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Notation
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an n-dimensional Euclidean space.

: the topological interior of a subset C of a topological space.
: the set removed z, from V.

: the Euclidean norm of z.

: the transposed vector of a in R™.

: the dimension of S.

the set of all vertices of a convex polyhedral set S.



Chapter 1

INTRODUCTION

This thesis is concerned with evaluation methods of DMUs (Decision Making Units)
in DEA (Data Envelopment Analysis). DEA is a non-parametric analytical method
for estimating relative efficiencies of DMUs performing similar tasks that consumes
inputs to produce outputs. DEA has been developed as a methodology used for
efficiency analysis of DMUs for about thirty years. In order to evaluate the efficien-
cies of DMUs, the regression analysis has been researched. The regression analysis
focuses on setting up a regression line which passes through the center of DMUs
and evaluates DMUs based on the line. That is, all DMUs are evaluated by a
fixed weight. In contrast, each DMU is evaluated based on a most advantageous
weight for itself which is obtained by solving a linear programming problem in DEA.
The idea of DEA is to identify best performance DMUs within a set of comparable
DMUs and those form an efficient frontier. The regression analysis is an analytical
method based on the average, while DEA is a evaluation method with reference to

the superior DMUs.

1.1 DEA models

DEA has been proposed by Charnes, Cooper and Rhodes [9] as the CCR model.
In the CCR model, DMUs are evaluated under a condition of the constant returns
to scale which means that all efficient DMUs can produce up to k& outputs by us-
ing k inputs. In order to deal with variable returns to scale, Banker, Charnes and
Cooper [4] have proposed the BCC model. In addition, the DRS and IRS models



have been proposed to deal with decreasing and increasing returns to scale by Fare
and Grosskopt [20], and Seiford and Thrall [30], respectively. These models have
the properties of radial measure. Two main types of efficiency measures in DEA are
radial and non-radial measures. In the radial measure models, an efficiency score
of DMU is determined as the reduction scale to become an efficient unit. By ref-
erence to some radial measure models, many non-radial measure models have been
proposed. In the non-radial measure models, an efficiency score of DMU is deter-
mined by using slacks which mean how far apart from an efficient frontier. The
additive model proposed by Charnes, Cooper, Golany, Seiford and Stutz [7] is one
of the traditional non-radial measure model. This model has the advantage that it
is translation invariant (see Ali and Seiford [1], Lovell and Pastor [27], Pastor [29]).
By transforming the data using in the additive model by the natural logarithm, the
multiplicative model has been formulated [11, 12]. Recently, Tone [39] has proposed
the SBM model to consider slacks directly. In 2010, the epsilon-based measure
model has been proposed by uniting the radial and the non-radial measure mod-
els (see [38]). Moreover, many models have been proposed to cope with practical
situations. Banker and Morey [5] have proposed a model including some nondis-
cretionary variables. Moreover, Sengupta [31] have proposed the stochastic DEA to
treat a data uncertainty. Entani, Maeda and Tanaka [19] have proposed the interval
DEA by defining an efficiency as an interval to evaluate DMUs realistically.

1.2 Improvements for inefficient DMUs

In DEA, for each DMU, the evaluated value of the efficiency is defined as the op-
timal value of a linear programming problem. Moreover, for each inefficient DMU,
an improvement is obtained simply by solving the problem. Therefore, the other
improvement has not been researched exactly until recently. However, it is often
difficult to improve the values of inputs and outputs according to the improvement.
Because the improvement obtained by the radial measure models improve the only
input (or output) values at the same rate. Therefore, Frei and Harker [21] have
proposed a least distance projection to the efficient frontier by using the Euclidean

norm. Moreover, Takeda and Nishino [34] have proposed the minimal norm problem



to the efficient frontier from an inefficient DMU. Recently, for each inefficient DMU,
the study of improvements of efficiency is one of the important subjects in DEA.
Aparicio, Ruiz and Sirvent [3] have formulated some mixed integer linear program-
ming problems for typical norms to obtain a closest target on the efficient frontier
under a certain distance. Lozano and Villa [28] have proposed a gradual efficiency
improvement strategy.

In this thesis, we propose an algorithm to calculate a flexible improvement by
introducing a policy of the decision maker. In order to obtain improvements of
DMUs, we use all equations forming the facets of the efficient frontiers. Therefore,

we propose algorithms for constructing the equations forming the efficient frontiers.

1.3 Ranking methods of DMUs

In DEA, each DMU is classified as either inefficient or efficient based on the optimal
value of each model. In general, several DMUs are evaluated as efficient and have no
inferior-to-superior relationship among them. For example, the departments data
in a university investigated by Wong and Beasley [42], six of seven departments
were evaluated as efficient units. In practical problems, it is necessary that the
decision maker knows the dominance relationships among all DMUs to maximize
his profit. In DEA, there are representative analytical methods for ranking DMUs
- the sensitivity analysis (see [2, 8, 15, 23]), the assurance region methods (see [14,
35, 36, 37, 44]) and the cross efficiency evaluation (see [18, 22, 32]).

In the sensitivity analysis, DMUs are analyzed based on the change of the effi-
ciency scores by changing the number of DMUs or inputs or outputs. Sometimes,
in some traditional DEA models, an optimal solution has zero components. Hav-
ing zero components means that the inputs or outputs corresponding to the zero
components are not completely used to evaluate the DMU. The assurance region
method have been proposed to overcome this phenomenon. This method introduces
some conditions to input-output variables (for example, the ratio between two input-
output variables, magnitude relation , importance condition and so on). In general,
each DMU is evaluated by only advantageous weight for itself. In the cross effi-

ciency evaluation, each DMU gets many efficiency scores by using optimal solutions



of the CCR model for all DMUs. Since the CCR model often has many optimal
solutions for each efficient DMU, we need to decide an optimal solution uniquely for
each DMU. Sexton, Silkman and Hogan [32] have formulated a problem to obtain a
weight minimizing the sum of cross efficiency scores of the other DMUs. However,
it is difficult to solve the mathematical programming problem formulated for this
purpose. Therefore, one of the most commonly used secondary goal approach to
decide an optimal solution uniquely is suggested by Doyle and Green [18], which is
called the aggressive formulation and is formulated as linear programming problems.
Recently, Wu, Liang, Zha and Yang [43] have proposed a cross efficiency evaluation
based on rank priority. Moreover, Wang and Chin [40] have proposed a neutral
model for cross eﬂ‘icieﬁcy which seeks a common set of weights for all DMUs.

In this thesis, we propose five types of methods to evaluate DMUs by utilizing
the equations forming the facets of the efficient frontier. By this approach, we
obtain the same scores as the two kinds of existing approaches without solving
linear programming problems. Moreover, we improve the aggressive formulation to
obtain a closer cross efficiency score to the aim minimizing the sum of cross efficiency

scores of the other DMUs than the traditional formulations.

1.4 Organization of this thesis

This thesis is organized as follows. In Chapter 2, we provide some mathematical
preliminaries which will be used in this thesis. In Chapter 3, we introduce some
basic DEA models. In Chapter 4, we introduce the previous researches formulated
as mixed integer linear programming problems for calculating the equations forming
the facets of the efficient frontier and improvements. In contrast, we propose differ-
ent approaches to calculate four kinds of improvements for inefficient DMUs in the
CCR model. In order to calculate the improvements, we use all equations forming
the facets of the efficient frontier. Therefore, we propose three types of algorithms to
obtain them. Moreover, we show a numerical experiment to compare the improve-
ments proposed in this chapter. In Chapter 5, we introduce some of the previous
researches with respect to the cross efficiency evaluation. By analyzing the efficient

frontier of the CCR model, we propose five kinds of evaluation methods having the



dominance relationships for all DMUs. In the first and the second measures, the
weighted sum of the scores calculated based on the equations forming the facets of
the efficient frontier is calculated by deciding a weight of each facet. In the other
measures, we calculate the cross efficiency scores by using some equations forming

the facets of the efficient frontier.



Chapter 2

PRELIMINARIES

In this chapter, we give some mathematical preliminaries which will be used in this

thesis.

2.1 Basic definitions and theorems in convex anal-
ysis

In order to construct all equations forming the facets of the efficient frontiers, we
utilize convex optimization techniques. Therefore, we show several definitions and

lemmas in convex analysis.

Definition 2.1.1. Let E be a nonempty subset in R™. Then, E* is called the polar
set of F if it is defined as follows.

E*={yeR":y'z<1lforalzeFE}

Definition 2.1.2. Let E be a nonempty subset in R™. Then, co(E) is said to be
the convez hull of E if co(E) is defined as follows.

co(E):=<zeR":z= )Y \z(j), A=l z(f)eE, \j>0,j=1,...,m,.
j Y Y ’

J=1 g=1
Definition 2.1.3. Let E be a nonempty subset in R™. Then, conic ¥ is called the
conical hull of E if it is defined as follows.

m
conic E := {x ER”::C:Z/\jx(j), z(j) € E, \; 20, j= 1,...,m}.

=1



Definition 2.1.4. Let E be a nonempty subset in R™. If E is defined as £ = {z €
R™: Az < b} for some A € R™*™, b € R™, then, E is called the polyhedral set. In
particular, if E is bounded, then, E is called the polytope.

Definition 2.1.5. Let E be a polytope in R” satisfying dim £ = n. Then, F' :=
En{z € R*: a"z = b} is called the facet of E if a"z < b for each z € E and
dimF =n— 1.

Definition 2.1.6. Let £ be a nonempty closed convex subset in R®. A nonzero
vector d in R™ is called a direction of E if x + A\d € E for each z € E and X > 0.
Two directions d; and dy of E are called distinct if di # ady for each @ > 0. A
direction d of F is called an extreme direction if it cannot be written as a positive
linear combination of two distinct directions, that is, if d = A\id; + Aady for some Ay,

Az > 0, then d; = ad, for some « > 0.

Definition 2.1.7. Let E be a nonempty closed convex subset in R™®. Then, E* is

called the recession cone of E if it is defined as follows.
Et:={d:xz+rd € E for all z € E,r > 0}.
Lemma 2.1.1. Let E be a nonempty set in R*. Then E* is a closed convex set.

Proof. By Definition 2.1.1, B* = (,cg{y: 2"y < 1}. Forallz € E, {y : 27y < 1}

is closed convex set. Therefore, E* is a closed convex set. a

Lemma 2.1.2. (Konno, Thach and Tuy [26], Proposition 2.6) Let E be a nonempty
closed convex set in R™ and 0 € E. Then E* = E.

Lemma 2.1.3. Let E be a polytope in R™. Then, E* = (V(E))*.

Proof. Let V(E) := {a*,...,a™}. Since E is a polytope, E is expressed as follows [6].

E:{x:xzzm:)\iai,i)\izl, /\iZO,i=1,...,m}. (2.1)

i=1 i=1

Obviously, E D V(FE). From the characteristic of the polar set, E* C (V(E))*.
Hence, we shall show that E* D (V(E))*. Let y € (V(E))*. Then, for each i =
1,...m, at'y < 1. By (2.1), for each z € E, there exists A* € R™ such that
=YY" MNa, Y2 N =1,X>0i=1,...,m Then, 2"y = (31, Wa')Ty =
TN Ty < S AT = 1. Therefore, y € E*. Consequently, B* = (V(E))*. O

=1 "
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Lemma 2.1.4. (Jonathan and Adrian [25]) Let E be a nonempty subset in R™.
Then E is bounded if and only if O € int E*.

Lemma 2.1.5. Let E be a polytope in R™ and 0 € int E. Then, E = (V(E*))*.

Proof. From Lemma 2.1.2, E = E**, By Lemmas 2.1.3 and 2.1.4, E* is a polytope if
E is a polytope satisfying 0 € int E. From Lemma 2.1.3, E = E** = (V(E*))*. O

Lemma 2.1.6. Assume that a polytope E C R" satisfies 0 € int E. Then, for each
aceV(E),dmE*N{zeR:a’z=1})=n—1.

Proof. Since 0 € int E, dim F = n. From the boundedness of £ and Lemma, 2.1.4,
0 € int £*. This impﬁes that dim E* = n. Moreover, since 0 € int £ and a €
V(E) C bdE, a # 0 and hence dim(E*N{z : a'z = 1}) < n — 1. Furthermore,
since E* is a polytope and a € F,

E*=co(V(E")) C{z:a'z <1} | (2.2)

In order to obtain a contradiction, we suppose that [ ;= dim(E*N{z:a'z = 1}) <
n — 2. Then, by (2.2), there exists b',...,b"t € (V(E*)N{z : a"z = 1}) such
that b',...,b!"! are affine independent. Then, dim{b?,...,b'*'} < n—1. Therefore,
there exists b € R™\ {0} such that b'6* =0(: =1,...,l+1). We note that v'a < 1
for each v € V(E*) \ {b%,...,b"*'}. Now, for each v € V(E*)\ {b,..., b1}, let

{ 1 ifvTb=0,
v T

* T - |;1:l)b!a if 'UTb 7é 0;

Then, by setting & := min{a? : v € V(E*) \ {¥',...,b"'}}, we have v"(a & ab) =
via+av'b<vla+av'b] <1 for each v € V(E*)\ {b,...,b6*}. Moreover, for
each (i =1,...,1+1), b'T(a+ ab) = b'Ta 4 &(b*"b) = b’"a = 1. This implies that
a—ab, a+ab € (V(E*)* = E. Since, a = 1(a — @b+ a + ab), this contradicts
v € V(E). Consequently, dim(E*N{z:a'z=1})=n— 1. a

11



Chapter 3

BASIC DEA MODELS

In this chapter, we introduce some basic DEA models. Through this thesis, n
denotes the number of DMUs. Each DMU consumes m different inputs to produce
s different outputs. For each j € {1,...,n}, DMU(j) has an input vector z(j) :=
(z()1,---,2(f)m)" and an output vector y(j) := (y(4)1,-..,¥(§)s)". Moreover, we

assume the following conditions.

