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Abstract

In Banach algebra theory, it is well-known that the algebraic structure of a

commutative Banach algebra is closely related with the topological structure of the

maximal ideal space of the algebra. Let C(X) be the Banach algebra of all complex-

valued continuous functions on a compact Hausdorff space X. In Chapter 1, we

investigate solvability of the algebraic equations over C(X) via topological structure

of the maximal ideal space X. In Section 1, we consider the following property that

C(X) may have:

(∗) For every f ∈ C(X) there exist p, q ∈ N such that q/p 6∈ N and the equation

zp − f q = 0 has a solution in C(X).

The condition (∗) means that for every f ∈ C(X) there exist g ∈ C(X) and p, q ∈ N

such that q/p 6∈ N and gp = f q . Our purpose is to characterize the algebraic

structure (∗) of C(X) in terms of topological structure of the maximal ideal space

X. We shall give such characterizations for the case that X is locally connected or

first countable. We also give some non-trivial relations between (∗) and algebraic

closedness (and square-root closedness). In Section 2, we study n-th root closedness

for C(X).

In Chapter 2, we investigate sufficient conditions for a mapping between com-

mutative Banach algebras to be an algebra isomorphism. Molnár [31] characterized

algebra isomorphisms between Banach algebras of the type C(X) by a spectrum-

preserving property. The property is that the spectrum of the product of the images

of any two elements is equal to the spectrum of the product of those two elements.

Molnár also gave a similar characterization of algebra *-isomorphisms between Ba-

nach *-algebras of the type C(X). The studies in this chapter are inspired by this

result of Molnár. Let C0(X) be the Banach *-algebra of all complex-valued con-

tinuous functions on a locally compact Hausdorff space X which vanish at infinity.



ii

In Section 1, we study peripheral spectrum version of Molnár Theorem and give

a characterization of algebra *-isomorphisms between algebras of the type C0(X).

It is an extension of the result of Molnár and characterization for Banach algebras

without unit. In Molnár’s proof of the results mentioned above, it is crucial that

the mappings preserve the order of the functions. The ideas of our proof is dif-

ferent of that of Molnár. In Section 2, we give a norm-preserving property as a

sufficient condition for mappings between algebras of the type C(X) to be algebra

*-isomorphisms. The characterization is also an extension of the result of Molnár.

Acknowledgement. The author is very grateful to Professor Osamu Hatori for

his thoughtful comments and useful suggestions on this work.



CHAPTER 1

On algebraic equations in algebras of continuous functions

1. On a characterization of compact Hausdorff space X for which

certain algebraic equations are solvable in C(X)

1.1. Introduction. Let X be a compact Hausdorff space. We will denote by

C(X) the commutative Banach algebra of all complex-valued continuous functions

on X with respect to the supremum norm ‖ · ‖. Let P (x, z) be a monic polynomial

over C(X) with respect to z, that is, for a positive integer n and f0, f1, · · · fn−1 ∈

C(X),

P (x, z) = zn + fn−1(x)z
n−1 + · · · + f1(x)z + f0(x)

for x ∈ X. When X is a singleton, say {x0}, we may regard C({x0}) as the complex

number field C. It is well-known as the fundamental theorem of algebra that every

monic polynomial equation with complex coefficients has a solution in C. So, the

complex number field C is algebraically closed. We say that C(X) is algebraically

closed if and only if P (x, z) = 0 has a solution in C(X) for every monic polynomial

P (x, z) over C(X). That is, C(X) is algebraically closed if and only if for every

monic polynomial P (x, z) over C(X) ther exists g ∈ C(X) such that P (x, g(x)) = 0

for every x ∈ X. A natural question arises as whether C(X) is algebraically closed.

Let X be a locally connected compact connected metric space. In 1959, Fort,

Jr.([10, Result 2]) essentially proved that if C(X) is square-root closed, then X

never contains simple closed arc. Note that C(X) is said to be square-root closed if

and only if for every f ∈ C(X) there exists g ∈ C(X) such that g2 = f . In other

words, C(X) is square-root closed if and only if the quadratic equation z2 − f = 0

1



1. CERTAIN ALGEBRAIC EQUATIONS ARE SOLVABLE IN C(X) 2

has a solution in C(X) for every f ∈ C(X). By the definition, C(X) is square-root

closed whenever C(X) is algebraically closed. From a result of Fort, Jr., we see that

C(S1) is not square-root closed. Here S1 denotes the unit circle.

Deckard and Pearcy ([7, 8]) proved that C(X) is algebraically closed if X is a

Stonian space, that is, a compact Hausdorff space such that the closure of every

open set is open, or a totally disconnected compact Hausdorff space, or a linearly

ordered and order complete topological space. To prove these, the fundamental tool

is that for every x0 ∈ X the solutions of P (x, z) = 0 vary continuously with respect

to x in some open neghbourhood of x0 (see [7, Lemma 2.2]). Deckard and Pearcy

([8, Theorem 2]) also proved that C([0, 1]) is algebraically closed. Recall that C(S1)

is not algebraically closed. So, it is interesting to give a characterization of X in

order that C(X) is algebraically closed. Deckard and Pearcy also mentioned that if

X is the closure of the graph of the function y = sin 1/x, 0 < x ≤ 2π, then C(X) is

not algebraically closed.

