I-parameter families of geodesics whose varia
tion vector fields are Jacobi fields

8 8
Xv(t) := 8v ((3v(t)) and Yv(t):= 8v (,V(t))

along (3v and IV, respectively. We denote by I := IC and Y := Y:: for an arbitrary
fixed C E ( - m(p), m(p)); With this notation, we have the following.

Proposition 3.5. (Compare Lemma 1.6 in [6].) Let I be the geodesic defined
as above. Assume that to, t1 E [0,(0) (to < tl) are the first and second zeros of
r' : [0, (0) ~ R. Then 1(3) for 3 E (to, t1) is a point conjugate to 1(0) along I if and
only if

(:v) v=c O(,v(s)) = O.

PROOF. Let IV(t) = (r(t, v), 8(t, v)). Then

8 (8 8 )Yv(t) = 8v (IV(t)) = 8v (r(t, v)), 8v (8(t, v)) .

The point 1(3) is conjugate to 1(0) along I if and only if

Thus, (~) 8(3, v) = 0 follows.
8v v=c

Next, we have only to prove that (:v) v=c r(s, v) = a when (~) v=c O(,v(s)) = a
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Namely, Y(s) = 0.0
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4. Proof of Theorem 1.1

In this section we give a proof for Theorem 1.1 which is different from Tanaka's.
Let }Y! be a complete surface of revolution with the vertex at p homeomorphic to the
plane. Combining Lemma 3.3 and 3.4, we have the following. We give a necessary
condition that there exists a pole q E M \ {p}.

1
00 1

Corollary 4.1. If liminfm(t) = °or. -()2 dr = 00, then the vertex p is the
t-+oo 1 m r

unique pole on }}tl.

We next prove the converse of Corollary 4.1. The following proposition contains
Lemma 3.4 as its special case.

Proposition 4.2. If100

m(~)2 dr = 00, then for any point q E M\ {p} the geodesic

11/1[0,(0) is not a ray emanating from q = 11/(0) for any v E (- m(p),m(p)).
PROOF. When v # 0, if lim r(t) = ro < 00, then 11/ is not a ray by Lemma 3.2.

t-+oo
Let lim r(t) = 00. In the case there exist more than one zero points of r', Lemma

t-+oo
3.1 implies that 11/ is not a ray. In the case where r' has a zero only at to, we observe
that

( )
_ Jm(r(t))2 - v2

Yto t - m' (r (to) )

is the solution of (JG ) along 11/ with Yto(to) = °and Y~o(to) = 1. If Ys is the solution
of (JG ) with Ys(s) = °and Ys(to) = 1, we then have from (2.2) that

Ys(t)=m'(r(to))Jm(r(t))2- v2 1' ((~)2 2 dw
t mrw -v

l
r (S) m(r)

= m'(r(to)) Jm(r(t))2 - v2 3/2 dr
r(t) . (m(r)2 - v2)-l r (S) 1

2:: m'(r(to)) Jm(r(t))2 - v2 -()2 dr
r(t) m r

for all t E (to, s). By assumption, Ys(t) does not converge as s ---+ 00. Therefore,
(JG ) is not disconjugate on (to - c, (0) for any positive c. Thus, 11/ is not a ray.
When v = 0, Tq is not a ray by Lemma 3.4. 0

Recall that (3, I : [0, (0) ---+ M, (3(t), I(t) = (r(t), B(t)) are geodesics whose velocity
vectors at t = °are given in (3.2) and (3.3), respectively.

Lemma 4.3. (Compare Lemma 1.5 in [2].) If a geodesic (3 : [0,(0) ---+ Mdoes not

pass throughp, a~d ifr'(t) # °for all t E (0,00), then-(3 contains no conjugate pair.
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PROOF. Clearly, y(t) = Jm(r(t))2 - v2 is the solution of (JG ) along (3. If
r'(t) -# 0 for all t E (0, (0), then y(t) -# 0 on (0, (0) from (3.1). By Lemma 2.3, (JG )

is disconjugate on (0, (0). 0

From now on, let liminfm(t) := mo > 0 and (3 be a geodesic with
t-+oo

r((3(0)) = rl and ;3' (0) = ( 0 , mtrl)).
Fix a k with 0 < k < 1. Then there exists a number al > 0 such that if 0 ::; rl ::; al,

then m(rl) < kmo and m(rd < m(r) for all r > rl. (cf. Figure 2.) We have the
following.

