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Notation

~n

intO

V \ {xo}
Ilxll

aT

dimS
V(S)

an n-dimensional Euclidean space.
the topological interior of a subset 0 of a topological space.
the set removed Xo from V
the Euclidean norm of x,
the transposed vector of a in ~n.

the dimension of S.
the set of all vertices of a convex polyhedral set S.
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Chapter 1

INTRODUCTION

This thesis is concerned with evaluation methods of DMUs (Decision Making Units)

in DEA (Data Envelopment Analysis). DEA is a non-parametric analytical method

for estimating relative efficiencies of DMUs performing similar tasks that consumes

inputs to produce outputs. DEA has been developed as a methodology used for

efficiency analysis of DMUs for about thirty years. In order to evaluate the efficien­

cies of DMUs, the regression analysis has been researched. The regression analysis

focuses on setting up a regression line which passes through the center of DMUs

and evaluates DMUsbased on the line. That is, all DMUs are evaluated by a

fixed weight. In contrast, each DMU is evaluated based on a most advantageous

weight for itself which is obtained by solving a linear programming problem in DEA.

The idea of DEA is to identify best performance DMUs within a set of comparable

DMUs and those form an efficient frontier. The regression analysis is an analytical

method based on the average, while DEA is a evaluation method with reference to

the superior DMUs.

1.1 DEA models

DEA has been proposed by Charnes, Cooper and Rhodes [9] as the CCR modeL

In the CCR model, DMUs are evaluated under a condition of the constant returns

to scale which means that all efficient DMUs can produce up to k outputs by us­

ing k inputs. In order to deal with variable returns to scale, Banker, Charnes and

Cooper [4] have proposed the BCC model. In addition, the DRS and IRS models
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have been proposed to deal with decreasing and increasing returns to scale by Fare

and Grosskopt [20], and Seiford and Thrall [30], respectively. These models have

the properties of radial measure. Two main types of efficiency measures in DEA are

radial and non-radial measures. In the radial measure models, an efficiency score

of DMU is determined as the reduction scale to become an efficient unit. By ref­

erence to some radial measure models, many non-radial measure models have been

proposed. In the non-radial measure models, an efficiency score of DMU is deter­

mined by using slacks which mean how far apart from an efficient frontier. The

additive model proposed by Charnes, Cooper, Golany, Seiford and Stutz [7] is one

of the traditional non-radial measure model. This model has the advantage that it

is translation invariant (see Ali and Seiford [1], Lovell and Pastor [27], Pastor [29]).

By transforming the data using in the additive model by the natural logarithm, the

multiplicative model has been formulated [11, 12]. Recently, Tone [39] has proposed

the SBM model to consider slacks directly. In 2010, the epsilon-based measure

model has been proposed by uniting the radial and the non-radial measure mod­

els (see [38]). Moreover,many models have been proposed to cope with practical

situations. Banker and Morey [5] have proposed a model including some nondis­

cretionary variables. Moreover, Sengupta [31] have proposed the stochastic DEA to

treat a data uncertainty. Entani, Maeda and Tanaka [19] have proposed the interval

DEA by defining an efficiency as an interval to evaluate DMUs realistically.

1.2 Improvements for inefficient DMUs

In DEA, for each DMU, the evaluated value of the efficiency is defined as the op­

timal value of a linear programming problem. Moreover, for each inefficient DMU,

an improvement is obtained simply by solving the problem. Therefore, the other

improvement has not been researched exactly until recently. However, it is often

difficult to improve the values of inputs and outputs according to the improvement.

Because the improvement obtained by the radial measure models improve the only

input (or output) values at the same rate. Therefore, Frei and Harker [21] have

proposed a least distance projection to the efficient frontier by using the Euclidean

norm. Moreover, Takeda and Nishino [34] have proposed the minimal norm problem
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to the efficient frontier from an inefficient DMU. Recently, for each inefficient DMU,

the study of improvements of efficiency is one of the important subjects in DEA.

Aparicio, Ruiz and Sirvent [3] have formulated some mixed integer linear program­

ming problems for typical norms to obtain a closest target on the efficient frontier

under a certain distance. Lozano and Villa [28] have proposed a gradual efficiency

improvement strategy.

In this thesis, we propose an algorithm to calculate a flexible improvement by

introducing a policy of the decision maker. In order to obtain improvements of

DMUs, we use all equations forming the facets of the efficient frontiers. Therefore,

we propose algorithms for constructing the equations forming the efficient frontiers.

1.3 Ranking methods of DMUs

In DEA, each DMU is classified as either inefficient or efficient based on the optimal

value of each model. In general, several DMUs are evaluated as efficient and have no

inferior-to-superior relationship among them. For example, the departments data

in a university investigated by Wong and Beasley [42], six of seven departments

were evaluated as efficient units. In practical problems, it is necessary that the

decision maker knows the dominance relationships among all DMUs to maximize

his profit. In DEA, there are representative analytical methods for ranking DMUs

- the sensitivity analysis (see [2, 8, 15, 23]), the assurance region methods (see [14,

35, 36, 37, 44]) and the cross efficiency evaluation (see [18, 22, 32]).

In the sensitivity analysis, DMUs are analyzed based on the change of the effi­

ciency scores by changing the number of DMUs or inputs or outputs. Sometimes,

in some traditional DEA models, an optimal solution has zero components. Hav­

ing zero components means that the inputs or outputs corresponding to the zero

components are not completely used to evaluate the DMU. The assurance region

method have been proposed to overcome this phenomenon. This method introduces

some conditions to input-output variables (for example, the ratio between two input­

output variables, magnitude relation, importance condition and so on). In general,

each DMU is evaluated by only advantageous weight for itself. In the cross effi­

ciency evaluation, each DMU gets many efficiency scores.by using optimal solutions
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of the CCR model for all DMUs. Since the CCR model often has many optimal

solutions for each efficient DMU, we need to decide an optimal solution uniquely for

each DMU. Sexton, Silkman and Hogan [32] have formulated a problem to obtain a

weight minimizing the sum of cross efficiency scores of the other DMUs. However,

it is difficult to solve the mathematical programming problem formulated for this

purpose. Therefore, one of the most commonly used secondary goal approach to

decide an optimal solution uniquely is suggested by Doyle and Green [18], which is

called the aggressive formulation and is formulated as linear programming problems.

Recently, Wu, Liang, Zha and Yang [43] have proposed a cross efficiency evaluation

based on rank priority. Moreover, Wang and Chin [40] have proposed a neutral

model for cross efficiency which seeks a common set of weights for all DMUs.

In this thesis, we propose five types of methods to evaluate DMUs by utilizing

the equations forming the facets of. the efficient frontier. By this approach, we

obtain the same scores as the two kinds of existing approaches without solving

linear programming problems. Moreover, we improve the aggressive formulation to

obtain a closer cross efficiency score to the aim minimizing the sum of cross efficiency

scores of the other DMUs than the traditional formulations.

1.4 Organization of this thesis

This thesis is organized as follows. In Chapter 2, we provide some mathematical

preliminaries which will be used in this thesis. In Chapter 3, we introduce some

basic DEA models. In Chapter 4, we introduce the previous researches formulated

as mixed integer linear programming problems for calculating the equations forming

the facets of the efficient frontier and improvements. In contrast, we propose differ­

ent approaches to calculate four kinds of improvements for inefficient DMUs in the

CCR model. In order to calculate the improvements, we use all equations forming

the facets of the efficient frontier. Therefore, we propose three types of algorithms to

obtain them. Moreover, we show a numerical experiment to compare the improve­

ments proposed in this chapter. In Chapter 5, we introduce some of the previous

researches with respect to the cross efficiency evaluation. By analyzing the efficient

frontier of the CCR model, we propose five kinds of evaluation methods having the

7



dominance relationships for all DMUs. In the first and the second measures, the

weighted sum of the scores calculated based on the equations forming the facets of

the efficient frontier is calculated by deciding a weight of each facet. In the other

measures, we calculate the cross efficiency scores by using some equations forming

the facets of the efficient frontier.
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Chapter 2

PRELIMINARIES

In this chapter, we give some mathematical preliminaries which will be used in this

thesis.

2.1 Basic definitions and theorems in convex anal-
.

YSIS

In order to construct all equations forming the facets of the efficient frontiers, we

utilize convex optimization techniques. Therefore, we show several definitions and

lemmas in convex analysis.

Definition 2.1.1. Let E be a nonempty subset in }Rn. Then, E* is called the polar

set of E if it is defined as follows.

E* := {y E R n : yT X ~ 1 for all x E E}.

Definition 2.1.2. Let E be a nonempty subset in Rn. Then, co(E) is said to be

the convex hull of E if co(E) is defined as follows.

CO(E):={XElRn:x=tAjXU), tAj-1, x(j)EE, Aj~O,j=l,... ,m}.

Definition 2.1.3. Let E be a nonempty subset in }Rn. Then, conic E is called the

conical hull of E if it is defined as follows.

conicE:= {x E IRn: x = fAjXU), xU) E E, Aj ~ 0, j = 1, ... ,m}.
J=l
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Definition 2.1.4. Let E be a nonempty subset in IRn. If E is defined as E = {x E

IRn : Ax :::; b} for some A E IRmxn, b E IRm, then, E is called the polyhedral set. In

particular, if E is bounded, then, E is called the polytope.

Definition 2.1.5. Let E be a polytope in IRn satisfying dimE = n. Then, F :=

E n {x E IRn : aT x = b} is called the facet of E if aT x :::; b for each x E E and

dimF=n-1.

Definition 2.1.6. Let E be a nonempty closed convex subset in IRn . A nonzero

vector d in IRn is called a direction of E if x + Ad E E for each x E E and A ~ O.

Two directions dl and d2 of E are called distinct if dl =1= ad2 for each a > O. A

direction d of E is called an extreme direction if it cannot be written as a positive

linear combination of two distinct directions, that is, if d = Aldl + A2d2 for some AI,

A2 > 0, then dl = ad2 for some a > O.

Definition 2.1.7. Let E be a nonempty closed convex subset in IRn. Then, E+ is

called the recession cone of E if it is defined as follows.

E+ := {d: x + rd E E for all x E E, r ~ O}.

Lemma 2.1.1. Let E be a nonempty set in IRn. Then E* is a closed convex set.

Proof. By Definition 2.1.1, E* = nXEE{y : xT y :::; I}. For all x E E, {y : x T y :::; I}

is closed convex set. Therefore, E* is a closed convex set. 0

Lemma 2.1.2. (Konno, Thach and Thy [26], Proposition 2.6) Let E be a nonempty

closed convex set in IRn and 0 E E. Then E** = E.

Lemma 2.1.3. Let E be a polytope in IRn. Then, E* = (V(E))*.

Proof. Let V(E) := {a\ ... , am}. Since E is a polytope, E is expressed as follows [6].

E = {x :x= f Aiai, f Ai = 1, Ai :2: 0, i = 1, ... , m} . (2.1)
i=1 i=1

Obviously, E ~ V(E). From the characteristic of the polar set, E* c (V(E))*.

Hence, we shall show that E* ~ (V(E))*. Let y E (V(E))*. Then, for each i =

1, ... m, aiTy :::; 1. By (2.1), for each x E E, there exists AX E IRm such that

x = I::I Xiai, I::I Xi = 1, Ai ~ 0 i = 1, ... , m. Then, xTy = (I::1 Aiai)T y =
I::I AiaiTy :::; 2::1Ai = 1. Therefore, y E E*. Consequently, E* = (V(E))*. 0
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Lemma 2.1.4. (Jonathan and Adrian [25]) Let E be a nonempty subset in lRn .

Then E is bounded if and only if 0 E int E*.

Lemma 2.1.5. Let E be a polytope in lRn and 0 E int E. Then, E = (V(E*))*.

Proof. From Lemma 2.1.2, E = E**. By Lemmas 2.1.3 and 2.1.4, E* is a polytope if

E is a polytope satisfying 0 E int E. From Lemma 2.1.3, E = E** = (V(E*))*. D

Lemma 2.1.6. Assume that a polytope E C lRn satisfies 0 E int E. Then, for each

a E V (E), dimeE* n {x E lRn : aTx = I}) = n - 1.

Proof. Since 0 E int E, dim E = n. From the boundedness of E and Lemma 2.1.4,

o E int E*. This implies that dim E* = n. Moreover, since 0 E int E and a E

VeE) c bdE, a =1= 0 and hence dim(E* n {x : aTx = I}) :s; n - 1. Furthermore,

since E* is a polytope and a E E,

E* = co(V(E*)) c {x : aTx :s; I} (2.2)

if vTb = 0,

In order to obtain a contradiction, we suppose that l := dim(E* n {x : aT x = I}) :s;

n - 2. Then, by (2.2), there exists bI, ... , bl+l E (V(E*) n {x : aT x = I}) such

that bl , ... ,bl+l are affine independent. Then, dim{bl , ... ,bl+l } :s; n -1. Therefore,

there exists b E lRn \ {O} such that bTbi = 0 (i = 1, ... , l + 1). We note that vTa < 1

for each v E V(E*) \ {bl , ... , bl+l
} . Now, for each v E V(E*) \ {bl , ... ,bl+l } , let

a
V

:= { \~:b~a
Then, by setting a := min{aV

: v E V(E*) \ {b\ ... , bl+l } } , we have vT(a ± ab) =

vTa ± avTb :s; vT a + alvTbl :s; 1 for each v E V(E*) \ {bl , ... , bl+l } . Moreover, for

each bi (i = 1, ... ,l+ 1), biT(a ± ab) = biTa ± a(biTb) = biTa = 1. This implies that

a - ab, a + ab E (V(E*))* = E. Since, a = ~(a - ab + a + ab), this contradicts

v E VeE). Consequently, dim(E* n {x : aT x = I}) = n - 1. 0
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Chapter 3

BASIC DEA MODELS

In this chapter, we introduce some basic DEA models. Through this thesis, n

denotes the number of DMUs. Each DMU consumes m different inputs to produce

s different outputs. For each j E {I, ... , n}, DMUU) has an input vector xU) :=

(XU)1?"" x(j)m)T and an output vector yU) := (yUh, ... , yU)s)T. Moreover, we

assume the following conditions.

(Al) xU) > 0, y(j) > 0 for each j E {I, ... ,n}.

(A2) (XU1) T, y(j1)T) T f (X(j2) T, y(2)T) T for each j1, j2 E {I, ... ,n} U1 f j2)'

(A3) n > m+s.

(A4) dim (co({(x(I), y(I)), ... , (x(n), y(n))})) = m + s.

Almost all DEA models are formulated under Assumption (AI). Assumptions (A2),

(A3) and (A4) are necessary to execute an algorithm to calculate all equations form­

ing the efficient frontier. However, they are satisfied for almost practical problems.

Assumption (A4) means that the convex hull of all DMUs has an interior point.

3.1 CCR model

The CCR model formulated by Charnes, Cooper and Rhodes [9] evaluates the ratio

between weighted sums of inputs and outputs. The CCR model provides for constant

returns to scale (CRS). Therefore, some researchers call the CCR model the CRS
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model. In order to calculate the efficiency score of DMU(k) (1 ::; k ::; n), the CCR

model is formulated as follows:

(CCR(k))

maximize

subject to

U T y(k)
vT x(k)
uT y(j) .

T (.) ::; 1, J = 1, ... ,n,
v x J
U r ~ 0, r = 1, , S,

Vi ~ 0, i = 1, , m.

(CCRD(k))

Since Problem (CCR(k)) is a fractional programming problem, it is hard to solve

Problem (CCR(k)). Therefore, we transform Problem (CCR(k)) into a linear pro­

gramming problem by setting the denominator of the objective function equals 1:

maximize uT y(k)
subject to vT x(k) = 1,

(CCRLP(k)) uTy(j) - V T x(j) ::; 0, j = 1, ... , n,
u; ~ 0, r = 1, , S,

Vi ~ 0, i = 1, , m.

Moreover, we consider the dual problem which is defined as a linear programming

problem as follows:

minimize 0
n

subject to OX(k)i - LAjX(j)i ~ 0, i = 1, ... ,m, (3.1)
j=l

n

L Ajy(j)r - y(k)r ~ 0, r = 1, ... , s, (3.2)
j=l

Aj ~ 0, j = 1, ... , n, (3.3)
oE JR.

Let 0ccR(k) denote the optimal value of (CCRD(k)). By (3.2) and (3.3), we

have that (AI, ... ,An) =1= (0, ... ,0) and hence A] > °for some] E {1, ... ,n}. Then,

from (3.1), we have °::; OccR(k)x(k)i- ~;=l AjX(j)i ::; 0ccR(k)x(k)i-A3x(])i' This

implies that 0ccR(k) > 0. Moreover, we note that (A', 0') is a feasible solution of

(CCRD(k)), if 0' = 1, A~ = 1 and A~ = °for each j E {I, ... , n} \ {k}. Therefore,

°< 0CCR(k) ::; 1. By using the optimal value 0ccR(k) of (CCRD(k)), the efficiency

of DMU(k) for the CCR model is defined as follows:

Definition 3.1.1. If 0CCR(k) = 1 then DMU(k) is said to be CCR-efficient. Oth­

erwise, DMU(k) is said to be CCR-inefficient.
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Sometimes, there exists i (or r) such that Vi = °(or U r = 0). This means that

the i (or r)th input (output) is not completely used to evaluate DMU(k). In order to

resolve this shortage, Charnes, Cooper and Rhodes have modified the CCR model

by introducing a positive lower limit (e > 0) in [10]. Then the constraint conditions

of Problems (CCR(k)) and (CCRLP(k)) are replaced as follows:

Vi ~ 0, i = 1, ,m, =} Vi 2:: e, i = 1, , m,
Ur 2:: 0, r = 1, , S. u; 2:: e, r = 1, , s.

The dual problem of Problem (CCRLP(k)) is formulated as follows:

minimize e- t: (~SiX +~ sry)

n

subject to Bx(k)i - LAjX(j)i - Six = 0, i = 1, ... , m,
j=l

n

(CCRDe(k)) LAjy(j)r - y(k)r - Sry = 0, r = 1, ... , S,

j=l

Aj 2 0, j = 1, , n,
Six 2 0, i = 1, , m,
Sry 2 0, r = 1, , s,
B E JR.

By using an optimal solution (BCCR(k) , s;, s;) of Problem (CCRDe(k)), the efficiency

of DMU(k) for the CCR model is more strictly evaluated.

Definition 3.1.2. If BCCR(k) = 1 and (s;, s;) = (0,0) then DMU(k) is said to be

CCR-Pareto-efficient. If BCCR(k) = 1 and (s;, s;) f (0,0) then DMU(k) is said to

be CCR-weakly-efficient. Otherwise, DMU(k) is said to be CCR-inefficient.

The presence of an optimal positive slack for some input or output means that the

input can be decreased or the output can be increased in TccR under the condition

that the other input and output values are fixed. Therefore, DMU(k) satisfying

BCCR(k) = 1 and (s;, s;) f (0,0) is evaluated as weakly-efficient. Let TCCR be the

production possibility set (PPS) of the CCR model defined in [9] as follows:

TCCR:= {(X,y): X 2': tAjX(j), 0 ~ y < ~Ajy(j)fOr some A2': o}.
By the definitions of TCCR and conical hull, TccR is represented as follows.

TCCR = (conic {(x(l), y(l)), ... , (x(n), y(n))} + (JR~ x JR:)) n (JRm x JR~).
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where for a natural number n, IR+ := {x E IRn : x(i) ;;::: 0, i = 1, ... , n} and

IR~ := {x E IRn : x(i) ~ 0, i = 1, ... , n}. Obviously, TCCR is a closed convex set.

Let FCCR be the efficient forntier of the CCR model which is the emvelope formed by

all CCR-efficient DMUs, that is, FCCR = {(x,y) E (IR+ x 1R:+): 0CCR((x,y)) = 1}.

3.2 BCC model

The BCO model formulated by Banker, Oharnes and Oooper [4] has the feasible set

defined by adding an equality condition to the constraint conditions of the OOR

model. Moreover, the BOC model can classify efficient DMUs into three types of

the returns to scale (RTS). To evaluate the efficiency of DMU(k) (1 ~ k ~ n), the

BOO model is formulated as follows:

minimize B
n

subject to OX(k)i - LAjx(j)i ;;::: 0, i = 1, ... ,m,
j=l

(BOOLP(k))
n

L Ajy(j)r - y(k)r ;;::: 0, r = 1, ... , S,

j=l
n

LAj = 1,
j=l
BE 1R, Aj ;;::: 0, j = 1, ... ,n.

Let BBCC(k) denotes the optimal value of Problem (BOOLP(k)). From the definition

of the constraint conditions of (BCOLP(k)), it is obvious that °< BBCC(k) ~ 1.

By using the optimal value 0Bcc(k) of (BOOLP(k)), the efficiency of DMU(k) for

(BCOLP(k)) is defined in [4] as follows:

Definition 3.2.1. DMU(k) is said to be BOO-efficient if BBCC(k)=1. Otherwise,

DMU(k) is said to be BOO-inefficient.

Let TBCC be the PPS of the BOO model as follows:

By the definitions of TBcc and convex hull, TBCC is represented as follows:

TBCC = (co ({(x(l), y(l)), ... , (x(n) , y(n))} + (IR+ x 1R~))) n (IRm x 1R~).
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Obviously, TBCC is a closed convex set. Let FBCC be the efficient forntier of the BCC

model which is the emvelope formed by all BCC-efficient DMUs, that is, FBCC =

{ (x, y) E (IR+ x IR~) : 0Bcc((x,y)) = I}.

The RTS expresses a type of the efficiency by the change of the scale about the

activity of DMUs. Hence, in the BCC model, there exist three types of the RTS

: the increasing RTS, the decreasing RTS and the constant RTS. The increasing

and decreasing RTS improve the efficiency by expanding and contracting the scale,

respectively. Moreover, the constant RTS means that it is desirable to maintain the

present scale.

The following is the dual problem of (BCCLP(k)) (1 ::; k ::; n):

maximize U T y(k) - a
subject to vT x(k) = 1,

(BCCD(k)) uT y(j) - V T x(j) - a ::; 0, j = 1, ... , n,
U r ~ 0, r = 1, , 8,

Vi ~ 0, i = 1, , m.

Let us set a* and o" as follows:

a* := min{a : vT x(k) = 1, U Ty(j) - V T x(j) - a ::; 0, j = 1, ... , n,

U r 2: 0, r = 1, ... ,8, Vi 2: 0, i = 1, ... ,m}.

a* := max{ a : vT x( k) = 1, UTY(j) - V Tx(j) - a ::; 0, j = 1, ... , n,

u; 2: 0, r = 1, ... ,8, Vi 2: 0, i = 1, ... ,m}.

Then, the RTS is classified as follows (see [17]).

(i) DMU(k) is said to be the increasing RTS if a* < o" ::;°or a* = o" < 0,

(ii) DMU(k) is said to be the decreasing RTS if °::; o, < a* or °< a* = o",

(iii) DMU(k) is said to be the constant RTS if a* < °< a* or a* = o" = 0,

where 1 < k ::; n.

3.3 GRS model

Similarly, the IRS and DRS models formulated by Seiford and Thrall [30], Fare and

Grosskopf [20], respectively, have the feasible set defined by adding an inequality

condition to the constraint conditions of the CCR modeL
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The GRS model unifies the CCR, BCC, IRS and DRS models by introducing an

intensity vector A. In order to calculate the efficiency score of DMU(k) (1 ::; k ::; n),

the GRS model is formulated as follows:

minimize B
n

subject to Bx(k)i - LAjX(j)i ~ 0 i = 1, ... , m,
j=l

(GRS(k))
n

L Ajy(j)r - y(k)r ~ 0 r = 1, ... , s,
j=l

n

L ~ LAj <U,
j=l

B E IR, Aj ~ 0 j = 1, ... , n,

where L ::; 1 and U ~ 1. If L = 0 and U = 00, then the model is equivalent to the

CCR model. Also, if L = U = 1, then the model is the same as the BCC model.

If L = 1 and U - 00, then the model equals the IRS model. Further, if L = 0

and U = 1, then the model is the DRS model. Let FIRS and F DRs be the efficient

forntiers of the IRS and the DRS models, respectively. Let BGRS(k) be the optimal

value of (GRS(k)). From the definition of the constraint conditions of (GRS(k)), it

is obvious that 0 < BGRS(k) ~ 1. By using the optimal value BGRS(k) of (GRS(k)),

the efficiency of DMU(k) for (GRS(k)) is defined as follows.

Definition 3.3.1. DMU(k) is said to be GRS-efficient if BGRS(k)=1. Otherwise,

DMU(k) is said to be GRS-inefficient.

Then, the PPS of the GRS model is defined as follows.

TORS(L,U) := { (x, y) : x ::;,.~ )'jx(j), a< y :s:~ ),jy(j), 3), E A(L, U) } ,

A(L, U) := {), E ~n : c-: t),j :s: u, ),::;,. a}.
J=l

It is clear that A(L, U) is a closed convex set for each L ~ 1 and U ~ 1. Moreover,

the following theorem holds.

Theorem 3.3.1. For each L ~ 1 and U ~ 1, TGRS(L,U) is a closed convex set.

Proof. First, we shall show that T(L, U) is convex. For each (Xl, yl), (x2, y2) E

T(L, U), there exist AI, A2 E A(L, U) such that Xl ~ 2:;=1 A}X(j), 0 < yl ::;
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~7=1 A}y(j) , X2
~ ~7=1 AJX(j) and 0 ~ y2 < ~7=1 AJy(j). For each 0 ~ a ~

1, aA1+(I-a)A2 E A(L, U). Moreover, ax1+(I-a)x2 ~ ~7=1(aA}+(I-a)A;)x(j)

and 0 ~ ay1 + (1 - a)y2 ~ ~7=1 (aA} + (1 - a)AJ)y(j). Therefore, T(L, U) is a

convex set.

Second, we shall show that T(L, U) is closed. Let {(x k, yk)} C T(L, U) satisfy

(xk, yk) -+ (x, y) as k -1- 00. Let t > O. Since xk
-1- X as k -+ 00, there exists lEN

such that Ilxkll ~ Ilxll + t for each k > l. Let 8 := max{llxll + t, max{llxkll : k =
1, ... ,l}}. Then, Ilxkll ~ 8 for each kEN. Since x(j) > 0 for each j = 1, ... , n,

8' := min{x(j)i : i = 1, ... ,m,j = 1, ... ,n} > O. For each kEN, a E {a E

lRn
: ~7=1 aj = 1, aj ~ OJ = 1, ... , n}, we have xk ~ ~7=1 ajfx(j). Hence,

Aj ~ faj ~ f· For each kEN, there exists Ak E A(L, U) n {A E JRn : 0 ~

Aj ~ -jr,j = 1, ... ,n} such that xk ~ ~;=1 AjX(j), 0 ~ yk ~ ~7=1 Ajy(j). Since

{A E JRn : 0 ~ Aj ~ f, j = 1, ... ,n} is compact, without loss of generality, we can

assume that Ak -+ :x as k -1- 00. Then, from the closeness of A(L, U), :x E A(L, U).

Hence, x = limk~oo xk ~ limk~oo 2:7=1 AjX(j) = 2:7=1 :Xjx(j), 0 ~ y = limk~oo yk <
limk~oo ~7=1 Ajy(j) = I:7=1 :Xjy(j). Therefore (x, y) E T(L, U). Hence, T(L, U) is

closed. Consequently, T(L, U) is a closed convex set. 0

Theorem 3.3.2. Let (x, y) E FIRS n FBcc , L < 1 and U ~ 1. Then, L(x, y) E

FGRS(L,U).