In 1966, Čirka ([4]) considered this problem form the other viewpoint. Let A be

a uniform algebra on a locally connected compact Hausdorff space X. Čirka proved

that if for every f ∈ A there exists g ∈ A such that g2 = f , then A = C(X).

In 1967, Countryman, Jr. ([5]) gave a necessary and sufficient condition for a first

countable compact Hausdorff space X in order that C(X) is algebraically closed.

For the precise statement, see Theorem B of this section. Roughly speaking, C(X)

is algebraically closed if and only ifX never contains the unit circle S1 nor the graph

of the function y = sin 1/x, 0 < x ≤ 2π. Moreover, this result states that C(X) is

algebraically closed if C(X) is square-root closed. For locally connected X, Hatori

and Miura ([13, Theorem 2.2]) gave a characterization of C(X) to be square-root

closed in terms of the covering dimension dimX and the first Čech cohomology
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group Ȟ1(X; Z) of X with the integer coefficients. More explicitly, when X is lo-

cally connected the algebra C(X) is square-root closed if and only if dimX ≤ 1 and

Ȟ1(X; Z) = 0. Miura and Niijima ([29, Theorem 3.3]) proved that if X is locally

connected, then square-root closedness implies algebraic closedness. Note, by defi-

nition, that the converse is valid for every compact Hausdorff space. So, algebraic

closedness is equivalent to weaker property of square-root closedness whenever X

is first countable or locally connected. Recently, Feinstein and Oliver ([9, Theo-

rem 9]) characterized algebraic closedness of C(X) in terms of the extendability of

endomorphisms to Cole or Arens-Hoffman extensions (cf. [6]).

Miura ([28]) introduced a weaker property of “approximate” square-root closed-

ness. To be more explicit, the algebra C(X) is approximately square-root closed if

and only if for every f ∈ C(X) with ‖f‖ ≤ 1 there exist g, h ∈ C(X) such that

f = gh and ‖g −h‖ ≤ ε, where ε ≥ 0 is a given constant. Moreover, he proved that

approximate square-root closedness was equivalent to square-root closedness whenX

is locally connected. Kawamura and Miura ([23, Theorem 1.3]) studied approximate

n-th root closedness of C(X) and proved that this property of C(X) is equivalent

to the n-divisibility of Ȟ1(X; Z) when dimX ≤ 1. Chigogidze, Karasev, Kawamura

and Valov ([3]) investigated (commutative) C∗-algebras with approximate n-th root

property.

Gorin and Karahanjan ([12]) studied k-th root version of Čirka Theorem. In

1979, Karahanjan ([22]) generalized a result of Čirka ([4]) in the following way. Let

A be a uniform algebra on a locally connected compact Hausdorff space X. If, for

every f ∈ A, there exist g ∈ A and p, q ∈ N, the set of all natural numbers, such

that q/p 6∈ N and gp = f q, then A = C(X). Here, we note that if we replace q/p 6∈ N

with q/p ∈ N in the above, then the condition in obviously true for all A.
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In this section, we are concerned with the following property that C(X) may

have:

(∗) For every f ∈ C(X) there exist g ∈ C(X) and p, q ∈ N such that q/p 6∈ N

and gp = f q.

If C(X) is square-root closed, then C(X) has this property. In fact, for every

f ∈ C(X) there exists g ∈ C(X) such that g2 = f , that is, p and q are independent

of a particular choice of f ∈ C(X). Since C(S1) is not square-root closed, a natural

question arises. Does the condition (∗) holds for C(S1)? We give a negative answer

(Lemma 1.4) to this quetion. Moreover, when X is locally connected we give a

necessary and sufficient condition for X in order that C(X) have the property (∗).

As a corollary, we also prove that if X is locally connected, or first countable, then

the condition (∗) holds for C(X) if and only if C(X) is algebraically closed; In this

case, (∗) for C(X) is equivalent to the square-root closedness of C(X).

1.2. Results. Before stating our results, we need some terminologies and sym-

bols.

We say that a topological space T is hereditarily unicoherent ifM∩N is connected

for every pair of closed and connected subsets M and N of T . For example, the unit

circle S1 is not hereditarily unicoherent.

We say that a topological space T is almost locally connected if T contains no

mutually disjoint connected closed subsets Cn (n ∈ N), which are open in the closure

of ∪n∈NCn in T , with the following property: There exist xn, yn ∈ Cn such that

{xn}n∈N and {yn}n∈N converge to distinct points. For example, the closure of the

graph of the function y = sin 1/x, 0 < x ≤ 2π is not almost locally connected.

Let Y be a normal space and n a non-negative integer. The covering dimension

dimY of Y is less than or equal to n if for every finite open covering A of Y there

exists a refinement B of A such that each y ∈ Y belongs to at most (n+1) elements
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of B. It is well-known that dimY ≤ n if and only if for every closed subset F

of Y and every Sn-valued continuous function f on F , there exists an Sn-valued

continuous function f̃ on Y such that f̃ |F = f , where Sn is the n-sphere (cf. [32]).

Let X be a compact Hausdorff space. Then Ȟ1(X; Z) denotes the first Čech

cohomology group of X with integer coefficients. Let C(X)−1 be the multiplicative

group of all invertible elements of C(X) and expC(X) = {ef : f ∈ C(X)}. It is

well-known that Ȟ1(X; Z) is isomorphic to the quotient group C(X)−1/ expC(X),

by a theorem of Arens and Royden [11]. In particular, Ȟ1(X; Z) is trivial if and

only if C(X)−1 = expC(X).