(A1) z(j) >0, y(j) > 0 for each j € {1,...,n}.

(A2) (@(32)7,y())T # (@(2) ", y(G2))T for each i,z € {1,...,n} (i # o).
(A3) n>m+s.

(A4) dim (co({(2(1),¥(1)),..., (a(n), y(m))})) = m + .

Almost all DEA models are formulated under Assumption (Al). Assumptions (A2),
(A3) and (A4) are necessary to execute an algorithm to calculate all equations form-
ing the efficient frontier. However, they are satisfied for almost practical problems.

Assumption (A4) means that the convex hull of all DMUs has an interior point.

3.1 CCR model

The CCR model formulated by Charnes, Cooper and Rhodes [9] evaluates the ratio
between weighted sums of inputs and outputs. The CCR model provides for constant

returns to scale (CRS). Therefore, some researchers call the CCR model the CRS

12



model. In order to calculate the efficiency score of DMU(k) (1 < k < n), the CCR

model is formulated as follows:

——1 ()
maximize viax %)
. u'y(7) :
<l,j=1,..
(CCR(k)){ subject to T = , J ooy Ty
u 20, r=1,...s,
L v, 20,1=1,...,m.

Since Problem (CCR(k)) is a fractional programming problem, it is hard to solve
Problem (CCR(k)). Therefore, we transform Problem (CCR(k)) into a linear pro-
gramming problem by setting the denominator of the objective function equals 1:

[ maximize uTy(k)

subject to v'z(k) =1,

(CCRLP(k)) 4 uTy(j) —v'z(4) <0,5=1,...,n,
u >0, r=1,...,8,

v > O, 1= 1, ey M.

\
Moreover, we consider the dual problem which is defined as a linear programming

problem as follows:

( minimize 6
subject to @z (k); — Z)\j$(j)i >0,i=1,...,m, (3.1)
j=1

CCRD(k)) < . .

( (k) Z)\jy(j), —ylk)r 20,r=1,...,5 (3.2)
=1
A >0,5=1,...,n, (3.3)
6 € R.

\

Let 0gcr(k) denote the optimal value of (CCRD(%)). By (3.2) and (3.3), we
have that (Ay,..., ) # (0,...,0) and hence ); > 0 for some 7 € {1,...,n}. Then,
from (3.1), we have 0 < O3cg (k)z(k)i— Y=y A2 ()i < O5or (k)T (k)i — A3m(5)i. This
implies that O5qr (k) > 0. Moreover, we note that (), 6) is a feasible solution of
(CCRD(k)), if = 1,X\, = 1 and A; = 0 for each j € {1,...,n} \ {k}. Therefore,
0 < 6¢cr(k) < 1. By using the optimal value 8¢y (k) of (CCRD(k)), the efficiency
of DMU(k) for the CCR model is defined as follows:

Definition 3.1.1. If §5cg (k) = 1 then DMU(k) is said to be CCR-efficient. Oth-
erwise, DMU(k) is said to be CCR-inefficient.

13



Sometimes, there exists ¢ (or ) such that v; = 0 (or u, = 0). This means that
the ¢ (or r)th input (output) is not completely used to evaluate DMU(k). In order to
resolve this shortage, Charnes, Cooper and Rhodes have modified the CCR model
by introducing a positive lower limit (¢ > 0) in [10]. Then the constraint conditions
of Problems (CCR(k)) and (CCRLP(k)) are replaced as follows:

1, 20,i=1,...,m, - v >ei=1,...,m,
u 20, r=1,...,s. U 2 e, r=1,...,8.
The dual problem of Problem (CCRLP(k)) is formulated as follows:
( m s
minimize @ —¢ (Z Siz + Z sry>
: i=1 r=1

subject to Oz(k); — Zij(j)i —8i=0,i=1,...,m,
j=1

(CCRDe(k)) { Z)\jy(j)r —y(k)r — sy =0, 7r=1,...,5,
=1

)\jZO,j=1,...,n,
Siz >0,0=1,...,m,
Sy 20, 7=1,...,8,
g e R.

\
By using an optimal solution (6¢cg (k), 55, s;) of Problem (CCRDe(k)), the efficiency
of DMU(k) for the CCR model is more strictly evaluated.

Definition 3.1.2. If gcr(k) = 1 and (s}, s;) = (0,0) then DMU(k) is said to be
CCR- Pareto-efficient. If 0gcr(k) = 1 and (s, s;) # (0,0) then DMU(k) is said to
be CCR-weakly-efficient. Otherwise, DMU(k) is said to be CCR~inefficient.

The presence of an optimal positive slack for some input or output means that the
input can be decreased or the output can be increased in Tcr under the condition
that the other input and output values are fixed. Therefore, DMU(k) satisfying
0&cr(k) = 1 and (s3, ;) # (0,0) is evaluated as weakly-efficient. Let Tocr be the
production possibility set (PPS) of the CCR model defined in [9] as follows:

Tcor := {(m, y):x > Z)\jw(j), 0<y< Z)\jy(j) for some A > 0} .

j=1 Jj=1

By the definitions of Tocr and conical hull, Toeg is represented as follows.
Toon = (conic (1), s (1) .. (o), ()} + (RT x B2) 1 (R™ x RY).

14



where for a natural number n, R} := {z € R* : z(i) > 0,¢ = 1,...,n} and
R* .= {z €e R": (i) < 0,7 =1,...,n}. Obviously, Tocr is a closed convex set.
Let Focor be the efficient forntier of the CCR model which is the emvelope formed by
all CCR-efficient DMUs, that is, Feer = {(z,y) € (RT X R}) : Ogcr((z,y)) = 1}

3.2 BCC model

The BCC model formulated by Banker, Charnes and Cooper [4] has the feasible set
defined by adding an equality condition to the constraint conditions of the CCR
model. Moreover, the BCC model can classify efficient DMUs into three types of
the returns to scale (RTS). To evaluate the efficiency of DMU(k) (1 < k < n), the

BCC model is formulated as follows:

( minimize 6
subject to Bz(k); — > A\z(j) 20,i=1,...,m,
=1 ‘
(BCCLP(k)) 4 S Ny()r —yk), 20,7 =1,...,5,

Jil
d =1,
j=1

\ R, \;>0,j=1,...,n.

Let 640c(k) denotes the optimal value of Problem (BCCLP(k)). From the definition
of the constraint conditions of (BCCLP(k)), it is obvious that 0 < O§c(k) < 1.
By using the optimal value 0f~5(k) of (BCCLP(k)), the efficiency of DMU(k) for
(BCCLP(k)) is defined in [4] as follows:

Definition 3.2.1. DMU(k) is said to be BCC-efficient if 0-c(k)=1. Otherwise,
DMU(k) is said to be BCC-inefficient.

Let Tgcc be the PPS of the BCC model as follows:

n n n
Teoe = {(a:,y) cT > Z,\jm(j), 0<y< Z)\jy(j), Z)\j =1 for some A\ > O} )

By the definitions of Thoc and convex hull, Tacc is represented as follows:

Taoo = (co ({(@(1), (L), (2(n), y(n))} + (RT x L)) N (R™ x R}).

15



Obviously, Tcc is a closed convex set. Let Fpoc be the efficient forntier of the BCC
model which is the emvelope formed by all BCC-efficient DMUs, that is, Fpoc =
{(@,y) € ®? X RY) : B3ce((@,y)) = 1}

The RTS expresses a type of the efficiency by the change of the scale about the
activity of DMUs. Hence, in the BCC model, there exist three types of the RTS
: the increasing RTS, the decreasing RTS and the constant RTS. The increasing
and decreasing RT'S improve the efficiency by expanding and contracting the scale,
respectively. Moreover, the constant RTS means that it is desirable to maintain the

present scale.

The following is the dual problem of (BCCLP(k)) (1 <k < n):

( maximize u'y(k)—a

subject to v'z(k) =1,
(BCCD(k)) < u'y(G) —vTz(f) —a<0,j=1,...,m,
u. >0, r=1..s,

\ ’UiZO,’I:=1,...,m.

Let us set o, and o* as follows:
o, =min{a: v z(k) =1, 4 y(j) —v'2(j) —a<0,j=1,...,n,
>0, 7r=1,...,8 v,>0,i=1,..,m}.
o =max{a:v' z(k)=1,u"y(j) —v'z(j) —a<0,j=1,...,n,
u>0,r=1,..,81v>0i=1,.,m}
Then, the RTS is classified as follows (see [17]).
(i) DMU(k) is said to be the increasing RTS if e, < a* <0 or o, = a* < 0,
(ii) DMU(k) is said to be the decreasing RTS if 0 < ai < &* or 0 < i, = ¥,
(iii) DMU(k) is said to be the constant RTS if o < 0 < a* or a = a* =0,

where 1 < k < n.

3.3 GRS model

Similarly, the IRS and DRS models formulated by Seiford and Thrall [30], Fare and
Grosskopf [20], respectively, have the feasible set defined by adding an inequality

condition to the constraint conditions of the CCR model.
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The GRS model unifies the CCR, BCC, IRS and DRS models by introducing an
intensity vector A. In order to calculate the efficiency score of DMU(k) (1 < k < n),
the GRS model is formulated as follows:

([ minimize 6
subject to Oz(k); — Z)\jx(j)i >0i=1,...,m,
=1
(GRS(k)) 4 > Ay —y(k), 20r=1,...,s,
=1
L< Z/\j <U,
=1
- OeR, \;>0j5=1,....n,

where L <land U > 1. If L =0 and U = oo, then the model is equivalent to the
CCR model. Also, if L = U = 1, then the model is the same as the BCC model.
If L =1and U = oo, then the model equals the IRS model. Further, if L = 0
and U = 1, then the model is the DRS model. Let Firg and Fprs be the efficient
forntiers of the IRS and the DRS models, respectively. Let 6&pg (k) be the optimal
value of (GRS(k)). From the definition of the constraint conditions of (GRS(k)), it
is obvious that 0 < Oggs(k) < 1. By using the optimal value 6&gq(k) of (GRS(k)),
the efficiency of DMU(k) for (GRS(k)) is defined as follows.

Definition 3.3.1. DMU(k) is said to be GRS-efficient if g&grg(k)=1. Otherwise,
DMU(k) is said to be GRS-inefficient.

Then, the PPS of the GRS model is defined as follows.

Tors(z,v) = {(x, y) o> Aa(5),0 <y <Y Ay(h), 3N e AL, U)} :

j=1 j=1

A(L,U):.—.{AER":LSZAst,Azo}.

j=1
It is clear that A(L, U) is a closed convex set for each L < 1 and U > 1. Moreover,
the following theorem holds.

Theorem 3.3.1. For each L <1 and U > 1, Tgrs(z,v) s a closed convex set.

Proof. First, we shall show that T(L, U) is convex. For each (z!,y!),(z2,1?) €
T(L, U), there exist A", N> € A(L, U) such that z' > Y7, Ma(s), 0 < ¢' <

17



D Ny(d), #* = 30 A2e(f) and 0 < y? < 307 Ay(j). For each 0 < o <
1, ad+(1-a)>? € A(L, U). Moreover, az'+(1—-a)z® > Y70 (eMj+(1—a)X)z(j)
and 0 < ay' + (1 — a)y® < 37 (A} + (1 — a)A3)y(4). Therefore, T(L, U) is a
convex set.

Second, we shall show that T(L, U) is closed. Let {(z*,y*)} < T(L, U) satisfy

k % as k — oo, there exists [ € N

(z*,y*) — (z,7) as k — oo. Let e > 0. Since x
such that ||z¥|| < ||Z|| + € for each k > I. Let § := max{}|Z|| + ¢, max{||z*|| : k =
.,1}}. Then, ||z*|| < § for each k € N. Since z(j) > 0 for each j = 1,.

§ = min{z(j); : i =1,...,m;j =1,...,n} > 0. Foreachk € N, a € {a €

R™ : 30 g0 = La; > 05 = 1,...,n} we have z* < 377 a“,x(j). Hence,

Aj £ g‘sr ; < % For each k € N, there exists \* € A(L, U)m{)\ ER: 0 <
/\ S ‘gf ] = n} SU.Ch tha,t Z' > EJ =1 .7 (.7)7 O < yk < Z} (j) Since

{AeR*: 0< )\j <$ si=1... ,n} is compact, without loss of generahty, we can
assume that \¥* — X as k — co. Then, from the closeness of A(L, U), X € A(L, U).
Hence, T = limy o #* < limg o0 Y 7y AF2(5) = Y7, Nz (5), 0 < § = limp_e0 4% <
limg oo 27—y Ay(5) = Y7, Ay(j). Therefore (Z,7) € T(L, U). Hence, T(L, U) is

closed. Consequently, T(L, U) is a closed convex set. n

Theorem 3.3.2. Let (z,y) € Firs N Faee, L <1 and U > 1. Then, L(z,y) €

Fars(z,v)-

Proof. We show that L(z y) € Tgrsru). Let X = L). Then, Z?=1 A =

ZJ (LA} = LZJ = L. Therefore, L(z,y) € Tarsw,u). Let (6*,\*) be an

optimal solution of the following problem.