Lemma 4.4. If 0 ::; rl ::; al < r2 and r2 := r(t2), then

100 1 100

1
( ( ))2 _ ( )2 dt < 00 if and only if -()2 dr < 00.

t2 m r t m rl T2 m r

:.\
~ ";Ra

rna :
~

axis of rotation

M

FIGURE 2. The number rl, al and Ro.

. ., Jm(r(t))2 - m(rl)2
PROOF. (cf. FIgure 2.) SInce r (t) = m(r(t)) from (3.1),

l
v 1 IT

(V) 1 m(r)
------ dt = dr.

U m(r(t))2 - m(rl)2 T(U) m(r)2 - m(rl)2 Jm(r)2 - m(rl)2
It follows

l
v

1 dt > I T
(V) _1_ dr.

t2 m(r(t))2-m(rl)2 - T2 m(r)2
Therefore, if the right hand side diverges, then the left hand side diverges.

There exists an Ro > 0 such that if Ro < r, then m(rl) < km(r). If Ro < r(u) <
r(v), then
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l
r (V) m(r) 1 l r (V) 1

-------3-2 dr :::; 2 3 2 --2 dr.
r(u) (m(r)2 - m(rl)2) /(1 - k ) / r(u) m(r)

Therefore, if the right hand side converges, then the left hand side converges. D

Jm(r(t))2 - m(rl)2
Recall that y(t) = ( ) is the solution of (JG ) along (3 with

m'rl
y(O) = 0 and y'(O) = 1. From (2.2) the solution Ys of (JG ) with ys(O) = 1 and
ys (s) = 0 can be written as follows for each s > 0:

ys(t) = m'(rl) Jm(r(t))2 - m(rl)21s (( ))2
1

()2 dw (8) t > 0).
t m r w - m rl

By putting c = 0, we have the following from (2.3).

Lemma 4.5. Let u> s > O. Then it follows

l
u

1 lu m'(r )2
y~(O) - y~(O) = -()2 dw = ( ( ))2 1 ()2 dw.

s y w s m r w - m rl
(4.1)

In particular, if [YO y(~)2 dw < 00, then y;"(O) = [YO y(~)2 dw + y;(O).

Here Ys(t) and yoo(t) are defined as in (2.2), Corollary 2.5, respectively. The
values ys(t), yoo(t) and y~(O), y~(O) depend on rl' In order to show that these values,
especially, y~(O), y~(O) are continuous on rl in some neighborhood of p, we use the
following notations:

Yn,oo := Yoo and Yrl,S:= YS'

roo 1
Let 0 :::; rl < al and is m(r)2 dr < 00. Then

1
00 1

h(rl) := . ( ( ))2 ()2 dw < 00
s m r w - m rl

by Lemma 4.4. The function Yrl,OO is the solution of (JG ) along (3 as stated in Remark
2.6.

roo 1
Lemma 4.6. Assume ,that is m(r)2 dr < 00. Then~here exists a neighborhood

U of the vertex p such that h(r(q)) is continuous in U 3 q.
PROOF. Set U = {q E M I r(q) < al}' For any E > 0 there exists an R2 > 0 such

that if 0 < rl < al, then

100 m(r) 1 100
1 E

3/2 dr < ( 2)3/2 -()2 dr < - .
R2 (m(r)2 - m(rl)2) - 1 - k R2 m r 3
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We have

100 m(r)
h(rl) = 3 2 dr

r(f3(s)) (m(r)2-m(rl)2) /

1
R2 m(r) 100 m(r)

=. 3 2 dr + 3 2 dr.
r(f3(s)) (m(r)2 - m(rl)2) / R2 (m(r)2 - m(rl)2) /

Let,8 : [0,00) ---+ M be the geodesic with r(,8(0)) = i\,,8' (0) = (0, mti\)) ,7'1 =.rl.