Now we are ready to state our main result. The main result of this section is as

follows:

Theorem 1.1. Let X be a locally connected compact Hausdorff space. Then the

following conditions are equivalent.

(a) For every f ∈ C(X) there exist g ∈ C(X) and p, q ∈ N such that q/p /∈ N

and gp = f q.

(b) X is hereditarily unicoherent.

(c) dimX ≤ 1 and Ȟ1(X; Z) is trivial.

(d) {gp : g ∈ C(X)} is uniformly dense in C(X) for every p ∈ N.

(e) For each f ∈ C(X) and p ∈ N there exists g ∈ C(X) such that gp = f .

Corollary 1.2. Let X be a locally connected compact Hausdorff space. Then

the following conditions are equivalent.

(a) For every f ∈ C(X) there exist g ∈ C(X) and p, q ∈ N such that q/p /∈ N

and gp = f q.

(b) {gp : g ∈ C(X)} is uniformly dense in C(X) for every p ∈ N.

(c) For each f ∈ C(X) and p ∈ N there exists g ∈ C(X) such that gp = f .

(d) C(X) is algebraically closed.
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(e) C(X) is square-root closed.

(f) X is hereditarily unicoherent.

(g) dimX ≤ 1 and Ȟ1(X; Z) is trivial.

Corollary 1.3. Let X be a first countable compact Hausdorff space. Then each

of the following conditions implies the other.

(a) For each f ∈ C(X) there exist g ∈ C(X) and p, q ∈ N such that q/p /∈ N

and gp = f q.

(b) C(X) is algebraically closed.

(c) C(X) is square-root closed.

(d) X is hereditarily unicoherent and almost locally connected.

(e) X is almost locally connected, dimX ≤ 1 and Ȟ1(X; Z) is trivial.

1.3. Lemmata. We require some lemmata before proving Theorem 1.1. To

prove Lemma 1.4 and 1.5, we use ideas by Countryman, Jr. [5, Lemma 2.1, Lemma

2.3].

Lemma 1.4. LetX be a compact Hausdorff space. If the condition (a) of Theorem

1.1 holds, then X is hereditarily unicoherent.

Proof. Assume that the condition (a) holds. We will show that X is heredi-

tarily unicoherent. Suppose not. Then, by definition, there exist non-empty closed

connected subsets M and N of X such that M ∩ N is disconnected. So, there are

non-empty closed subsets A and B such that M ∩ N = A ∪ B and A ∩ B = ∅.

Let f be a continuous mapping from X into the closed unit interval [0, 1] such that

f(x) = 0 on A and f(x) = 1 on B. Put

h(x) =

{
exp(iπf(x)) (x ∈M)

exp(−iπf(x)) (x ∈ N \M).

Then we see that h is continuous on M ∪ N . Let h̃ ∈ C(X) be a mapping so that

h̃|M∪N = h. By the condition (a), there exist positive integers p, q and an element g̃
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in C(X) such that p does not divide q and h̃q = g̃p. Put q = sp + r, where s and r

are integers with 1 ≤ r ≤ p− 1 (note q/p /∈ N). Since h does not vanish on M ∪N ,

the function g = g̃|M∪N/h
s is a well-defined continuous mapping from M ∪ N into

C. Since h̃q = g̃p, for each x ∈M ∪ N we obtain

gp(x) =

(
g̃(x)

hs(x)

)p
=

h̃q(x)

hsp(x)
= hq−sp(x) = hr(x),

and so hr = gp on M ∪N . Since

gp(x) = hr(x) = exp(iπrf(x))

for x ∈M , we get

g(x) = ω(x) exp

(
iπrf(x)

p

)

for every x ∈ M , where ω(x) is one of the p-th roots of 1. The above equation and

the continuity of f and g imply that ω(x) is a continuous mapping from M into the

set of all p-th roots of 1. Since M is connected, ω must be constant. So there is a

p-th root ω0 of 1 such that

(1) g(x) = ω0 exp

(
iπrf(x)

p

)

for each x in M . In a way similar to the above, we see that there exists a p-th root

γ0 of 1 such that

(2) g(x) = γ0 exp

(
−
iπrf(x)

p

)

for each x in N .

Pick x0 ∈ A arbitrarily. Since x0 ∈ A ⊂M ∩N , the equations (1) and (2) imply

that

ω0 exp

(
iπrf(x0)

p

)
= g(x0) = γ0 exp

(
−
iπrf(x0)

p

)
.

Recall that f = 0 on A and f = 1 on B, and so f(x0) = 0. We thus obtain ω0 = γ0.

For y ∈ B, it follows from (1), (2) and ω0 = γ0 that

ω0 exp

(
iπr

p

)
= g(y) = ω0 exp

(
−
iπr

p

)
,
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because B ⊂ M ∩ N . Thus we have r/p ∈ N, which contradicts 1 ≤ r < p− 1. We

conclude that X is hereditarily unicoherent. �

Lemma 1.5. LetX be a compact Hausdorff space. If the condition (a) of Theorem

1.1 holds, then X is almost locally connected.