Proof. We show that L(x, y) E TGRS(L,U). Let:X:= LA*. Then, ~7=1:Xj ­

~7=1 LAj = L ~7=1 Aj = L. Therefore, L(x, y) E TGRS(L,U). Let (B*, A*) be an

optimal solution of the following problem.

minimize B
n

subject to Bx(i) - LAjx(j)i ~ 0 i = 1, ... , m,
j=1

(IRS)
n

L AjYrj - Yr ~ 0 r = 1, ... , S,

j=l
n

LAj ~ 1,
j=l
BE JR, Aj ~ 0 j = 1, ... , n.

Then, B* = 1 and I:7=1 Aj ~ 1. In order to obtain a contradiction, we suppose

that L(x, y) rJ. FGRS(L,U). Then, there exist ()f < 1 and X satisfying the following
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conditions.
n

«Lx(i) - LA~X(j)i ~ 0 i = 1, ... , m,
j=l

n

L A~Yrj - LYr ~ 0 r = 1, ... , s,
j=l

n

L <LA~ ~ U,
j=l

A~ ~ 0 j = 1, ... , n.

- ._ l' h ",n - _ ",n l' _ 1 ",n " M fJ' (.)Let A .- LA. Ten, L..Jj=l Aj - L..Jj=l LAj - L L..Jj=l Aj ~ 1. oreover, x 'l ~

Lj=l tA~X(j)i = Lj=l ).jX(j)i for each i = 1 ... , m and Yr ~ Lj=l tA~Yrj =

Lj=l ~jYrj for each r = 1, ... , s. Hence, (fJ',~) be an feasible solution of Prob­

lem (IRS). This contradicts the optimality of (fJ*, A*) for Problem (IRS). Therefore,

L(x, y) E FGRS(L,U). 0

Theorem 3.3.3. Let (x, y) E FDRS n FBCC , L ~ 1 and U ~ 1. Then, U(x, y) E

FGRS(L,U) .

Proof. We can complete the proof in a way similar to Theorem 3.3.2. o

Theorem 3.3.4. Let (x, y) E FCCR n FBCC , L ~ 1 and U ~ 1. Then, L(x, y) E

FGRS(L,U) and U(x, y) E FGRS(L,U).

Proof. We can complete the proof in a way similar to Theorem 3.3.2.
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Chapter 4

IMPROVEMENTS FOR

INEFFICIENT DMUS

In this chapter, we calculate the improvements for inefficient DMUs in the CCR

model. To calculate the improvements, we need to obtain all equations forming

FCCR ' Moreover, in order to obtain a more flexible improvement, we introduce the

equations forming the efficient frontiers of other models. Therefore, before calcu­

lating the improvements, we discuss the methods to obtain all equations forming

the efficient frontiers. In Section 4.1, we introduce an algorithm for calculating the

equations forming FCCR proposed in [24]. In Section 4.2, we propose three kinds of

algorithms to calculate all equations forming the efficient frontiers. In Section 4.3,

we introduce the previous research formulated by Aparicio, Ruiz and Sirvent [3]

as a mixed integer linear programming problem for calculating improvements. In

contrast, we propose four types of improvements by utilizing the equations in Sec­

tion 4.4. In Section 4.5, we show a numerical experiment.

4.1 Algorithm for calculating the equations form­

ing the efficient frontier by solving mixed in­

teger linear programming problems

Analysis of DMUs by calculating the equations forming the efficient frontiers has

been considered by Jahanshahloo, Lotfi and Zohrehbandian [24]. They have pro-
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posed the following algorithm which is formulated as a mixed integer linear pro­

gramming problem to obtain the equations forming FOOR .

Algorithm QC

Step 0

Set J, J1 , J2 as follows:

J = {I, ...,n},

Set k := 1 go to Step 1

Step 1

Solve Problem (Qk)'

(Q(k))

maximize L c,
jEJUJIUJ2

s m

subject to LUrYrj - L ViXij ~ 0, j E J U J1,
r=1 i=1

s m

L urYrj - L ViXij ~ -M(1 - Qj), j E J U J1,

r=1 i=1
s m

L urYrj - L ViXij ~ 0, j E J2 ,

r=! i=1
s m

L urYrj - L ViXij <M(I- Qj), j E J2 ,

r=1 i=1
s m

LUr+LVi~l,
r=! i=1

L o. ~ 1, j = 1, ... ,k - 1,
i~Gj

L a. ~ 1,
iEJUJl

o, E {O, I}, j E J U J1 U J2 ,

Ur ~ 0, r = 1, , S,

Vi ~ 0, i = 1, , m,

where M is a large enough positive number.
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If Problem (Qk) is feasible, set Gk := {DMU(j) : DMU(j) lies on the Fk} ,

where r, = {(X, y) :t u;Yr - t ViXi = 0} is a facet of FooR, k f- k + 1

go to Step 1. If (Qk) is not feasible, then stop the algorithm.

However, there is no guarantee that all equations are obtained. Therefore, in

this thesis, we propose three kinds of algorithms to ensure obtaining all equations

forming the efficient frontiers.

4.2 Algorithm for calculating all equations form­

ing the efficient frontiers by utilizing the prop­

erties of the polar set

In this section, we propose three kinds of algorithms to ensure obtaining all equations

forming the efficient frontiers. The following algorithm is used to construct all

equations forming F OOR, FBOO , FIRS and F DRS. By the definitions of the efficient

frontiers, FOOR U FBoo = FIRS U FDRS' Therefore, we construct the algorithm based

on properties of the CCR and the BCC models.

Algorithm FFA

Step 0

Set P(i) (i = 1, ... , 2n) and pi (i) (i = 1, ... , 2n + m + s) as follows.

P(i):={ (x(i)T,y(i)T)T ifiE{1, ... ,n}, (4.1)
2P(i-n) ifi E {n+1, ... ,2n}.

p' (i) := { P'(i) - G if i E {1, ... , 2n}, (4.2)
et

-
2n ifiE{2n+l, ... ,2n+m+s},

where G := 2~ (P(l) + ... + P(2n)) and ei is a vector of ~m+s satisfying e~ = 1

and e1 = 0 for eachj E {1, ... , m+s} and i E {1, ... , m+s} \ {j}. Let Ci := i

for each i E {1, ... , m + s} and n := 2n + m + s. Set t = 1 and go to Step 1.

Step 1

If dim (co({pi (c.) : i = 1, ... , m+s})) = m+ s, then go to Step 2. Otherwise,

go to Step 3.
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Step 2

Step 2-0

Calculate W by solving the following system of linear equations:

{

(p I«,»TW = a(cl)'

(P'(~+8WW = a(Cm+s)'

where a(ci) (i = 1, ... , m + s) are as follows.

a(ci) '= {I if Ci E {I, ... , 2n},
. 0 ifciE{2n+1, ... .a}.

Step 2-1

If W calculated at Step 2-0 satisfies the following conditions, then vt :=

Wandt~t+1.

{

(P' (j))TW_:::; 1, j = 1, ... , 2n,
~ S 0, ~ - 1, ... , m,
Wi 2:: 0, i = m + 1, ... , m + s.

Otherwise, {Vi, ... ,vt} remain. If Cl = 2n-m-s+1, go to Step 4. Otherwise,

go to Step 3.

Step 3

Step 3-0

Set Cm+s ~ Cm+s + 1 and j := m + s. Go to Step 3-1.

Step 3-1

If Cj S 2n - m - s +i. set cj' ~ Cj +j' - j for every j' > j. Go to Step 1.

Otherwise, set Cj-l ~ Cj-l + 1,j ~ j -1 and go to Step 3-1.

Step 4

For each i E {I, ... , t - I}, let (-pI, qJ)T := Vi, where Pi E ]Rm and qi E ]Rs.

D h . - 1 t l'f { } 0 d l+(-p;,q;)TG 0 thror eac ~ - , ... , - , 1 max qi1, ... ,qi s > an { . .} > , en" max q~,1, ... ,q~,8
1+(- T T)TG

c; := Pi
2

,Qi • Otherwise, Ci := 1 + (-pI, qJ) T G. Then, the hyperplane

forming the efficient frontier is as follows.

Stop the algorithm.
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At Step 0, in order to obtain all equations forming FCCR ' for each i = 1, ... ,n,
P(i+n) is generated. Let P:= co({P' (l ), ... ,P'(2n)}). To calculate all vertices of

(P)* n i m +s := {Z E ~m+s : Zi ~ 0 (1 ~ i ~ m), Zi 2: 0 (m + 1 ~ i ~ m + s)}, all

combinations of {pI (1), ... , p' (n)} are considered. At Step 1, to examine whether

there exists a solution of the linear system at Step 2-0, dim {pI (Ci) : i = 1, ... , m+s}

is calculated. At Step 2, to examine whether W obtained at Step 2-0 is a vertex of

(P)*, W Tp' (1), ... , WTp' (n) are calculated. If all values of WTp' (1), ... , W T p' (n)

are less than or equal to one, then W is a vertex of (P)*. At Step 3, to select all

combinations of choosing m + s numbers from {I, ... ,n}, CI, ... ,Cm+s are updated.

At Step 4, for each i E {I, ... , t - I}, the necessity of Hpi,qi,Ci for constructing the

efficient frontier is examined.

Example 4.2.1. We illustrate Algorithm FFA in the case of m = s = 1. The

data of DMUs is listed in Table 4.1 and illustrated in Figure 4.1. By executing

Algorithm FFA, we can construct all equations forming F CCR, FBcc, FIRS and F DRS

based on the data in Table 4.1.

Table 4.1: The data of four DMUs
DMU ABC D
Input 2 4 4 6
Output 1 2 3 2

Step 0: Since n = 4, according to (4.1), I{ (i = 1, ... ,8) shown in Figure 4.2

are calculated as follows:

Ps = 2PI = (4,2)T,P6 = (8,4)T,P7 = (8,6)T,ps = (12,4)T.

Then, G = 2~(PI + ... + P2n) = ~(48, 24)T = (6,3)T. According to (4.2), P; (i =
1, ... ,10) shown in Figure 4.3 are calculated as follows:

I T I )T I )T I T'TPI = (-4,-2) 'P2 = (-2,-1 'P3 = (-2,0 'P4 = (0,-1) ,Ps = (-2,-1) ,

I ( )T I ( )T I ( )T I .( )T I ( TP6 = 2,1 'P7 = 2,3 , Ps - 6,1 ,Pg = 1,° ,PlO = 0,1) .

Set CI := 1, C2 := 2, n:= 2n + m + s = 10 and t:= 1. Go to Step 1.
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Step 1: Since dim {(-4, _2)T, (-2, -l)T} = 1, go to Step 3.

Step 3: Set Cl := 1, C2 := 3. Go to Step 1.

Step 1: Since dim {(-4, -2)T, (-2,0)T} = 2, go to Step 2.

Step 2: Calculate W satisfying the following linear system:

{
(-4, -2)TW = 1,
(-2, O)TW = 1.

Then, we obtain W = (-~' ~)T. We examine whether W is a vertex of P .­
co({P~, ... ,P~}). Since, (p;)T(_~,~) ~ 1 (j = 1, ... ,8), (-~' ~)T is a vertex of

(P)*. By Lemma 2.1.5 and the coordinate transformation moving G to the origin,

we can obtain all equations forming P := co({Pl, ... ,Ps}). In order to obtain only

the efficient facets of P, we consider the vertices contained in {W E }R2 : WI ~

0, W2 ~ O}. Since, WI = -~ <°and W2 = ~ ~ 0, set Vi := (-~' ~)T which is a

vertex of polytope Q shown in Figure 4.4. Set t := 2. Since C1 t= 2n - m - s +1 = 7,

go to Step 3.

Step 3: Set C1 := 1, C2 := 4. Go to Step 1.

We repeat this operation to ci = 9,C2 = 10. Then, t = 4. Vi = (_~,~)T,

V2 = (-~' 0)T, V3 = (-~, ~)T and V4 = (0, ~)T are all vertices except the origin of

Q. Go to Step 4.

Step 4: For t = 1, -~x + ~y = 1 + (-~' ~)T (6,3) = -~' Hence, H 1 := {(x, y) :

-x+y = -1}. Similarly, H2 := {(x,y) : x = 2} and H3 := {(x,y) : -~x+ ~y = O}.
. 1 1+(0 1)(63) 1 1+(0 1)T(6 3)

For t = 4 SInce IY: I = - > °and '3 1 = 6 > ° -y = '3 1 = 1., 4,1 3 Y4,1 ' 3 2

Hence, H4 := {(x,y) : y = 3}. HI, .. ' ,H4 are all efficient facets of P. Then stop

the algorithm.

By Algorithm FFA, we can obtain four vertices of Q shown in Figure 4.4 as

follows:

( 1l)T (l)T (1 2)T (l)TVi = -2"' 2" ' V2 = -4'° ,V3 = -2"' 3 ' V4 = 0, 3

By Lemma 2.1.5, Q* shown in Figure 4.5 are formed by four equations as follows:

I ( 11) T I ( 1)THI: -2"'"2 (x,y) = 1,H2 : -4,0 (x,y) = 1,

I ( 1 2)T I ( l)TH 3 : -2"' 3 (x,y) = 1,H4 : 0, 3 (x,y) -1.
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By the coordinate transformation, we obtain four equations depicted in Figure 4.6

as follows:
II ( 1 1) T ( 1 1) T 1HI: -2' 2 (x,y) = 1 + -2' 2 (6,3) = -2'

II ( 1 )T ( 1 )T 1H2 : -4,0 (x,y)=l+ -4,0 (6,3)=-2'

/I ( 12) T ( 12) TH3 : -2'3 (x,y)=l+ -2'3 (6,3)=0,

II ( l)T ( l)TH4 : 0,3 (x, y) = 1 + 0,3 (6,3) = 2.

By the operation at Step 5, we obtain four equations illustrated in Figure 4.7 as

follows:

n., (-~,~r (x,y) = -~,H2: (-~,O) T (x,y) = -~,

(
1 2)T ( l)T 1+(0,1)T(6,3)

H3 : -2'3 (x,y)=0,H4 : 0'3 (x,y)= ~ =1.

Then, HI, . . . , H4 form the efficient frontiers.

Since the TCCR is a closed convex cone, by the operation at Step 0, we can

always calculate all equations of the CCR model. Moreover, the origin is con­

tained in P. Figure 4.4 shows the hyperplane {(x,y) : (p'(j))T(x,y) -I} for each

j = 1, ... ,2n. Polytope Q is the intersection of i,m+8 and (P)*. We calculate all

vertices of Q by performing from Step 1 to Step 3. Figure 4.5 shows the hyperplane

{ (x, y) : vT (x, y) = I} for each vertex v of polytope Q except the origin shown in

Figure 4.4. By the coordinate transformation moving G to the origin, we get Fig­

ure 4.6. Figure 4.7 shows all the hyperplanes calculated by Algorithm FFA. By the

operation at Step 4, the hyperplane consisting of only DMUs generated at Step °
is replaced by the hyperplane consisting of original DMUs. For example, the hy­

perplane consisting of DMU(n + 2) and DMU(n+ 4) is replaced by the hyperplane

consisting of DMU(2) and DMU(4).

Theorem 4.2.1. The intersection o/.P* and i,m+8 is a polytope containing O.

Proof. By the definition of P and Assumption (A4), P is a polytope and 0 E int P.

Hence, (P)* is a polytope and 0 E int (P)*. Of course, i,m+8 is a closed convex

polyhedral set containing O. Thus, the intersection of i,m+8 and (P)* is a polytope

containing O. 0
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Figure 4.1: Illustration of all DMUs
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Figure 4.2: We add two times the original DMUs
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Generation of P~, ... , P~.

P~:= P1 -C.. G

P;:= P2 - G

P~ :=P3 - G

P~:= P4 - G

P~:= Ps - G

P~:= P6 - G

P;:= P7 - G

P~:= Ps - G

Figure 4.3: The coordinate transformation moving G to the origin

..: ·3 ·2 ·1

A.

-3l.--~~~~~~__~~~~__----'

... .;;

By Theorem 4.2.1, the number of vertices of the intersection of P* and i m+s is

finite. In particular, at Step 3, all combinations of el, ... ,Cm+s from {I, ... ,n} are

selected. Thus, Algorithm FFA terminates within jiCm+s iterations. Let h be the

number of hyperplanes Hpi,qi'Ci calculated by Algorithm FFA. For each j = 1, ... , h,
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Figure 4.4: Hyperplane that inner product of each DMU and (x, y) equals one

H~: (-~, ~)T(x,y) = 1

H;: (_~,O)T(x,y) = 1

'.( 1 2)T( ) _H3 · -2' 3 x, y - 1

: (0, ~)T(X,y) = 1

~ 3 4 S 6 1

Figure 4.5: The polar set of Q

6 .. -, ~ ~ ...

H " . ( 1 1 ) T ( ) _ 11 . -2' 2' x,y --2'

" . ( 1 )T( ) _ 1H2 . -4,0 x,y --2'

" . ( 1 2)T( ) _H3 · -2'3 x,y-O

H" . ( l)T( ) -4 . 0, 3 x,y - 2

Figure 4.6: The coordinate tra,][lSf()rmLation

let

Wj :- (-pT,q!)T,

Be := {i E {l,. ~., h} : Hpi,qi'Ci n TCCR C FCCR } ,

Sb := {i E {l, ... , h} : Hpi,qi?Ci n TBGC c FBcc } .

(4.3)

(4.4)

(4.5)

Then, TCCR and FCCR can be represented by using coefficients of equations as follows.
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H2 : (_~,O)T(x,y) =-~

H3 : (-~, ~)T(x,y) = 0

H4: (0, i)T(x,y) = 1
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Figure 4.7: All hyperplanes obtained by Algorithm FFA

Theorem 4.2.2. TOOl't = n{Z: WjT Z ~ O}.
JESe

i E

{Z : WIZ s O}. For each Z :=

~ L:~1 )..~x(i), y s L:~=1 A~Y(i).

1 )..~x(i) +

Proof. First, we shall show that TOGR C

(xT, YT)T E Tooa, th

Since Wj = (-pJ, qJ ~ 0, qj ~

qJ ~~=1 )..~y(i). By the definition of FCOR ' - j x(i)

{l, ... ,n}. Hence, W7 Z < 0 and (xT, yT)T E njESe{Z : W7 Z ~ O}. Therefore,

TooR C njEse{Z: W7Z s O}.

Second, we shall show that T OOR :::) njEse{Z : "'iTZ ~ O}. For each Z E

njEse{Z : WI Z ~ O}, the following two cases occur.

(i) There exists j E Be such that WIZ = o.

(ii) There exist no j E Be such that WI Z = O.

In Case (i), by the definition of Wj,

2:~=1 Aiy(i). Hence, Z E T CCR. In Case l(ii

W7(Z+8Wj ) = 0 and w,:r(Z + 8Wk ) ~ Let Z' := Z+8Wj •

Then, x ~ x' and y ~ y'. By the definition of Wj , there exists ).. ~ 0 such that

x' = I:~=1 AiX(i), y' = I:~=1 Aiy(i). Hence, Z' E TCCR and Z E TooR · Therefore,

TCCR::) njEse{Z: VlijT Z ~ O}. Consequently, TOOR = njEse{Z: W7Z s O}. 0

Theorem 4.2.3. Taoo = n{Z : WI Z ~ Cj}.
jESb

Proof. We can complete the proof in a way similar to Theorem 4.2.2.

Theorem 4.2.4. FCOR = ( u{Z : WI Z = O}) n TCCR'

JESe

o
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Proof. First, we shall show that FCCR C (UjESc{Z : WI Z = o}) n TCCR' For

h Z' '- ('T 'T)T D ('T 'T)TL (0* (') * \ *) beac .- x ,y E rCCR, X ,y E TCCR· et CCR Z ,A1"'" An e

an optimal solution of the CCR model for Z', that is 0CCR(Z') solves the following

problem.

minimize 0

(CCRD(Z'))

n

subject to Ox~ - LAjx(j)i 2:: 0, i = 1, ... ,m,
j=l

n

L Ajy(j)r - y~ 2:: 0, r = 1, ... , s,
j=l

Aj 2:: 0, j = 1, ... , n,
fJ E JR.

Since fJCCR(Z') = 1, there exists i such that x~ = 2:7=1 Ajx(j)i' Hence, (x'T, y'T) T E

bd(TocR)' By Theorem 4.2.2, there exists j E Be such that WIz' = 0. Hence,

Z' E UjESc{Z: WIZ = O}. Therefore, FCOR C (UjESc{Z: WIZ = O}) nTOCR'

Second, we shall show that FCOR ::) (UjESc{Z : WI Z = O}) n TOOR. For each

Z' E (UjESc{Z : WI Z = O}) n TCOR' by Theorem 4.2.2, Z' E bd(TooR). By

definition of FCCR, Z' E FCOR' Therefore, FOOR ::) (u.,{Z : WI Z = O}) n TCOR'

Consequently, FCOR = (UjESc{Z: WjTZ = O}) n TCOR' 0

Theorem 4.2.5. FBoc = ( U{z: WI Z = Cj}) nTBoo .
jESb

Proof. We can complete the proof in a way similar to Theorem 4.2.4. o

By Algorithm FFA, we obtain all equations forming the efficient frontiers of the

four models. We classify the equations under the following theorems.

Theorem 4.2.6. Assume that Hp,q,e = {(x, y) E JRm+s : qT y-pT X = c} is calculated

by Algorithm FFA. If C = 0, then Hp,q,e n TooR is a facet of TooR·

Proof. Since p, q and C are constructed at Step 2 of Algorithm FFA, dim Hp,q,e =

m+s-1. By Assumption (A4), dim TCOR - m+s. By Lemma 2.1.6, dim Hp,q,en(P+

G) = m + s -1. By the definition of TOCR' P+ G C TOOR' Therefore, dim Hp,q,e n
TooR = m+s-1. At Step 2 ofAlgorithmFFA, (_pT,qT)T(x(j)T,y(j)T):::; °
(j = 1, ... , n). For each (xT,yT)T E TOOR' there exists A' 2:: °such that x 2::
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~j=lA~X(j), 0:::; y < ~j=lA~y(j). Then (_pT,qT)(xT,yT)T = _pT X + qTy <
-pT~j=l )..~x(j) + qT~j=l A~y(j) :::; O. Consequently, Hp,q,c n Tc cR is a facet of

Tc CR ' 0

Theorem 4.2.7. If c =1= 0, then Hp,q,c n TBcc is a facet of TBcc.

Proof. By Assumption (A4), dimTBcc = m+s. By Lemma 2.1.6 and the operation

at Step 4 of Algorithm FFA, dim Hp,q,e n co({P1, ... , Pn } ) = m + s - 1. By the defi­

nition of TBcc, co({P1, ... ,Pn } ) c TBcc. Therefore, dim Hp,q,c n TBcc = m + s - 1.

At Step 2 of Algorithm FFA, (-pT,qT)T(x(j)T,y(j)T) :::; C (j = 1, ... , n). For

each (zT,YT)T E TBcc, there exists A' 2: 0 such that x 2: ~j=l A~X(j), 0 :::;

y :::; ~j=l A~y(j), ~j=l)..~ = 1. Then (-pT, qT)(xT,yT)T = -pTX + qTY :::;

-pT~j=l )..~x(j) + qT~j=l A~y(j) :::; c. Consequently, Hp,q,c n TBcc is a facet of

TBcc. 0

Theorem 4.2.8. If c:::; 0, then Hp,q,c n T1RS is a facet ofT1Rs.

Proof. We can complete the proof in a way similar to Theorem 4.2.7.

Theorem 4.2.9. If c 2: 0, then Hp,q,e n TDRs is a facet of TDRs.

Proof. We can complete the proof in a way similar to Theorem 4.2.7.

o

o

Theorem 4.2.10. If c = 0 and dim({(X(i)T, y(i)T)T : i = 1, ... , n} n Hp,q,c) =

m + s - 1, then Hp,q,c n TBcc is a facet ofTBcc.

Proof. Since dim({(x(i)T, Y(i)T)T : i = 1, ... , n} nHp,q,c) = m + s - 1, dim Hp,q,c n

TBcc = m + s - 1. At Step 2 of Algorithm FFA, (-pT,qT)T(x(j) T,y(j)T) :::; 0

(j = 1, ... , n). For each (x T,YT)T E TBcc, there exists AI 2: 0 such that x 2:

~j=l A~X(j), 0 :::; Y :::;~j=l A~y(j), ~j=l A~ = 1. Then (-pT,qT)(XT,YT)T =
-pTx +qTY S -pT~j=l \x(j) +qT~j=l A~y(j) :::; O. Therefore, Hp,q,c n TBcc is a

facet of TBcc. 0

By classifying the equations in accord with the above theorems, we can obtain

efficiencyscores of the four models easily by substituting the input and output values

of each DMU as follows. Let Be' Bb, S, and Bd be the index sets of all hyperplanes

of the CCR, BCC, IRS and DRS models, respectively.
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Theorem 4.2.11. (Jahanshahloo, Lotfi and Zohrehbandian [24]) Let Hpj,qj,Cj be a

hyperplane forming the efficient frontier of the OOR model for each j ESc, where

Hpj,qj,Cj := {(x, y) : -pJx + qJy = Cj}, then the efficiency score of DMU(k) in the

OOR model is obtained as follows.

{
qJY(k) . }

Eff(DMU(k)) = max pJx(k) : J E Sc .

Theorem 4.2.12. (Jahanshahloo, Lotfi and Zohrehbandian [24]) Let Hpj,qj,Cj be a

hyperplane forming the efficient frontiers of the BOO, DRS, IRS models for each

j E Sb, Si, Sd, where Hpj,qj,Cj := {(x, y) : -pJx + qJy = Cj}, then the efficiency

scores of DMU(k) in the BOO; DRS, IRS models are obtained as follows.

( )) {
qJy(k) + Cj T). }

Eff DMU(k = max pJx(k) : o, x(k -I 0, J E Sb, s; Sd .

By Jahanshahloo, Lotfi and Zohrehbandian [24], the RTS are obtained as follows.

Let h be the number of the hyperplanes calculated by Algorithm FFA~ For each

j = 1, ..., h, Hpj,qj,Cj be the hyperplane defined by {(x, y) : -pJx + qJY = Cj}. Let

BBCC(k) be the optimal value of Problem (BOOLP(k)) for DMU(k) and

{
qJy(k) + Cj * T .}

S(k):= Cj: pJx(k) = BBCC(k)' Pj x(k) -I 0, J E Sb .

Theorem 4.2.13. (Jahanshahloo, Lotfi and Zohrehbandian [24]) The RTS is clas­

sified as the following.

(i) DMU(k) is said to be the increasing RTS if min{S(k)} < max{S(k)} :::; °or

min{S(k)} = max{S(k)} < O.

(ii) DMU(k) is said to be the decreasing RTS if 0 :::; min{S(k)} < max{S(k)} or

°< min{S(k)} = max{S(k)}.

(iii) DMU(k) is said to be the constant RTS if min{S(k)} < °< max{S(k)} or

min{S(k)} = max{S(k)} = 0.

For the data in Table 4.1, we identify the RTS under Theorem 4.2.13. Table 4.2

shows the classification of the RTS. In general, the RTS is considered for only BCC­

efficient DMUs, but by using Theorem 4.2.13,· we can also consider the RTS for

BCC-inefficient DMUs based on the points projected on FBcc.
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DMU
A
B
C
D

Table 4.2: Classification of the RTS
min{S(k)} max{S(k)}

-2 -1
-1 -1
-1 3
-1 -1

RTS
increasing
increasing
constant

increasing

As the numbers of inputs, outputs and DMUs increase, Algorithm FFA requires

a large number of iterations to construct all equations forming the efficient frontiers.

For example, in the case where m = 2, s = 1 and n = 10, the number of iterations of

Algorithm FFA is 1,771. In the case where m = 3, S = 2 and n = 20, the number of

iterations of Algorithm FFA is 1,221,759. Therefore, we devise a method for reducing

the number of iterations. If x(a)i < X(b)i (i = 1, ... , m) and y(a)i > y(b)i (i =
1, ... , s), then DMU(b) can be removed from the original DMUs. In Table 4.3, the

averages and dispersions of the computational times of Algorithm FFA and modified

Algorithm FFA for 20 test problems on n = 10,20, ... ,80 are listed. The input and

output values are randomly-determined. By modifying Algorithm FFA, we can

calculate all equations forming the efficient frontier in a realistic time.

Table 4.3: The averages and dispersions of the computational times (seconds)

Algorithm FFA modified Algorithm FFA
number of DMUs
10
20
30
40
50
60
70
80

averages dispersions averages dispersions
0.531 0.001 0.240 0.012

11.949 0.046 1.815 1.505
92.197 0.911 9.994 86.556

393.139 16.214 31.924 821.405
1338.005 53.527 51.289 2479.179
3615.760 638.221 83.638 4106.046
7492.604 2060.928 166.074 22895.020

17127.256 97780.144 284.729 88195.173
(The numbers of input and output are 3 and 2, respectively.)

Next, we propose an algorithm to obtain all equations forming the efficient fron­

tier of only the CCR model. When we calculate"cross efficiency scores in Chapter 5,

we need to use only the equations forming FOOR ' Therefore, we propose another
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algorithm for constructing all equations forming FOOR whose calculation time is

smaller than Algorithm FFA. Let P := {O, DMU(l), ... , DMU(n)}. Then, co(P) is

contained in TOOR and the intersection of boundary of co(P) and TeeR is nonempty.

Hence, by calculating the equations forming co(P), we can obtain all equations

forming FOOR as follows:

Algorithm FFC

Step 0

Set P(i) (i = 1, ... , n + m + s + 1) as follows:

. '= { (x(W,y(~~T - G if i :{l, ... ,n},
P(2). (0, ... ,0) G If2-n+1,

ei - n - 1 if i E {n + 2, ... , n + m + s + I},
(4.6)

where G:= n~l((x(l)T,y(l)T)T+ ... + (x(n)T,y(n)T)T) and ei is a vector

of Rm+s satisfying e} = 1 and e{ = °for each j E {I, ... ,m + s} and i E

{I, ... ,m + s} \ {j}. Let Ci := i for each i E {I, ... ,m + s} and t := 1. Go to

Step 1.

Step 1

If dim {P(Ci) : i = 1, ... , m + s} = m + s, then go to Step 2. Otherwise, go to

Step 4.

Step 2

Step 2-0

Calculate W by solving the following system of linear equations:

{

(P(Cl»TW = a(cl),

(P(~+.WW = a(Cm+.),

where,

a(Ci):= {01if Ci E {l, ... ,n+l},
if Ci, E {n+2, ... ,n+m+s+1}.

Go to Step 3.
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Step 2-1

If W calculated at Step 2-0 satisfies the following conditions, then set

vt := Wand t +- t + 1.

(p(j))TW:::; 1, j = 1, ... ,n+ 1,
Wi :::; 0, i = 1, ... , m,

Wi ~ 0, i = m+ 1, ... ,m+ s,
Wm+1 + ... +Wm+s > 0.

Otherwise, {Vi, ... , lit} remain. If Cl = n - m - s +2, go to Step 4. Otherwise,

go to Step 3.

Step 3

Step 3-0

Set Cm+s +- Cm+s + 1 and j := m + s. Go to Step 3-1.

Step 3-1

If Cj :::; n - m - s + 1 + j, set cj' +- Cj +j' - j for every j' > jand go to

Step 1. Otherwise, set Cj-l +- Cj-l + 1, j +- j - 1 and go to Step 3-1.

Step 4

For each i E {1, , t - 1}, let (-pJ, ql)T := Vi, where Pi E ~m and qi E ~s.

For each i = 1, , t -1, let Ci := 1+ (-pJ, qJ)T G and the hyperplane forming

the efficient frontier is as follows.

Stop the algorithm.

The equations calculated by Algorithm FFC are classified by following theorems.

Theorem 4.2.14. ,Assume that Hp,q,c = {(x, y) E ~m+s : PT X + qTY = c} is

calculated by Algorithm FFC. If C = 0, then Hp,q,c n T CCR is a facet of T ccR.

Proof. Since p and q are constructed at Step 2 of Algorithm FFC, P :::; 0, q ~ °
and dimHp,q,c = m + s - 1. By Assumption (A4) , dimTccR = m + s. Let P :=

{P(1), .. . , P(n+ 1)}. By Lemma 2.1.6 and the conditions defined at Step 3 of Algo­

rithmFFC, dim Hp,q,cn(P+G) = m+s-1. By the definition of T ccR, P+G c TCCR.
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(4.8)

(4.7)

Therefore, dim Hp,q,c n T CCR = m + s - 1. Let c = O. Then, at Step 3 of Algo­

rithm FFC, (pT,qT)T(X(j)T,y(j)T):::; 0 (j = 1, ... ,n). For each (xT,yT)T E T CCR,

there exists A' ~ 0 such that x ~ 2:;=1 )..~x(j), 0 < y :::; 2:;=1 A~y(j). Then

(pT,qT)T(xT,YT) = PTX + qTY < PT 2:;=1 )..~x(j) + qT2:;=1 A~y(j) :::; O. Conse­

quently, Hp1q,c n T CCR is a facet of T CCR' 0

Theorem 4.2.15. Assume that Hp,q,c = {(x,y) E JRrn+s: pTX+qTy = c} is

calculated by Algorithm FFC. If c #- 0, then Hp,q,c n TCCR is not a facet of T CCR·

Proof. By the definition of T CCR' for each (xT,YT)T E TCCR and for all a > 0,

a(xT,yT)T E T CCR' At Step 3 of Algorithm FFC, (pT,qT)T(x(j)T,y(j)T) ~ c

(j = 1, ... ,n). At Step 2 of Algorithm FFC, there existsi E {1, ... , n} such

that (pT,qT)T(x(i)T,y(i)T) = c. Let c #- O. Then, there exist a > 0 such that

(pT, qT)Ta(x( i)T,y(i)T) > c. Consequently, Hp,q,c nTCCR is not a facet of T CCR' 0

Finally, we propose an algorithm to calculate all equations forming FGRS(L, U).

By setting parameters L :::; 1 and U ~ 1, we can obtain all equations forming the

facets of the efficient frontiers of the traditional four models. In order to calculate

all equations forming FCCR ' we set L = 0 and U > O. By using Theorem 4.2.6, we

obtain all equations forming FCCR ' Similarly, by setting L = U = 1, we obtain all

equations forming FBcc . If we set L = 1 and U > 1, then, by using Theorem 4.2.8,

we obtain all equations forming FIRS. If we set L = 0 and U = 1, then all equations

forming FDRS are obtained. Obviously, by setting other parameters(for example,

L = 0.5 and U = 2), all equations forming FGRS(L,U) are obtained. We formulate

the algorithm under Theorems 3.3.2, 3.3.3 and 3.3.4.

Algorithm FFG

Step 0

Set n := 2n+m+s. Moreover, set P(i) (i = 1, ... , 2n) and pi (i) (i = 1, ... ,n)

as follows.

(') {L(X(i)T, Y(i)T)T if i E {1, ... , n},
P 2:= U(x(i - n)T, y(i - n)T)T if i E {n + 1, ... , 2n}.

pi (i) := { e~~~n - G if i E {1, ... , 2n},
if i E {2n + 1, ... ,n},
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where G = 2~ (P(l) + ... + P(2n)) and ej is a vector of lRm+s satisfying e~ = 1

and e{ = 0 for each j E {I, ... , m + s} and i E {I, ... , m + s} \ {j}. Let

c; := i (i = 1, ... , m + s). Set t := 1 and go to Step 1.

Step 1

If dim {pi (Ci) : i = 1, ... , m + s} = m + s, then go to Step 2. Otherwise; go

to Step 4.

Step 2

Step 2-0

Calculate W by solving the following system of linear equations:

{

(p I«.»TW = a(cl), .

(P'(~+sWw = a(Cm+s),

where,

a(Ci) '= { 1 if c, E {I, ... , 2n},
. 0 if Ci E {2n + 1, ... , n}.

Go to Step 3.

Step 2-1

If W calculated at Step 2-0 satisfies the following conditions, then set

vt := Wand t f- t + 1.

{

(P'(jW~~ 1, j 1, ... ,2n,
W~ :::; 0, 'l - 1, ... , m,
Wi ~ 0, i = m + 1, ... , m + s.

Otherwise, {Vi, ... ,vt} remain. If Cl = n- m - s +1, go to Step 4. Otherwise,

go to Step 3.

Step 3

Step 3-0 .

Set cm+s f- cm+s + 1 and j := m + s. Go to Step 3-1.

Step 3-1

If Cj :::; n - m - s + j, set cj' f- Cj +j' - j for every j' > j. Go to Step 1.

Otherwise, set Cj-l f- Cj-l + 1, j f- j - 1 and go to Step 3-1.
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Step 4

For each i E {I, ,t - I}, let (-pJ, qJ)T := Vi, where Pi E IRm and qi E IRS.

For each i = 1, , t -1, let Ci := 1+(-pJ, ql)TG and the hyperplane forming

the efficient frontier is as follows.

Stop the algorithm.

The algorithm introduced in Section 4.1 calculates some equations forming FCCR

by solving many linear programming problems. In this approach, in order to obtain

the equations forming the efficient frontiers of the other models, other algorithms

must be constructed. In contrast, Algorithm FFG can calculate all equations with

respect to all GRS models by setting the parameters. The algorithms proposed in

this section obtains all equations forming the efficient frontiers by .calculating the

vertices of the polar sets based on initial points.

4.3 Formulation for calculating improvements by

solving a mixed integer quadratic program­

ming problem

In this section, we illustrate the method proposed by Aparicio, Ruiz and Sirvent [3]

to calculate some improvements. We assume that DMU(k) is a CCR-inefficient

DMU, that is, BecR(k) < 1. By following the improvements, DMU(k) becomes a

CCR-efficient DMU satisfying BecR(k) = 1.

Let (.-\*, BecR(k)) be an optimal solution of Problem (CCRD(k)). Then, BCCR(k)

is one of the traditional improvement for DMU(k). Let DMU(k) := (x, y) be a DMU

defined as follows:

X := BCCR(k)x(k),

y:= y(k).

Then, (.-\*,1) is a feasible solution of Problem (CCRD(k)). By the optimality of

(A*, BecR(k)), the optimal value of Problem (CCRD(k)) equals 1. Hence, (x, y) is
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CCR-efficient. This improvement is obtained easily, however it is an difficult im­

provement since only input values are decreased at the same rate. Therefore, other

improvements for inefficient DMUs have been proposed with respect to the CCR or

BCC model. For example, Frei and Harker [21] have proposed a least distance pro­

jection to FCCR by using the Euclidean norm. Silva, Castro and Thanassoulis [33]

have constructed multi-stages procedures for the BeC model. In contrast, Apari­

cio, Ruiz and Sirvent [3] have proposed a single-stage method by innovating such

procedures. The method is formulated as a mixed integer quadratic programming

problem for traditional norms to obtain a closest target on FCCR under the following

theorem.

Theorem 4.3.1. (Aparicio, Ruiz and Sirvent [3], p.211) Let D(k) be the set of

Pareto-efficient points in TCCR dominating DMU(k). Then, (x, y) E D(k) {::} there

exist Aj,dj ~ O,bj E {O,l},j E E,Vi ~ 1, i = 1, ... ,m,ur ~ 1, r = 1, ... ,s,sik ~

0, i = 1, ... ,m and S;k ~ 0, r = 1, ... , s such that

x = L: AjX(j),
jEE

Y = L:Ajy(j),
jEE

L: AjX(j)i = X(k)i - sik, i = 1, ... ,m,
jEE
L: Ajy(j)r = y(k)r + s;k' r = 1, ... , S,
jEE

m s

- L: ViX(j)i +L: ury(j)r + dj = 0, j E E,
i=l r=l

dj <Mbj , j E E,

Aj ~ M(l- bj), j E E,

where M is a big positive quantity.

From above theorem, an improvement for DMU(k) is obtained by solving the

following mixed integer quadratic programming problem based on the l2-norm.
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m 8

minimize L(sik? + L(S;k)2
i=l r=l

subject to L AjX(j)i = X(k)i - sik, i = 1, ... ,m,
jEE

L Ajy(j)r = y(k)r + s-;k' r = 1, ... ,S,
jEE

m 8

- L ViX(j)i +L ury(j)r + dj = 0, j E E,
i=l r=l

(mADD(k)) Vi ~ 1, i = 1, , m,
u; ~ 1, r = 1, , s,
dj < Mbj , j E E,

Aj :::; M(1 - bj ) , j E E,
bj E {0,1}, j E E,
dj ~ 0, j E E,

Aj ~O, j E E,
sik ~ 0, i = 1, , m,

S;k ~ 0, r = 1, , S,

where E is the set of extreme efficient units defined in [13]. Let Wk be the set of

all optimizing multipliers for DMU(k). If Wk is not .empty, then DMU(k) is said to

be DEA-scale-efficient and denote by RE the set of all DEA-scale-efficient DMUs.

Then E is defined as follows.

E = {DMU(k) ERE: dim Wk = m+s}.

By changing the objective function depending on a policy of the decision maker

and situations, above model can be applied the following cases: the lrdistance

case(to minimize the sum of values of change for all inputs and outputs), the loo­

distance case(to minimize the maximum value of change for all inputs and outputs),

RAM efficiency measure (see [16]) case, SBM efficiency measure (see [39]) case and

so on.
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4.4 Algorithm for calculating improvements by

using the equations forming the efficient fron­

tiers

In this section, we propose four types of improvements for making CCR-inefficient

DMUs CCR-efficient (CCR-Pareto-efficient or CCR-weakly-efficient) with a minimal

change of input and output values. By many researches, many methods to calculate

the closest point over the efficient frontier have been proposed. These methods target

the efficient frontier of only one model. In real problems, it is difficult that we select

a model to use for evaluation. Therefore, some models are used to evaluate DMUs

for a problem. In this thesis, we propose four kinds of improvements as follows. The

first improvement is unrestricted, that is, we consider the minimal change of input

and output values. The inefficient DMUs can become efficient units by the smallest

change under the condition which the improvement targets are feasible. The similar

improvements have been proposed as a minimal distance point by many researchers.

We introduce a norm to adjust the change of input and output values. However,

this improvement is not always possible in the actual situations. Hence, we present

the second improvement guaranteeing the feasibility. The second improvement is

constrained by the production possibility set of the BCC model. The reason for

adding the constraint condition is that the production possibility set of the BCC

model can be identified as the feasible region of DMUs. This improvement cannot

be obtained by using the method introduced in Section 4.3. We calculate this

improvement by utilizing the equations forming the efficient frontiers. Moreover,

if a decision maker wants to introduce some conditions for the operation policy,

stock status and others, they use the third and fourth improvements. The third

improvement is obtained by confining the change of input or output values. By

utilizing this improvement, the decision maker can regulate amounts of change of

input or output values. The fourth improvement is calculated by according as the

order of input and output elements, where the order is provided by the decision

maker. Then, the decision maker can control the order of amounts of change of

input and output values.
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First, we define the norm depending on a symmetric positive definite matrix

A E JR(m+s)x(m+s) as follows.

Under this norm, we consider the minimal change of input and output values.

Example 4.4.1. In the case of A = Im+s , II·IIA corresponds to the Euclidean norm.

If A is defined by

o

(i = 1, ... ,4)

then II ·IIA means the norm which considered the ratio of input and output values.

We define di(k)(i = 1, ... ,4) as improvements for DMU(k), where each diCk) is

an optimal solution of Problem (IDi(k)) (i = 1, ... ,4) formulated as follows:

(IDi(k)) {minimize IIZIIA.
subject to Z E B~(k).

Here,

B1(k) := FCCR - P(k),

B2(k) := (FCCR n TBCC) - P(k),

B3(k) := {Z E FCCR - P(k) : ai ~ Zi + P(k)i ~ /3i' i = 1, ... , m},

B4(k) := {ZE FCCR - P(k) : IZtil ~ IZtH11, i = 1, ... ,m + s - I},

where ai, {3i E JR(i = 1, .... , m) are lower and upper limits for the ith element of Z

decided by the decision maker of DMU(k) satisfying ai ~ P(k)i ~ /3i (i = 1, ,m),

t; E {I, ... .rn.+ s} (i = 1, ... m + s) satisfy t i , =1= ti" for each i', i" E {I, , m +
s} (i' =1= t). Since dICk) solves Problem (IDl(k)), d1(k)+P(k) has a minimal distance

from P(k) over FCCR ' The feasible set B2(k) of Problem (ID2(k)) is the intersection

of B1(k) and TBCC . By confining the feasible set to TBCC , ~(k) is more realistic

than dICk). The third improvement d3(k) is obtained by limiting the amount of

change of input values from P(k). Of course, we can limit output values in a similar
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way. However, if both input and output values are limited, the feasibility of d3(k)

is not guaranteed. Hence, we propose the fourth improvement d4(k). By deciding

{tl, .. . , tm+s } , the decision maker of DMU(k) can control the order of the amount

of change of input and output values.

Theorem 4.4.1. The feasible sets of (IDi(k))(i

closed.

1, ... , 4) are nonempty and

Proof. First, by the definition of TCCR ' °E TCCR ' Since TCCR is closed, by Theo­

rem 4.2.4, FCe R is closed and °E FeeR. Hence, Z = -P(k) is a feasible solution

and {Z - P(k) : Z E FecR} is closed. Therefore, the feasible set of (ID1(k)) is

nonemptyand closed.

Second, for each DMU(j) E FceR, DMU(j) E TBcc. Since TBec is closed,

FCCR n TBcc is nonempty and closed. Let DMU(j') E FCCR ' then Z = -P(j') is a

feasible solution and {Z - P(k) : Z E FCCR nTBec} is closed. Hence, the feasible

set of (ID2(k)) is nonempty and closed.

Third, we note that (-pi ,qJ) T (0'.1, ... ,am, 0, ... ,0) < °for each j E Be. Let
, {-pT(al a)} p~(al,...,am)

j E arg max j , .... , m : j E Bc and set "1:= j • Then, we obtain
ql,) ql,/

(-pJ,q!)T(a1, ... ,am,'Y,0, ,0) :s; °for each j E Bc and by the definitions

of j' and "I, (-p:',q:')T(a1, ,am,'Y,0, ... ,0) = 0. By Theorem 4.2.4, (0'.1-
J J

P(kh,· .. ,am - P(k)m, "I - P(k)m+1, -P(k)m+s, ... , -P(k)m+s) E FCCR - P(k).

Therefore, the feasible set of (ID3(k)) is nonempty and closed.

Fourth, since P(k) ¢ FecR, we obtain (-p!,q!)T(P(kh, ... ,P(k)m+s) < °
f h · S L" {(pT,-qT)T(P(kh, ...,P(k)m+s) . S} d
or eac J E C' et J E arg max -PI .!o..._p +ql +"+q . : J E c an a:=.s m,),) S,)

(PJ,_q;)T(P(kh, ...,P(k)m+s) _ T T T _ _
_p "_'''_p .I+q .,+..+q .1' Then, ( Pj, %) (P(k)l a, ... , P(k)m a, P(k)m+1 +

1,,1 m,,1 1,,1 S,,1

a, ... ,P(k)m+s + a) ::; °for each j E Be and (-PI' q})T(P(kh - a, ,P(k)m-

O!, P(k)m+l+ a, , P(k)m+s +a) = 0. By Theorem 4.2.4, (P(kh - a, ,P(k)m-

O!, P(k)m+1 + a, ,P(k)m+s + a) E FCCR ' Obviously, (P(kh - a, , P(k)m -

O!, P(k)m+1+a, ,P(k)m+s+a) E {Z E lRm+s : IZtql :s; IZtq+1l, q = 1, , m+s-1}.

Hence, FceRn{Z E lRm+s : IZtql ::; IZtq+1l, q = 1, ... , m+s-1} is nonempty. There­

fore, the feasible set of (ID4(k)) is nonempty and closed. D

We propose the following algorithm for obtaining four types of improvements

di(k) (i E {I, ... , 4}). Let Nc be the number of elements of Be. improvements for
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DMU(k) are obtained by the following algorithm:

Algorithm lCCR

Step 0

Select i E {1, ... , 4} (Choose the type of the improvement). Set j := 1 and go

to Step 1.

Step 1

Let d}(k) be an optimal solution of Problem (ID;(k)) defined as follows:

(lD~(k)) {minimize IIZIIA.
J subject to Z E Bj(k),

where

B](k) := {Z : (Z + p(k))TWj = O},

BJ(k) := {Z: (Z + p(k))TWj = 0, (Z + p(k))TVVl ~ Ct for each 1 EBb},

BJ(k) := {Z : (Z + p(k))TWj = 0, at ~ Zt + P(k)t ~ (31, l = 1, ... , m},

Bf(k) := {Z: (Z + p(k))TWj = 0, IZtl1 ~ IZtl+11, l = 1, ... ,m + s - 1}.

If j = N e , then go to Step 2. Otherwise, set j f- j + 1 and go to Step 1.

Step 2

Select j' E argmin{lld}(k)IIA : j E Be} and set di(k) := d~,(k). This algorithm

terminates.

We can execute Algorithm lCCR using the existing nonlinear optimization tech­

niques (e.g. [6]). The existence and properties of an optimal solution are proved by

the following theorems.

Theorem 4.4.2. For each i E {1, ... , 4}, Problem (lDJ(k)) has an optimal solution.

Proof. By Theorem 4.4.1, for each i E {1, ... , 4}, Bj(k) is nonempty and closed.

Since Bj(k) is nonempty, for each (x',y') E Bj(k), Bj(k) := Bj(k) n {(XT,yT)T :

II(xT, yT)TIIA ~ II(x'T, y'T)TIIA} is compact. Therefore, Problem (lDj(k)) is equiv­

alent to the following problem.

(lD~(k)) {min~mize IIZIIA
J subject to Z E Bj(k),
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Since the objective function is continuous and the feasible set is compact, Prob­

lem (TI\ (k)) has an optimal solution. By the definition of 13}(k), an optimal solu­

tion of Problem (TI\(k)) is also an optimal solution of Problem (IDJ(k)). Therefore,

Problem (IDJ(k)) has an optimal solution. 0

We note that Problem (IDj(k)) is a standard quadratic programming problem.

Since N; < 00, Algorithm ICCR terminates within a finite number of iterations.

Theorem 4.4.3. For each CCR-inefficient DMU(k), let diCk) (i E {I, ... , 4}) be

an optimal solution calculated by Algorithm ICCR. Then, P(k) + diCk) E FeeR.

Proof. Let Wj (j E Be) be all normal vectors calculated by Algorithm FFA. In order

to obtain a contradiction, we suppose that P(k) + diCk) tf- FeeR. By Theorem 4.2.4,

P(k) + diCk) tf- TeeR' and by Theorem 4.2.2, there exists j E Be such that (P(k) +
di(k))TWj > O. Since P(k) E intTeeR, from Theorem 4.2.2, p(k)TWj < 0 and

(a(P(k) + diCk)) + (1 - a)P(k))TWj = (P(k) + adi(k))TWj = 0, where a :=

- ~~~~~~. Since 0 < a < 1 and diCk) satisfies the additional conditions of B}(k) (i =
2,3,4), adi(k) also satisfies the additional conditions. Therefore, adi(k) is a feasible

solution of Problem (ID;(k)). By the definition of dj(k), we have the following

inequality: II d} (k) II A < II adi(k) II A < IIdi(k) II A. This contradicts the optimality of

diCk) for Algorithm ICCR. Consequently, P(k) + diCk) E FeeR. 0

If the decision maker of DMU(k) wants to obtain a CCR-Pareto-efficient point,

that is, an optimal slackness is zero, then he can modify Algorithm ICCR as follows.

By replacing Be' N; and B}(k) (i = 1, ... ,4) in Algorithm ICCR by B~, N~ and

BJ' (k) (i = 1, ... ,4) as follows.

B~ := {j E Be : Wi,j =1= 0, i = 1, ... , m + s},

where Wj (j E Be) are all vectors calculated by Algorithm FFA. Let N~ be the

number of elements of B~.

By (k) := {Z: (Z + p(k))TWj = 0, (Z + p(k))TWo S 0 for each 0 E Be \ B~},

BJ'(k) := {Z : (Z + P(k))TWj = 0, (Z + 'P(k))TWo S 0 for each 0 E Be \ B~,

(Z + p(k))TWi S Cl for each 1 EBb},
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BJ'(k) := {Z: (Z + p(k))TWj = 0, (Z + p(k))TWo~ °for each 0 E Be \ S~,

az ~ Zz + P(k)z ~ f3z, l = 1, ... , m},

Bt' (k) := {Z: (Z + p(k))TWj = 0, (Z + p(k))TWo~ °for each 0 E Be \ B~,

Moreover, we assume that BJ' (k) (i = 1, ... ,4) are nonempty. Then we can obtain

a CCR-Pareto-efficient point.

Theorem 4.4.4. For each CCR-inefficient DMU(k), let di(k) (i E {1, ... , 4}) be an

optimal solution calculated by modified Algorithm ICCR. Then, P(k)+di(k) E FOOR

is a CCR-Pareto-efficient point.

Proof. We can prove the existence of an optimal solution and P(k) +di(k) E FOOR

in a way similar to Theorems 4.4.2 and 4.4.3. In order to obtain a contradiction, we

suppose that P(k)+di(k) has positive slack, that is, there exist slack vectors SX ~ °E

~m and sy ~ °E ~s satisfying (sxT,syT) =f (0,0), andP(k)+di(k)+(-sXT,syT)T E

FOOR ' Since di(k) is an optimal solution, there exists j E S~ such that (di(k) +

P(k))TWj = 0. Then (di(k) + P(k) + (_sxT, sYT)T)TWj = (_sxT, syT)Wj > 0.

By Theorems 4.2.2 and 4.2.4, this contradicts P(k) + di(k) + (_sxT, SYT)T E FOOR '

Therefore, P(k) + di(k) is a CCR-Pareto-efficient point. 0

By introducing a parameter a, we propose an algorithm to calculate a mini­

mal distance point or a Pareto-efficient point on FOOR as an improvement. The

improvement of DMU(k) is calculated as follows:

Algorithm GIT

Step 0

Select a E {O, 1} (Choose the type of the improvment). Set j := 1 and go to

Step 1.

Step 1

If a = 1, then set

B~ := {l E Be : Wii =f 0, i = 1, ... , m + s} and B := B~.
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If a = 0, then set

S:= Se'

Let N be the number of elements of S. Go to Step 2.

Step 2

Let dj(k) be an optimal solution of Problem (MITj(k)) defined as follows:

{

minimize IIZIIA
(MITj(k)) subject to (Z + p(k))TWj = 0,

a(Z + p(k))TWo ~ 0 for each 0 E S,

where j denote the jth element of S. If j = N, then go to Step 3. Otherwise,

setj f- j + 1 and go to Step 2.

Step 3

Select j' E argmin{lldj(k)IIA : j E S} and set dOt(k) := diCk). This algorithm

terminates.

We obtain a minimal distance point or a Pareto-efficient point based on param­

eter a as indicated by the following theorems.

Theorem 4.4.5. For each CCR-inefficient DMU(k), let dOt(k) (a E {O, I}) be an

optimal solution calculated by Algorithm GIT. Then, P(k) + dOt(k) E FeeR.

Proof. We prove the case of a = O. In order to obtain a contradiction, we sup­

pose that P(k) + dP(k) tj. FeeR. By Theorem 4.2.4, P(k) + dP(k) tj. TeeR, and

by Theorem 4.2.2, there exists j E S; such that (P(k) + ef(k))TWj > O. Since

DMU(k) is a CCR-inefficient DMU, P(k) E intTeeR. Hence, from Theorem 4.2.2,

P(k)TWj < 0 and (,(P(k) + dOCk)) + (1- ,)p(k))TWj = (P(k) + ,ef(k))TWj = 0,

where, := - ;~~~~. Since (P(k) + dO(k))TWj > 0, we obtain 0 < , < 1. There­

fore, ,dP(k) is a feasible solution of Problem (MITJ (k)). By the definition of d!] (k),

we have the following inequality: II d!] (k) II A < II,ef(k) II A < IIef(k)II A· This contra­

dicts the optimality of dP(k) for Algorithm GIT. Consequently, P(k)+dO(k) E FeeR.

For the case of Q = 1, we replace Se by S~ and can complete the proof. in a way

similar to the case of a = O. 0
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By Theorem 4.4.5, we note that P(k) + dO (k) is a CCR-efficient point for each

CCR-inefficient DMU(k). Moreover, we obtain a Pareto-efficient point based on

parameter a = 1 as indicated by the following theorem.

Theorem 4.4.6. For each CCR-inefficient DMU(k), let d1(k) be an optimal solution

calculated by modified Algorithm GIT (a = 1). Then, P(k) + d1(k) E FeeR is a

CCR-Pareto-efficient point.

Proof. The existence of an optimal solution and P(k) + d1(k) E FeeR are proved

by a way similar to Theorems 4.4.2 and 4.4.3. In order to obtain a contradiction,

we suppose that P(k) + d1(k) has positive slack, that is, there exist slack vectors

SX 2:: °E ~m and sy 2:: °E ~s satisfying (sxT, sYT) t= (0,0), and P(k) + d1(k) +

(_sxT, sYT)T E FeeR. Since d1(k) is an optimal solution of Problem (MIT}(k)) for

some j E {I, ... , N}, there exists j E S such that (d1(k) + p(k))TWj = 0. Then

(d1(k) + P(k) + (_sxT, sYT)T)TWj = (_sxT, syT)Wj > 0. By Theorems 4.2.2 and

4.2.4, this contradicts P(k) +d1(k) + (_sxT, SYT)T E FeeR. Therefore, P(k) +d1(k)

is a CCR-Pareto-efficient point. 0

Theorem 4.4.7. For each CCR-inefficient DMU(k), let dOCk) and d1(k) be optimal

solutions calculated by modified Algorithm GIT (a = 0) and (a = 1), respectively.

Then, for eacli); E (0,1), d>'(k) := >"(P(k) + ~(k)) + (1- >")(P(k) +d1(k)) E TeeR.

Proof. By Theorems 4.2.4 and 4.4.5, P(k) +dO(k) and P(k) +d1(k) are contained in

TeeR. Since TeeR is a closed convex set, d>'(k) := >"(P(k) + dOCk)) + (1 - >")(P(k) +

d1(k)) E TeeR for each X E (0,1). 0

We note that d>'(k) is not always contained in FeeR, since FeeR is not convex

set. In order to calculate a point on FeeR based on d>'(k) , we consider a pro­

jection. Let 13 := min{,8 : (P(k) + ,8(d>'(k) - p(k)))Tlfj = °for some j E Be}.

Then, by Theorems 4.2.2 and 4.2.4, P(k) + 13(d>'(k) - P(k)) E FeeR. We propose

this point P(k) + iJ(d>'(k) - P(k)) as improvement intermediate between the two

improvements which are obtained based on ~(k) and d1(k).

In previous method introduced in Section 4.3 to calculate an improvement, the

mixed integer linear programming problems for typical norms were formulated. In

this section, we have proposed the algorithms by using the equations forming the

48



efficient frontiers. By using this approach, we can first obtain an improvement based

on more than two models. Moreover, we have added additional constraint conditions

into the previous improvement to deal with various situations.

4.5 Example

Now, we perform a numerical analysis for 10 Japanese banks by utilizing algorithms

provided in this thesis. As shown in Table 4.4, each bank has the ordinary profit

as the single output. The number of employees and total assets are the two inputs

used to generate the output.

Table 4.4: Inputs and Output values for 10 Japanese banks, 2008

Bank Input 1 Input 2 Output
(persons) (one hundred million (one hundred million

Japanese yen) Japanese yen)
Bl
B2

B3
B4

B5
B6

B7

B8

B9

BI0

3701
3675
3659
3004
2887
2872
2752
2506
2268
2148

119895 3179
98359 2688
80955 2180
59600 1563
66373 1477
90984 2450
60770 1852
49008 1137
41151 1148
41158 1124

The efficiency scores and the RTS are shown in the Table 4.5. All efficiency

scores are calculated by using Theorems 4.2.11 and 4.2.12 and the RTS are obtained

by using Theorem 4.2.13.

Three banks are CCR-efficient and they do not have to think the improvement.

Another bank's improvements are given in Tables 4.6-4.9. The improvement over

an efficient frontier of CCR model (A = Ak ) is shown in Table 4.6. Improvements

contained in T BCC , l1Rs and TDRS (A = Ak)are given in Tables 4.7, 4.8 and 4.9,

respectively. The improvement over an efficient frontier of CCR model think decreas­

ing inputs and increasing outputs. In contrast, other improvements might increasing
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Table 4.5: DEA analysis for 10 Japanese banks, 2008

Bank CCR BCC IRS DRS RTS
B1 1.000000 1.000000 1.000000 1.000000 C
B2 0.961359 0.996536 0.961359 0.996536
B3 0.884268 0.931186 0.884268 0.931186
B4 0.860520 0.884500 0.884500 0.860520
B5 0.741447 0.814268 0.814268 0.741447
B6 1.000000 1.000000 1.000000 1.000000 C
B7 1.000000 1.000000 1.000000 1.000000 C
B8 0.761275 0.859975 0.859975 0.761275
B9 0.915398 1.000000 1.000000 0.915398 I
B10 0.896108 1.000000 1.000000 0.896108 I

inputs or decreasing outputs. This means that the DMU is impossible to become

CCR-efficient in the PPS of the other models by decreasing inputs. Similarly, the

DMU is impossible to become CCR-efficient in the PPS of the other models by

increasing outputs.

Table 4.6: Improvement over FOOR (A = Ak )

90.72
125.93
107.99
190.27

130.57
48.33
58.13

-7415.07
-1895.63
-2368.56

-358.63
-5290.05
-4769.59

-11664.62

0.00
0.00
0.00

-43.28
0.00
0.00
0.00

Bank Input 1 Input 2 Output

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
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715.47

704.00

732.25

-237.27
-328.00

289.00
375.00

11785.65
19619.00

19826.76

-7345.86
-20185.00

1170.00

-5603.00

246.09

637.19

604.85

-802.17

-789.48
-91.89
27.46

Table 4.7: Improvement contained in TBcc (A = Ak )

Bank Input 1 Input 2 Output

Bl
B2

B3
B4

B5
B6
B7
B8
B9
BI0

717.19

704.51
728.51

-220.03

288.33

289.16
611.68

-6663.43
10754.95

1175.20

2166.65

11833.95

19635.57
19628.56

276.21

485.72
613.94

-782.55

-766.14

-246.99
216.46

Table 4.8: Improvement contained in TiRS (A = Ak )

Bank Input 1 Input 2 Output

Bl
B2
B3

B4

B5
B6
B7
B8
B9
BI0
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254.44

236.93

234.19

-558.71

-71.04

-150.04
-86.13

2665.70

10281.06

9280.97

-17582.18

-1025.48

-7127.44
-14720.64

-874.90
-644.53

-555.89

-1196.07

-1203.75

-1347.67
-1256.57

Table 4.9: Improvement contained in TDRS (A = Ak )

Bank Input 1 Input 2 Output

Bl
B2
B3
B4
B5
B6

B7
B8
B9
BI0
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Chapter 5

CROSS EFFICIENCY

EVALUATION

In the CCR model, each DMU is evaluated by an advantageous weight. In the

cross efficiency evaluation, each DMU is evaluated by using the most advantageous

weights for all DMUs. Then, we can evaluate all DMUs as a linear-order relation

having the dominance relationships for all DMUs. Therefore, the cross efficiency

evaluation has been recommended as an alternative methodology for ranking DMUs

in DBA [32]. In Section 5.1, we introduce some basic cross efficiency evaluation

methods. In Section 5.2, we formulate new methods of the cross efficiency evaluation

by using the equations forming FCCR . In Section 5.3, we propose two kinds of other

evaluation methods by using the equations forming FceR. In Section 5.4, we show a

numerical experiment to compare the cross efficiency scores of evaluation methods

in Sections 5.1 and 5.2.

5.1 Basic cross efficiency evaluations

In order to calculate the cross efficiency scores for all DMUs, the optimal solu­

tions of the CCR model for all DMUs are used. We obtain an optimal solu­

tion (v*(k), u*(k)) by solving Problem (CCRLP(k)) for each DMU(k) (k = 1, ... ,n).

By using (v*(i), u*(i)), we calculate the cross efficiencyscore ofDMU(k) for DMU(i)

as follows:
rr(k) := u*(i)Ty(k)
~ V*(i)Tx(k)
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We note that °< fJi(k) ::; 1 for each i, k E {I, ... , n} by the constraint conditions

of Problem (CCRLP(k)). This value means that DMU(k) is evaluated under an

advantageous weight for DMU(i). Then, DMUs are ranked according to the average

of the cross efficiency scores for all DMUs shown in Table 5.1. In Table 5.1, we

obtain an n x n matrix and the average of all elements of the kth row means the

cross efficiency score of DMU(k).

Table 5.1: Cross efficiency of n DMUs

DMU Target DMU Average cross efficiency
1 2 n

1 Oi(l) °2(1) fJ~(l) ~ L:7=1 0;(1)
2 0i(2) fJ2(2) fJ~(2) ~ L:7=1 0;(2)

n Oi(n) fJ2(n) B~(n)

In general, the CCR model has many optimal solutions. Then, it is not necessary

that the cross efficiency scores for all optimal solutions coincide. In other words,

the ranking of DMUs may differ depending on the solution method. To resolve this

problem, Sexton, Silkman and Hogan considered the following problem to decide a

weight to achieve the intended objective of minimizing the average of cross efficiency

scores of the other DMUs under the condition that gives the maximum efficiency

score for the object DMU in [32].

L
n

uTyU)
minimize

vT xU)
j=l,j::j;k

subject to uT y(k) - B*(k)
(AVE(k)) ~~~m - .' .

T (.) ::; 1, J = 1, ... , nj J =f:. k,
v x J
u ~ 0,
v ~ 0.

By solving Problem (AVE(k)), DMU(k) obtains a weight which is relatively highly­

regarded compared to the other DMUs. However, since Problem (AVE(k)) is to

minimize the sum of n - 1 linear fractional functions, it is difficult to solve Prob­

lem (AVE(k)). Therefore, many researchers have proposed secondary goal ap-
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proaches to avoid the facultativity of the cross efficiency evaluation by formulating

other problems. Sexton, Silkman and Hogan have formulated the following problem

instead of solving Problem (AVE(k)).

minimize

subject to

(SSH(k))

u
T(.t YU)) -VT(.t XU))

J=lJ~k J=lJ~k

uT y(k) = O*(k)
vTx(k) ,
uT yU) < 1· 1 . -i. k
vT xU) - ,J = , ... ,n; J r ,

vT x(k) = 1,

u 2: 0,
v 2: O.

On the other hand, Doyle and Green [18] have proposed another problem which

is the so-called aggressive formulation. This problem is one of the most commonly

used secondary goal approach since the score based on the aggressive formulation is

closer than the score by solving Problem (SSH(k)) (see [18]). By using an optimal

solution of the following problem, the aggressive cross efficiency score is calculated.

u
T

(. t YU))
J=l,J~k

minimize

subject to
(AGG(k))

VT Ct..k XU))
uT y(k) = O*(k),
vT x(k)
u

T
y(j) < l' 1 . -i. k

vT xU) - ,J = , ... , n; J r ,

u 2: 0,
v 2: O.

Problem (AGG(k)) is transformed into the linear programming problem by limiting

the denominator of the objective function equals 1:
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(AGGLP(k))

minimize uT (t y(j))
=l,Jik

subject to v T (. t Xej)) = 1,
J=l,Jik

U T y(k) - O*(k)vT x(k) = 0,
uT y(j) - V T x(j) :::; 0, j = 1, ... , n; j -1= k,
u ~ 0,
v ~ 0.

By solving Problem (AGGLP(k)), an advantageous weight for DMU(k) is obtained.

The aim of this problem is to minimize the cross efficiency scores of the other DMUs

by solving a linear programming problem. In this thesis, we improve the aggressive

formulation by considering a sum fractional programming problem.

Moreover, in ord~r to determine the cross efficiency score uniquely, the modified

cross efficiency evaluation has been proposed in [22]. The method calculates upper

and lower bounds of cross efficiencyscore. By using the two scores, a cross efficiency

score is calculated based on seven criterions in [22]. The problem which calculates

a weight to obtain the lower bound of cross efficiency score of DMU(l) for target

DMU(k) is formulated as follows:

(MMIN(k))

minimize

subject to

U T y(l)
vT x(l)
uT y(j) .

T (.) :::; 1, J = 1, ... , n,
v x J

uTy(k) = O*(k)
vTx(k) ,
u ~ 0,

v ~ 0.

(8)

(9)

(10)
(11)

Moreover, the problem for calculating a weight to obtain the upper bound of

cross efficiency score of DMU(I) for target DMU(k) is formulated as follows:

{

U T y(l)
(MMAX(k)) maximize vT x(l)

subject to (8), ... , (11).
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5.2 Cross efficiency evaluations by using the facets

of FCCR

In this section, we propose three kinds of evaluation methods utilizing the facets of

FeeR. In the case where m + s ~ 3, the efficient frontier is formed by some facets.

Let h be the number of facets forming the efficient frontier of the CCR model. Then,

iJj(k) which is a efficiency score of DMU(k) based on the jth facet is calculated as

follows:
- ._ qJy(k)
Bj(k) .- pJx(k)'

where Hj := {(x, y) : -pIx +qJy = O} (Pj ~ 0, qj ~ 0) is the jth facet forming the

efficient frontier of the CCR model. By using the equations forming FeCR, we can

calculate optimal solutions of Problems (AGGLP(k)), (MMIN(k)) and (MMAX(k)).

Moreover, we examine the primary objective of minimizing the average of cross

efficiency scores of the other DMUs easily.

First, we suggest minimal facet cross efficiency evaluation method. In this

method, for each combination of object DMU(l) and target DMU(k), we decide

the facet which gives the minimum score for DMU(l) and gives the maximum score

for DMU(k) in the CCR model as follows:

/ E argmin {;~~i~~ :iJj(k) = B*(k), j = 1, ... , h}

We select only one facet and the j'th facet is used to calculate a cross efficiency

score for each DMU. This means that target DMU(k) may select different facet

for each object DMU. The aim of this method is to obtain the lower bound of the

cross efficiency score. The score of this method coincides with the optimal value of

Problems (MMIN(k)).

Second, we suggest aggressive facet cross efficiency evaluation method. For each

target DMU(k), we decide a facet which minimizes the value of aggressive object
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function in [18] and gives the maximum score for DMU(k) as follows:

.I •
J E arg mm

(
n )qJ L: y(l)

l=l,l=lk . ()-.(k) = ()*(k) . = 1 h
pJ ( t X(l)) . J , J , ... ,

l=l,l=lk

Based on the idea of the traditional cross efficiency evaluation, we consider that

target DMU(k) selects the same facet for other DMUs. The score of this method co­

incides with the optimal value of Problems (AGG(k)). We can prove this equivalence

relation in a way similar to Theorem 4.2.11.

Third, we propose sum minimal facet cross efficiency evaluation method which

is a new evaluation method based on the primary objective in the cross efficiency

evaluation. For each target DMU(k), we decide a facet which minimizes the sum of

efficiency scores of the other DMUs and gives the maximum score for DMU(k) as

follows:

{

n T (l) }
j' E arg min L: q~Y(I) : Bj(k) = B*(k), j = 1, ... , h

l=l,l=lk PJ x

The aim of this method is to select a facet which minimizes the average of efficiency

scores of the other DMUs. So far, since Problem (AVE(k)) is not solved easily,

we have compromised in Problem(AGG(k)) for minimizing the average score of

the other DMUs. By using this method, we can obtain a closer cross efficiency

score to Problem (AVE(k)) than the score by solving Problem (AGGLP(k)) shown

in Table 5.2. In order to examine the relationship between the aggressive facet

cross efficiency evaluation and the sum minimal facet cross efficiency evaluation,

we perform experiments with 20 test problems for each situations. The input and

output values are randomly-determined. For each problem, we decide facets for all

DMUs based on the two methods. When each DMU selects the same facet and

at least one DMU selects different facets in the two methods, the two methods are

called match and mismatch, respectively. If the facets match, then it means that our

method proposed in this thesis obtains the same score as the traditional secondary

goal approach. In contrast, mismatch of the facets means that we obtain a closer

cross efficiency score to the original goal than the score by solving the traditional

formulation. As the numbers of input, output and DMU increase, we can obtain

58



a weight reducing the sum of cross efficiency scores of the other DMUs than the

optimal solution of Problem (AGGLP(k)) frequently.

Table 5.2: The ratios of match and mismatch
Situation (20 DMUs) mismatch match
2 inputs and 1 output 0.1 0.9
2 inputs and 2 outputs 0.25 0.75
3 inputs and 3 outputs 0.9 0.1
Situation (50 DMUs) mismatch match
2 inputs and 1 output 0.25 0.75
2 inputs and 2 outputs 0.65 0.35
3 inputs and 3 outputs 1.0 0

5.3 Weighted sum evaluation

In this section, we propose two evaluation methods to evaluate DMUs by calculating

the weighted sum of the scores obtained based on the equations forming the facets

of the efficient frontier of the CCR model. By deciding a weight of each facet, we

calculate an efficiency score.

By deciding the weight of the facets, we evaluate the efficiency score of DMU(k)

as follows:
h

B(k):=~wjBj(k),
j=1

where (WI, ... ,Wh) is the weight satisfying b~=1 Wj = 1 and Wj ~ 0 (j = 1, ... , h).

Since Bj(k) ~ 1, j = 1, ... , h for each DMU(k), 0 < B(k) ~ 1.

Table 5.3: The data of eight DMUs

DMU ABC D E F G H
fup~l 2 3 3 4 5 5 6 8
fup~2 5 3 6 2 7 4 5 6
O~p~ 1 2 3 3 2 4 3 5

We explain the approach to evaluate DMUs using a simple data in Table 5.3. In

the CCR model, three facets HI, H2 and Hs are used to evaluate all DMUs shown
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in Figure 5.1.
H l := {(X,y): -Xl +y = a},
H2 := {(X, y) : -4Xl - X2 + 6y = a},
H3 := {(X, y) : -1.5X2 + Y = O}.

For example, C is evaluated as CCR-efficient by HI or H2 . However, by H3 , C is

evaluated as CCR-inefficient. The efficiencyscores ei(k) by Hi (i = 1,2,3) are shown

in Table 5.4. In the CCR model, each DMU selects the weight which obtains the

maximum efficiency score, that is, (WI, W2, W3) = (1,0,0), (0,1,0) or (0, 0,1). Then,

B*(k) := max{el(k), ~(k), e3(k)} is the efficiency score of the CCR model. The

facets which give the maximum efficiency score for each DMU are called reference

facet. We calculate the efficiency score by deciding the importance of each facet .

..
A

c

\ B •
H2~.. G

..,1' • II .
\...._.._..._..•..•.__...__...•_._-_...__..._•.

f) ID

ol.....-----~--~--~-~~----'
a

Figure 5.1: Structure of the efficient frontier

Table 5.4: Efficiency scores by each facet

DMU 81(k) B2(k) B3(k)

A 0.5000 0.4615 0.1333
B 0.6667 0.8000 0.4444
C 1.0000 1.0000 0.3333
D 0.7500 1.0000 1.0000
E 0.4000 0.4444 0.1905
F 0.8000 1.0000 0.6666
G 0.5000 0.6207 0.4000
H 0.6250 0.7895 0.5555

First, we propose a weight based on the frequencies of the reference facets for all
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DMUs. For each i = 1, ... , h, let H(i) := {j E {I, ... , n} : ei(j) = 8*(j)}. Then the

weight ui, is calculated as follows:

IH(i)1
Wi:= h .

I:j=1 IH(j) I

For the data in Table 5.3, the frequency is calculated as indicated by Table 5.5.

Then, we obtain (WI, W2, W3) = (0.2,0.7,0.1).

Table 5.5: The frequencies of the reference facets

DMU Reference facets HI H 2 H3

A HI 1 0 0
B H 2 0 1 0
C Hl,H2 1 1 0
D H2,H3 0 1 1
E H 2 0 1 0
F H2 0 1 0
G H2 0 1 0
H H2 0 1 0

The frequency 2 7 1

Second, we suggest a weight based on the frequencies of the reference facets for

CCR-efficient DMUs, that is, we examine the number of DMUs on each facet. For

the data in Table 5.3, C, D and F are evaluated as CCR-efficient and the frequency

is calculated as indicated by Table 5.6. Let H' (i) := {j E {I, ... , n} : ei(j) = I}.

Then the weight Wi is calculated as follows:

/H'(i)/

Then, (WI, W2, W3) = (0.2,0.6,0.2). The difference of two weights is whether the

decision maker adopt the ideas of the inefficient DMUs.

5.4 Example

In this section, we consider an example investigated by Wong and Beasley [42]. There

are seven departments in a university listed in Table 5.7, where each department has
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Table 5.6: The frequencies of the reference facets

DMU Reference facets HI H2 H3

A HI 0 0 0
B H2 0 0 0
C HI,H2 1 1 0
D H2,H3 0 1 1
E H2 0 0 0
F H2 0 1 0
G H2 0 0 0
H H2 0 0 0

The frequency 1 3 1

three inputs and three outputs. Three inputs (Xl, X2, X3) are the number of academic

staff, academic staff salaries in thousands of pounds and support staff salaries in

thousands of pounds, respectively. Three outputs (YI, Y2, Y3) are the numbers of

undergraduate students, postgraduate students and research papers, respectively.

Table 5.7: The data of seven DMUs
DMU Inputs Outputs CCR efficiency score

Xl X2 X3 YI Y2 Y3

A 12 400 20 60 35 17 1.0000
B 19 750 70 139 41 40 1.0000
C 42 1500 70 225 68 75 1.0000
D 15 600 100 90 12 17 0.8197
E 45 2000 250 253 145 130 1.0000
F 19 730 50 132 45 45 1.0000
G 41 2350 600 305 159 97 1.0000

In Table 5.7, six DMUs are rated as CCR-efficient and D is the only department

that is rated as CCR-inefficient. In this example, there exist 51 facets forming the

efficient frontier of the CCR model. In Table 5.8, we show the aggressive facet cross

efficiency scores of the seven departments which coincide with the score by utilizing

the optimal solutions of Problem(AGG(k)) for seven departments. In Table 5.9,

we show the sum minimal facet cross efficiency scores of the seven departments

which is closer cross efficiency score to Problem (AVE(k)) than the score by solving
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Problem (AGG(k)). For each column in Table 5.9, we realize that the sum of the

efficiency scores of all DMUs is less than or equal to the sum calculated by the

aggressive facet cross efficiency method. For example, B select a weight which has

5.715 as the sum of the efficiency scores of all DMUs by solving Problem(AGG(k)).

In contrast, we can obtain a weight which has 5.675 as the sum of the efficiency

scores of all DMUs by using the method proposed in Section 5.2.

Table 5.8: Aggressive facet cross efficiency

A
B
C
D
E
F
G

Sum

A
1.000
0.335
0.555
0.069
0.331
0.514
0.151
2.956

Target DMU
BCD E F G

0.845 0.933 0.687 0.645 0.793 0.752
1.000 0.618 1.000 0.824 0.701 0.556
0.848 1.000 0.735 0.813 1.000 0.418
0.755 0.280 0.820 0.367 0.236 0.206
0.662 0.315 0.765 1.000 0.699 0.831
1.000 0.821 0.951 1.000 1.000 0.611
0.604 0.158 1.000 0.525 0.246 1.000
5.715 4.125 5.958 5.174 4.675 4.374

0.8081 2
0.7191 4
0.7669 3
0.3904 7
0.6576 5
0.8424 1
0.5264 6

Table 5.9: Sum minimal facet cross efficiency

DMU Target DMU Average Rank
A B C D E F G

A 1.000 0.757 0.793 0.687 0.490 0.793 0.752 0.7533 2
B 0.335 1.000 0.533 1.000 0.729 0.701 0.556 0.6934 4
C 0.555 0.811 1.000 0.735 0.618 1.000 0.418 0.7337 3
D 0.069 0.718 0.159 0.820 0.392 0.236 0.206 0.3713 7
E 0.331 0.705 0.485 0.765 1.000 0.699 0.831 0.6881 5
F 0.514 1.000 0.840 0.951 0.820 1.000 0.611 0.8193 1
G 0.151 0.667 0.151 1.000 0.819 0.246 1.000 0.5764 6

Sum 2.956 5.657 3.962 5.958 4.869 4.675 4.374

In order to decide a cross efficiency score uniquely, many researchers have formu­

lated linear or non-linear programming problems. By using the optimal solutions,

a cross efficiency score is calculated. In Section 5.2, we have proposed the methods

to decide a cross efficiency score uniquely by using the equations forming FCCR.
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Chapter 6

CONCLUSIONS

In this thesis, we have proposed four types of improvements for inefficient DMUs

and five kinds of evaluation methods to rank all DMUs by analyzing all equations

forming the facets of the efficient frontiers in DEA.

In Chapter 4, we have proposed four types of improvements for inefficient DMUs

in the CCR model. In order to calculate flexible improvements, we have proposed

three kinds of algorithms for obtaining all equations forming the efficient frontiers of

the basic DEA models. By using them, we have proposed an algorithm to calculate

four kinds of improvements based on each constraint condition. By this approach, we

have obtained an improvement taking into account PPS of another model. Moreover,

we have improved the algorithm to obtain a CCR-Pareto-efficient improvement.

In Chapter 5, we have proposed five kinds of methods to calculate the cross

efficiency scores by using all equations forming FeeR. In general, there exists a pair

of DMUs having no dominance relationship in many of the standard DEA models.

In conventional DEA models, each DMU is evaluated by using a most advantageous

weight for the object DMU. By using the advantageous weights for all DMUs, the

cross efficiency evaluation ranks all DMUs. In this thesis, we have regarded the

coefficients of the equations forming FeeR as the weights selected by DMUs. By

selecting a part of facets based on the idea of the cross efficiency evaluation, we

have obtained the same scores as the traditional cross efficiency evaluations without

solving linear programming problems. Moreover, we have obtained a closer cross

efficiency score for minimizing the sum of cross efficiency scores of the other DMUs

than the score by solving the traditional formulation.
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In previous DEA approaches, an improvement for inefficient DMU and ranking

of all DMUs are calculated by solving linear programming problems repeatedly. In

this thesis, we have proposed the approaches to obtain them by using all equations

forming the facets of the efficient frontiers. We hope that this approach is widely

utilized for a study of DEA in the future.
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