Then

_ 1R2
m(r) 1R2

m(r)h(rl) - h(rl) = . 3 2 dr - _ 3 2 dr
. r(f3(s)) (m(r)2 - m(rl)2) / r(f3(s)) (m(r)2 - m(rl)2) /

100 m(r) d 100

m(r) d+ 32 r- 32 r
R2 (m(r)2 - m(rl)2) / R2 (m(r)2 - m(rl)2) /

and

I h(rl) - h(rd I

l
R2 m(r) 1R2 m(r) 26'

< 3/2 dr - _ 3/2 dr + - .
r(f3(s)) (m(r)2 - m(rl)2) r(f3(s)) (m(r)2 - m(rl)2) 3

There exists a 0 > 0 such that if Irl - i\ I < 0, then Ih(rl) - h(i\) I < ~ + 2; = c.

Thus, h 0 r is continuous in U. D

As u ---+ 00 in (4.1), we have

Y~l'oo (0) = m' (rd2h(rl) + Y~l'S (0).

In this consequence, Y~l'oo(O) is continuous at rl E [0, al], where Yrl,S is the solution
of (JG ) along 13 with Yn,s(s) = 0 and Yrl,S(O) = 1 for each s > O. From Corollary 2.5
we have

Yrl,oo(t) = m'(rdvm(r(t))2 - m(rd2 1°O (( ))2
1

()2 dw (t > 0).
t m r w - m rl

We remark that the right hand side of the above equation is an expression of a
Jacobi field on the interval (0,00) and the expression is not available in any interval
containing O. \Ve think that it is the restriction of a Jacobi vector field Yrl,oo defined
along a whole geodesic 13 : (-00,00) ---+ M. We can extend an interval with no
conjugate pair as follows:

/

00 1
Lemma 4.7. Assume that I m(r)2 dr < 00. If a geodesic 13 : (-00,00) ---+ M

through q =13(0) E U is tangent to the parallel circle around p at q, that is,

fJ' (0) = (0, mtrl) ), then there exists a or, > 0 such that there is no conjugate
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pair on (-6r1 , 00) along the geodesic (3 where r1 = r ((3(0)). Furthermore, 6r1 is
continuous on r1.

PROOF. We observe from Lemma 4.5 and Lemma 4.6 that Y~l'oo(O) exists and

that h(r1) is continuous on r1 E [0, a1)' Since Yrl,oo(O) = 1 and Y~l'oo(O) exists, we
can extend the disconjugate interval of Yrl,oo as follows:

If there are zeros of Yrl,oo, we then put 6r1 := -t(r1), where t(r1) is the maximum
zero of zeros of Yrl,oo' Clearly, t(r1) < O. If there are no zeros, we put 6r1 = 00. In
this consequence, the interval which has no conjugate pairs extends from [0,00) to
(-6r1 , 00) as showed in Corollary 2.7 and this is the maximal disconjugate interval.
Since the solution of (JG ) depends continuously on the initial condition, the function
6r1 is continuous on r1. 0 (cf. Figure 3.)

y
1

FIGURE 3. The maximum zero of zeros of Yrl ,00'

We enter our final stage to the proof of Theorem 1.1.

Lemma 4.8. Assume that. 100

1liminfm(t) > 0 and -()2 dr < 00.
t-+oo 1 m r

Then there exists a positive b such that any point q with d(p, q) ~ b is a pole.

PROOF. By assumption that 100

m(~)2 dr < 00, we have a 00 > 0, where 00 is

given by putting r1 = 0 for 6r1 in Lemma 4.7. There exists an a2 > 0 such that if

60 . 60 . ( (0)o ~ r1 < a2 < a1, then 16r1 - 601 ~ 2' that 1S, 6r1 ~ 2' Put b := m1n a2, 2 .
For any point q in the b-neighborhood of p, there is no conjugate pair along any
geodesic emanating from q.