Proof. Assume that (a) holds and suppose that X is not almost locally con-

nected. By definition, X contains mutually disjoint connected closed subsets Cn

(n ∈ N), which are open in ∪n∈NCn, the closure of ∪n∈NCn in X, with the follow-

ing property: to each n ∈ N there correspond xn, yn ∈ Cn such that {xn}n∈N and

{yn}n∈N converge to distinct points, say x0 and y0. Put F = ∪n∈NCn. Since X is

a compact Hausdorff space, there exist open neighborhoods A and B of x0 and y0

respectively such that Ā ∩ B̄ = ∅. Let f be a continuous mapping from X into the

interval [−1, 1] such that f(x) = 1 on Ā and f(x) = −1 on B̄. We consider the

following mapping h from F̄ into C:

h(x) =





f(x) +
i

n

(
1 − f2(x)

)
(x ∈ Cn; n is even)

f(x) −
i

n

(
1 − f2(x)

)
(x ∈ Cn; n is odd)

f(x) (x ∈ F̄ \ F ).

We see that h ∈ C
(
F̄
)
. Let h̃ ∈ C(X) be a mapping with h̃|F̄ = h. Since the

condition (a) of Theorem 1.1 is assumed to hold, there exist a continuous mapping

g̃ ∈ C(X) and p, q ∈ N with q/p /∈ N such that h̃q = g̃p on X. Put q = sp+ r, where

s and r are integers with 1 ≤ r ≤ p− 1 (note q/p /∈ N). Now we define a mapping

g from F̄ into C as follows:

g(x) =





g̃(x)

hs(x)
(x ∈ F̄ , h(x) 6= 0)

0 (x ∈ F̄ , h(x) = 0).

Recall that h̃|F̄ = h. Since h̃q = g̃p on X, for each x ∈ F̄ with h(x) 6= 0 we obtain

gp(x) =

(
g̃(x)

hs(x)

)p
=

h̃q(x)

hsp(x)
= hq−sp(x) = hr(x),
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and so hr(x) = gp(x) whenever x ∈ F̄ , h(x) 6= 0. It follows that g ∈ C(F̄ ) such that

hr = gp on F̄ .

Pick n ∈ N arbitrarily. By the definition of h, there is a continuous mapping θn

on Cn such that h(x) = |h(x)| exp(iθn(x)) for every x ∈ Cn and that θn(Cn) ⊂ [0, π]

if n is even and θn(Cn) ⊂ [−π, 0] if n is odd. Since hr = gp on F̄ , for each x ∈ Cn

gp(x) = |h(x)|r exp(irθn(x)),

and so there is a p-th root ωn(x) of 1 such that

g(x) = ωn(x)|h(x)|
r/p exp

(
irθn(x)

p

)
.

Since h, g and θn are continuous, ωn(x) is a continuous mapping from Cn into the set

of all p-th roots of 1. Furthermore, since Cn is connected, ωn(x) must be constant,

say ωn. So,

(3) g(x) = ωn|h(x)|
r/p exp

(
irθn(x)

p

)
(x ∈ Cn).

Since {xn}n∈N and {yn}n∈N converge to x0 ∈ A and y0 ∈ B, respectively, we may

assume that {xn}n∈N ⊂ A and {yn}n∈N ⊂ B. Recall that f = 1 on Ā and f = −1

on B̄. So, we get h(xn) = 1 and h(yn) = −1 for every n ∈ N. Since θ2n(C2n) ⊂ [0, π]

and θ2n−1(C2n−1) ⊂ [−π, 0] for every n ∈ N, it follows from the equation h(x) =

|h(x)| exp(iθn(x)) that θn(xn) = 0, θ2n(y2n) = π and θ2n−1(y2n−1) = −π for every

n ∈ N. It follows from (3) that g(xn) = ωn converges to g(x0). On the other hand,

since g(yn) converges to g(y0), we see from (3) that both g(y2n) = ω2n exp (irπ/p)

and g(y2n−1) = ω2n−1 exp (−irπ/p) converge to g(y0). That is,

g(x0) exp

(
irπ

p

)
= g(y0) = g(x0) exp

(
−irπ

p

)
.

Since |g(x0)| = |h(x0)|r/p = |f(x0)|r/p = 1, we see that exp (irπ/p) = exp (−irπ/p).

In other words, r/p ∈ N, which contradicts 1 ≤ r ≤ p − 1. We thus conclude that

X is almost locally connected. �
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The following results, Lemma 1.6 and 1.7 are deduced from [29, Theorem 3.3];

Moreover, Lemma 1.7 is well-known (cf. [25, Chap.VIII §57 Section III, Theorem

3, p.438]). Here we give a proof for the sake of completeness.

Lemma 1.6. Let X be a locally connected compact Hausdorff space. If X is

hereditarily unicoherent, then dimX ≤ 1.

Proof. Let A = {Ok}nk=1 be a finite open covering of X. We show that there is

an open refinement B for A such that every x ∈ X is in at most two elements of B.

Since X is assumed to be locally connected, it follows from [29, Lemma 3.2] that

X is an A-space, that is, the class of all open sets whose boundaries are finite sets

forms an open base. Without loss of generality we may assume that each Ok has at

most finitely many boundary points. Put B =
⋃n
k=1

(
Ok \Ok

)
, where · denotes the

closure in X. We define a mutually disjoint open family {Vk}nk=1 as follows:

V1 = O1 \B and Vk = Ok \

(
B ∪

k−1⋃

j=1

Oj

)
for k = 2, 3, . . . , n.