( minimize 6
n
subject to 0z(3) — Z/\jl‘(j),,; >0i=1,...,m,
—
(IRS) ¢ Y At - 20r=1,...,5,
i=1
D=1,
=1
{ bR, \;>05=1,...,n

Then, 6* = 1 and 37 ; A}
that L(z,y) & Forsq,u). Then, there exist & < 1 and X’ satisfying the following

¥ > 1. In order to obtain a contradiction, we suppose
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conditions. ) .
0'La(i) — Y Na()i20i=1,...,m,
G=1

n
Zz\;yrj—LyTZ()r:l,...,s,
| =1
n

L) N<U,
j=1

(A >05=1,...,n.

Let A := $X. Then, Y7 X; = 37 33, = £ 3.7, A; > 1. Moreover, 6'z(i) >

i $AE(d)e = Y5 Aja(j)i for each i = 1...,m and g < 37, Ny =

> j=1 Ajyrj for each 7 = 1,...,s. Hence, (6',X) be an feasible solution of Prob-

lem (IRS). This contradicts the optimality of (6*, A*) for Problem (IRS). Therefore,
L(z,y) € Fars,v)- O

Theorem 3.3.3. Let (z,y) € Fprs N Feco, L < 1 and U > 1. Then, U(z,y) €

Farsw,u)-
Proof. We can complete the proof in a way similar to Theorem 3.3.2. O

Theorem 3.3.4. Let (z,y) € Focr N Foe, L < 1 and U > 1. Then, L(z,y) €
Fars,v) and U(z,y) € Farse,v)-

Proof. We can complete the proof in a way similar to Theorem 3.3.2. O
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Chapter 4

IMPROVEMENTS FOR
INEFFICIENT DMUS

In this chapter, we calculate the improvements for inefficient DMUs in the CCR
model. To calculate the improvements, we need to obtain all equations forming
Feor. Moreover, in order to obtain a more flexible improvement, we introduce the
equations forming the efficient frontiers of other models. Therefore, before calcu-
lating the improvements, we discuss the methods to obtain all equations forming
the efficient frontiers. In Section 4.1, we introduce an algorithm for calculating the
equations forming Focg proposed in [24]. In Section 4.2, we propose three kinds of
algorithms to calculate all equations forming the efficient frontiers. In Section 4.3,
we introduce the previous research formulated by Aparicio, Ruiz and Sirvent [3]
as a mixed integer linear programming problem for calculating improvements. In
contrast, we propose four types of improvements by utilizing the equations in Sec-

tion 4.4. In Section 4.5, we show a numerical experiment.

4.1 Algorithm for calculating the equations form-
ing the efficient frontier by solving mixed in-
teger linear programming problems

Analysis of DMUs by calculating the equations forming the efficient frontiers has
been considered by Jahanshahloo, Lotfi and Zohrehbandian [24]. They have pro-
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posed the following algorithm which is formulated as a mixed integer linear pro-

gramming problem to obtain the equations forming Focr.

Algorithm QC

Step 0
Set J, Ji, Jo as follows:
J={1,..,n},

Jl = {?:1, ...,im}, ih = {6h,0}, €p S Rm, eh,j = 0 (Vj % h), eh,h = 1,
Jo={o01,...,05}, o :={0,e;}, e €R®, €, =0 (Vj #1), e, = 1.
Set k& :=1 go to Step 1

Step 1
Solve Problem (Q).

( maximize Z Q;

JGJUJ1UJ2
subject to Zuryr, szmw <0,j€JUJ,
1‘—1 z-1

ZuTyT‘J szwm > M(l - QJ) .7 € JU Jla

Zuryrj Z'Uzwz] >0,5€ s,
Zurym szmm <M1 —Q;), j € Ja,

Zur-l—sz >1,

i=1
ZQizl,y:I,...,k——l,
i€G;

i€JUJ,

Q; €{0,1}, j € JUJ1 U Ja,
u>0,r=1,...,s,
vz-ZO,z'=1,...,m,

\

where M is a large enough positive number.
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If Problem (Q) is feamble set Gk := {DMU(j) : DMU(j) lies on the Fy},

where Fj, = { z,y) : Z“r% Zv z; =0 p is a facet of Foor, K — k+1
=1
go to Step 1. If (Qx) is not feasible, then stop the algorithm.

However, there is no guarantee that all equations are obtained. Therefore, in
this thesis, we propose three kinds of algorithms to ensure obtaining all equations

forming the efficient frontiers.

4.2 Algorithm for calculating all equations form-
ing the efficient frontiers by utilizing the prop-
erties of the polar set

In this section, we propose three kinds of algorithms to ensure obtaining all equations
forming the efficient frontiers. The following algorithm is used to construct all
equations forming Foor, Feoo, Firs and Fprs. By the definitions of the efficient
frontiers, Foor U Feoc = Firs U Fprs. Therefore, we construct the algorithm based

on properties of the CCR, and the BCC models.

Algorithm FFA

Step 0
Set P(i)(i=1,...,2n) and P'(3) (i = 1,...,2n+m + s) as follows.
] @Oy ifie{l,...,n},
P(i) = { 2P(i —n) ifie{n+1,...,2n} (41)
» Py -G ifie{l,...,2n},
P (i) := X 4.
(%) {ez‘zn ifie{2n+1,...,2n+m+ s}, (42)

where G := = (P(1)+-- -+ P(2n)) and ¢’ is a vector of R™** satisfying ej: =1
and el =0foreachj € {1,...,m+s}andi e {1,...,m+s}\{j}. Let ¢ :==
foreachi € {1,...,m+ s} and i :=2n+m+s. Set t =1 and go to Step 1.

Step 1
If dim (co({P'(¢;) : i =1,...,m+s})) = m+s, then go to Step 2. Otherwise,
go to Step 3.
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Step 2

Step 2-0
Calculate W by solving the following system of linear equations:

(P'(er)™W = afa),

(P (ems) "W = afCmss)-
where a(c;) (i = 1,...,m + s) are as follows.
1 ifgedl,...,2n},
ale) = { 0 ife{2n+1,...,7a}
Step 2-1
If W calculated at Step 2-0 satisfies the following conditions, then V; :=
W and t «— t+ 1. /
(P)TW<L,j=1,...,2n,
W;<0,i=1,...,m,
W;>0,i=m+1,...,m+s.
Otherwise, {V4,...,V;} remain. If ¢; = 2n—m—s+1, go to Step 4. Otherwise,
go to Step 3.

Step 3

Step 3-0
Set ¢pts — Cmas +1 and j:=m +s. Go to Step 3-1.

Step 3—-1
Ife; <2n—m—s+j,set ¢y cj+j' — j for every j' > j. Go to Step 1.
Otherwise, set ¢j—; «¢;—-1 +1,j « j —1 and go to Step 3-1.

Step 4

For each i € {1,...,t — 1}, let (—p;,q])" := Vi, where p; € R™ and ¢; € R°.

1+(—p;r,q1T)TG
max{gi,1,.-,gi,s } > 0, then

. Otherwise, ¢; := 1+ (—p;,q')TG. Then, the hyperplane

Foreachi=1,...,t —1, if max{g;1,...,%s} > 0 and
1+(—pT’qT)TG
2

¢ 1=
forming the efficient frontier is as follows.

sz',lli,ci = {(:E,y) : __p;I'.,E + quy = Ci}'
Stop the algorithm.
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At Step 0, in order to obtain all equations forming Focog, for each ¢ = 1,...,n,
P(i+n) is generated. Let P := co({P'(1),...,P'(2n)}). To calculate all vertices of
(Py*NR™s .= {Z e R™*: Z, <0(1<i<m), Zi>0(m+1<i<m+s)},al
combinations of {P’(1),..., P’(R)} are considered. At Step 1, to examine whether
there exists a solution of the linear system at Step 2-0, dim {P'(¢;) : i = 1,...,m+s}
is calculated. At Step 2, to examine whether W obtained at Step 2-0 is a vertex of
(P)*, WTP'(1),...,WT P'(R) are calculated. If all values of W7 P'(1),..., W' P'(R)
are less than or equal to one, then W is a vertex of (P)*. At Step 3, to select all
combinations of choosing m + s numbers from {1,...,7}, c1, ..., Cm+s are updated.

At Step 4, for each i € {1,...,t — 1}, the necessity of Hy, 4, ., for constructing the

efficient frontier is examined.

Example 4.2.1. We illustrate Algorithm FFA in the case of m = s = 1. The
data of DMUs is listed in Table 4.1 and illustrated in Figure 4.1. By executing
Algorithm FFA, we can construct all equations forming Facr, Fsoo, Firs and Fpgrs
based on the data in Table 4.1. '

Table 4.1: The data of four DMUs
DMU A B C D
Input 2 4 4 6
Output 1 2 3 2

Step 0: Since n = 4, according to (4.1), P, (i = 1,...,8) shown in Figure 4.2

are calculated as follows:
P=2,1),P=(42",P=(43)",P=(62)",

Ps=2P = (4,2)T,Ps = (8,4)",P, = (8,6), Py = (12,4) .

Then, G = L (P, + -+ Pa,) = £(48,24)T = (6,3)7. According to (4.2), P, (i =

1,...,10) shown in Figure 4.3 are calculated as follows:
P = (~4,-2)7, Py = (-2,~1)7, P = (-2,0), P, = (0,~1), F; = (~2,-1)",
Py=(2,1)T,P=(23)",B=(6,1)T,P= (1,007, P,, = (0,1)".
Setc; :=1,c0:=2,n:=2n+m+s=10and t := 1. Go to Step 1.
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Step 1: Since dim {(—4, —2)T, (=2,—1)T} = 1, go to Step 3.
Step 3: Set ¢; :=1,¢cp := 3. Go to Step 1.

Step 1: Since dim {(—4, ~2)T,(-2,0)"} = 2, go to Step 2.
Step 2: Calculate W satisfying the following linear system:

(—4,-2)TW =1,
(—=2,0)TW = 1.

Then, we obtain W = (—%,1)T. We examine whether W is a vertex of P :=
co({P,,...,Ps}). Since, (P))T(-%,3) < 1(j = 1,...,8), (—3,3)" is a vertex of
(P)*. By Lemma 2.1.5 and the coordinate transformation moving G to the origin,
we can obtain all equations forming P := co({Py, ..., Ps}). In order to obtain only
the efficient facets of P, we consider the vertices contained in {W € R? : W; <
0, Wz > 0}. Since, W; = —1 <0 and Wo =1 >0, set V; := (—3,3)" whichis a
vertex of polytope @ shown in Figuré 4.4. Set t :=2. Sincecy #2n—m—s+1=7,
go to Step 3.

Step 3: Set ¢; :=1,¢5 := 4. Go to Step 1.

We repeat this operation to ¢; = 9,¢5 = 10. Then, t = 4. V; = (—3,3)",
Vo=(-107, Va=(—2,2)T and V4 = (0,3) " are all vertices except the origin of
Q. Go to Step 4.

Step4: Fort=1, iz +1iy=1+(-1,2)7(6,3) = —1. Hence, Hy = {(z,y) :
—z+y = —1}. Similarly, Hs := {(z,y) : z = 2} and Hj := {(z,y) : —%er %y = 0}.

1 INT
For t = 4, since [Ya;| = 1 > 0 and G2 — 6 5 ¢ 1y = HC2) G _

Hence, Hy := {(z,y) : y = 3}. Hi,...,H, are all efficient facets of P. Then stop
the algorithm.

By Algorithm FFA, we can obtain four vertices of ) shown in Figure 4.4 as

1 1\' 1\ 1 2\" 1\"
%—(_'2')5) "/2“<~Z70> 7%“(“'2'75) a‘/-’—l—<07§> .

By Lemma 2.1.5, @Q* shown in Figure 4.5 are formed by four equations as follows:

, (1 1\T NENY
H,: ("‘2‘@) (z,9) =1,H,: (]‘70) (z,y) =1,

, 1 2\" , 1\"
H3: (“573’) (m,y)=1,H4: (O’§> (w7y)=1'
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By the coordinate transformation, we obtain four equations depicted in Figure 4.6

’ 11\ " 11\" 1
" 1\’ 1 \" 1
H2 : (~ZJO) (.’E,y) =1+ ("Z)O> (67 3) - —"23

" 1 2\" 12\ "
H3:<"§a§> (x,y)=1+<—§,§) (6:3)307

H, : (0, %)T(m,y) =1+ (o, %)T(G,B) = 2.