For a geodesic (3 : [0,00) -t M with r ((3(0)) = r1 < b whose velocity vector at

t = °is defined as (3.2), we have

y(t) = Jm(r(t))2 - c2 #0
on (0, 00) for any fixed c E [0, m(rdJ. Therefore, (JG ) is disconjugate on (0,00)
along (3 by Lemma 2.3.

For a geodesic ry : [0,00) -t M whose velocity vector at t = °is defined as
(3.3), the following is true. Let qo be a point such that r' (qo) = 0, that is, d(p, qo) =
d(p, ry([O, 00))) with r(qo) < r1' Let q1 be a point such that d(p, q1) = d(p, q) , q1 # q
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and ql E 1([0,00)). Since

d( ) = d(q, ql) < d(q,p) + d(p, ql) < b < 80 < 8
qo, q 2 - 2 - - 2 - Tl'

there also exist no points conjugate to q along 1 by Lemma 4.7. (cf. Figure 4.)
Therefore, every point q in the b-neighborhood of p is a pole. D

FIGURE 4. The geodesics (3, 1 emanate from q.

By Corol~ary 4.1 and Lemma 4.8, we have Theorem 1.1.
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5. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Let (8,0) be a von Mangoldt's surface
of revolution with the vertex at o. We determine the number r o(8). The proof is
based on Lemma 1.2. We find the equation whose solution is r o(8). Since m(O) =

0, m'(O) = 1 and from (2.3) we have

j u 1 j,u 1 j,s 1
y~(O) - y~(O) = s m(r)2 dr = lm(r)2dr - 1 m(r)2 dr.

Thus,

j u 1 j,s 1
y~(O)- 1 m(r)2dr=y~(0)- 1 m(r)2dr.

This shows that these values do not depend on parameter s. Then we can set

C = y;(O) - [ m(~)2 dr = y;(O)

where C is a constant. From Corollary 2.5 and the assumption, both

100 1
yoo(t) = m(t) t m(r)2 dr (t> 0)

and

J
OO 1

y~(O) = 1 m(r)2 dr + C

exist. Let an x > 0 be a number such that the maximal disconjugate interval of
(JG ) along T q is (-x, (0). Then

j,oo 1 j,x 1 100
1

y~(O) = 1 m(r)2 dr + y~(O) - 1 m(r)2 dr = x m(r)2 dr + y~(O).

Since the Gaussian curvature G(Tq(t)) along Tq is symmetric with respect to the
vertex p, the x satisfies y~(O) = -y~(O). (cf. Figure 5.) Since y~(O) is monotone
increasing on s, we have y~(O) > y~(O).

In the case where c(rn) ::; 0, we have -y~(O) ::; 0, a contradiction. Namely,
(-00, (0) is the disconjugate interval of (JG). We then have ro(8) = 00.

In the case where c(m) > 0, it follows that

y;"(O) = t" m(~)2 dr + y~(O) = -y~(O).
Therefore,

1
00 1

o= 2y~(0) + x m(r)2 dr

= 2 (Y;"(O) -100

m(~J2 dr) +100

mtrJ2 dr

1
00 1

= c(m) - x m(r)2 dr.

Thus, we have the equation P(x) = 0 and the results. D
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The geometrical meaning of the constant c(m) is 2y~(0) as above.

y

yoo(t)
~--

x t

FIGURE 5. The relation of Yx to Yoo'

Remark 5.1. Furthermore, put c(m, rl) := 2Y~1'00(0), and- 100
m'(rl)2

F(rl' x) := c(m, rl) - ( ( ))2 ()2 dt.
x m r t - m rl

If c(m, rl) > 0, then there exists an x = x(rl) such that

P (rl' x(rl)) = 0 and 6r1 = x(rl)'
Then, ( - x(rl), (0) is the maximal disconjugate interval along a geodesic (3 such

that r ((3(0)) = rl and r' ((3(0)) = o.
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6. Proof of Theorem 1.4

In this section we will prove Theorem 1.4. We assume that (1) of Theorem 1.4 is
not true, that is, C(p) n J(p) = 0. Then there are at least two minimizing geodesics
connecting p and every point x E C(p) (cf. [4]). Thus, we may assume that q f/:. C(p).

Let U denote the set of all v E TpM such thatrv(t) = expp tv is a minimizing
geodesic in t E [0,1]. Let <p be the restriction of expp to U~ Notice that <p is injective

in the interior of U and the boundary of U is C(p). The map <p : lnt U ~ M is
bi-Lipschitz diffeomorphism on any bounded set where lnt U is the interior of U.
Let Zk be a sequence of minimizing geodesics from a point q E M and contained
in M \ C(p). Let Zk be a sequence of curves in TpM one of whose endpoints is a
point if such that <p(Zk) = Zk and <p(q) = q. It follows fro~ bi-Lipschiz continuity
of <p that if Zk converges to a minimizing geodesic Z, then Zk converges to a curve
Z C TpM such that <p(Z) = Z. This fact will be used later.

Let F be a function on lYI given by

F(x) := d(p, x) + d(q, x)

for all x E M. Then F-1((d(p, q), rJ), r > d(p, q), is star-shaped around bothp and q,
that is, all minimizing geodesics T(p, x) and T(q, x) are contained in F-1((d(p, q), rJ)
for every point x E F-1((d(p,q),rJ). Since C(p) is closed, there exists a point

Xo E C(p) such that

F(xo) = min{F(x) I x E C(p)}.

The following lemma shows the details of Theorem 1.4 (2).

Lemma 6.1. Let M be a complete Riemannian manifold and p, q E M with
C(p) f 0, C(p) n J(p) = 0 and q f/:. C(p). If Xo E C(p) is the point given as above,
then the following hold.

(1) If Xo f/:. C (q), then the number of minimizing geodesics from p to Xo is exactly
two, say T1(p, xo) and T2 (p, xo). Nloreover, one of T1(p, xo) U T(xo, q) and
T2 (p, xo) U T(xo, q) is a geodesic crossing C(p) and the other is a geodesic
reflecting against C(p) at xo.

(2) If Xo E C(q), then the numbers of minimizing geodesics from p to Xo
and Xo to q are exactly two, respectively. Moreover, two of T1(p, xo) U

T1(xo, q), T1(p, xo) U T2 (xo, q), T2 (p, xo) U T1(xo, q) and T2 (p, xo) U T2 (xo, q)
are geodesics crossing C (p) and the others are geodesics reflecting against
C(p) at xo.

Here we say that a unit speed and broken geodesic r : [0, a] ~ M reflects against
a hypersurface HeM at x = {(6) E H if

{'(6 + 0) f {'(6 - 0) and g({'(6 - 0), v) = g({'(6 + 0), v)
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for all tangent vectors v E TxH where I'(b ± 0) = lim I'(b ± t).
t~+O

PROOF. In order to prove (1) we treat the case xo ~ C(q). Let T = T(xo, q) be the
unique minimizing geodesic connecting xo and q. Suppose in addition that there exist
at least three minimizing geodesics connecting p and xo. Choose two of them, T1 and
T2, such that neither of TUT1and TUT2 is a geodesic. Namely, TUT1and TUT2 are
broken at xo. Since d(q, y) :::; d(q, xo) + d(xo, y) for every point y E T1U T2\ {p, xo},
we find points Yi E Ti sufficiently close to xo such that F(Yi) < F(xo) for i = 1,2,
meaning that T(q, Yi) n Q(p) = 0. Let the curves Ii c U, i = 1,2, be such that
Ii joins the origin 0 of TpM and a point XOi E cp-1 (xo) with cp(Ii) =~. We then
have new curves cp-1 (T(q, Yi)) connecting q and Yi = cp-1 (Yi) E Ti. Since Xo is
not conjugate to p, the points Yi are close to XOi' Letting Yi ---+ Xo we have two
curves Wi, i = 1,2, connecting q and XOi, respectively, such that cp(Wi) = T. This
is impossible. In fact, let I(t), W1 (t) and W2(t), t E [0,1], be parameterizations of
T, W1 and W2, respectively, such that ,(0) = q and cp(W1(t)) = cp(W2(t)) = I(t)
for all t E [0,1]. Let to = max{t E [0,1] I W1(S) = W2(S) for all S E [0, tn. Then
to > °because cp is injective in the interior of U. Since cp is diffeomorphic on
some neighborhood around W1(tO) = W2(tO) because of C(p) n J(p) = 0, we have
to = 1, contradicting that W1 (1) = X01 =I X02 = w2(1). Thus there are exactly two
minimizing geodesics L 1 and L 2 connecting p and Xo. From above argument, we
may assume that L 1U T is a geodesic L connecting p and q. Let 11 : [0, a] ---+ M and
12 : [0, b] ---+ M be the parameterizations of geodesics Land L 2, respectively, where
a = F(xo) and b = d(p, xo). The cut locus C(p) is smooth in some neighborhood of
Xo because Xo is not conjugate to p along both 11 and 12' Therefore, we have

g(/~(b - 0), v) = g(/~(b - 0), v) = g(/~(b + 0), v)

for all tangent vectors v E TxoC(p). Where the first equality follows from F(xo) =

min{F(x) I x E C(p)} and the second equality follows from I~(b - 0) = I~(b + 0).
This proves that (1) is true.

In order to prove (2) we treat the case Xo E C(q). Let T be a minimizing geodesic
connecting q and Xo. Let q1 E T \ {xo, q} be such that q1 ~ C(p). We can choose
such a point q1 because of q tJ. C (p). JVloreover, the point q1 satisfies Xo ~ C (q1)'
Let F1 be a function defined by

for all x E M. We will prove
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In order prove this, we suppose there exists a point Xl E C(p) with Fl(Xl) < Fl(xo).
We then have

F(Xl) = d(p, Xl) + d(q, Xl)

~ d(p, Xl) + d(q, ql) + d(ql' Xl) = Fl(Xl) + d(q, ql)

< F l (Xo) + d(q, ql) = d(p, Xo) + d(ql' Xo) + d(q, ql)

= d(p, Xo) + d(q, Xo) = F(xo).

This contradicts the choice of xo. If we use ql anf F l instead of q and F, respectively,
then (1) is true. Letting ql ---+ q, we have one geodesic stated in (2). To complete
the proof we have to show the number of minimizing geodesics connecting q and
Xo is exactly two. Suppose first that the number is one. Then the argument for
(1) is valid to get a contradiction, since any minimizing geodesic connecting q and
X E Ti(p, xo) \ {xo} is not contained in any Ti(p, xo) UT(xo, q) because of Xo E C(q),
meaning that F(x) < F(xo). Suppose there exist at least three minimizing geodesics
connecting q and xo. We then find at least two broken geodesics with break point
at Xo which are a union of Ti(p, xo) and some T = T(xo, q). Thus the argument for
(1) is valid to get a contradiction again when we use a point ql E T \ {q} instead of
q as before. This completes the proof of (2).0
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7. Proof of Theorem 1.6

In this section we prove Theorem 1.6.
PROOF of (1). Let q E M\ {p} be a pole. Take a point s ES with d(0, s) = d(p, q).

Then Tq : [0,(0) --+ M is a ray with Tq(O) = q, Tq(d(p, q)) = p, and Ts : [0,(0) --+ S

is a geodesic with Ts(0) = sand Ts(d(0, s)) = 0. Since Ts lies in a union of two
meridians, we have

d(p, Tq(t)) = d(O,Ts(t))

for all t E [0, (0). It follows from the assumption,

K(1rTq (t)) 2:: G(d(p, Tq(t))) = G(d(o, Ts(t))) = G(Ts(t))
for all t E [0,(0), where

(R(u, v)v, u)
]((1rx

) = Ilu11 2 /lv11 2 - (u, v)2
denotes the sectional curvature of the tangent plane 1rx at x EM, being spanned by
two independent tangent vectors u, v E TxM, by putting (-,.) := g(., .). It follows
that ]( (1rTq (t)) at Tq(t) E Jllf is greater than or equal to the Gaussian curvature
G(Ts(t)) at Ts(t) E S. Since there is no point conjugate to q along Tq, the Rauch
comparison theorem for Jacobi vector fields ([4]) shows that T s has no point conjugate
to s. Lemma 1.2 proves that s is a pole in Sand

rp(M)::; ro(S), that is, Pc i3(p,ro(S)).

This completes the proof of (1).

s

p 0

FIGURE 6. In the case of ]((1rx) ::; G(d(p, x)).

PROOF of (2). (cf. Figure 6.) Let q E M be a point with d(p, q) ::; ro(S). We
will prove C (q) = 0 which implies that q is a pole in M. Suppose for indirect
proof that C(q) =I 0. Then it follows from Corollary 1.5 that C(q) n ](q) =I 0,
say x E C(q) n ](q) and x = eXPq X. Therefore, we have a minimizing geodesic
~ : [0, a] --+ M with ~(O) = q and ~(a) = x such that x is conjugate to q along ~

where a = d(q, x). Let s E S be a point with d(o, s) = d(p, q). Then s is a pole and
Ts : [0,(0) --+ S is a ray with Ts(0) = sand Ts(d(0, s)) = 0. We then have from the
triangle inequality

d(p, ~(t)) 2:: It - d(p, q) I= It - d(o, s) 1= d(o, Ts(t))
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for all t E [0, a]. Thus, we have

!((1fry(t)) :::; G(d(p,,(t))) :::; G(d(o, Ts(t))) = G(Ts(t))

for all t E [0, a], since S is a von Mangoldt's surface of revolution. It follows that
!((1fry(t)) at ,(t) E M is less than or equal to G(Ts(t)) at Ts(t) E S for all t E [0, a].

Since s is a pole, it follows from the Rauch comparison theorem for Jacobi vector
fields that, has no point conjugate to q, a contradiction. We then have C(q) = 0.
Namely, q is a pole. Hence,

rp(M) 2 ro(S), that is, P::) fJ(p,ro(S)).

This completes the proof of (2). D
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8. Some examples

The examples in this section are helpful to understand the role of the assumption
in the argument in Section 6.

(1) Lift of curves meeting a conjugate point.
Here we discuss what happens when C(p) n J(p) -I 0. (cf. Figure 7.) Let

M = {(x, y, z) E JE3 I x2+ y2 + x2 = 1} and p = (0, 0, 1).

Let (r,O) be the polar coordinates in Tp llll such that

expp(r,O) = (sin r cos 0, sin r sin 0, cos r).

Then C(p) = J(p) = {(r,O) I r = 1f, ° :s; 0 < 21f} and C(p) = {(a, 0, -1)}.
Let U = {(r,O) 10:S; r:S; 1f} C TpM. Set Xo = (0,0,-1). Let q = expp(ro,O) for
ro E (0,1f). Then it is of course that F(xo) = min{d(p,x)+d(q,x) I x E C(p)}. Take

a point Xo = (1f,00 ) E TpM where °< 00 < 1f or 1f < 00 < 21f such that exppxo = Xo.
Let y(r) = expp(r, 00 ),°< r < 1f. Then y(r) E T = expp ([0, 1f] X {Oo}). We have a

curve W(r) = exp;l (T(q,y(r))) C U which can be parameterized by 0, connecting

q= exp;l q and fj(r) = exp;l y(r). As y(r) ---+ xo, the sequence of curves W(r)
converges to the union of curves {(r, 0) I ro :s; r :s; 1f} and {(1f, 0) I°:s; 0 :s; Oo} c
C(p) or {(1f, 0) I00 :s; 0 :s; 21f} C C(p). Those curves for °< 00 < 1f and 1f < 00 < 21f
branch at (1f,0). This does not happen when C(p) n J(p) = 0, as was seen in the

y

1r
C(p) = ](Pl.··················. Xo = (1r, 00 )

:,/ Y(1): In the case of 0 < 00 < 1r.

,"" U

'In the case of 1r < 00 < 21r.
Xo - (1r,Oo)

FIGURE 7. The curve to which l-V(r) converges in TpM as y(r) ---+ Xo
in M.

proof of Theorem 1.4.

(2) Lift of ellipses in a flat cylinder.
Here we discuss what happens when ellipses meet C(p) as being larger in TpM.

(cf. Figure 8.) Let

M={(x,y,Z)EJE3 /X2+z2=1} and p=(1,0,0),q=(0,2,-1).
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Then C(p) = {(-I, Y, 0) lyE JR} and C(q) = {(O, y, 1) lyE JR}. Since the Gaussian
curvature G(p) at every point p E M equals 0, there are no points conjugate to p
along a minimizing geodesic, that is, C(p) n J(p) = 0. We identify M with JE2/r
where JE2 = {(x, y) I x, Y E JR} and r is the isometry group generated by a translation
(x,y) f----+ (x,y+21r), that is, the identification is given by M:3 (cosB,y,sinB) f----+ (y,B
mod 21r) E JE2. The tangent plane TpM is identified with JE2 also. Then C(p) =

{(x,±1r) I x E JR} and U = {(x,y) I x E JR,-1r :::; y:::; 1r}. If <p = expplU, then
<p-l (p) = (0,0) =: Po and <p-l (q) = (2, -1r/2) =: qo by this identification. Set
ql = (2,31r/2), meaning <P(ql) = q. Furthermore, <p-l(C(q)) = {(X,7T/2) I x E JR}.
Let E(p, q; r) = {w I F(w) := d(p, w)+d(q, w) = r} and D(p, q; r) = {w I F(w) :::; r}
for each r > d(p, q). Then <p-l (E(p, q; r)) changes for r as follows:

y

:' ql = (2, 37r/2)

7r Xot" ~.................................. ·························C(p)

U 7r/2 a ~..........................: C(q)
~ E(po, iio; ro)
Po "''':0

(2, -7r/2)

.~----- C(p)
X02 ....

". (2, -37r/2)

FIGURE 8. At the moment when the ellipse just meets C(p) on M.

(1) <p-l(E(p,q;r)) = E(po,qo;r) if r satisfies d(p,q) < r < ro, where ro =

min{F (w) I w E C (p)} = J4 + 91r2 /4 .
(2) <p-l (E(p, q; ro)) = E(po, qo; ro) UTCa, XOl) where a= E(po, qo; ro) nT(po, ql)

and {X01} = C(p) n T(po, ql)' (cf. Figure 8.)
(3) <p-l(E(p,q;r)) = 8(D(po,qo;r)UD(po,ql;r)) nU ifr satisfies r > ro where

ax is the boundary of X.

Let X02 = XOl - (0, 21r). If Xo E C(p) satisfies F(xo) = min{F(x) I x E C(p)},
then <p-l(XO) = {XOl' X02}. lVloreover, <p(T(po, XOl) U 1\X02, qo)) is a geodesic con
necting p and q in M. The geodesic reflecting against C (p) at Xo is identified with
<.p(T(Po, X02) U T(X02' qo)). It is remarkable that any sequence of points Yj such
that Yj E E(p, q; rj) for rj < ro with rj ~ ro cannot converge to any point in

T(a, xo) \ {a, xo}.
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Let p = (1,0,0), q = (1,2,0). Then C(p) = C(q) = {(-I, y, 0 lyE R)} and Xo E

C(q). The geodesics crossing C(p) are identified with cp(T(po, XOl) U T(X02, qo)) and
cp(T(PO,X02) UT(XOl,qO))' The geodesics reflecting against C(p) at Xo are identified
with cp(T(po, XOl) U T(XOl, qo)) and cp(T(po, X02) U T(X02' qo)). (cf. Figure 9.)

y

························C(p) = C(q)
u

••••••.•••••••••••••••••••~••. -..\L..-oo..,..,..-:•••••.•••••••••••••••••• C(p) = C(q)

TpM

................... 7r. X01

-7r X02

FIGURE 9. In the case of Xo E C(q).
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