Since {Ok }nk=1 is an open covering of X, we see that ∪nk=1Vk = X \B.

Since B consists of at most finitely many points, to each x ∈ B there corresponds

an open neighborhood Ux of x with the following property: Ux ⊂ Ok for some k and

Ux ∩ Uy = ∅ whenever x, y ∈ B, x 6= y. Put B = {Vk}nk=1 ∪ {Ux : x ∈ B}. We

see that B is an open covering of X. Recall that both {Vk}nk=1 and {Ux : x ∈ B}

are mutually disjoint. This implies that if x ∈ X, then at most two elements of B

contain x. So, we get dimX ≤ 1. �

Lemma 1.7. Let X be a locally connected compact Hausdorff space. If X is

hereditarily unicoherent, then Ȟ1(X,Z) is trivial.

Proof. Assume that X is hereditarily unicoherent. By a theorem of Arens

and Royden, it is enough to show that the equality C(X)−1 = expC(X) holds.
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Since expC(X) ⊂ C(X)−1, it suffices to prove that C(X)−1 ⊂ expC(X). To do

this, pick f ∈ C(X)−1 arbitrarily. Since X is locally connected, each connected

component of X is open. It follows that X has at most finitely many connected

components. Without loss of generality, we may assume that X is connected. Recall

that f ∈ C(X)−1, and so f vanishes nowhere. Since X is locally connected, for

each x in X there exists a connected open neighborhood Vx of x and a continuous

mapping gx from the closure Vx of Vx into C such that f = egx on Vx. Since X is

compact, there are finite number of points x1, x2, . . . , xn+1 such that ∪n+1
k=1Vxk

= X.

For simplicity, we denote gk = gxk
and Vk = Vxk

for k = 1, 2, . . . , n + 1. Note that
{
Vk
}n+1

k=1
is a class of non-empty connected closed sets with ∪n+1

k=1Vk = X. Since X

is connected, V1 intersects at least one of V2, V3, . . . , Vn+1; we may assume that V1

meets V2. Then eg1 = f = eg2 on V1 ∩ V2, and so we have eg1−g2 = 1 on V1 ∩ V2.

Since X is hereditarily unicoherent, V1 ∩ V2 is connected. Hence by the continuity

of g1 − g2, the equation eg1−g2 = 1 implies the existence of an integer k1 such that

g1 − g2 = 2k1πi on V1 ∩ V2.

We define a mapping g̃1 from V1 ∪ V2 into C as follows:

g̃1(x) =

{
g1(x)

(
x ∈ V1

)

g2(x) + 2k1πi
(
x ∈ V2 \ V1

)
.

It is easy to see that g̃1 is continuous on V1 ∪ V2 and

f = e eg1 on V1 ∪ V2.

In the same way, V1∪V2 intersects at least one of V3, V4, . . . , Vn+1. We may assume

that V1 ∪ V2 meets V3. The equation e eg1 = f = eg3 holds on
(
V1 ∪ V2

)
∩ V3, and so

e eg1−g3 = 1 on
(
V1 ∪ V2

)
∩ V3. Since X is hereditarily unicoherent,

(
V1 ∪ V2

)
∩ V3 is

connected. Hence by the continuity of g̃1 − g3, there exists an integer k2 such that

g̃1 − g3 = 2k2πi on
(
V1 ∪ V2

)
∩ V3.
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We define a mapping g̃2 from
(
V1 ∪ V2

)
∪ V3 into C as follows: If x is in V1 ∪ V2, let

g̃2(x) = g̃1(x), and let g̃2(x) = g3(x) + 2k2πi otherwise. It is easy to see that g̃2 is

continuous on V1 ∪ V2 ∪ V3 and

f = e eg2 on V1 ∪ V2 ∪ V3.

Continuing this process, we have a continuous mapping g̃n on ∪n+1
k=1Vk such that

f = efgn on
n+1⋃

k=1

Vk

Since ∪n+1
k=1Vk = X, we have that f ∈ expC(X). Since f ∈ C(X)−1 was arbitrary,

we conclude that C(X)−1 ⊂ expC(X) and the proof is complete. �

Lemma 1.8. Let X be a compact Hausdorff space. If dimX ≤ 1 and Ȟ1(X; Z)

is trivial, then {gp : g ∈ C(X)} is uniformly dense in C(X) for every p ∈ N.

Proof. Pick p ∈ N and f ∈ C(X) arbitrarily. We show that for every ε > 0

there exists g ∈ C(X) such that ‖f − gp‖ < ε. Without loss of generality we may

assume that ‖f‖ ≤ 1. Choose k ∈ N so that 2p/εp < k. Then put

Ek =

{
x ∈ X : |f(x)| ≥

1

k

}
.

Since dimX ≤ 1, there exists u ∈ C(X)−1 with |u| = 1 on X such that u = f/|f |

on Ek. Then ũ(x) = max{|f(x)|, 1/k}u(x) is in C(X)−1 with ũ| = f on Ek. Since

Ȟ1(X; Z) is trivial, by a theorem of Arens and Royden there exists v ∈ expC(X)

such that ũ = vp. We define two mappings g and h as follows :

g(x) =
p
√

|f(x)| v(x)

|v(x)|
(x ∈ X),

h(x) =





0 (f(x) = 0)

f(x)

g(x)p−1
(f(x) 6= 0).



1. CERTAIN ALGEBRAIC EQUATIONS ARE SOLVABLE IN C(X) 13

Then we see that g, h ∈ C(X), ‖g‖ ≤ 1 and f = gp−1h. Since f (= ũ) = vp on Ek,

we see that g = v = h on Ek. Therefore

‖g − h‖ = sup{|g(x)− h(x)| : x ∈ X \ Ek}

≤ 2 sup
{

p
√

|f(x)| : x ∈ X \ Ek
}
≤ 2

(
1

k

)1/p

< ε.

Since f = gp−1h and ‖g‖ ≤ 1, it follows that

‖f − gp‖ = ‖gp−1h− gp‖ ≤ ‖gp−1‖ ‖h − g‖ < ε.

This completes the proof. �

The case where p = 2 in Lemma 1.9 was essentially proved in [1, Corollary 5.9].

Here, we generalize the result to the case where p ≥ 2.

Lemma 1.9. Let X be a locally connected compact Hausdorff space and p ∈ N

with p ≥ 2. If {fn
p}n∈N ⊂ C(X) converges uniformly to f ∈ C(X), then there is a

Cauchy subsequence of {fn}n∈N.

Proof. For each k ∈ N, set

E(k) =

{
x ∈ X : |f(x)| >

1

k

}
.

Note that the closure E(k) of E(k) in X is a compact subset of E(2k). Since

X is locally connected, each connected component of E(2k) is open. So, there

are finitely many connected components C(k, 1), C(k, 2), . . . , C(k,Nk) such that

C(k, j) ∩ E(k) 6= ∅ for each j, 1 ≤ j ≤ Nk and that

(4) E(k) ⊂

Nk⋃

j=1

C(k, j) ⊂ E(2k).

Pick xk,j ∈ C(k, j) ∩ E(k) for each k ∈ N and j, 1 ≤ j ≤ Nk. By a diagonal

argument, we obtain a subsequence of {fn}n∈N converging at each point xk,j, which

we denote by the same letter {fn}n∈N. We show that {fn}n∈N is a Cauchy sequence
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in C(X). Put ωl = exp(2lπi/p) for l = 0, 1, 2, . . . , p− 1. Fix k ∈ N arbitrarily. We

define ε(k) as follows:

(5) ε(k) = min

{
1

2k
−

(
1

2k

)p
,

(
1

4k
|ω1 − 1|

)p}
.

Since limn→∞ ‖fn
p − f‖ = 0 and since {fn} converges at each point xk,j, we have,

for a sufficiently large n(k) ∈ N,

‖fn
p − fm

p‖ < ε(k),(6)

‖fn
p − f‖ < ε(k),(7)

|fn(xk,j) − fm(xk,j)| < ε(k)1/p(8)

for n,m ≥ n(k) and j = 1, 2, . . . , Nk. Fix n,m ≥ n(k) and x ∈ E(2k) arbitrarily.

Since

fn
p(x) − fm

p(x) =

p−1∏

l=0

(fn(x) − ωlfm(x)),

it follows from (6) that there exists l with 0 ≤ l ≤ p− 1 such that the inequality

(9) |fn(x) − ωlfm(x)| < ε(k)1/p

holds. To prove the uniqueness of such l, suppose that there exists another l′, l 6= l′

such that the equation (9) is valid for l′ in place of l. We get

|ωl − ωl′| |fm(x)| ≤ |ωlfm(x) − fn(x)| + |fn(x) − ωl′fm(x)|

< 2ε(k)1/p ≤
1

2k
|ω1 − 1|,

and so

(10) |ωl − ωl′| |fm(x)| <
1

2k
|ω1 − 1|.

On the other hand, since x ∈ E(2k), the inequality (7) implies that

|fm(x)|p ≥ |f(x)| − |f(x) − fm
p(x)| >

1

2k
− ε(k) ≥

(
1

2k

)p
.

It follows that

|ωl − ωl′ | |fm(x)| ≥ |ω1 − 1| |fm(x)| ≥
1

2k
|ω1 − 1|,
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which contradicts (10). Hence the uniqueness is proved.

Since x ∈ E(2k) was arbitrary, we have proved that to each x ∈ E(2k) there

corresponds a unique l such that (9) holds. This implies that if we define

Gl(k) = {x ∈ E(2k) : |fn(x) − ωlfm(x)| < ε(k)1/p}

for l = 0, 1, . . . , p − 1, then {Gl(k)}
p−1
l=0 is a mutually disjoint family with E(2k) =

∪p−1
l=0Gl(k). Since Gl(k) is open for l = 0, 1, 2, . . . , p− 1, each connected component

of E(2k) is contained in a unique Gl(k). By the inequality (8), we get xk,j ∈ G0(k)

for j = 1, 2, . . . , Nk. Hence C(k, j) ⊂ G0(k) for j = 1, 2, . . . , Nk. By the definition

of Gl(k), it follows from (4) that

(11) |fn(x)− fm(x)| < ε(k)1/p

for every x ∈ E(k). If x ∈ X \ E(k), then we see from (7) that

|fn(x)|
p ≤ |f(x)| + ε(k) <

1

k
+

1

2k
<

2

k
.

Thus, we have that

(12) |fn(x) − fm(x)| ≤ |fn(x)| + |fm(x)| < 2

(
2

k

)1/p

for every x ∈ X \ E(k). It follows from (5), (11) and (12) that

‖fn − fm‖ ≤ 2

(
2

k

)1/p

.

Since k ∈ N and n,m > n(k) are arbitrary, {fn}n∈N is a Cauchy sequence in C(X).

�

Although Lemma 1.10 and 1.11 are well-known (cf. [25, Chap.VIII §57 Sec-

tion I, Theorem 8, p.435] and [25, Chap.VIII §46 Section XI, Theorem 2, p.165],

respectively), for the sake of completeness we give a proof.

Lemma 1.10. Let X be a compact Hausdorff space. Then the following conditions

are equivalent.

(a) Ȟ1(X; Z) is trivial.
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(b) For each connected component Xλ of X, Ȟ1(Xλ; Z) is trivial.

For a compact Hausdorff space X, it is well-known that

(♯) Every connected component Xλ of X is the intersection of all clopen sets

Gµ of X such that Xλ ⊂ Gµ.

We can prove the following as an application of (♯).

(♮) If O is open with Xλ ⊂ O for some connected component Xλ of X, then

there is clopen G such that Xλ ⊂ G ⊂ O.

In fact, if Gµ ⊃ Xλ is clopen with ∩µ∈IGµ = Xλ, then {X \ Gµ}µ∈I becomes an

open covering of the closed subset X \ O, and so X \ O ⊂ ∪ni=1(X \Gµi
) for some

µ1, µ2, . . . , µn ∈ I . Then the clopen ∩ni=1Gµi
satisfies Xλ ⊂ ∩ni=1Gµi

⊂ O.

Proof of Lemma 1.10. First we show that (a) implies (b). Suppose that (a)

is true. Let Xλ be an arbitrary connected component of X. It is enough to show that

C(Xλ)
−1 = expC(Xλ) by a theorem of Arens-Royden. Since expC(Xλ) ⊂ C(Xλ)

−1,

we show that C(Xλ)
−1 ⊂ expC(Xλ). Pick f ∈ C(Xλ)

−1 arbitrary. By the Tietze

extension theorem, there exists a continuous extension f̃ of f to all of X. Continuity

of f̃ implies that f̃ does not vanish on a certain open set O that contains Xλ.

Therefore, combining with the condition (♮), we obtain a clopen set G which satisfies

that Xλ ⊂ G ⊂ O. Now we define a mapping F from X into C as follows: Let

F(x) = f̃(x) if x ∈ G, and F(x) = 1 otherwise. Then we see that F ∈ C(X)−1 with

F = f on Xλ. Because Ȟ1(X; Z) is assumed to be trivial, there exists g ∈ C(X)

such that F = exp g. It follows that f = exp(g|Xλ
). Thus we see that f ∈ C(Xλ)

−1.

Since f was arbitrary, we conclude that C(Xλ)
−1 ⊂ expC(Xλ).

Next we show that (b) implies (a). Suppose that (b) is true. It is enough to show

that C(X)−1 ⊂ expC(X). Pick f̃ ∈ C(X)−1 arbitrarily. Since (b) is true, to every

connected component Xλ of X, the equation C(Xλ)
−1 = expC(Xλ) holds. Thus to



1. CERTAIN ALGEBRAIC EQUATIONS ARE SOLVABLE IN C(X) 17

each λ, there corresponds gλ ∈ C(Xλ) such that f̃ |Xλ
= exp gλ holds. Let g̃λ be a

continuous extension of gλ to the whole space X. If we put h̃λ = f̃ / exp g̃λ on X,

then h̃λ = 1 on Xλ. Continuity of h̃λ implies that there exists an open neighborhood

Oλ ⊃ Xλ such that h̃λ(Oλ) ⊂ {z ∈ C : |z − 1| < 1/2}. Therefore, combining with

(♮), we obtain a clopen set Gλ which satisfies Xλ ⊂ Gλ ⊂ Oλ. Since h̃λ(Gλ) ⊂ {z ∈

C : |z − 1| < 1/2}, a continuous logarithm log from {z ∈ C : |z − 1| < 1/2} into C

is well-defined. So, we get

f̃ = h̃λ exp g̃λ = exp(g̃λ + log h̃λ) on Gλ.

Since {Gλ}λ is an open covering of the compact space X, this covering has a finite

open subcovering {Gλk
}nk=1. The corresponding mappings to Gk are denoted by

g̃k, h̃k (k = 1, · · · , n). Since every member of this covering is clopen, without loss of

generality, we may assume that Gλk1
∩Gλk2

= ∅ (k1 6= k2). Now we define a mapping

g̃ from X into C as follows. If x ∈ X, then there exists a unique k such that x ∈ Gk;

Let g̃(x) = g̃k(x) + log h̃k(x). Then we see that g̃ ∈ C(X) and f̃ = exp g̃. Thus we

conclude that C(X)−1 ⊂ expC(X) and this completes the proof. �

Lemma 1.11. Let X be a compact Hausdorff space. Then the following conditions

are equivalent.

(a) dimX ≤ 1.

(b) For each connected component Xλ of X, dimXλ ≤ 1.

Proof. A proof of (a) ⇒ (b) is elementary and omitted (cf. [32]).

Conversely, suppose that (b) is true. Let F be a closed subset of X and f an S1-

valued continuous mapping on F . We show that there exists an S1-valued continuous

mapping f̃ on X such that f̃ |F = f . Let Xλ be a connected component of X. Since

dimXλ ≤ 1, there exists an S1-valued continuous extension gλ of f |F∩Xλ
to Xλ. We

define a mapping hλ from F ∪ Xλ into C as follows: Let hλ(x) = gλ(x) if x ∈ Xλ,
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and hλ(x) = f(x) if x ∈ F \ Xλ. Then we see that hλ is an S1-valued continuous

mapping on F ∪Xλ satisfying hλ = f on F . Let h̃λ be a continuous extension of hλ

to all of X. By definition,
∣∣∣h̃λ
∣∣∣ = |hλ| = 1 on F . Continuity of h̃λ implies that there

exists an open neighborhood Oλ of Xλ such that h̃λ never vanishes on Oλ. Therefore,

combined with (♮), there exists a clopen set Gλ such that Xλ ⊂ Gλ ⊂ Oλ. Thus

h̃λ never vanishes on Gλ. Since {Gλ}λ is an open covering of the compact space X,

{Gλ}λ has a finite subcovering {Gλk
}nk=1 for X. Since every Gλk

is clopen, without

loss of generality, we may assume that Gλk1
∩ Gλk2

= ∅ (k1 6= k2). Now we define

a mapping f̃ on X as follows. If x ∈ X, then there exists a unique k such that

x ∈ Gλk
. We put f̃ (x) = h̃λk

(x)
/∣∣∣h̃λk

(x)
∣∣∣. Since hλk

= f on F for every k, we

see that f̃ is an S1-valued continuous mapping on X such that f̃ |F = f and this

completes the proof. �

1.4. Proof of Results.

Proof of Theorem 1.1. (a) ⇒ (b) By Lemma 1.4. (b) ⇒ (c) By Lemma 1.6

and 1.7. (c) ⇒ (d) By Lemma 1.8. (e) ⇒ (a) By definition.

(d) ⇒ (e) Suppose that {gp : g ∈ C(X)} is uniformly dense in C(X) for every

p ∈ N. Pick f ∈ C(X) and p ∈ N arbitrarily. By hypothesis, there exists a sequence

{gnp}n∈N such that gn
p converges to f as n→ ∞. By Lemma 1.9, there is a Cauchy

subsequence {gnj
}j∈N of {gn}n∈N. Since C(X) is complete, there exists g ∈ C(X)

such that gnj
converges to g as j → ∞. It follows that f = gp and the proof is

complete. �

Remark. Let us consider the following two conditions.

(d′) {gp : g ∈ C(X)} is uniformly dense in C(X) for some p ∈ N with p ≥ 2.

(e′) There exists p ∈ N, p ≥ 2 with the following property: For each f ∈ C(X)

there is g ∈ C(X) such that gp = f .
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Then the implications (e) of Theorem 1.1 ⇒ (e′) ⇒ (d′) are obviously true. If,

in addition, X is locally connected, then (d′) with Lemma 1.8 implies that every

element in C(X) is the p-th power of another. So, we get (d′) ⇒ (e′). Consequently,

both (d′) and (e′) are also equivalent to all of the conditions from (a) to (e) of

Theorem 1.1 whenever X is locally connected. Note that Kawamura and Miura [23,

Theorem 1.3] proved that if X is a compact Hausdorff space with dimX ≤ 1, then

the condition (d′) above is equivalent to that Ȟ1(X; Z) is p-divisible.

It is well-known [29, Theorem 3.3] that if X is locally connected, then C(X)

is algebraically closed if and only if C(X) is square root closed as is stated in the

following theorem.

Theorem A ([29]). Let X be a locally connected compact Hausdorff space.

Then the following conditions are equivalent.

(1) C(X) is algebraically closed.

(2) C(X) is square-root closed.

(3) dimX ≤ 1 and Ȟ1(X; Z) is trivial.

(4) X is hereditarily unicoherent.

Proof of Corollary 1.2. This is just an application of Theorem 1.1 and

Theorem A. �

If X is first countable, then we see that the condition (a) of Theorem 1.1 holds if

and only if C(X) is algebraically closed. To prove this, we need the following result,

which was essentially proved by Countryman, Jr. [5] (see also [29]).

Theorem B ([5, 29]). Let X be a first countable compact Hausdorff space.

Then the following conditions are equivalent.

(1) C(X) is algebraically closed.
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(2) C(X) is square-root closed.

(3) X is almost locally connected and hereditarily unicoherent.

(4) X is almost locally connected and for every connected component Xλ of X,

Xλ is locally connected, dimXλ ≤ 1 and Ȟ1(Xλ; Z) is trivial.

Proof of Corollary 1.3. (b) ⇔ (c) ⇔ (d): By Theorem B, each of the

conditions (b), (c) and (d) implies the other.

(a) ⇒ (d): It follows from Lemma 1.4 and 1.5 that (a) implies (d).

(c) ⇒ (a): It is obvious that (c) implies (a).

Finally, we show that (e) is equivalent to the condition (4) of Theorem B. It

follows from Lemma 1.10 and 1.11 that (4) of Theorem B implies (e). