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Introduction

such that
K/k(XI,'" ,xn )

is an algebraic extension of fields and

k(xl, ... ,xn)/k

is a purely transcendental extension.
We define the degree of irrationality of K as follows

dr(K) = min{[K: Km]IK ::) Km ::) k, Km/k is purely transcendental extension / k}.

In a geometrical point of view,

K ::) k(XI' ... ,xn )::) k

means that there exists a hypersurface

S C Pkn+l

such that the function field of S is isomorphic to K, and dr(K) is the minimal value of
possible degree of defining equations of S.

THEOREM 1 (Namba). Let 0 be a smooth plane curve of degree d('2:. 2). Then the degree
[K : K m] is d - 1, which coincides with dr(O), and the extensionK/Km is obtained by
'Jrp* : k(PI) C-......t k(O), where 'Jrp is the projection from C to a line 1 with a center PE O.

Now, let k be the ground field of our discussion, which we assume to be an algebraically
closed field of characteristic zero. Let 0 be an irreducible projective plane .curve of degree
d ('2:. 3) and k(O) the function field. Let P be a point in the plane

p2 \ 0

and consider the projection from P to pI,

'Jrp : p2 __~ pl.

Restricting· 'Jrp to 0, we get a surjective lllorphislll

irp : 0 ---+ pI,
which induces a finite extension of fields

ir~ : k(pl) C-......t k(0).

If the extension is Galois, we call P an outer Galois point for O. (In case P is on the curve
0, the P is called an inner Galois point. We do not consider this case in this paper.)
Let G = Gp be the Galois group

Gal(k(0) / ir~(k(pl))).



4

We call G the Galois group at P. By definition each element of G induces a birational
transformation of C over the projective line pl. If C is smooth, then the element is
an automorphism of C. JVloreover, if d ~ 4, then it can be extended to a projective
transformation of p2 and G turns out to be a cyclic group ([9]).
However, in case C has a singular point, several new phenomena occur, for examples, the
group is not necessarily cyclic, and the element of G cannot necessarily be extended to a
birational transformation of p2 (cf. [11]). It ·seerIlS interesting to·determine .Galois group
when C has a singular point (cf. [5]).

Here is an additional remark on an automorphism group: It is well-known that an auto
morphism Group of pI is one of the followings :

Zm, Dm, A4 , 84 and A 5

These groups are appeared as a Galois group at a Galois point for some rational plane
curve([12]) .
Therefore naturally the following probleII,ls arise:

(i) Finds every possible automorphisms of plane elliptic curves (as varieties).
(ii) Finds every possible Galois groups at a Galois point of genus-one curve.

We treat the cases (i) and (ii) in chapter one and two respectively. We will give the
defining equations of the curve when Galois group is abelian, and some more defining
equations for non abelian case.
Similar study for space elliptic curves and abelian surfaces have been done in [10].
Note that if the characteristic of the ground field k is positive, then many new phenomena
occur and there exist lots of different results. For the recent development of positive
characteristic C3..'ie, see [1].
In this paper we assume k = CC; the field of complex numbers. By a genus-one curve we
mean it is an irreducible plane curve whose srIlooth model has the genus one.

We· have already the following results: Every Galois group of a Galois point is a cyclic
group for a non singular plane curve. We are also interested in the case where there exist
more than one Galois points. How many Galois points do there exit? Do there appear
two Galois groups that are not isomorphic each other for one plane curve? How is the
arrangement? On the number of Galois points , Professor Hisao Yoshihara showed that
there exist at most four inner Galois points and at most three outer Galois points in a
non singular plane curve. JVloreover if a non singular plane curve has three outer Galois
points then this curve is the Ferma't curve.
In chapter three, we examine a group generated four Galois groups of a non singular
plane curve.
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CHAPTER 1

Automorphism Groups

In this chapter, we decide all finite automorphism groups on an elliptic curve E as a
variety. At first we see that an automorphism on E as a variety is represented by a
function of degree one on the universal covering CC of an elliptic curve E.
Hereafter we use the following notations and conventions, where n is a positive integer.

• E : an elliptic curve
• .c = Z + Zw : the lattice defining E, where ~w > 0
• A(E) : the automorphism group of E as a variety
• en := exp(21rH/n)
• Zn:= Z/nZ
• D n : the dihedral group of order 2n
• IGI : the order of a finite group G
• (0"1,··· ,O"n) : the subgroup generated by 0"1, ••• , O"n

1. Representation of automorphism

We denote E as follows.

E =CC/.c

.c = {m + nw Im,n E Z, w ¢ IR}.

Let 0" E A(E).
CC is an universal covering of E, there exists a regular function 0- such that

CC ~ CC

E~E

VA E.c : o-(z + A) - o-(z) E.c.
0- is continuous and .c is discrete set so we have

o-(z + A) - o-(z)

is constant. To differentiate, we have

dO- dO-
VA E.c : dz (z + A) = dz (z)

This is a regular function on a elliptic curve which is a conlpactRiemann surface, then
this is a constant function. We can denote

do-(z) = C (c E CC)
dz

and we have
o-(z) = cz + d.

9



10 1. AUTOMORPHISM GROUPS

Here we note that e is not zero because (J is an autolllorphism. For the commutativity of
the above diagram, we have

(J(Z) = ez + d.

By the coordinate exchange z to
d

z- ,
e

we may assume
(J(z) = ez

and we have
e£C£.

This induce relations

(1)

e = ml +m2w

ew = nl +n2w

ml,m2,nl,n2 E Z

(J has a finite order then
:3n EN: enz - z E £.

So we have en = 1 and then lei = 1.
If m2 = 0 then e is an integer and e = ±1.
If m2 =1= 0 then e is a imaginary number and

e-ml
w=(2)

m2

So using (1) and (2)to eliminate w, we have

e2
- (ml +n2)e - m2nl +mln2 = 0,

Because lei = 1 and ehas degree two on Q,

e - ±yCI or ±1 ± A
- 2'

Because of Q(e) = Q(w) in the case that e is imaginary, we have

(i) In the case of Q(w) = Q(yCI).

e = 1, -1, yCI or - yCI.

(ii) In the case of Q(w) = Q(V-3).

-1+A -I-A I-A I+A
e = 1, -1, 2 ' 2 ' 2 ' 2 .

(iii) Otherwise.
e = 1,-1.
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The image of A is C

by a(z) = yCIz
The image of A is C

bya(z) = e3z
The image of A is C

by a(z) = -z



113. CASE OF Go = (-1)

2. Finite Subgroup

Let G be a finite subgroup G c A(E), and we define a homomorphism cp : G -----t C by
cx + d -; c. We have Im(cp) is a cyclic group. ]\I!oreover Irn(cp) is a subgroup of Z4 or Z6.
We take c which is primitive elernent of Im(cp) , and we take (j E G such that cp((j) = c,
and we put (j(z) = cz + d. By coordinate exchange

z-d
Z -----t -

C '

we nlay assume G :3 cz so we have a split exact sequence as follows

1 -----t GT -----t G~ Go -----t 1.

We have G ~ GT ~ Go. Here GT is all translations in G and Go = Im(cp).
If GT = 1 then G = Go ~ 1, Z2, Z3, Z4 or Z6·
We may assume GT =1= 1.
GT is a finite group with at most two generators , GT ~ Zn or Zn ED Zm (min) where
n,mEN.
If Go = 1 then G = GT ~ Zn or Zn ED Zm.
Now we may assume Go =1= 1 furthermore.
Any element of GT is written as Z +7 (7 E E) , we identify it as 7. Because GT is a finite
group, we may assume nGT C £, so we may think GT C 1£.

n
]\I!oreover, we can denote

a+bw
7 = . (a, b E Z).

n
We note that there exist a translator of order n, because Zn has a generator.

LEMMA 1. Taking (j EGo, 7 E GT and we put (j(z) = cz and 7(Z) = Z+d, then we have

(j7(j-1(Z) = (j7(C-1Z) = (j(c- 1z + d) = Z + cd.

For all translations in G is inGT,GT is closed by inner automorphism of Go. So we
have GT :J (7, (j7(j-1). '

3. Case of Go = (-1)

Let (j(z) = -Z, 7(Z) = Z + a~.

7 and (j are commutative each other

{::=:=;> (j7(j -1 = 7

-a - bw a + bw

n n
{::=:=;> 2a + 2bw E £

n
{::=:=;> 2a _ 2b =0 nlod n.

The order of 7 = n , G.C.D.(a, b) and n are relatively prime. We have n = 2 and the
order of 7=2.
A subgroup H of GT has generators at most two, an abelian group in G including (j is
one of the following :

((j), ((j) x (71)' ((j) x (71) X (72).

Where 71 =1= 72, order of 71 = 2, order of 72 = 2.
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1. AUTOMORPHISM GROUPS

Only three points A, B, C
are translations of order two

Three translations exist and they correspond to

1 w 1 +w

2' 2' 2
For example

If G is not abelian then

(a) ~ (71) is a dihedral group.
(a) ~ (71,72) is similar to dihedral group, so we define as follows.

DEFINITION 1. BDmn is called a bidihedral group which is generated by a, 7 and 7' with
relations

(-1), (-1) x G), (-1) x G) x (~).
So a finite abelian subgroup of A(E) is one of the followings:

Z Z 612 Z 6132, 2 , 2 .

7 mn = ·1, 7,m = 1,

, -1 ,-1 , ,
a7 a = 7 , 77 = 77.

a2 = 1,

a7a-1 = 7-1,

G ~ (a) ~ (71), (a) ~ (71,72)

where (71) 7J 72·

The order of these groups are 2n and 2nm (m In). Relations between generators are
-1 -1 -1 -1

a71a = 71 ,a72a = 72 ,7172 = 7271

4. Case of GT has one generator

We may assume JGol > 2. Let n = IGTI and we take a generator 7 E GT.From Lemnla
1, we have (7) =:) (a7a-1) for any a EGo. a7a-1 has the same order to 7,then we have
(7) = (a7a-1). Let a be a generator of Go and we put

a+bw
a(z) = cz and 7 = .

n

We have
-1 ae + bew

a7a = .
n

lVloreover we note that the G.C.D.(a, b) and n is relatively prime.



4. CASE OF GT HAS ONE GENERATOR

4.1. Case of w = e3 and c = e3. We have

e3 . a + be3 = k . a + be3
n n
ae3 + b(e3)2 ka + kbe3

~

13

n
ae3 + b(-e3 - 1)

~

n
ka + kbe3

n n
-b + (a - b)e3 ka + kbe3

~ =
n n

~ ka _ -b and kb _ a - b mod n.

We have
(k2+ k + l)a _ (k2+ k + l)b _ 0 mod n,

so we have

n I k2 + k + 1.

If (J" and T are commutative then nil + 1 + 1 so we have n = 3.
In this case Abelian group appears as Z3 EB Z3. Generators of translations are

1+2w 2+w
3 3

.------,--- ---e
\ \ \

\ \ \
\ \

\ \
\ \

\ \

\'-\-+--~~~---....\
\

" A ...----11--'---- A \
\ \

\ \
\ \

\... --

Only two points A, B are translations which is

invariant by inner automorphism of a(z) = e3z.

Namely only these translations are commutative with a.

'Indeed for (J" = e3 and T = 1+;e3 , (J"T(J"-'-l '= ;.;-' holds:"

4.2. Case of w = e3 and c = -e3. We have

_ e3 . a + be3 = k . a + be3
n n

-ae3 - b(e3)2 ka + kbe3
~

n n
-ae3 - b(-e3- 1) ka + kbe3

~ =
n n

b - (a - b)e3 ka + kbe3
~ =

n n
~ ka == band kb == -a + b lllOd n.

We have
(k2 - k + l)a _ (k2 - k + l)b == 0 lllod n,

so we have
n I k 2

- k + 1.

If (J" and Tare cOlllmutative then nil - 1 + 1, so we have n = 1.
In this case , No Abelian group appears.
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4.3. Case of w = e3 and c = e6 = -(e3)2. We have

_ (e3)2 . a + be3 = k . a + be3
n n

-a(e3)2 - b(e3)S ka + kbe3
<¢:=::}

n
-b - a (-e3 - 1)

<¢:=::}

n
ka + kbe3

n
a - b + ae3

<¢:=::}

n
ka + kbe3

n n
<¢:=::} ka - a - band kb _ a mod n.

We have

so we have
n I k2

- k + 1.
If (J and 'T are commutative then n I 1 - 1 + 1, so we have n = 1.
In this case , No Abelian group appears.

4.4. Case of w = e3 and c = -e6 = (e3)2. We have

(e3)2 . a + be3 = k . a + be3
n n

a(e3)2 + b(e3)S ka + kbe3
<¢:=::}

n n

<¢:=::}
a(:---e3 - 1) + b ka + kbe3

n n

<¢:=::}
-a +b- ae3 ka + kbe3

=
n n

<¢:=::} ka = -a + band kb =-a mod n.

We have

so we have
n I k2 + k + 1.

If (J and 'T are commutative then n 11 + 1 + 1, so we have n = 3.
In this case Abelian group appears as Z3 E9 Z3.
Indeed for (J = (e3)2 and 'T = l+iea

, (J'T(J-l = 'T holds.

4.5. Case of w = e4 and c = e4. We have

e4 . a + be4 = k . a + be4
n n
-b + ae4 ka + kbe4

<¢:=::}
n n

<¢:=::} ka =-b and kb - a mod n.

We have
(k2 + l)a =(k2 + l)b =0 lllod n,

so we have
n I k2 + 1.

If (J and 'T are commutative then n I 1 + 1, so we have n = 2.



4. CASE OF GT HAS ONE GENERATOR

In this case Abelian group appears as Z4 E9 Z2.
Indeed for CY = e4 and T = 1-I;e4

, CYTcy- 1 = T holds.

4.6. Case of w = e4 and c = -e4. We have

_ e4 • a + be4 = k . a + be4
n n

-{:::::::} b - ae4 = k ka + kbe4
'en n

-{:::::::} ka _ band kb = -a mod n.

We have
(k2 + l)a (k2 + l)b 0 mod n,

so we have

n I k2 + 1.

If CY and T are commutative then n I 1 + 1, so we have n = 2.
In this case Abelian group appears as Z4 E9 Z2'
Indeed for CY = -e4 and T = 1~e4, CYTcy-1 = T holds.

4.7. Case of w = e6 and c = e3 = (e6)2. We have

(e6? . a + be6 = k . a + be6
n n

a(e6)2 + b(e6)4 ka + kbe6
~ )=----

n n
~b + a(e6 ~ 1) ka +kbe6

-{:::::::} = ----
n n

-a - b + ae6 ka + kbe6
-{:::::::} = ----

n n
-{:::::::} ka =-a - band kb - a mod n.

We have
(k2+ k + l)a - (k2+ k + l)b 0 mod n,

so we have

n I k2 + k + 1.

If CY and T are commutative then n I 1 + 1 + 1, so we have n = 3.
In this case Abelian group appears as Z3 E9 Z3.
Indeed for CY = e3 and T = 1~e6, CYTcy- 1 = T holds.

4.8. Case of w = e6 and c = -e3 = -(e6)2. We have

_ (e6) 2 • a + be6 == k . a + be6
n n

-a(e6)2 - b(e6)3 ka + kbe6
-{:::::::}

15

n
ka + kbe6

n
ka + kbe6

n n
-{:::::::} ka =a + band kb - -a lllOd n.
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We have

so we have

1. AUTOMORPHISM GROUPS

(k2 - k + l)a = (k2 - k + l)b =: 0 mod n,

n I k2
- k + 1.

If (J" and Tare conlmutative then nil - 1 + 1, so we have n = 1.
In this case, No Abelian group appears.

4.9. Case of w = e6 and c = e6. We have

e6 . a + be6 = k . a + be6
n n
ae6 + b(e6)2 ka + kbe6

{::=}
n n

{::=}
ae6 + b(e6 - 1) ka + kbe6

=
n n

{::=}
-b + (a + b)e6 ka + kbe6

n n
{::=} ka =: -b and kb =: a + bmod n.

We have
(k2 -k+1)a=(k2 -k+1)b=:O modn,

so we have
n I k2

- k + 1.

If (J" and T are commutative then nil - 1 + 1, so we have n = 1.
In this case, No Abelian group appears.

4.10. Case of w = e6 and c = -e6. We have

_ e6 . a + be6 = k . a + be6
n n

-ae6 - b(e6)2 ka + kbe6
{::=}

n
-ae6 - b(e6 - 1)

{::=}

n
ka + kbe6

n
ka +kbe6

n n
{::=} ka _ band kb= -a - b mod n.

We have
(k2+k+1)a=(k2 +k+1)b_O nlodn,

so we have

n I k2 + k + 1.

If (J" and T are commutative then nil + 1 + 1, so we have n = 3.
In this case Abelian group appears as Z3 ffi Z3'
Indeed for (J" = -e6, T = 1~e6, (J"Ta--1 = T holds.

LEMMA 2. G ~ Go ~ GT is one of the followings:

(i) Z3 ~ Zn , for some k E Z such that nlk2 + k + 1
(ii) Z4 ~ Zn , for some k E Z such that nlk2+ 1

(iii) Z6 ~ Zn , for some k E Z such that nlk2 - k + 1



5. CONDITION OF n

If G is abelian then G is one of the following :

Z3 E9 Z3, Z4 E9 Z2
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5. Condition of n

Concerning the possibility of n of the Lemma2 we note the following,

PROPOSITION 3. A rational integer n (n > 1) satisfies that n 1 k2 + 1 for some rational
integer k if and only if n equals to a product N of rational prime integers which is
equivalent to 1 modulo 4 or n equals to 2N.

PROPOSITION 4. A rational integer n (n > 1) satisfies that n I k2 + k + 1 for some
rational integer k if and only if n equals to a product N of rational prime integers which
is equivalent to 1 modulo 3 or n equals to 3N.

5.1. Proof of Prop.3. At first we assume a rational integer n satisfies that n 1k2+1
for some rational integer k. Z[e4] = Z[A] is UFD because Z[A] is a Euclidean
Domain. We decompose n to primes in Z[A] as follows.

n = PIP2··· pz 11 + k2 = (1 +kA)(I - kA).

Each Pi are a divisor of 1 +kA or 1 - kA. If Pi is a divisor of 1 +kA then we
can write Pi(a +bA) = 1 + kA. If Pi is a rational integer then Pia = 1 holds, and
it is contradicts that Pi is a prime number. So each prime divisors in the decomposition
of n in Z are 2 or an odd prime number equivalent to 1 modulo 4. If Pi is a divisor of
1 - kA then same discussion holds. If two prime divisor 2 are included in n then we
have one of followings :

(1 + A)2 =2H 1 1 + kH,

(1 +H)(I- A) = 211 +kH,

(1 +A)~= 2H ·ll - kH,

(1 +H)(I- H) = 211- kH.

This contradicts that both 1 + kA and 1-kA hasn't divisor 2. So there is at most
one prime divisor 2 in n.
Secondly we see the reverse holds by using three lemmas below.

LEMMA 5. Let P be an odd prime number which is equivalent to 1 modulo 4. For any
positive integer n, there exist integers a and b such that

p
2n = a2+b2, ab =1= 0, a =1= b, a > 0, b > 0, (a, b) = 1.

LEMMA 6. For integers a, b, c, d such that

(a,b)=I, (c,d)=I, (a2+b2,c2+d2) =1,

we can write

(a2+ b2)(C2+ d2) = A2+ B 2

for some rational integer A and B that are relatively prime.

LEMMA 7. If two positive integer a and b are relatively prime each other then a2 + b2 is
a divisor of 1 + A 2 for some rational integer A.
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Let n = POPI II P2h ... Pnln be a decomposition of rational integer n in Z, where Po equals
to 1 or 2 and each Pi (i > 0) are different odd prime numbers each other which is
equivalent to 1 module 4 and each Ii are non negative integers. By nlultiplying suitable
rational integer we assunle Ii is power of 2 and let this number as N. Because n IN,
it is sufficient to show that there exists rational integer A such that N I 1 +A2

• From
lenlma5 , we can write pi = a2 + b2 (a, b) = 1 for each odd prime divisors in n.
From lemma6 , we can write n I A2 + B 2 where (A, B) = 1. Even if n is even then we
also can write n I A2 + B 2 where (A, B) = 1.
From lemma7 , there exists a rational integer A such that N is a divisor of 1 + A2.

5.2. Proofs of Lemmas.
5.2.1. Proof of Lemma5. P is a rational prime number and P = 1. mod 4, we can

write P = a2 + b2
• Here

ab =1= 0, a =1= b, a > 0, b > 0, (a, b) = 1

because p is a odd prime number. If we assume

p
2n

=a2+b2, ab =1= 0, a=l=b, a>O, b>O, (a,b)=1

then we have

Moreover

(a2 - b2)ab =1= 0, a2 - b2 =1= 2ab

because a and b have different parity,

(a2
- b2, 2ab) = 1.

And then by mathematical induction we have done.
5.2.2. Proof of Lemma6. Generally we have

(a2+ b2)(e2+ d2) = (ad - be)2 + (ae + bd?

Putting a = ad - be and j3 = ae + bd. We have the followings.

ae - j3d = -b(e2+ d2),

ad + j3e = a(e2+ d2),

aa + j3b = d(a2 + b2),

ab - j3a = -e(a2+ b2).

Then the comrnon divisor of a and j3 is 1 because

(a, b) = 1, (c, d) = 1, (a2+ b2, c2 + d2) = 1.

5.2.3. Proof of Lemma7. For (a, b) = 1, there exist a pair of rational integer (x, y)
such that ax + by = 1. Because

(a + bi)(x - yi) = (ax + by) + (-ay + bX)i,

we have
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5.3. Proofs of Prop.4. At first weassume n satisfies n 11 +k +k2 for SOllle integer
k. We note that 1 + k + k2 is odd and n is odd. Z[H] is UFD because Z[H] is a
Euclidean DOlllain. We decompose n to primes as follows.

n = PIP2 ... pz I 1 + k + k2 = (1- kes)(1 - k(es)2)

= 2+k-kH. 2+k+kH I (2+k-kH)(2+k+kH).
2 2

Each Pj are a divisor of 2 + k - kV-3 or 2 + k +kH. We may assume Pj is a divisor
of 2 + k - kH, we can write Pj (a +bH) = 2 + k - kH for some rational integers
a, b. If Pj is a rational integer then Pja = 2 + k and pjb, = -k so we have pj(a + b) = 2,
but it is contradiction that Pj is odd prime.
So each prillle divisors in the decomposition of n in Z are 3 or an odd prime number
which is equivalent to 1 modulo 3.
Because the decomposition of the rational number 3 is -H' H in Z[H], if two
prime divisor 3 are included in n then we have one of followings :

312+k-kR,

3 I 2 + k + kV-3

This is contradiction and there is at most one divisor 3 in decomposition of n.
Secondly we see the reverse holds by using three lemmas below.

LEMMA 8. Let P be a odd prime number which is equivalent to 1 modulo 3, there exists
rational integers a and b such that

p
2n = a2+ 3b2, ab -=/= 0, a -=/=b, a > 0, b > 0, (a, b) = 1.

LEMMA 9. For integers a, b, c, d such that

(a, b) = 1, (c, d) = 1, (a2+ 3b2, c2 + 3d2) = 1

there exists relatively prime rational integers A and B such that

(a2+ 3b2)(C2+ 3d2) = A 2+ 3B2.

LEMMA 10. Odd number a2+3b2 ((a, b) = 1) is a divisor of 1+A +A2 for some rational
integer A.

Let n = POPl h p2h ... Pnin be a decomposition of rational in~eger n in Z, where Po equals
to 1 or 3 and each Pi (i > 0) are different odd prime numbers each other which is equivalent
to 1 module 3, each Ii are non negative integers. By lllultiplying suitable rational integer
we assume Ii is power of 2 and let this nUlllber as N. Because n IN, it is sufficient to
show that there exists rational integer A such that Nil + A + A 2

• Frolll Lemllla8 , we
can write pi = a2+ 3b2 (a, b) = 1 for each odd prime divisors p.
Fronl Lemma9 , we can write products of these numbers as A2 +3B2 ((A, B) = 1). If
3 I n then 3(A2 + 3B2) = (3B)2 + 3A2 , (3B, A) = 1. It is because 3 doesn't divide
A2+3B2 then 3 doesn't divide A and (A, B) = 1.
From Lemmal0 , there exists a rational integer A such that N is a divisor of 1 + A + A 2

.

5.4. Proofs of Lemmas.



20 1. AUTOMORPHISM GROUPS

5.4.1. Proof of Lemma8. p is a prime number and p - 1 mod 3, we can write p =
a2 + 3b2

• ab =lO, a 1= b, a > 0, b > 0, (a, b) = 1 because p is a odd prime number. If we
assume

2
n

2 2 .-J.. ( )P = a+ 3b, ab T 0, a 1= b, a > 0, b > 0, a, b = 1
then we have

Moreover

(a2
- 3b2 }ab 1= 0,

a2
- 3b2 1= 2ab,

(a2
- 3b2

, 2ab) = 1.

And then by mathematical induction we have done.
5.4.2. Proof of Lemma9. Generally we have

(a2 + 3b2 )(e2 + 3d2) = 3(ad + be)2 + (ae -3bd)2.

Putting a = ad + be and {3 = ae - 3bd. We have the followings.

ae - {3d = b(e2 + 3d2
),

ad + {3e = a(e2+ 3d2),

aa - {3b = d(a2+ 3b2),

ab + {3a = e(a2 + 3b2).

Then the common divisor of a and {3 is 1 because

(a, b) = 1,

(e,d) ='1,

(a2 + 3b2, e2 + 3d2) = 1.

5.4.3. Proof of Lemmal0.

a2+ 3b2 = (a - Hb)(a + Hb) =(a - b - 2be3)(a + b+ 2be3),

this is odd and (a, b) = 1, so we have

(a-b,2b)=1,

(a + b, 2b) = 1.

Because (a + b, 2b) = 1, there exists a pair of rational integers (x, y) such that

(a + b)x+ 2by = 1.

We can write

(a + b+ 2be3)(x - ye3) = (a + b)x - (a + b)ye3 + 2bxe3 - 2by(e3)2

= (a + b)x - (a+b)ye3 + 2bxe3 + 2by(1 + e3)

= (ax + bx + 2by) + (-ay + by + 2bx)e3

= 1- Ae3'

where A = -ay + by + 2bx E z.



So we have

6. CASE OF· GT HAS TWO GENERATORS

a2+ 3b2 = (a + b+ 2be3)(a + b+ 2b(e3?)

= (a + b + 2be3)(a + b+ 2be3) I (1 - Ae3)(1 - A(e3)2)

= 1 - Ae3 - A(e3)2 + A2(e3?

=1+A+A2.
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mod ~ }

mod ~}

6. Case of GT has two generators

GT is a finite group with two generators, we can write GT = Zn E9 Zm (min). For any
element 7 E GT , n7 = 0 thus we may assume 7 E ~.c. We put a generator of Zn to
7 = a~bw and we may assume (a, b) = 1. Because (a, b) and n are relatively prime then
there exist integer x, y such that x(a, b) + yn = 1, so it is sufficient to substitute a, b
by xa, xb mod n. We note that w = e3 (respectively e4, e6) if .c = (1, e3) (respectively
(1, e4), (1, e6))
Because cr7cr-1 has order n , (7, cr7cr~1) =1= ~.c holds if and only if (7) n (cr7cr-1) =1= 1 holds.

We assume ~.c/(7) 3 cr7cr-1. Let k be the order of this element, we can write cr7k cr-1 = 7 l

n -
and k is a minimal number in these numbers. lVloreover cr7cr-1 = cr7n cr-1 = 1 , we have
kin.
Here let 1= ak+ 13(0 ~ 13 < k). Because of {cr7k cr-1}7; = {7ak+.6} 7; , we have 1 = 7.6'7; ,
and we have 13 = o.
Thus for 7 such as (7, cr7cr-1) =1= ~.c, there exist minimal k and ,\ uniquely such as
cr7kcr -1 = 7 kA •

We put Z-module as follows using minimal k and ,\ such as cr7 k cr-1 = (7k )A for an
element 7 of order n.

( n) {a + bwIn}L '\, k:= n ,\a + b - 0 mod T

( n) {a+bw IL2 '\, k:= n ,\a + a + b=0

( n) {a + bw IL3 '\, k:= n .'\a - a + b - 0

cr w kind condition
e4 e4 L ,\ +1-0
e3 e3 L ,\2 +,\ + 1= 0
e3 e6 L 2 ,\2 +,\ + 1- 0
e6 e3 L3 ,\2 _,\ + 1= 0
e6 e6 L ,\2 -,\ + 1= 0

We show that these sets include the generator 7 and are closed by the action of Go.
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Because (a, b) = 1,

1. AUTOMORPHISM GROUPS

kae4 + kb(e4)2 k)..a + k)"be4
n n

n
- b - )..a and a =)..b mod k °

n
()..2 + l)a =()..2 + l)b == 0 mod k O

2 _ n).. + 1 = 0 mod kO

Because -b )..a mod ~' T = a+;e4 E L().., ~) °

For T' = a'+;'e4 E L()",~) , )..a' + b' =0 mod ~o

, -1 -b' + a'e4
aT a - ---- n '

n
)..( -b') + a' =)..2a' + a'. ()..2 + l)a' =0 mod kO

Thus L ().., ~) is closed with action of a °

es(ka + kbes) k)..a + k)"bes
n n

kaes + kb( -es - 1) k)..a + k)"bes
n n

n
- b - )..a and a - b =)..b mod - 0

. k
n

()..2 +).. + l)a =()..2 +).. + l)b =0 mod k o

Because (a, b) = 1,
n

)..
2 + ).. + 1 - 0 mod k °

Because -b =)..a ilIod~, T = a+;e3 E L().., ~)o

For T' = a'+;'e3 E L()",~) , )..a' + b' - 0 mod ~o

-b' + (a' - b')e, -i . saT a = --~_---:....--

n '
n

)..(-b') + (a' - b') == )..2a' + a' + )..a' = ()..2 +).. + l)a' - 0 ilIOd kO

Thus L()",~) is closed with action of ao
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n n
ka(e6 - 1) - kb k)..a + k)"be6

n n
n

- a - b - )..a and a ==)..b mod k"
n

()..2 +).. + 1)a= ()..2 +).. + 1)b =0 mod k"

Because (a, b) = 1,

Because -a - b =)..a mod ~, 7 = a+:e6 E L2().., ~)"

For 7' = a'+:'e6 E L2()..'~) , )"a' + a' + b' =0 mod~"

-a' - b' + a'e6
a7'a-1 = ,

n
)..(-a' - b') + (-a' - b') +.a' =-)..a' - )"b' - b'

- a' + b' - )"b' - b'

=a' - )"b'

= (_)..2 _ )..)a' - )"b'
n

- ()..)(-)..a' - a' - b') =0 mod k"

Thus L2 ().., ~) is closed with a<;tjqn 9f,g:,.

n n
ka(e3 + 1) - kb k)..a + k)"be3

n n
n

a - b )..a and a -)"b mod -"
k

n
()..2-)..+1)a· ()..2-)"+1)b==O lHOd k"

Because (a, b) = 1,

2 . n).. -).. + 1 = 0 mod k"

Because a - b ==)..a mod!!: 7 = a+be
3 E L ().. !!:)k' n 3, k "

23
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For 7' = a'+;'e3 E LS(A, ~), Aa' - a' + b' == 0 nlod~.

, -1 a'es + b'(es)2a7 a = .:....-...;c--

n
a'es + b'(-es - 1)

n
-b' + (a' - b')es

n
A(-b') + b' + a' - b' == -Ab' + a'

== A2a' - Aa' + a'
n

= (A2
- A + l)a' - 0 mod k'

Thus LS(A,~) is closed with action ofa.

6.5. Case of a = e6 and w = e6. Fronl a7ka-1 = (7k)'\ we have

e6 (ka + kbe6) kAa + kAbe6
n n

kae6 + kb(e6 - 1) kAa + kAbe6
=

n n
n.

- b= Aa and a + b= Ab mod k;
n

(A2
- A+ l)a =(A2

- A+ l)b == 0 mod k'

Because (a, b) = 1,
n

A2
- A+ 1 =0 mod k'

Because -b _ Aa mod~, 7 = a+:e6 E L(A, ~).

For 7' E L(A, ~), 7' = a'+;'e6
, Aa' + b' =0 mod~.

-b' + (a' + b')e, -1 6
a7 a = ,

n
A(-b') + (a' + b') _ A2a' + a' - Aa'

=(A2
- A+ 1)a' - 0

n
mod k'

Thus L(A,~) is closed with action of a.

6.6. Number of elements. Let p = a7a-\ (7, p) has elenlents as 7 i pi (i,j =

0,1,'" ,n - 1), where pk = 7 kA . Different elements are case of i = 0, ... ,n - 1, j =
0,1"" ,k - 1, so number of elenlents is nk.
Elements in L(A,~) is written as a~bw where (a, b) = (a, -Aa+ ~l) so number of elements
# L(A,~) = nk.
Elements in L2 (A, ~) is written as a~ where (a, b) = (a, -(A + l)a + ~l) so nunlber of
elements # L2(A,~) = nk.
Elements in LS(A, ~) is written as a~w where (a, b) = (a, -(A - l)a + ~l). so number of
elements # LS(A,~) = nk.
Number of elements are coincide and then we have (7, a7a-1) = L(A, ~).



Also we have

6. CASE OF GT HAS TWO GENERATORS

6.7. Generators of L(A, ~).

£ ( >., :) = { a:bw IAa + b _ 0 mod:}3 1 -nAW

So we have

( n) !!:..w wL A, - 3 II!-- = -
m n m

And we have

£ (A, :) = (l-
n

AW, :)

£2 (A, :) = (1- (A
n
+ I)W, :)

£3 (A, :) = (1- (A
n
-l)W, :)

6.8. Subgroup including L* (A, ~) and Main Theorem.
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£ (A, :) = (l-
n

AW, :)

£2 (A, :) = (1- (A
n
+ l)w, :)

£3(>":) =(I-(A
n
-l)W,:)

We have obtained above results not in case that GT has one generator or G = 1£. But in
n

case that GT has one generator, we may think m = 1 because {(TTfJ- I ) = (7). JVloreover
in case that G = ~£ , we may think m = n.
Subgroup of ~£ including these is obtained as (I-;W, ::k)' The order of this subgroup is
n x mk = ::k(mk)2. where ::k is' a divisor of ~ and ~ is a divisor of n and moreover
~ is a factor of 1 + A2

.(respectively 1+ A + A2
) for some rational integer A if w = e4

(respectively e3 or e6)'
Conversely for mininlal m such as ~ IJ.L, there exists 7 such that there exists subgroup of
Zn EB Zm including (7, fJ7fJ- I ).

THEOREM 2. A finite automorphism groupG as a plane elliptic curve is written as
Zz ~ (Zn EB Zm) (m I n) where 1= 1,2,3,4,6.
In case of 1 = 1 , G ~ Zn or G ~ Zn EB Zm (n, m is natural number and min.)
In case of 1 = 2 , G ~ Z2 ~ Zn ~ Dn or G ~ Z2 ~ (Zn EB Zm) ~ BDnm .
In case of 1 = 3,6 , G ~ Zz ~ (Zn EB Zm) where ~ = POPiP2'" Pk. (Po = 1 or 3 and
Pi(i> 0) is an odd prime number equivalent to.l modulo 3)
In case ofl = 4, G ~ Zz ~ (ZnEBZm) where ~ = POPIP2··· Pk. (Po = 1 or 2 andpi(i > 0)
is an odd prime number eqttivalent to 1 modulo 4)

DEFINITION 2. A finite non-Abelian group in Theorem2 which is neither dihedral nor
bidihedral group called exceptional elliptic group. If it has one (resp. two) generators
then we denote E(l,n) (resp. E(l, n, m)).



CHAPTER 2

Examples

A finite subgroup G of an automorphism group A(E) of an elliptic curve E as varieties
can be a Galois group at a Galois point for a genus-one curve C if and only if IG I ~ 3
and G has an element (j which is not translation. Thus the main theorem is stated as
follows:

THEOREM 3. A finite group G can be the Galois group at a Galois point for a subgroup
of A(E) for some elliptic curve E if and only if G is isomorphic to one of the following:

(i) abelian case:
Z2 fB2 , Z2 fB3 , Z3, Z3fB2 , Z4, Z2EB Z4, Z6'

(ii) non-abelian.case :
(a) Dn or BDmn .

(b) E(l, n) , E(l, n, m).

In this chapter, we give examples of defining equations and actions for all abelian cases
and for some non-abelian cases.
The following Remark is useful to find the examples.

REMARK 11. Let Gbe the group in Theorem3 and suppose the invariant subfield C(x, y)G =
C(t). Then taking an affine coordinate t, we have amorphism p : E ----t E/G .~ pl.
Let D be the polar divisor of t on E. Next, find an element 8 E C(x, y) satisfying that
div(8) + D ~ 0 and C(x, y) = C(8, t). Then, the curve C defined by 8 and t has the
Galois point at 00 with the Galois group G.

The proof of this remark is follows :
Let £(D) = {<p E C(x,y) I div(<p) + D ~ O}. Then the elelnent"s of £(D) defines the
embedding of E into pn, where n+l = dim £(D) if deg D ~ 3. (Indeed, by Riemann-Roch
theorem we have diIn £(D) = deg D. ) By definition t, 8, 1 belong to £(D) and (t, s, 1)
generates a sublinear system of £(D). Furthermore, the morphism f : E ----t p2 defined
by f (x) = (t(x) : 8(x) : 1), x E E is a birational Inorphism and the image coincides with
the curve C defined by the relation of t,. 8. Therefore C has a Galois point at (0 : 1 : 0),
where (T: S: U)(are homogeneous coordinates on JP>2 and t = T/U, 8 = S/U.

1. Procedure to make defining equation

We make defining equations and actions as follows :
For given group G ,

(i) Take a suitable elliptic curve E and autolnorphislll on group E.
(ii) Take a suitable translations on E.

(iii) Find an invariant t by G in C(E) = C(x, y).
(iv) Find 8 E C(E) such that (8) + (t)oo ~ O.
(v) Check C(8, t) = C(x, y).

(vi) Find the irreducible equation of sand t.
(vii) Check that above equation is lllonic polynolllial of 8 and has degree IGI which is

order of G.

27
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2. rotation

In this chapter, we use i (resp. w) instead of e4 (resp. e3).
Generally , for any lattice [, = ZWI + ZW2, we have Weierstrass p-function

1 {II}
p(z) = Z2 + L (z _ ()2 - (2 '

(E£\{O}

p'(z) = -2 L (z ~ ()s·
(E£

we put

Ul = P (~l) ,
U2 = P (~2) ,

U3 = P (~l + ~2) .
We have analytic isomorphism <I> as follows :

, <I> : C/[, -t <I>(C/[,) c P2(C)

<I>(z) _{ (p(z) : p'(z) : 1) (if z i= 0)
- (0 : 1 : 0) (if z = 0)

image(<I» is defined by y2 = 4(x- Ul)(X - U2)(X - U3)

Z2 acts any plane elliptic curve, but Z3, Z4, Z6 acts special ones below.
We will use the Weierstrass's canonical form

C/(l,w): y2 = x3 + 1

and

C/(l, i) : y2 = x3 + x.

As a relation between coordinate x, y and z, we have x = p(z), y = p'(z).

2.1. action of order 2. Action of Z2 is IT(z) = -z, we have IT(x) = p(-z) = x,
IT(Y) = p(-z)= -yo

2.2. action on y2 = x3+ x of order 4. Action of Z4 is IT(z) = iz, we have IT(x) =
p(iz) = -x, IT(Y) = p(iz) = iy.

2.3. action on y2 = x3 + 1 of order 3. Action of Z3 is IT(z)
IT(x) = p(wz) = wx, IT(Y) = p(wz) = y.

wz, we have

2.4. action ~n y2 = x3 + 1 of order 6. Action of Z2 is IT(z) = -wz, we have
IT(x) = p(-z) = wx, IT(Y) = p(-wz) = -yo



293. TRANSLATIONS

3. Translations

It is too difficult to examine translations using Weierstrass p function.
The elliptic curve E which is defined by y2 = x3 +x or y2 = x 3 +1 have a group structure.
We can use this arithmetic to exanline translations.
In a geometric point of view, for two points P(a, b) and Q(c, d) on a elliptic curve E, the
line l through points P and Q intersects E with a point R(e, -f) , and then we have
addition of points on E as

(a, b) + (c, d) = (e, f).

Calculating this addition by formula manipulation software NIAXINIA.
In case of y2 = x 3 + x, we have

(a + c)(ac + 1) - 2bd
e = ( )2 'a-c

f = (3a2c + c + a3 + 3a)d - (c3 + 3ac2+ 3c + a)b
(a - c)3 .

In case of y2 = x 3 + 1, we have

- 2bd + ac2+ a2c + 2
e= (a - C)2

f = (3a2c + a3 + 4)d - bc3
- 3abc2 - 4b.

(a - c)3

In a geometric point of view, the tangent line at P(a, b) on a elliptic curve E intersects a
point Q(e, - f) with E, then we have

2(a, b) = (e, f).

In case of y2 = x 3 + x, we have

_ ((a2 -1)2 a6 +sa4 -Sa2-1)
2(a, b). - 4b2 ' 8b3

In case of y2 = x 3 + 1, we have

( b) = (a(b
2

-'- 9) 2 b
4 + 18b

2
- 27)

2 a, 4b2 ' 8b3
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A+B=C

2. EXAMPLES

3.1. Case of order 2 on y2 = x3 + x. There is a well known fact that the point of
order 2 is obtained by y = o. We have

(0,0), (i,O), (-i, 0).

So we have three translations as follows.

3.2. Case of order 2 on y2 = x3+ 1. The point of order 2 is obtained by y = o.
We have

(-1,0), (-w, 0), (_w2
, 0),

and three translations as follows.

(
X - 2 3y )

(x,y)+(-l,O)= -x+1'(x+1)2 = (Tl(X),Tl(y)),

(
w(x2 - wx - 2w2) (w - 2)(3x - W)y)

(x, y) + (-w, 0) = (x +W)2 ' (x + w)3 = (T2(X), T2(y)),

2 (-W2(X2- w2x - 2w) w(3x - w2)y)
(x, y) + (-w ,0) = (x + W2)2 ,- (x + w2)3 = (T3(X) ,T3(Y))·
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3.3. Case of order 3. On y2 = x3 + 1,

4(0,1) = 2(0,1) + 2(0,1) = 2(0, -1) = (0,1).

So we have 3(0,1) = 0 and the order of a point (0,1) is 3.
We have a translation 7 of order 3,

(
2 - 2y x 3 +4.- 4Y )

(x, y) + (0, 1) = x2 ' x3

= (2 -2y , Y - 3)
x 2 Y + 1

= (7(X), 7(Y))

y+3
x + 7(X) +72(X) = -2

X

And we have
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3.4. Case of order 4. On y2 = x3 + x, 2(±1, ±J2) = (0,0). Because (0,0) is a
point of order 2, (±1, ±J2) are points of order 4.
We have a translation of order 4,

( ) ( .~) = ((X + 1)2 -2J2y .j2(x + 1)7(X)) = ( () ())
x,y + l,v2 (x-l)2' x-I 7 x ,7 Y .

2 1 3 1. 4)
7 (x) = -, 7 (x) = -()' 7 (x = x.X 7X

2 iJ 3 J2(x + 1)
7 (y) = -x2' 7 (y) = - (x -1)7(x)' 7

4
(y) = y.

Ivloreover it is useful to note below.

x4 + 6x2 + 1
x + 7(X) +72(X) + 73 (X) = ( )2 E CC(x, y)(r)

xx-l

7 (Y..) = .j2(x + 1) . 7(X) = J2(x:+- 1).
x x-I 7(X) x-I

_Y.. = 7 2 (Y..) = 7 (J2(x +1)) .
x x x-I

So we have a following.

7 (J2(x +1)) = _Y...
x-I x
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3.5. Rational point of finite order. For non singular cubic

E : y2 = f (x) = X
3 + ax2 + bx + c,

we put

D = -4a3c + a2b2+ 18abc - 4b3
- 27c2.

Then we have the following generally :
If P=(x, y) is a rational point of finite order then x and yare both integers, moreover
y = 0 (Le. P has order two.) or y I D.
We say in our case:
If E is y2 = x3 + x then (0,0) is a point of order two.
If E is y2 = x 3 + 1 then (-1,0) is a point of order two, (0,1) and (2,3) of order three,
(2,3) of order six.

4. Divisors

In case y2 = x 3 + x, we have

(x - A) = -2(0 : 1 : 0) + (A : VA3 + A: 1) + (A : -VA3 + A: 1)

(y - A) = -3(0 : 1 : 0) + ((1 : A: 1) + ((2 : A: 1) + ((3 : A: 1)

where (1, (2, (3 are the roots of x3 + x = A2
•

In case y2 = x 3 + 1, we have

(x - A) = -2(0 : 1 : 0) + (A : VA3 + 1 : 1) + (A : -VA3 + 1 : 1)

(y - A) = -3(0 : 1 : 0) + ((1 : A: 1) + ((2 : A: 1) + ((3 : A: 1)

where (1, (2, (3 are the roots of x 3 = A2 - 1.

x

x

o

5. Abelian Case

5.1. Case of Z3. Take an elliptic curve and action on it :

E : y2 = x 3 + 1.

a(x) = wx, a(y) = y.

Let
t = Y E CC(x, y)G.

We have
(t)oo = 3(0 : 1 : 0),

so we have
(x) + (t)oo = (0 : 1 : 0) + (0 : 1 : 1) + (0 : -1 : 1) ~ o.
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l\!Ioreover , clearly

C(x, t) = Cry, x)

x3 = t 2 + 1.

Finally x3 = t 2 + 1 is a monic irreducible polynomial of x of degree 3.

5.2. Case of Z4. Take an elliptic curve and action on it :

(3) E : y2 = x 3 + X

o-(x) = -x, o-(y) = iy.
Let

(4)

We have
(t)oo = 4(0 : 1 : 0),

so we have

(y) + (t)oo = (0 : 1 : 0) + (0 : 0 : 1) + (i : 0 : 1) + (-i : 0 : 1) ~ o.
l\!Ioreover for (3) and (4) , we have

y2
x = - E C(y,t)

t+1
so we have

Cry, t) = Cry, x).
To eliminate x from (3) and (4), we have

y4 = t(t + 1)2.

This is a monic irreducible polynomial of y of degree 4.

5.3. Case of Z6' Take an elliptic curve and action on it :
:5. - J

(5) E : y2 = x 3 + 1.

o-(x) = wx, o-(y) = '-Yo

Let
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(6)

and

(7)

Note that

We have

so

8 =xy.

Vi E {I, ... ,5} : o-i(8) i= 8.

(t)oo = 6(0 : 1 : 0),

(8) + (t)oo = (0 : 1: 0) + (0: 1 : 1) + (0 : -1 : 1)

+ (-1.: 0 : 1) + (-w : 0 : 1) + (_w 2
: 0 : 1) ~ o.

2 2
8X 8 2 ( )- = 2 = Y = t + 1 E C 8, t .
t x
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So we have

Thus we have

2. EXAMPLES

B )x E CC(B, t), Y = - E CC(B, t .
x

CC(B, t) = CC(x, y).
To eliminate x, y from (5) , (6) and (7) , we have

B
6 = x6y6 = t2 (t + I?

This is a monic irreducible polynomial of B of degree 6.

5.4. Case of Z2 EB~. Take an elliptic curve and actions on it :

(8) E : y2 = x3 + x

i(x + i) 2y
O"(x) = x, O"(Y) = -y, T(X) = . , T(Y) = ( ')2

X-'l, X-'l,

x 2 -1
X+T(X) =---...

X-'l,

Take an invariant and a generator :

x 2 -1
(9) t = --. E CC(x, y)G

X-'l,

(10)

We have

So

y -i
B=--.

x-i

(t)oo = 2(0 : 1 : 0) + 2(i : 0 : 1),

(B) = -(0 : 1 : 0) - 2(i : 0 : 1) + {(1 : i : 1) + ((2 : i : 1) + ((3 : i : 1),

where (1, (2, (3 are the roots of x3 + x + 1 = 0.,

(B) + (t)oo ~ (0 : 1 : 0) ~ O.

Next , we check generators.. From (9) we have

(11) x2 =tx-it+1.

Using (8),(10),(11), we have

y2 = x3 + X

= (x2 )x + x

=(tx-it+l)x+x

= tx2
- itx + 2x

= t(tx - it + 1) - itx + 2x

= (t2
- it + 2)x - it2 + t,

y2 = (B(X - i) + i)2

= B2 (X2
- 2ix - 1) + 2iB(X -i) - 1

= B2(tX - it + 1) - B2(2ix + 1) + 2iB(X - i) - 1

= (B 2t - 2iB2 + 2iB)X - iB2t + 2B - 1.
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Combine these equation, we have

(t2 - it + 2 - 82t + 2i82
- 2i8)X = it2 - t - i82t + 28 - 1.

Thus x E C(8, t) and y E C(8, t).
Calculating resultant of (8), (9) and (10), we can eliminate x and y , we have

(12) 484
- 4(it + 2)83

- (t2+ 4(2 + i)t - 8(1 - i) )82

+ 2(2it2+ (2 - i)t - 2(1 - 2i))8

+ (t3 +4t2- 3it2+ 4t + 8it - 3) = o.
This is a monic irreducible polynomial of 8 of degree 4.

The equation (12) seems too difficult rather than other equations. If we use actions

a(x) = x, a(y) = -y, r(x) =~, r(y) = - :2
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and an invariant

(13)

we have

But we have

1 x2+ 1 y2
t=x+-=----=-

x x x2'

(y) + (t)oo l. O.

y2 (y2)y2=x·T+ x =x T+ 1 .

t y2

x = -2- E C(y, t).
Y +t

t
r(y) = --,

y

Calculating resultant of (8) and (13), we can eliminate x , we have

y4 + (2t - t3)y2 + t2 = 0.'

5.5. Case of Z4 E9 Z2. Take an elliptic curve and actions on it :

(14) E : y2 = x 3 + X

cr(x) = -x, cr(y) = iy, r(x) = .!.,r(y) = - Y2.
X x

Moreover we take an invariant

(15)

We have

So we have

4
t = Y4 E C(x, y)(Cilr).

X

(t)oo = 4(0 : 1 : 0) +4(0 : 0 : 1),

(y) = -3(0: 1 : 0) + (0: 0: 1) + (i: 0: 1) + (-1: 0: 1).

(y) + (t)oo ~ o.
Secondly from (14) and (15) we have

(16) x3 = y2 - x,

(17) tx4 = y4.
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Using (17) and (16) we have

so

(18)

Using (16) and (18), we have

2. EXAMPLES

t(y2 _ x) = X(ty2X _ y4).

To repeat this way, we have finally

(ty4 _ y4 + t)x = ty2 + y6

so we have
CC(y, t) = CC(y, x).

Finally we eliminate x from (14), (17) by calculating resultant, wehave

y8 _ (t3 _ 4t2+ 2t)y4 + t2 = o.
This is a monic irreducible polynomial of y of degree 8.
Actions on t and y is as follows.

u(t) = t, r(t) = t,

. t2 - (t3 - 4t2+ 3t) y4 2
u(y) = zy, r(y) = (t _ 2)y7 ,r (y) = y

5.6. Case of Z2$3. Take an elliptic curve and actions on it :

(19) E : y2 = x3 + X

u(x) = x,u(y) = -y,

1 . Yr(x) = -, r(y) = --,
x x2

i(x+i) 2y
p(x) = x-i ,p(y) = (X-i)2·

1 i(x + i) i(l/x + i)
x + r(x) + p(x) + r p(x) = x + - + . + (1/ .)X x-z x-z

(x2 _ 1)2

y2

We take an invariant

(20)

We have

(x2 1)2
t = ~ E CC(x, y)(a,r,p).

y

(t)oo = 2(0 : 1 : 0) + 2(0 : 0 : 1) + 2(i : 0: 1) + 2(-i : 0 : 1)

and
(y) = -3(0 : 1 : 0) + (0 : 0 : 1) + (i : 0 : 1) + (-i : 0 : 1),

so we have

(1/y) + (t) 00 = 5(0 : 1 : 0) + (0 : 0 : 1) + (i : 0 : 1) + (-i : 0 : 1) ~ o.



5. ABELIAN CASE 37

Put

(21)
1

s =-.
y

Secondly using
S2(X3 + x) = 1

and
S2(X2 - 1)2 = t,

we have
s2x3 + S2X =1

and
S2X4 - 2S2X2 + S2 = t.

Using these pair of equations we can descend degree of x by substituting each other as
follows.

At last we have
(3s 2(t - 4s2

) - l)x = -8s2
- t.

So x E CC(s, t) and then CC(x, y) = CC(s, t).
Finally we eliminates x, y from (19), (20), (21) by calculating resultant, we have

16s8
- 24ts6 + (-8 + 9t2)s4 .~ (t3 + 10t)s2 + 1 = o.

This is a monic polynomial of s of degree 8.

5.7. Case of Z3Ej12. Take an elliptic curve and actions on it :

(22) E : y2 = x3+ 1

a(x) = wx, a(y) = y,
2 - 2y y - 3

r(x) = x2 ' r(y) = y + 1~

y-3 3y-3 B-
y + r(y) + r 2 (y) = y +--1 + -"---~---=-3-

y+ Y=i=I+ 1

y(y2 - 9)
y2 -1 .

And take an invariant

(23)



38

We have

So

From (23) we have

Using (22) , we have

Thus

2. EXAMPLES

(t)oo = 3(0 : 1 : 0) + 3(0 : 1 : 1) + 3(0 : -1 : 1),

(x) = -2(0 : 1 : 0) + (0: 1 : 1) + (0: -1 : 1).

(8) + (t)oo ~ o.

y. y2 = t(y2) + 9y - t

(X3 + 1)y = t(X3 + 1) + 9y - t

(X
3

- 8)y = tx3

Y E C(x, t).

In fact it is easy to see

_ t(y2 - 1) _ tx3 tr1( )
Y - 2 - 3 E \L. X, t

Y - 9x - 8

Finally calculating resultant of (22) and (23), we can eliminate y and have

x9
- t2x6

- 15x6 + 48x3 + 64 = o.
This equation is also obtained by

(x
3

+ 1) = y2 = C:~ 8r.
This equation is a monic irreducible polynomial of x of degree 9.

6. Non Abelian Case

6.1. Case of D3 • We choose an elliptic curve and action on it

(24)

a(x) = x, a(y) = -Yo

N!oreover, we have a translation of order three as follows.

2 - 2y y - 3 2 2x 3
r(x) = 2 ,r(y) = --1,r (x) = --1,r (x) = x.

x y+ y-

2 - 2y 2x y2 + 3
x+r(x)+r2(x):=x+ 2 +--1 =--2-

x y- X

Taking an invariant

(25)

Secondly we calculate divisors.
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(t)oo = 2(0: 1: 0) + 2(0: 1: 1) + 2(0: -1: 1),

'(x) = -2(0 : 1 : 0) + (0 : 1 : 1) + (0 : -1: 1),

(y) = -3(0 : 1 : 0) + (-1 : 0 : 1) + (-w: 0: 1) + (_w2
: 0 : 1).

So we have

(;) + (t)oo > O.

Putting
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(26) Y
8 =-.

X

Eliminate y from (24), (25) and (26), we have

(27) 8
2

X
2 = x3 + 1

(28) tx2 = 82
X

2+ 3.

Using
2 3

X =--2't-8
we have

482 - t
x = 3 E C(8, t), Y = 8X E C(8, t).

Finally, by calculating resultant of (27) and (28), we have

1686
- 2484t + 982t2 - t3 + 27 = O.

By dividing 16, this equation will be a lllonic irreducible polynomial of x of degree 6.

Using
8=y

instead of (26),
(y) + (t)oo l O.

Action on y is the following.

a(y) = -y,

y - 3 2 -y - 3 3
T(Y) = -1' T (y) = 1 ' T (y) = y.

y+ y-

From

and

we have the relation
t(y2 - 1)

x = 2 E C(y, t).
Y +3

We can eliminates x from (24) and (25), we have an equation

y6 + (9 - t3 )y4 + (2t3 + 27)y2 - t3 + 27 = 0,

and its degree of y is 6 = ID3 1.



40 2. EXAMPLES

6.2. Case of D4 • We choose an elliptic curve and action on it :

(29) E : y2 = x 3 + X

o-(x) = x,o-(y) = -yo

lVloreover we choose a translation T of order 4 bya point (1,J2) of order 4.

( )
_ (x+1)2-2J2y ()_ J2(x+1)3-4(x+1)Y

TX - (x-1)2 ,Ty - (x-1)3

(t)oo = 2(0 : 1 : 0) + 2(0 : 0 : 1) + 2(1 : -12 : 1) + 2(1 : --12 :1),

(x - 1) = -2(0 : 1 : 0) + (1 : -12 : 1) + (1 : --12 :1),

(y - 1) = -3(0 : 1 : 0) + ((1 : 1 : 1) + ((2 : 1 : 1) + ((3 : 1 : 1),

where (1, (2, (3 are the roots of x3 + x = 1.

We put

(31)

then

and we have

y-1
8=-

x-I'

(8) 2:: -(0 : 1 : 0) - (1 :-12 : 1) - (1 : --12 :1)

(8) + (t)oo 2:: O.

Finally, we eliminate x and y from (29), (30), (31)

82t3 - 28t3+ t3 - 4984t2+ 21083t2 - 32982t2+ 2228t2 - 55t2

+ 11286t - 46485t + 64884t - 6483t - 73082t + 6748t - 186t

- 6488 + 25687
- 32086

- 19285 + 80084
- 51283

- 34482 + 5048 - 153 = 0

If we use

(32)

instead of (31)

Y
8 =-

X

(8) + (t)oo 2:: 0

holds but we don't get correct result.
From (32) and (29) we have
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and then

Applying this equation to

then we have

x3 + 6x2 + 1
t=-----

x 3 - 2x2 + X

8
2

X
3

- x2 +6x2 + 1
X 2(8 2 - 2)

8
2

(8
2

X
2

- x) + 5x2 + 1
(82- 2)x2

(84+ 5)(82
X - 1) - (82

X - 1)
=

8 2 (82 - 2)x - 8 2 + 2

(84+ 5 - 1)(82x - 1)
=

(82X - 1)(82 - 2)
8

4 + 5 -1
8 2 - 2

Degree of'

8
2t - 2t - 8

4 = 4

is four then 8 and t doesn't generate x or y.
On actions , we have

7(Y) = y2(x + 1)7(x) ,
x-I

7
2
(;) = -;,

u (;) =-;
So u and 7 are not separated , and we can't use (32).
lvloreover eliminating x form

tx2
- 8

2
X

2
- 3 = 0, 8

2
X

2
- x3

- 1= 0,

we have
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t3
- 982t2 + 2484t - 1686

- 27 = 0.

Degree 6 of this equation on 8 does not coincide with 8 = IGI, and this show that (32)
doesn't succeed.

6.3. Case of BD2x4 • We choose an elliptic curve and action on it :

(33)

u(x) = x, (J(Y) = -Yo
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We choose a translation r of order 2 by a point (i,O) and p of order 4 by a point (1,V2).

i(x+i) 2y
r(x) = . ,r(y) = ( .)2'x-z x-z

( ) _ (x+ 1)2 -2V2y () _ V2(x+ 1) ()
P x - (x _ 1)2 ,p Y - x-I . P x

x + p(x) + p2(X) + p3(x) + r(x) + rp(x) + rp2(X) + rp3(x)

= x
4 + 6x

2+ .1 + r (x
4 + 6x

2+ 1)
x(x - 1)2 x(x - 1)2

(x4 + 6x2+ 1)2= ------=---_-.:...-..,.---
x(x - 1)2(x + 1)2(x2+ 1)·

Taking an invariant

_ (x4 + 6x2+ 1)2 (a,r)
(34) t - x(x _ 1)2(x + 1)2(x2+ 1) E CC(x, y) .

Secondly we calculate divisors.

(t)oo = 2(0 : 0 : 1) + 2(1 : V2 : 1) + 2(1 : -V2 : 1)

+ 2(-1 : H : 1) + 2(-1 : -H : 1) + 2(i : 0 : 1) + 2(-i : 0 : 1),

(x) = -2(0 : 1 : 0) + 2(0 : 0 : 1),

(y) = -3(0 : 1 : 0) + (0 : 0 : 1) + (i : 0 : 1) + (-i : 0 : 1),

(x - 1) = -2(0 : 1 : 0) + (1 : V2 : 1) + (1 : -V2 : 1),

(y - 1) = -3(0 : 1 : 0) + ((1 : 1 : 1) + ((2 : 1 : 1) + ((3 : 1 : 1),

(x + 1) = -2(0 : 1 : 0) + (-1 : H : 1) + (1 : -H : 1),

(y + 1) = -3(0 : 1 : 0) + ((1 : -1: 1) + ((2 : -1 : 1) + ((3 : -1 : 1),

(x + i) = -2(0 : 1 : 0) + 2(-i : 0 : 1),

(y + i) = -3(0 : 1 : 0) + ((4 : -i : 1) + ((5 : -i : 1) + ((6 : -i : 1),

where (1, (2, (3 are the roots of x3 + x = 1,

where (4, (5, (5 are the roots of x3 + x = -1.

Because

(J (~) = - ~ = p2 (~)
Y t,
x

doesn't generate x or y.
We put

(35)
x-I

8=--,
Y

then

(8) = (0 : 1 : 0) - (1 : V2 : 1) - (1 : - V2 : 1) + (0 : 0 : 1) + (i : 0 : 1) + (-i : 0 : 1).

And we have
(8) + (t)oo 2: O.



7. MORE EXAMPLES

Secondly, we must show 8 and t generates x and y.
From (33), (34), (35), we have relations

8
2
(X

3+ x) = (x - 1)2, (x4 + 6x2+ 1)2 = tx(x -1)2(x + 1)2(x2+ 1).
Using these relations to descent the degree of x, we have

((8810 + 3288 + 3886+ 1084 )t2

+ (2812 + 32810 + 8288 + 21086+ 684 - 4282)t

+ 30814 + 188812 + 206810
- 35288 + 19286 + 8084 - 8882 + 32)x

+ (_810 _ 888 - 1586 - 884 )t2

+ (812 - 888
- 7886 - 4984+ 3282 )t

- 30812 - .136810 + 5888 + 11286 - 18484+ 9682 - 24 = 0

So we have
x-I

x E C(8, t) and y = -- E C(8, t).
8

Finally, we make a defining equation.
To Eliminate x and y from (33), (34), (35), we have the defining equation as follows.

- 4816 + (4t - 32)814 + (_t2 + 20t - 128).912

+ (t3 - 2t2+ 8t - 192)810 + (4t3 - 13t2 - 160t - 32)88 + (4t3 - 12t2
- 80t + 384)86

+ (-36t2
- 176t - 512)84+ (96t + 256)82 - 64 = O.

This have a degree 16 = IBD2x4 1.
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7. More examples

We perhaps make BD2x3 to use a rational point of order three, and D6 , BD2X6 to use
a rational point of order six.
By the same way as to make Z4 EB Z2, we can't lnake non Abelian group E(4, n) to use a
translation of order two. We might make exceptional elliptic group Z4 ~ Z5 as smallest
one in this way.
This way to make Galois groups is not work to make examples generally.
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Galois point

We start from the following.

THEOREM 4 (Yoshihara). If non singular projective plane curve 0 of degree four has two
Galois points then the defining equation of 0 is

y + x4+ y4 = 0

by suitable projective transformation. And 0 has four Galois points on the line x = o.
We call the curve as 0 4 in this theorem.

THEOREM 5 (Yoshihara). We denote number of Galois points by 5(0) where 0 is a non
singular projective plane curve of degree four. Then 5(0) = 0,1,4 (resp. 5(0) = 0,1) if
d = 4 (resp. d > 4).

We treat a curve
0 4 : YZ3+X4+y4 =0

and a surface
88 : Xy3+ ZW3+ X 4+ Z4 = O.

(8x , 8y, 8z ) = (4X3, Z3 +4y3, 3YZ2).

So 0 is non singular projective plane curve of degree four.
Galois group at Galois point P induces a transformation between points in the intersection
of a line through P and the curve o. So if the line 1 through P is a tangent line then 1
is a bitangent line or intersection is 2-flex.

j ; i j i ~ I /, I ---':f. J l

8xx 8xy 8xz
Hess(YZ3 + X 4 + y 4

) = l8yx 8yy 8yz
8zx 8zy 8zz ,

12X2

o
o

o
12y2

3Z2

o
3Z2

1 = 22 X 33(8y3 - Z3)X2Z
6YZ

Because a tangent line at a 2-flex point intersects with Hessian of multiplicity two, 2-flex
point is on the line X = 0 and we have

(0 : 0 : 1), (0: e61
: 1), (0: e63

: 1), (0: e65
: 1)

Translating a point
(0 : e63

: 1) = (0 : -1 : 1)
t%rigin, we have defining equation

(y - 1) + x4+ (y - 1)4 = x4+ y4 - 4y3+ 6y2 - 3y = o.
Let y = tx and dividing by x, we have

(1 + t4 )x3
- 4t3x 2 + 6t2x - 3t = 0

45
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Calculating resultant , we have a discrirninant D of this equation as follows :

3t2 (9 + t4
)2

D=-....:.....----'-
(1 + t4)4

Because D is complete square, (0 : -1 : 1) is a Galois point. By action of Galois group
Z3 at a Galois point (0 : 0 : 1), a point (0 : -1 : 1) lllapped to a point (0 : -e3n : 1) , so
we have three Galois points

(0: -e32 : 1), (0: -1 : 1), (0: -e3 : 1).

These four points are all of Galois· points and we. rewrite to use e6 as follows :

(0 : 0 : 1), (0: e6 : 1), (0: e63 : 1), (0: e65
: 1).

Next, we want to automorphism group at a Galois point P. For this purpose, we determine
an element (J E (3, C) such that:

(i) (J(P) = P.
(ii) (J(l) = 1where 1 is any line through P.

(iii) (J fixes the curve C4.

It is too difficult to calculate by hand so we calculate by MATHEMATICA.
Put (Jl (resp. (J2, (J3, (J4) be a generator of a Galois group at a point P1(0 : 0 : 1) (resp.
P2(0: e)), P3(0 : e63 : 1), P4(0 : e65 : 1) ).

G
0

~} 0
0

_e~O-1)(Jl = 1 (J2 = 2e6 -1
0 e62 4e6 - 2 e6 + 1

a3= 0 0
_e~O+ 2) aFO

0
_e~O-1)2e6 -1 2e6 -1

-2e6 + 4 e6 + 1 -2e6 - 2 e6 + 1

~_"H,.Any,-,.Galois. group at a Galois point is cyclic, but each Galois group acts on 4 Galois
points, so all groups are represented in 84 simultaneously.
Let G(V) denote the group generated by automorphisms at Galois points on V = C4 or
8s. Since G(V) has an injective representation in PGL(n, k) (n = 3 or 4), we use the
same notation of an element of G(V) as the projective transformation induced by it.

THEOREM 6. There exist exact sequences of groups

1 ----+ (diag[1, -1, -1]) ----+ G(C4) ----+ A4 ----+ 1

1----+ (diag[R, 1, 1]) ----+ Aut(C4) ----+ A4 ----+ l.

For the surface 8~ : Xy3 + ZW3 + X 4 + Z4 = 0 , we have the following.

THEOREM 7. There exist exact sequences of groups

1 ----+ (12 E9 (-12 )) ----+ G(8s) ----+ G(h) x G(l2) ----+ 1

1----+ ((12 E9 (-12),12 E9 (-12))) ----+ G1 X G2 ----+ G(8s) ----+ 1,

Especially the order of G(8s) is 2532•

For details please see ([8]).
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