By the operation at Step 5, we obtain four equations illustrated in Figure 4.7 as

11)\" 1 1 \" 1
Hy: (—57 5) (z,y) = —§,H2 : (“Z’O) (z,y) = T

a, (__;_,g)T(m’y) _om,. (Qéy(””’y) _ 1+, i)T(6,3) _ 1

Then, Hi,...,H; form the efficient frontiers.

as follows:

follows:

Since the Toer is a closed convex cone, by the operation at Step 0, we can
always calculate all equations of the CCR model. Moreover, the origin is con-
tained in P. Figure 4.4 shows the hyperplane {(z,y) : (P'(5))" (z,y) = 1} for each
j =1,...,2n. Polytope Q is the intersection of R™* and (P)*. We calculate all
vertices of @ by performing from Step 1 to Step 3. Figure 4.5 shows the hyperplane
{(z,y) : v"(z,y) = 1} for each vertex v of polytope @ except the origin shown in
Figure 4.4. By the coordinate transformation moving G to the origin, we get Fig-
ure 4.6. Figure 4.7 shows all the hyperplanes calculated by Algorithm FFA. By the
operation at Step 4, the hyperplane consisting of only DMUs generated at Step 0
is replaced by the hyperplane consisting of original DMUs. For example, the hy-
perplane consisting of DMU(n + 2) and DMU(n + 4) is replaced by the hyperplane
consisting of DMU(2) and DMU(4).

Theorem 4.2.1. The intersection of P* and R™ is a polytope containing 0.

Proof. By the definition of P and Assumption (A4), P is a polytope and 0 € int P.
Hence, (P)* is a polytope and 0 € int (P)*. Of course, R™+s is a closed convex
polyhedral set containing 0. Thus, the intersection of R™* and (P)* is a polytope

containing 0. O
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; P :=A

’ Py =

5 P:=C

: c P:=D

2 B B,

Figure 4.1: Illustration of all DMUs

, < Py :=2P =A

of ° P;:=2P, =B

j - >, P :=2P,=C

, c, . Py:=2P =D

: 2o,

Figure 4.2: We add two times the original DMUs

Generation of P, ..., P;.

. P =P -G

: P=P—G

j - > Pé =P -G

\ e — P, :=P, -G

. . P P, :=P -G

S Py :=Ps—G

T T T T T T T T T P=P-G
P:=FR -G

Figure 4.3: The coordinate transformation moving G to the origin

By Theorem 4.2.1, the number of vertices of the intersection of P* and R™+ ig
finite. In particular, at Step 3, all combinations of ¢y, ..., cmys from {1,...,7} are
selected. Thus, Algorithm FFA terminates within C,, ., iterations. Let h be the
number of hyperplanes H, ., ., calculated by Algorithm FFA. For each j =1,...,h,
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Figure 4.4: Hyperplane that inner product of each DMU and (z,y) equals one

: -1, T(w,y) =1

272

: ('—%70)1-(*”1?/) =1
13 : ‘—%a %)T(xsy) =1

: (0: %)T(mr y) =1

let

Hy:(0,3) (z,y) =2

Figure 4.6:

Wy = (-8 ), (43)
Se = {’L € {1, ey h} : Hpia(Ii,Oi NTocr C FCCR}, (44)
Sp 1= {'L € {1, ey h} : Hpi,qi,ci NTsec C FBCC} (45)

Then, Tocr and Foor can be represented by using coefficients of equations as follows.
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: Hy:(—5:3)"(z,9)=—3
‘ Hy: (-1,0)(z,y) = %
j 3 o, Hy: (-3,3)7(= ,y)

. y - Hy:(0,3) (z,y) =

Figure 4.7: All hyperplanes obtained by Algorithm FFA

Theorem 4.2.2. Tecr = ﬂ {Z: VVjTZ <0}

JESe

Proof. First, we shall show that TOCR C ﬂ . {Z :
(z7,y")7 € Tocr, there exmsts i > .
Since W; = (—p 7(13 e (p.v 20, QJ , = .
9 Sy XMy(3). By the definition of FCCR, ——pJ J2(2) + :q y(i) <
{1,...,n}. Hence, W] Z < 0 and (z7,y")7 € MN;e5,{Z : WTZ < O} Therefore,
Toor C Ves {2 : Wy Z < 0}

Second, we shall show that Tecr O Njes.{Z : W] Z < 0}. For each Z €
Njes. {2 : W, Z < 0}, the following two cases occur.

WTZ < 0} For each Z :=

(i) There exists j € S, such that W' Z = 0.

(ii) There exist no j € S, such that W;'Z = 0.

In Case (i), by the definition of W, there exists A > 0 such that T=) : \
S Ay(i). Hence, Z € Teep- In Case (ii), d> eScsuch that
W (Z + 6W;) = 0 and W[ (Z + 6W) < ;for,each ke S.. Let Z' = Z + oW,
Then, z > z and y < 3. By the definition of W;, there exists A > 0 such that
r = Yo (i), y = 1 2y(?). Hence, Z € Toon a.nd Z € Toor. Therefore
~Toer D nyes {Z: WTZ < 0}. Consequently, Tocr = ﬂges {Z: WTZ < 0} O

Theorem 4.2.3. Tgoe = n {Z: WTZ < cg}

JESY

Proof. We can complete the proof in a way similar to Theorem 4.2.2. s

Theorem 4.2.4. Foor = ( | J{Z: W] Z = 0}) N Tecn.

JES:
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Proof. First, we shall show that Fgor C (UjeSC{Z : I/VjTZ = O}) N Tcer. For
each Z' := (' 7,4'")T € Foor, (7,47)T € Teor- Let (0cr(Z), A5, ..., \) be
an optimal solution of the CCR model for Z', that is 8%qg(Z') solves the following

problem.
( minimize 6
n
subject to fz; — Z/\jx(j)i >0,i=1,...,m,
n g=1
SoNYG) — 4 20, =1,...,5,
j=1

)\jzo,j=1,...,n,
g eR.

(CCRD(Z)) {

\
Since 0o (Z') = 1, there exists 4 such that z; = Z?___l Arz(5);. Hence, (z'7,yT)7 €
bd(Tcer). By Theorem 4.2.2, there exists j € S, such that I/VJ-TZ' = 0. Hence,
7' € Uyes {2 : W] Z = 0}. Therefore, Foon C (Ujes, {2 : W] Z = 0}) N Tocr.
Second, we shall show that Fgor D (UjESC{Z : WJ.TZ - O}) N Tccr. For each
7 e <UjeSc{Z : W] Z = 0}) N Toor, by Theorem 42.2, Z' € bd(Teor). By
definition of Fecr, Z € Foor. Therefore, Foop D (UjGSC{Z : WJ.TZ = O}) NTecr.

Consequently, Focr = (UjGSG{Z : VVJ-TZ = O}) N Tcer. O
Theorem 4.2.5. Fgoo = ( U {Z: W'jTZ = Cj}) N Tsceo.

JESH
Proof. We can complete the proof in a way similar to Theorem 4.2.4. O

By Algorithm FFA, we obtain all equations forming the efficient frontiers of the

four models. We classify the equations under the following theorems.

Theorem 4.2.6. Assume that H, 4. = {(z,y) € R™"*: q¢"y—p'z = c} is calculated
by Algorithm FFA. If c =0, then Hp 4. N Tcocr s a facet of Toer.

Proof. Since p,q and c are constructed at Step 2 of Algorithm FFA, dim H, . =
m+s—1. By Assumption (A4), dim Toor = m-+s. By Lemma 2.1.6, dim H,, ; .N(P+
G) = m + s — 1. By the definition of Tocr, P + G C Toor. Therefore, dim Hp 4. N
Tocr = m+ s — 1. At Step 2 of Algorithm FFA, (—p',¢")"(z(4)7,y(4)T) < 0
(j = 1,...,n). For each (z7,y")T € Tccr, there exists A > 0 such that z >
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S or A ) 0<y <30 XNy(). Then (—p",¢")(z",y")T = —pTz+q'y <
—p Z 1 AT “x() +q D3 )\jy(j) < 0. Consequently, H,q. N Tcor is a facet of
Tcer. O

Theorem 4.2.7. Ifc # 0, then Hp 4. N Tacc is a facet of Tecc.

Proof. By Assumption (A4), dim Tgcc = m+s. By Lemma 2.1.6 and the operation
at Step 4 of Algorithm FFA, dim H, ;. Nco({P,,...,P.}) = m+s—1. By the defi-
nition of Tpce, co({Py,. .., Pn}) C Tscc. Therefore, dim H, 4. NTocc =m + s — 1.
At Step 2 of Algorithm FFA, (-p",¢")"(z(f)",v(§)") < ¢ (j = 1,...,n). For
each (z7,y")T € Tgoc, there exists A > 0 such that z > D Xz(j), 0 <

y < 2Ny, Yja A = 1 Then (—pT,¢")(e",y")T = —pTz+q'y <
-p Zg =1 ﬂf'(ﬂ) +q ZJ =1 JZ/(J) < c¢. Consequently, Hy,. N Tgcc is a facet of
TBcc- O

Theorem 4.2.8. If ¢ <0, then H,,. N Tirs is a facet of Tirs.

Proof. We can complete the proof in a way similar to Theorem 4.2.7. a
Theorem 4.2.9. If ¢ > 0, then Hy 4. N Iprs 5 a facet of Tpgs.

Proof. We can complete the proof in a way similar to Theorem 4.2.7. d

Theorem 4.2.10. If ¢ = 0 and dim({(z(?)",y())")T : i = 1,...,n} N Hpye) =
m+ s —1, then Hpq.N Teoc 45 a facet of Tecc.

Proof. Since dim({(z(?)T,y(i)")T :i=1,...,n}NHpge) =m+s—1,dimH,,.N
Teoc = m+ s — 1. At Step 2 of Algorithm FFA, (—p",¢")"(z()T,v(5)7) < 0
(j = 1,...,n). For each (z7,y")T € Thoo, there exists A" > 0 such that z >
ST Xa), 0 <y < Spes X000, Sy = 1 Then (=p7,a")e" 7Y =
—p'z+q y < —p' Y1y Na(d) +47 iy Ay(5) < 0. Therefore, Hp g NTaec is a
facet of Tgcc- |

By classifying the equations in accord with the above theorems, we can obtain
efficiency scores of the four models easily by substituting the input and output values
of each DMU as follows. Let S., Sy, S; and Sy be the index sets of all hyperplanes
of the CCR, BCC, IRS and DRS models, respectively.
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Theorem 4.2.11. (Jahanshahloo, Lotfi and Zohrehbandian [24]) Let Hp, .. ., be a
hyperplane forming the efficient frontier of the CCR model for each j € S,, where
Hp, 4:0 = {(,y) : —pij + quy = ¢;}, then the efficiency score of DMU(k) in the
CCR model is obtained as follows.

T
Eff(DMU(k)) = max {iﬁi% je Sc} .

J
Theorem 4.2.12. (Jahanshahloo, Lotfi and Zohrehbandian [24]) Let Hp, 4, ., be a

hyperplane forming the efficient frontiers of the BCC, DRS, IRS models for each
J € Spy Si, Sa, where Hp, g c; = {(x,y) : —pjT:v + ¢y = ¢;}, then the efficiency

scores of DMU(k) in the BCC, DRS, IRS models are obtained as follows.

gl y(k) +¢
p; (k)

By Jahanshahloo, Lotfi and Zohrehbandian [24], the RTS are obtained as follows.

Let h be the number of the hyperplanes calculated by Algorithm FFA. For each

Eff(DMU(k)) = max{ :pjz(k) #0, j €S, Si, Sd} .

j=1,..,h, Hp g4 be the hyperplane defined by {(z,y) : —p;_:v + q}y = ¢j}. Let
05cc(k) be the optimal value of Problem (BCCLP(k)) for DMU(k) and

gyk)+e .
S(k) = {Cj ; J‘W = Ocom, P ©(k) #0,5 € Sy p .
J

Theorem 4.2.13. (Jahanshahloo, Lotfi and Zohrehbandian [24]) The RTS is clas-
sified as the following.
(i) DMU(k) is said to be the increasing RTS if min{S(k)} < max{S(k)} < 0 or
min{S(k)} = max{S(k)} < 0.
(i) DMU(k) is said to be the decreasing RTS if 0 < min{S(k)} < max{S(k)} or
0 < min{S(k)} = max{S(k)}.
(iii) DMU(k) is said to be the constant RTS if min{S(k)} < 0 < max{S(k)} or
min{S(k)} = max{S(k)} = 0.
For the data in Table 4.1, we identify the RTS under Theorem 4.2.13. Table 4.2
shows the classification of the RTS. In general, the RTS is considered for only BCC-

efficient DMUs, but by using Theorem 4.2.13, we can also consider the RTS for
BCC-inefficient DMUs based on the points projected on Fpce.
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Table 4.2: Classification of the RTS

DMU min{S(k)} max{S(k)} RTS
A -2 -1 increasing
B -1 -1 increasing
C -1 3 constant
D -1 -1 increasing

As the numbers of inputs, outputs and DMUs increase, Algorithm FFA requires
a large number of iterations to construct all equations forming the efficient frontiers.
For example, in the case where m = 2, s = 1 and n = 10, the number of iterations of
Algorithm FFA is 1,771. In the case where m = 3, s = 2 and n = 20, the number of
iterations of Algorithm FFA is 1,221,759. Therefore, we devise a method for reducing
the number of iterations. If z(a); < z(b); (¢ = 1,...,m) and y(a); > y(b); (i =
1,...,8), then DMU(b) can be removed from the original DMUs. In Table 4.3, the
averages and dispersions of the computational times of Algorithm FFA and modified
Algorithm FFA for 20 test problems on n = 10,20, ..., 80 are listed. The input and
output values are randomly-determined. By modifying Algorithm FFA, we can

calculate all equations forming the efficient frontier in a realistic time.

Table 4.3: The averages and dispersions of the computational times (seconds)
Algorithm FFA modified Algorithm FFA

number of DMUs  averages dispersions | averages dispersions
10 0.531 0.001 0.240 0.012
20 11.949 0.046 1.815 1.505
30 92.197 0.911 9.994 86.556
40 393.139 16.214 | 31.924 821.405
50 1338.005 53.527 | 51.289 2479.179
60 3615.760 638.221 | 83.638 4106.046
70 7492.604 2060.928 | 166.074 22895.020
80 17127.256  97780.144 | 284.729 88195.173

(The numbers of input and output are 3 and 2, respectively.)

Next, we propose an algorithm to obtain all equations forming the efficient fron-
tier of only the CCR model. When we calculate cross efficiency scores in Chapter 5,

we need to use only the equations forming Fgcr. Therefore, we propose another
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algorithm for constructing all equations forming Focr whose calculation time is
smaller than Algorithm FFA. Let P := {0, DMU(1),...,DMU(n)}. Then, co(P) is
contained in Toor and the intersection of boundary of co(P) and Toeg is nonempty.
Hence, by calculating the equations forming co(P), we can obtain all equations

forming Foor as follows:

Algorithm FFC

Step O
Set P(1) (¢ =1,...,n+m+ s+ 1) as follows:
(@) T,y6))T -G ifie{l,....n},

P@{):=<¢ (0,...,00T -G if i =n+1, (4.6)
gin-t ifie{n+2,....,n+m+s+1},

where G = 25 ((z(1)T,y(1)")"T + -+ (2(n)7,y(n)T)T) and €’ is a vector
of R™** gatisfying e? =1and el =0 for each j € {1,...,m+ s} and i €
{1,...,m+s}\{j}. Letc;:=iforeachie {1,...,m+ s} and ¢t :=1. Go to

Step 1.

Step 1
Ifdim {P(¢;) :i=1,...,m-+s} =m+s, then go to Step 2. Otherwise, go to
Step 4.

Step 2

Step 2-0

Calculate W by solving the following system of linear equations:
(P(c1)) W = o),

(Plemsa)) W = a(eme),
where,

afci) = 1 ifgedfl,...,n+1},
Y10 fae{n+2,...,n+tm+s+1}

Go to Step 3.
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Step 2—1
If W calculated at Step 2-0 satisfies the following conditions, then set
Vii=Wand t «t+1.
(PHNTW<1,j=1,...,n+1,
W;<0,i=1,...,m,
W;>20,i=m+1,...,m+s,
Wm+1+"'+Wm+3 > 0.
Otherwise, {W1, ..., V;} remain. If ¢; = n—m—s+2, go to Step 4. Otherwise,
go to Step 3.

Step 3
Step 3—-0
Set crts «— Cmes +1 and j :=m + s. Go to Step 3-1.

Step 3—1
Ife;<n—m-—s+1+7,setcy <—cj—|-j'—j for every j' > j and go to
Step 1. Otherwise, set ¢;_; +c¢j_1+1,j <+ j — 1 and go to Step 3-1.

Step 4
For each i € {1,...,t — 1}, let (—p;,q])" := V;, where p; € R™ and ¢; € R°.
Foreachi=1,...,t—1,let ¢; := 14+ (—p; ,q; ) TG and the hyperplane forming

the efficient frontier is as follows.
Hp e = {(z,9) : —p{ 2 + ¢y = ¢},
Stop the algorithm.
The equations calculated by Algorithm FFC are classified by following theorems.

Theorem 4.2.14. Assume that Hpg. = {(z,y) € R™° : pTz +q'y = c} is
calculated by Algorithm FFC. If c =0, then Hyq. N Tocr 45 a facet of Tocr.

Proof. Since p and ¢ are constructed at Step 2 of Algorithm FFC, p < 0,¢ > 0
and dim H,,. = m + s — 1. By Assumption (A4), dimTocr = m + s. Let P :=
{P(),...,P(n+1)}. By Lemma 2.1.6 and the conditions defined at Step 3 of Algo-
rithm FFC, dim H, , .N(P+G) = m+s—1. By the definition of Tocr, P+G C Teor.
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Therefore, dim H, 4. N Tocr = m+s — 1. Let ¢ = 0. Then, at Step 3 of Algo-
rithm FFC, (p",¢") " (z(j)7,v(5)T) <0 (j =1,...,n). For each (z",y")" € Tcer,
there exists A" > 0 such that z > Y Ne(), 0 <y < 37 XNy(j). Then
(PT,aN) (@T,y") =Pz +qTy < p" X5 Na(d) + ¢ o Ny(5) < 0. Conse-

quently, Hpq.NTccr is a facet of Toon. |

Theorem 4.2.15. Assume that Hp,. = {(z,y) € R™* : pz +q'y = c} is
calculated by Algorithm FFC. If ¢ # 0, then H, 4. N Tcer 15 not a facet of Tocr.

Proof. By the definition of Toeg, for each (z7,y")T € Toor and for all @ > 0,
a(zT,y")T € Tocr. At Step 3 of Algorithm FFC, (p7,¢")"(z(5)T,y(f)7) < ¢
(7 = 1,...,n). At Step 2 of Algorithm FFC, there exists ¢ € {1,...,n} such
that (p7,q )T (z()T,y(0)T) = c. Let ¢ % 0. Then, there exist a > 0 such that
(p",q")Ta(z(5)T,y(i)7) > c. Consequently, H,,.NTcor is not a facet of Toer. O

Finally, we propose an algorithm to calculate all equations forming Fgrs(z, v)-
By setting parameters L < 1 and U > 1, we can obtain all equations forming the
facets of the efficient frontiers of the traditional four models. In order to calculate
all equations forming Foer, we set L = 0 and U > 0. By using Theorem 4.2.6, we
obtain all equations forming Foegr. Similarly, by setting L = U = 1, we obtain all
equations forming Fpce. If we set L =1 and U > 1, then, by using Theorem 4.2.8,
we obtain all equations forming Firs. If we set L = 0 and U = 1, then all equations
forming Fprs are obtained. Obviously, by setting other parameters(for example,
L = 0.5 and U = 2), all equations forming Fgrs(z,v) are obtained. We formulate
the algorithm under Theorems 3.3.2, 3.3.3 and 3.3.4.

Algorithm FFG

Step 0
Set A := 2n+m+s. Moreover, set P(i) (i = 1,...,2n) and P'(i) (i = 1,...,R)
as follows.
, L{z(@)T,y(E)")" ifie{l,...,n},

= 4.

PG) { U@—-n)T,y@i—n)")T ifie{n+1,...,2n}. (47)
. P(i)—G ifie{l,...,2n},

= . 4.

P (@) { ¢i=2n ifie{2n+1,...,7a}, (48)

36



where G = 5-(P(1) +---+ P(2n)) and € is a vector of R™** satisfying e;: =1
and €] = 0 for each j € {1,...,m+s}and i € {1,...,m+ s} \ {j}. Let
c:=i(t=1,...,m+3s). Set t:= 1 and go to Step 1.

Step 1
If dim {P'(¢;) : 4= 1,...,m+ s} = m + s, then go to Step 2. Otherwise, go
to Step 4.
Step 2
Step 2-0
Calculate W by solving the following system of linear equations:
(P'(c))™W = a(ar),
(P'(cmts)) W = alcmss),
where, |
1 ifege{,...,2n}
a(e) = { 0 ifge{2n+1,...,7}.
Go to Step 3.
Step 2-1

If W calculated at Step 2-0 satisfies the following conditions, then set
Vii=W and t « t+ 1.

(PUEN™TW<1,ji=1,...,2n,
W;<0,i=1,...,m,
W;>20,i=m+1,...,m+s.

Otherwise, {V4,...,V;} remain. If ¢; = i—m—s+1, go to Step 4. Otherwise,
go to Step 3.

Step 3

Step 3-0
Set cmis < Cmas + 1 and j :=m + s. Go to Step 3-1.

Step 3—1
Ifej <m—m—s+j,set ¢y — cj—l-jl--j for every j > j. Go to Step 1.
Otherwise, set c;_1 +— ¢j_1 + 1,7 « j — 1 and go to Step 3-1.
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Step 4
For each i € {1,...,t— 1}, let (—p/,q])T := V;, where p; € R™ and ¢; € R®.
Foreachi=1,...,t—1,let ¢; := 1+(—p; ,¢; ) "G and the hyperplane forming

the efficient frontier is as follows.
Hpi,fh,ci = {($:y) : “p;:rw + q;f'y = Ci}-
Stop the algorithm.

The algorithm introduced in Section 4.1 calculates some equations forming Foor
by solving many linear programming problems. In this approach, in order to obtain
the equations forming the efficient frontiers of the other models, other algorithms
must be constructed. In contrast, Algorithm FFG can calculate all equations with
respect to all GRS models by setting the parameters. The algorithms proposed in
this section obtains all equations forming the efficient frontiers by calculating the

vertices of the polar sets based on initial points.

4.3 Formulation for calculating improvements by
solving a mixed integer quadratic program-
ming problem

In this section, we illustrate the method proposed by Aparicio, Ruiz and Sirvent [3]
to calculate some improvements. We assume that DMU(k) is a CCR-inefficient
DMU, that is, 8&qr(k) < 1. By following the improvements, DMU(k) becomes a
CCR-efficient DMU satisfying &g (k) = 1.

Let (\*, 65cgr(k)) be an optimal solution of Problem (CCRD(k)). Then, 05qg (k)
is one of the traditional improvement for DMU(k). Let DMU(k) := (%, §) be a DMU

defined as follows:

= HECR(k)x(k)a
= y(k).

81

S|

Then, (\*,1) is a feasible solution of Problem (CCRD(k)). By the optimality of
(X*, 05cr(k)), the optimal value of Problem (CCRD(k)) equals 1. Hence, (Z,7) is
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CCR-efficient. This improvement is obtained easily, however it is an difficult im-
provement since only input values are decreased at the same rate. Therefore, other
improvements for inefficient DMUs have been proposed with respect to the CCR or
BCC model. For example, Frei and Harker [21] have proposed a least distance pro-
jection to Fgor by using the Euclidean norm. Silva, Castro and Thanassoulis [33]
have constructed multi-stages procedures for the BCC model. In contrast, Apari-
cio, Ruiz and Sirvent [3] have proposed a single-stage method by innovating such
procedures. The method is formulated as a mixed integer quadratic programming
problem for traditional norms to obtain a closest target on Focr under the following

theorem.

Theorem 4.3.1. (Aparicio, Ruiz and Sirvent [3], p.211) Let D(k) be the set of
Pareto-efficient points in Tocr dominating DMU(k). Then, (z,y) € D(k) < there
erist Aj,d; > 0,b; € {0,1},j € E,v; > 1,i=1,... mu. 21, 7r=1,...,8,8; >

0,i=1,...,mand s} >0,r=1,...,s such that

T = Z)‘Jx(j)a

JeE
JjEE
Z)\Jiﬂ(j)z = ﬂj(k)z - 81;:, 7= 1, U
JjEE
ZAJy(])T = y(k)'r‘ + s;scz r= 17 s S
Jj€E
=Y viz(f)i+ Y uy(i)r+d; =0, j € E,
=1 r=1
d; <Mb;, j € E,

A <M(1-by),j€E,
where M is a big positive quantity.

From above theorem, an improvement for DMU(k) is obtained by solving the

following mixed integer quadratic programming problem based on the lo-norm.
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y

minimize Z(Szk +Z(‘Srk)2

r=1

subject to Z)\x Ni=xz(k); — sy, i=1,...,m,
JEE
Z/\Jy y(k)r + sk, r=1,.
=
—Zv,x(j +Zury(] =0,j€E,
(mADD(k)) J v; 2 1 i=1,. m,
Uy > 1, r=1,...,3,

)\jSM(l—bj),jEE,
b; € {0,1},j € E,
deO,jEE,
f\jZO,jEE,

S 20,1=1,...,m,
st >0,r=1,...,s,

\
where F is the set of extreme efficient units defined in [13]. Let Wy be the set of
all optimizing multipliers for DMU(k). If W is not empty, then DMU(k) is said to
be DEA-scale-efficient and denote by RE the set of all DEA-scale-efficient DMUs.
Then FE is defined as follows.

E = {DMU(k) € RE : dim Wy, = m + s}.

By changing the objective function depending on a policy of the decision maker
and situations, above model can be applied the following cases: the [;-distance
case(to minimize the sum of values of change for all inputs and outputs), the l-
distance case(to minimize the maximum value of change for all inputs and outputs),
RAM efficiency measure (see [16]) case, SBM efficiency measure (see [39]) case and

SO on.
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4.4 Algorithm for calculating improvements by
using the equations forming the efficient fron-
tiers

In this section, we propose four types of improvements for making CCR-inefficient
DMUs CCR-efficient (CCR-Pareto-efficient or CCR-weakly-efficient) with a minimal
change of input and output values. By many researches, many methods to calculate
the closest point over the efficient frontier have been proposed. These methods target
the efficient frontier of only one model. In real problems, it is difficult that we select
a model to use for evaluation. Therefore, some models are used to evaluate DMUs
for a problem. In this thesis, we propose four kinds of improvements as follows. The
first improvement is unrestricted, that is, we consider the minimal change of input
and output values. The ineflicient DMUs can become efficient units by the smallest
change under the condition which the improvement targets are feasible. The similar
improvements have been proposed as a minimal distance point by many researchers.
We introduce a norm to adjust the change of input and output values. However,
this improvement is not always possible in the actual situations. Hence, we present
the second improvement guaranteeing the feasibility. The second improvement is
constrained by the production possibility set of the BCC model. The reason for
adding the constraint condition is that the production possibility set of the BCC
model can be identified as the feasible region of DMUs. This improvement cannot
be obtained by using the method introduced in Section 4.3. We calculate this
improvement by utilizing the equations forming the efficient frontiers. Moreover,
if a decision maker wants to introduce some conditions for the operation policy,
stock status and others, they use the third and fourth improvements. The third
improvement is obtained by confining the change of input or output values. By
utilizing this improvement, the decision maker can regulate amounts of change of
input or output values. The fourth improvement is calculated by according as the
order of input and output elements, where the order is provided by the decision
maker. Then, the decision maker can control the order of amounts of change of

input and output values.
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First, we define the norm depending on a symmetric positive definite matrix

A € Rim+a)x(m+s) a5 follows.
|Z||a = VZTAZ, Z € R™".
Under this norm, we consider the minimal change of input and output values.

Example 4.4.1. In the case of A = I,4, ||-||4 corresponds to the Euclidean norm.

A:Mk:= .'. 3

0 Gw)

then || - ||4 means the norm which considered the ratio of input and output values.

We define di(k)(i = 1,...,4) as improvements for DMU(k), where each d'(k) is
an optimal solution of Problem (ID*(k)) (i =1,...,4) formulated as follows:

minimize [|Z]|4 (i

(1D )){ subject to Z € B(k). =14

Here,
B'(k) := Foor — P(k),
B*(k) := (Feer N Toee) — P(k),
B¥k) ={Z € Foor— P(k):a; < Z;+ P(k); < Bi,i=1,...,m},
B*k) := {Z € Foor — P(k) : | Z,| < |Zn ], i=1,...,m+s—1},
where «;, §; € R(1 = 1,...,m) are lower and upper limits for the ith element of Z

decided by the decision maker of DMU(k) satisfying o; < P(k); < Bi (i = 1,...,m),
ti € {L,...,m+s}(i=1,...m+s) satisfy t; # t, for each i',i" € {1,...,m+
s} (i #1"). Since d*(k) solves Problem (ID*(k)), d*(k)-+P(k) has a minimal distance
from P(k) over Focr. The feasible set B2(k) of Problem (ID?(k)) is the intersection
of B(k) and Tgoc. By confining the feasible set to Thoc, d?(k) is more realistic
than d'(k). The third improvement d3(k) is obtained by limiting the amount of

change of input values from P(k). Of course, we can limit output values in a similar
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way. However, if both input and output values are limited, the feasibility of d®(k)
is not guaranteed. Hence, we propose the fourth improvement d*(k). By deciding
{t1,...,tm+s}, the decision maker of DMU(k) can control the order of the amount

of change of input and output values.

Theorem 4.4.1. The feasible sets of (ID*(k))(i = 1,...,4) are nonempty and

closed.

Proof. First, by the definition of Tgcr, 0 € Toor. Since Teogr is closed, by Theo-
rem 4.2.4, Foer is closed and 0 € Foor. Hence, Z = —P(k) is a feasible solution
and {Z — P(k) : Z € Fgcr} is closed. Therefore, the feasible set of (ID(k)) is
nonempty and closed. |

Second, for each DMU(j) € Focr, DMU(j) € Tpee. Since Tgee is closed,
Focr N Teoc is nonempty and closed. Let DMU(5') € Focr, then Z = —P(5') is a
feasible solution and {Z — P(k) : Z € Foor N Teoc} is closed. Hence, the feasible
set of (ID%(k)) is nonempty and closed.

Third, we note that (—~pJT,qJT)T(a1, ey Qm,0,...,0) < 0 for each j € S.. Let
— T;( 11111 O‘m)
j € argma,x{—&—g-&%:———l jE S} and set v = —q;. Then, we obtain
, 1.j

(-—~pj ,4; e,y 0m,7,0,...,0) < 0 for each j € S. and by the definitions
of ' and 7, (—-p ,,qT)T(al,...,am,fy,O,...,O) = 0. By Theorem 4.2.4, (a1 —
P(k)1,...,am — P(k)m,7 — P(k)mt1, =P(K)mss; - - -, —P(k)m+s) € Focr — P(k).
Therefore, the feasible set of (ID3(k)) is nonempty and closed.

Fourth, since P(k) € Focr, we obtain (—p;,q) ) (P(k)1,..., P(k)mss) < O

. 1 @] ,=4))T(P(E)1,rP(K)mts) | ,_
for each j € S,. Let j € argmax{ jpw__’_,__pm’j+q1’j+,__+qs,j 1J € S’c} and a =
(2),=27)" (P(k)1y P(R)mo+)
—pl N S N JI+ +q

. Then, (—p;,q ) (P(k)1 —a,..., P(k)m — &, P(k)ms1 +

" P(Ircn)im_s +a) < 0 for each j € S, and (~p vy DT (P(k)y —a,...,P(k)m —

a, P(k)m+l +a,..., P(k)m+s+a) = 0. By Theorem 4.24, (P(k);1 — ..., P(k)m —
&, P(K)mi1 + @, ..., P(K)mys + @) € Foor. Obviously, (P(k); — a,..., P(k)m —
&, P(B)mi1+@, . . ., P(K)mista) € {Z € R™ 1|2, | < |Z4nl, g =1, ..., m+s—1}.
Hence, FocrN{Z € R™* : |Z;, | < |Z¢,,.], ¢ =1,...,m+s—1} is nonempty. There-
fore, the feasible set of (ID*(k)) is nonempty and closed. a

We propose the following algorithm for obtaining four types of improvements

di(k) (i € {L,...,4}). Let N, be the number of elements of S,. improvements for
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DMU(k) are obtained by the following algorithm:
Algorithm ICCR

Step 0
Select ¢ € {1,...,4} (Choose the type of the improvement). Set j := 1 and go
to Step 1.

Step 1
Let dj(k) be an optimal solution of Problem (ID}(k)) defined as follows:

; minimize HZ ||A
(ID; (k) { subject to Z € B}(k)’

where

Bi(k):={Z:(Z+P
Bi(k):={Z:(Z+P
B3(k):={Z:(Z+P
Bi(k):=={Z:(Z+P

~ A~~~
=

If j = N,, then go to Step 2. Otherwise, set j +— j + 1 and go to Step 1.

Step 2
Select j € argmin{||di(k)||4 : j € Sc} and set d'(k) := d;,, (k). This algorithm

terminates.
We can execute Algorithm ICCR using the existing nonlinear optimization tech-

niques (e.g. [6]). The existence and properties of an optimal solution are proved by

the following theorems.
Theorem 4.4.2. For eacht € {1,...,4}, Problem (ID;(k)) has an optimal solution.

Proof. By Theorem 4.4.1, for each i € {1,...,4}, B;(k) is nonempty and closed.
Since Bi(k) is nonempty, for each (z',y') € Bi(k), Bi(k) := Bi(k) n {(z",y")7 :
(=", 5")T|la < [I(&'™,5 ") 7|4} is compact. Therefore, Problem (ID(k)) is equiv-

alent to the following problem.

o minimize ||Z|[4
ID; ( 5i
(D, (k)) { subject to Z € B}(k),
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Since the objective function is continuous and the feasible set is compact, Prob-
lem (TD—; (k)) has an optimal solution. By the definition of B}(k), an optimal solu-
tion of Problem (T]j;(k)) is also an optimal solution of Problem (ID}(k)). Therefore,
Problem (ID(k)) has an optimal solution. O

We note that Problem (IDj(k)) is a standard quadratic programming problem.

Since N, < 0o, Algorithm ICCR terminates within a finite number of iterations.

Theorem 4.4.3. For each CCR-inefficient DMU(k), let d*(k) (i € {1,...,4}) be
an optimal solution calculated by Algorithm ICCR. Then, P(k) + d*(k) € Foor.

Proof. Let W; (j € S.) be all normal vectors calculated by Algorithm FFA. In order
to obtain a contradiction, we suppose that P(k) + d*(k) € Focr. By Theorem 4.2.4,
P(k) + di(k) & Tocr, and by Theorem 4.2.2, there exists j € S, such that (P(k) +
di(k))TW; > 0. Since P(k) € intToop, from Theorem 4.2.2, P(k)TW; < 0 and
(a(P(k) + di(k)) + (1 — a)P(k))"W; = (P(k) + ad'(k))TW,; = 0, where a =
——5%%’%. Since 0 < a < 1 and d*(k) satisfies the additional conditions of Bi(k) (i =
2,3,4), ad'(k) also satisfies the additional conditions. Therefore, ad®(k) is a feasible
solution of Problem (ID}(k)). By the definition of di(k), we have the following
inequality: ||d;(k)||a < ||led*(k)||a < ||d*(k)||4. This contradicts the optimality of
d*(k) for Algorithm ICCR. Consequently, P(k) + d*(k) € Focg. O

If the decision maker of DMU(k) wants to obtain a CCR-Pareto-efficient point,
that is, an optimal slackness is zero, then he can modify Algorithm ICCR as follows.

By replacing S,, N, and Bi(k) (i = 1,...,4) in Algorithm ICCR by S;, N, and
Bi(k)(i=1,...,4) as follows.

S, :={j€8.:Wi; #0,i=1,...,m+s},

where W; (j € S.) are all vectors calculated by Algorithm FFA. Let N, be the

number of elements of S,
B (k) :=={Z : (Z + P(k))"W; =0, (Z + P(k))"W, < 0 for each 0 € S, \ S,},

Bf (k) :={Z:(Z+ P(k))"W; =0, (Z +P(k))"W, < 0 for each 0 € S \ S,
(Z + P(k))"W; < ¢; for each | € S},
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B¥(k):={Z : (Z+ P(k))"W; =0, (Z + P(k)) "W, < 0 for each 0 € S.\ 5,
< Zi+Pk)y<p,l=1,...,m},

Bf (k) :={Z : (Z+ P(k))"W; = 0, (Z + P(k)) "W, < 0 for each 0 € 5.\ 5,
| 1Zo| < 1Zo ) 1=1,...,m+s—1}.

Moreover, we assume that Bf (k) (i =1,...,4) are nonempty. Then we can obtain

a CCR-Pareto-efficient point.

Theorem 4.4.4. For each CCR-inefficient DMU(k), let d'(k) (i € {1,...,4}) be an
optimal solution calculated by modified Algorithm ICCR. Then, P(k)+d'(k) € Fcocr
is a CCR-Pareto-efficient point.

Proof. We can prove the existence of an optimal solution and P(k) + d*(k) € Focr
in a way similar to Theorems 4.4.2 and 4.4.3. In order to obtain a contradiction, we
suppose that P(k)+d’(k) has positive slack, that is, there exist slack vectors s* > 0 €
R™ and s¥ > 0 € R* satisfying (s*7,s¥T) # (0,0), and P(k)+d:(k) +7(~smT, YT e
Focr. Since di(k) is an optimal solution, there exists j € S, such that (d*(k) +
P(k))"W; = 0. Then (di(k) + P(k) + (=s*T,s¥N)T)TW; = (—s*T,s¥T)W; > 0.
By Theorems 4.2.2 and 4.2.4, this contradicts P(k) + di(k) + (—s°7,s¥")" € Focr.
Therefore, P(k) + d'(k) is a CCR-Pareto-efficient point. a

By introducing a parameter «, we propose an algorithm to calculate a mini-
mal distance point or a Pareto-efficient point on Foor as an improvement. The

improvement of DMU(k) is calculated as follows:

Algorithm GIT

Step 0
Select a € {0,1} (Choose the type of the improvment). Set j := 1 and go to
Step 1.

Step 1
If & = 1, then set

S, :={leS8:Wy#0,i=1,...,m+s}and S:=3,.
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If o = 0, then set
S = Sc'

Let N be the number of elements of S. Go to Step 2.

Step 2
Let d3(k) be an optimal solution of Problem (MIT(k)) defined as follows:

minimize ||Z]|4
(MIT$(k)) ¢ subject to (Z + P(k))TW; =0,
a(Z + P(k)) "W, < 0 for each 0 € S,
where j denote the jth element of S. If 7 = N, then go to Step 3. Otherwise,
set j «+ 7+ 1 and go to Step 2.

Step 3 ]
Select j' € argmin{||d¥(k)||4 : j € S} and set d*(k) := a5 (k). This algorithm

terminates.

We obtain a minimal distance point or a Pareto-efficient point based on param-

eter « as indicated by the following theorems.

Theorem 4.4.5. For each CCR-inefficient DMU(k), let d*(k) (o € {0,1}) be an
optimal solution calculated by Algorithm GIT. Then, P(k) + d*(k) € Focr.

Proof. We prove the case of @ = 0. In order to obtain a contradiction, we sup-
pose that P(k) + d°(k) € Foor- By Theorem 4.2.4, P(k) + d°(k) € Tocr, and
by Theorem 4.2.2, there exists j € S, such that (P(k) + d°(k))"W; > 0. Since
DMU(k) is a CCR-inefficient DMU, P(k) € intTcogr. Hence, from Theorem 4.2.2,
P()TW; < 0 and (y(P(k) + (k) + (1 — ) P(K)) TW; = (P(k) + (k) TW; =0,
where «y 1= —%. Since (P(k) + d°(k))TW; > 0, we obtain 0 < v < 1. There-
fore, yd®(k) is a feasible solution of Problem (MIT}(k)). By the definition of d(k),
we have the following inequality: [|d?(k)||a < ||vd®(k)||a < [|d°(K)||a. This contra-
dicts the optimality of d°(k) for Algorithm GIT. Consequently, P(k)+d°(k) € Focr.
For the case of @ = 1, we replace S, by S, and can complete the proof in a way

similar to the case of o = 0. ' O
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By Theorem 4.4.5, we note that P(k) + d°(k) is a CCR-efficient point for each
CCR-inefficient DMU(k). Moreover, we obtain a Pareto-efficient point based on

parameter o = 1 as indicated by the following theorem.

Theorem 4.4.6. For each CCR-inefficient DMU(k), let d*(k) be an optimal solution
calculated by modified Algorithm GIT (o = 1). Then, P(k) + d*(k) € Focr is a
CCR-Pareto-efficient point.

Proof. The existence of an optimal solution and P(k) + d'(k) € Focr are proved
by a way similar to Theorems 4.4.2 and 4.4.3. In order to obtain a contradiction,
we suppose that P(k) + d*(k) has positive slack, that is, there exist slack vectors
s*>0eR™and s >0 € R® satisfying (s*7,s¥T) # (0,0), and P(k) + d*(k) +
(=T, s¥™)T € Focr. Since d(k) is an optimal solution of Problem (MIT;(k)) for
some j € {1,..., N}, there exists j € S such that (d*(k) + P(k))"W; = 0. Then
(d*(k) + P(k) + (—=s*T,s¥T))TW; = (—s°T,s¥T)W; > 0. By Theorems 4.2.2 and
4.2.4, this contradicts P(k) +d* (k) + (—s*",s¥T)T € Foor. Therefore, P(k) + d* (k)
is a CCR-Pareto-efficient point. a

Theorem 4.4.7. For each CCR-inefficient DMU(k), let d°(k) and d*(k) be optimal
solutions calculated by modified Algorithm GIT (o = 0) and (a = 1), respectively.
Then, for each X € (0,1), d*(k) := M(P(k) + d°(k)) + (1L — \)(P(k) + d*(k)) € Tocr-

Proof. By Theorems 4.2.4 and 4.4.5, P(k) +d°(k) and P(k)+d(k) are contained in
Tocr. Since Tocr is a closed convex set, d*(k) := A(P(k) + d°(k)) + (1 — \)(P(k) +
d*(k)) € Tocr for each \ € (0,1). O

We note that d'\(k') is not always contained in Focr, since Foor is not convex
set. In order to calculate a point on Fgcr based on d*(k), we consider a pro-
jection. Let § := min{g : (P(k) + 8(d*(k) — P(k))) "W, = 0 for some j € S.}.
Then, by Theorems 4.2.2 and 4.2.4, P(k) + B(d*(k) — P(k)) € Fcor. We propose
this point P(k) + B(d*(k) — P(k)) as improvement intermediate between the two
improvements which are obtained based on d°(k) and d'(k).

In previous method introduced in Section 4.3 to calculate an improvement, the
mixed integer linear programming problems for typical norms were formulated. In

this section, we have propbsed the algorithms by using the equations forming the
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efficient frontiers. By using this approach, we can first obtain an improvement based
on more than two models. Moreover, we have added additional constraint conditions

into the previous improvement to deal with various situations.

4.5 Example

Now, we perform a numerical analysis for 10 Japanese banks by utilizing algorithms
provided in this thesis. As shown in Table 4.4, each bank has the ordinary profit
as the single output. The number of employees and total assets are the two inputs

used to generate the output.

Table 4.4: Inputs and Output values for 10 Japanese banks, 2008

Bank Input 1 Input 2 Output
(persons) (one hundred million (one hundred million

Japanese yen) Japanese yen)

B1 3701 119895 , 3179
B2 3675 98359 2688
B3 3659 80955 2180
B4 3004 59600 1563
B5 2887 66373 1477
B6 2872 90984 2450
B7 2752 60770 1852
B8 2506 49008 1137
B9 2268 41151 1148
B10 2148 41158 1124

The efficiency scores and the RTS are shown in the Table 4.5. All efficiency
scores are calculated by using Theorems 4.2.11 and 4.2.12 and the RT'S are obtained
by using Theorem 4.2.13.

Three banks are CCR-efficient and they do not have to think the improvement.
Another bank’s improvements are given in Tables 4.6-4.9. The improvement over
an efficient frontier of CCR model (A = Ag) is shown in Table 4.6. Improvements
contained in Tgcc, Tirs and Iprs (A = Ag) are given in Tables 4.7, 4.8 and 4.9,
respectively. The improvement over an efficient frontier of CCR model think decreas-

ing inputs and increasing outputs. In contrast, other improvements might increasing
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Table 4.5: DEA analysis for 10 Japanese banks, 2008
Bank CCR BCC IRS DRS RTS
B1 1.000000 1.000000 1.000000 1.000000 C
B2 0.961359 0.996536 0.961359 0.996536 -
B3 0.884268 0.931186 0.884268 0.931186 -
B4 0.860520 0.884500 0.884500 0.860520 -
B5 0.741447 0.814268 0.814268 0.741447 -
B6 1.000000 1.000000 1.000000 1.000000 C
B7 1.000000 1.000000 1.000000 1.000000 C
B8 0.761275 0.859975 0.859975 0.761275 -
B9 0.915398 1.000000 1.000000 0.915398 I
B10 0.896108 1.000000 1.000000 0.896108 I

inputs or decreasing outputs. This means that the DMU is impossible to become
CCR-efficient in the PPS of the other models by decreasing inputs. Similarly, the
DMU is impossible to become CCR-efficient in the PPS of the other models by

increasing outputs.

- Table 4.6: Improvement over Foor (A = Ag)

Bank Input 1 Input 2 Output
Bl - - -
B2 -43.28 -358.63 90.72
B3 0.00 -5290.05 125.93
B4 0.00 -4769.59 107.99
B5 0.00 -11664.62 190.27
B6 - - -
B7 - - -
B8 0.00 -7415.07 130.57
B9 0.00 -1895.63 48.33
B10 0.00 -2368.56 58.13
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Table 4.7: Improvement contained in Tpoe (A = Ag)

Bank Input 1 Input 2 Output
B1 - - -
B2 -802.17 -7345.86 -237.27
B3 -789.48 -20185.00 -328.00
B4 -91.89 1170.00 289.00
B5 27.46 -5603.00 375.00
B6 - - -
B7 : - - -
B8 246.09 11785.65 715.47
B9 637.19 19619.00 704.00
B10 604.85 19826.76 732.25

Table 4.8: Improvement contained in Tigs (A = Ay)

Bank Input 1 Input 2 Output
B1 - - -
B2 -782.55 -6663.43 -220.03
B3 -766.14 10754.95 288.33
B4 -246.99 1175.20 289.16
B5 216.46 2166.65 611.68
B6 - - -
B7 - - -
B8 276.21 11833.95 717.19
B9 485.72 19635.57 704.51
B10 613.94 19628.56 728.51
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Table 4.9: Improvement contained in Tprs (A = Ag)
Bank Input1l Input 2 Output
B1 - - -
B2 -1196.07 -17582.18 -558.71
B3 -1203.75 -1025.48 -71.04
B4 -1347.67 -7127.44 -150.04
B5 -1256.57 -14720.64 -86.13
B6 - - -
B7 - - -
B8 -874.90 2665.70 254.44
B9 -644.53 10281.06 236.93
B10 -555.89 9280.97 234.19




Chapter 5

CROSS EFFICIENCY
EVALUATION

In the CCR model, each DMU is evaluated by an advantageous weight. In the
cross efficiency evaluation, each DMU is evaluated by using the most advantageous
weights for all DMUs. Then, we can evaluate all DMUs as a linear-order relation
having the dominance relationships for all DMUs. Therefore, the cross efficiency
evaluation has been recommended as an alternative methodology for ranking DMUs
in DEA [32]. In Section 5.1, we introduce some basic cross efficiency evaluation
methods. In Section 5.2, we formulate new methods of the cross efficiency evaluation
by using the equations forming Foor. In Section 5.3, we propose two kinds of other
evaluation methods by using the equations forming Foor. In Section 5.4, we show a
numerical experiment to compare the cross efficiency scores of evaluation methods

in Sections 5.1 and 5.2.

5.1 Basic cross efficiency evaluations

In order to calculate the cross efficiency scores for all DMUs, the optimal solu-
tions of the CCR model for all DMUs are used. We obtain an optimal solu-
tion (v*(k), u*(k)) by solving Problem (CCRLP(k)) for each DMU(k) (k =1,...,n).
By using (v*(z), u*(¢)), we calculate the cross efficiency score of DMU(k) for DMU(3)

as follows: | _ Ty
wpn . ut(@)'y
03 (k) == m
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We note that 0 < 6;(k) < 1 for each i,k € {1,...,n} by the constraint conditions
of Problem (CCRLP(k)). This value means that DMU(k) is evaluated under an
advantageous weight for DMU(z). Then, DMUs are ranked according to the average
of the cross efficiency scores for all DMUs shown in Table 5.1. In Table 5.1, we
obtain an m X m matrix and the average of all elements of the kth row means the

cross efficiency score of DMU(k).

Table 5.1: Cross efficiency of n DMUs

DMU Target DMU " Average cross efficiency
1 2 ... n
1 op(1) 65(1) - 6r(L) n 21 05 (1)
2 61(2) 63(2) - 6r(2) 7 2=105(2)
n_ 0i(n) 6n) --- 6i(n) z 2ui=1 05 (n)

In general, the CCR model has many optimal solutions. Then, it is not necessary
that the cross efficiency scores for all optimal solutions coincide. In other words,
the ranking of DMUs may differ depending on the solution method. To resolve this
problem, Sexton, Silkman and Hogan considered the following problem to decide a
weight to achieve the intended objective of minimizing the average of cross efficiency
scores of the other DMUs under the condition that gives the maximum efficiency
score for the object DMU in [32].

( n
e . UT
minimaize E

bie u'y(k) _ .
(AVE() { Plect o szEk) 1)

By solving Problem (AVE(k)), DMU(k) obtains a weight which is relatively highly-
regarded compared to the other DMUs. However, since Problem (AVE(k)) is to
minimize the sum of n — 1 linear fractional functions, it is difficult to solve Prob-

lem (AVE(k)). Therefore, many researchers have proposed secondary goal ap-
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proaches to avoid the facultativity of the cross efficiency evaluation by formulating

other problems. Sexton, Silkman and Hogan have formulated the following problem

instead of solving Problem (AVE(k)).

subject to

(SSH(k)) { uT

\

( n
| minimize u'
j

On the other hand, Doyle and Green [18] have proposed another problem which

is the so-called aggressive formulation. This problem is one of the most commonly

used secondary goal approach since the score based on the aggressive formulation is
closer than the score by solving Problem (SSH(k)) (see [18]). By using an optimal

solution of the following problem, the aggressive cross efficiency score is calculated.

u? i y(j))
i=1,j#k
T Y w(j))

j=1,j7#k

(

minimize

AGG(k)) ¢
( (%)) subject to

\

u'y(k)
vz (k)
a9
vt ()
u >0,
v > 0.

= 0"(k),

<17j=17"'7n;j7ék?

Problem (AGG(k)) is transformed into the linear programming problem by limiting

the denominator of the objective function equals 1:
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subject to

(AGGLP(k)) {

{
minimize u! (
J

Mg F K,

L v > 0.

By solving Problem (AGGLP(k)), an advantageous weight for DMU(k) is obtained.

The aim of this problem is to minimize the cross efficiency scores of the other DMUs

by solving a linear programming problem. In this thesis, we improve the aggressive

formulation by considering a sum fractional programming problem.

Moreover, in order to determine the cross efficiency score uniquely, the modified

cross efficiency evaluation has been proposed in [22]. The method calculates upper

and lower bounds of cross efficiency score. By using the two scores, a cross efficiency

score is calculated based on seven criterions in [22]. The problem which calculates

a weight to obtain the lower bound of cross efficiency score of DMU(I) for target

DMU(k) is formulated as follows:

( minimize uTy(l)
U_Tra:(l_)
subject to :ngi <l,j=1,...,n, (8)
(MMIN(]C)) < uTy(k) o 9
’UTfC(k) - ( )1 ( )
u > 0, (10)
v>0 (11)

\

Moreover, the problem for calculating a weight to obtain the upper bound of
cross efficiency score of DMU(!) for target DMU(k) is formulated as follows:

(MMAX(k))

uTy()
vTz(l)
subject to (8),...,(11).

maximize

56



5.2 Cross efficiency evaluations by using the facets
of F CCR

In this section, we propose three kinds of evaluation methods utilizing the facets of
Focr. In the case where m + s > 3, the efficient frontier is formed by some facets.
Let A be the number of facets forming the efficient frontier of the CCR model. Then,
0;(k) which is a efficiency score of DMU(k) based on the jth facet is calculated as
follows: T
,(k) = quy(k),
b; z(k)

where H; := {(z,y) : —p] z + ¢; y = 0} (p; > 0,¢; > 0) is the jth facet forming the
efficient frontier of the CCR model. By using the equations forming Fpcor, we can
calculate optimal solutions of Problems (AGGLP(k)), (MMIN(k)) and (MMAX(k)).

Moreover, we examine the primary objective of minimizing the average of cross

efficiency scores of the other DMUs easily. ,

First, we suggest minimal facet cross efficiency evaluation method. In this
method, for each combination of object DMU(!) and target DMU(k), we decide
the facet which gives the minimum score for DMU(!) and gives the maximum score
for DMU(k) in the CCR model as follows:

T _
j € argmin {Zgzig (k) = 0*(k), §=1,..., h}

J

We select only one facet and the j'th facet is used to calculate a cross efficiency
score for each DMU. This means that target DMU(k) may select different facet
for each object DMU. The aim of this method is to obtain the lower bound of the
cross efficiency score. The score of this method coincides with the optimal value of
Problems (MMIN(k)).

Second, we suggest aggressive facet cross efficiency evaluation method. For each

target DMU(k), we decide a facet which minimizes the value of aggressive object
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function in [18] and gives the maximum score for DMU(k) as follows:

i ( 3 y<z>) _

I=1,l#k . Qj(k) — 6*(k), j =1,. ..,h

j € argmin -
p;-r( > w(l))

I=1,lk

Based on the idea of the traditional cross efficiency evaluation, we consider that
target DMU(k) selects the same facet for other DMUs. The score of this method co-
incides with the optimal value of Problems (AGG(k)). We can prove this equivalence
relation in a way similar to Theorem 4.2.11.

Third, we propose sum minimal facet cross efficiency evaluation method which
is a new evaluation method based on the primary objective in the cross efficiency
evaluation. For each target DMU(k), we decide a facet which minimizes the sum of
efficiency scores of the other DMUs and gives the maximum score for DMU(k) as

follows:

, "oyl |
J Eargmin{ Z 4y :Hj(lc)=9*(k),j=l,...,h}

1=1,1k P 7 2(0)
The aim of this method is to select a facet which minimizes the average of efficiency
scores of the other DMUs. So far, since Problem (AVE(k)) is not solved easily,
we have compromised in Problem(AGG(k)) for minimizing the average score of
the other DMUs. By using this method, we can obtain a closer cross efficiency
score to Problem (AVE(k)) than the score by solving Problem (AGGLP(k)) shown
in Table 5.2. In order to examine the relationship between the aggressive facet
cross efficiency evaluation and the sum minimal facet cross efficiency evaluation,
we perform experiments with 20 test problems for each situations. The input and
output values are randomly-determined. For each problem, we decide facets for all
DMUs based on the two methods. When each DMU selects the same facet and
at least one DMU selects different facets in the two methods, the two methods are
called match and mismatch, respectively. If the facets match, then it means that our
method proposed in this thesis obtains the same score as the traditional secondary
goal approach. In contrast, mismatch of the facets means that we obtain a closer
cross efficiency score to the original goal than the score by solving the traditional

formulation. As the numbers of input, output and DMU increase, we can obtain
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a weight reducing the sum of cross efficiency scores of the other DMUs than the
optimal solution of Problem (AGGLP(k)) frequently.

Table 5.2: The ratios of match and mismatch
Situation (20 DMUs) mismatch match

2 inputs and 1 output 0.1 0.9
2 inputs and 2 outputs 0.25 0.75
3 inputs and 3 outputs 0.9 0.1
Situation (50 DMUs) mismatch match
2 inputs and 1 output 0.25 0.75
2 inputs and 2 outputs 0.65 0.35
3 inputs and 3 outputs 1.0 0

5.3 Weighted sum evaluation

In this section, we propose two evaluation methods to evaluate DMUs by calculating
the weighted sum of the scores obtained based on the equations forming the facets
of the efficient frontier of the CCR model. By deciding a weight of each facet, we
calculate an efficiency score.

By deciding the weight of the facets, we evaluate the efficiency score of DMU(k)

as follows:

where (wy, ..., wy) is the weight satisfying 2;.;1 wj=1and w; 20(j =1,...,h).
Since 8;(k) <1, j=1,...,h for each DMU(k), 0 < 8(k) < 1.

Table 5.3: The data of eight DMUs

DMU A B C D E F G H
Inéputl 2 3 3 4 5 5 6 8
Input2 5 3 6 2 7 4 5 6
Qutput 1 2 3 3 2 4 3 5

We explain the approach to evaluate DMUs using a simple data in Table 5.3. In
the CCR model, three facets Hy, H, and Hj are used to evaluate all DMUs shown
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in Figure 5.1.

Hy = {(z,y) : —z1 +y = 0},

Hy = {(z,y) : =41 — z2 + 6y = 0},

Hz = {(z,y) : —1.5z2+y = 0}.
For example, C is evaluated as CCR-efficient by H; or Hy;. However, by Hs, C is
evaluated as CCR-inefficient. The efficiency scores 6;(k) by H; (i = 1,2, 3) are shown
in Table 5.4. In the CCR model, each DMU selects the weight which obtains the
maximum efficiency score, that is, (wy, we,w3) = (1, 0,0), (0,1,0) or (0,0,1). Then,
0*(k) := max{f,(k),02(k),03(k)} is the efficiency score of the CCR model. The
facets which give the maximum efficiency score for each DMU are called reference

facet. We calculate the efficiency score by deciding the importance of each facet.

sr H1

@ a5 1 15 2 25 3

Figure 5.1: Structure of the efficient frontier

Table 5.4: Efficiency scores by each facet

First, we propose a weight based on the frequencies of the reference facets for all

DMU  G,(k) 7:(k) B (k)
A 0.5000 0.4615 0.1333
B 0.6667 0.8000 0.4444
C 1.0000 1.0000 0.3333
D 0.7500 1.0000 1.0000
E 0.4000 0.4444 0.1905
F 0.8000 1.0000 0.6666
G 0.5000 0.6207 0.4000
H 0.6250 0.7895 0.5555
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DMUs. For each i =1,...,h, let H(i) := {j € {L1,...,n} : 6;(j) = 6*(4)}. Then the

weight w; is calculated as follows:

[H@)I

Wy = —

et [H()]
For the data in Table 5.3, the frequency is calculated as indicated by Table 5.5.
Then, we obtain (wy, ws,ws) = (0.2,0.7,0.1).

Table 5.5: The frequencies of the reference facets
DMU Reference facets H; H, Hj
A H,
. H
Hy,H,
H,,Hj
B H2
H,
H,
H,
The frequency

—
en}
O

DT oHdEHDOOQW
NOO OO O O
N B N S SO G
= O O O O = OO

Second, we suggest a weight based on the frequencies of the reference facets for
CCR-efficient DMUs, that is, we examine the number of DMUs on each facet. For
the data in Table 5.3, C, D and F are evaluated as CCR-efficient and the frequency
is calculated as indicated by Table 5.6. Let H (i) := {j € {1,...,n} : 6;(§) = 1}.
Then the weight w; is calculated as follows:

|H (3)]

e [ (@)
Then, (w;,ws,ws) = (0.2,0.6,0.2). The difference of two weights is whether the
decision maker adopt the ideas of the inefficient DMUs.

1T

5.4 Example

In this section, we consider an example investigated by Wong and Beasley [42]. There

are seven departments in a university listed in Table 5.7, where each department has
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Table 5.6: The frequencies of the reference facets
DMU Reference facets H; H, H;

A H; 0 0 O
B H, 0 0 O
C Hy,H, 1 1 0
D H,,Hy 0 1 1
E H, 0 0 O
F H, 0 1 0
G H, o 0 O
H H, 0 0 O

The frequency 1 3 1

three inputs and three outputs. Three inputs (1, Z3, Z3) are the number of academic
staff, academic staff salaries in thousands of pounds and support staff salaries in
thousands of pounds, respectively. Three outputs (y1,%2,y3) are the numbers of

undergraduate students, postgraduate students and research papers, respectively.

Table 5.7: The data of seven DMUs

DMU Inputs Outputs CCR efficiency score
Z1 T2 T3 Y1 Y2 Y3
A 12 400 20 60 35 17 1.0000
B 19 750 70 139 41 40 1.0000
C 42 1500 70 225 68 75 1.0000
D 15 600 100 90 12 17 0.8197
E 45 2000 250 253 145 130 1.0000
F 19 730 50 132 45 45 1.0000
G 41 2350 600 305 159 97 1.0000

In Table 5.7, six DMUs are rated as COR-efficient and D is the only department
that is rated as CCR-inefficient. In this example, there exist 51 facets forming the
efficient frontier of the CCR model. In Table 5.8, we show the aggressive facet cross
efficiency scores of the seven departments which coincide with the score by utilizing
the optimal solutions of Problem(AGG(k)) for seven departments. In Table 5.9,
we show the sum minimal facet cross efficiency scores of the seven departments

which is closer cross efficiency score to Problem (AVE(k)) than the score by solving
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Problem (AGG(k)). For each column in Table 5.9, we realize that the sum of the
efficiency scores of all DMUs is less than or equal to the sum calculated by the
aggressive facet cross efficiency method. For example, B select a weight which has
5.715 as the sum of the efficiency scores of all DMUs by solving Problem(AGG(k)).
In contrast, we can obtain a weight which has 5.675 as the sum of the efficiency

scores of all DMUs by using the method proposed in Section 5.2.

. Table 5.8: Aggressive facet cross efficiency
DMU Target DMU Average Rank
A B C D E F G

1.000 0.845 0.933 0.687 0.645 0.793 0.752  0.8081
0.335 1.000 0.618 1.000 0.824 0.701 0.556  0.7191
0.555 0.848 1.000 0.735 0.813 1.000 0.418  0.7669
0.069 0.755 0.280 0.820 0.367 0.236 0.206  0.3904
0.331 0.662 0.315 0.765 1.000 0.699 0.831  0.6576
0.514 1.000 0.821 0.951 1.000 1.000 0.611 0.8424
0.151 0.604 0.158 1.000 0.525 0.246 1.000  0.5264
Sum 2956 5.715 4.125 5.958 b5.174 4.675 4.374

QEHEOQwW e
= SN, SN R SUR N

Table 5.9: Sum minimal facet cross efficiency
DMU Target DMU Average Rank
A B C D E F G

1.000 0.757 0.793 0.687 0.490 0.793 0.752  0.7533
0.335 1.000 0.533 1.000 0.729 0.701 0.556  0.6934
0.555 0.811 1.000 0.735 0.618 1.000 0.418  0.7337
0.069 0.718 0.159 0.820 0.392 0.236 0.206  0.3713
0.331 0.705 0.485 0.765 1.000 0.699 0.831  0.6881
0.514 1.000 0.840 0.951 0.820 1.000 0.611  0.8193
0.151 0.667 0.151 1.000 0.819 0.246 1.000 0.5764
Sum 2.956 5.657 3.962 5.958 4.869 4.675 4.374

QEEHOQW >
D = U~ W N

In order to decide a cross efficiency score uniquely, many researchers have formu-
lated linear or non-linear programming problems. By using the optimal solutions,
a cross efficiency score is calculated. In Section 5.2, we have proposed the methods

to decide a cross efficiency score uniquely by using the equations forming Feeg.
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Chapter 6

CONCLUSIONS

In this thesis, we have proposed four types of improvements for inefficient DMUs
and five kinds of evaluation methods to rank all DMUs by analyzing all equations
forming the facets of the efficient frontiers in DEA.

In Chapter 4, we have proposed four types of improvements for inefficient DMUs
in the CCR model. In order to calculate flexible improvements, we have proposed
three kinds of algorithms for obtaining all equations forming the efficient frontiers of
the basic DEA models. By using them, we have proposed an algorithm to calculate
four kinds of improvements based on each constraint condition. By this approach, we
have obtained an improvement taking into account PPS of another model. Moreover,
we have improved the algorithm to obtain a CCR-Pareto-efficient improvement.

In Chapter 5, we have proposed five kinds of methods to calculate the cross
efficiency scores by using all equations forming Focr. In general, there exists a pair
of DMUs having no dominance relationship in many of the standard DEA models.
In conventional DEA models, each DMU is evaluated by using a most advantageous
weight for the object DMU. By using the advantageous weights for all DMUs, the
cross efficiency evaluation ranks all DMUs. In this thesis, we have regarded the
coefficients of the equations forming Foor as the weights selected by DMUs. By
selecting a part of facets based on the idea of the cross efficiency evaluation, we
have obtained the same scores as the traditional cross efficiency evaluations without
solving linear programming problems. Moreover, we have obtained a closer cross
efficiency score for minimizing the sum of cross efficiency scores of the other DMUs

than the score by solving the traditional formulation.

64



In previous DEA approaches, an improvement for inefficient DMU and ranking
of all DMUs are calculated by solving linear programming problems repeatedly. In
this thesis, we have proposed the approaches to obtain them by using all equations
forming the facets of the efficient frontiers. We hope that this approach is widely
utilized for a study of DEA in the future.
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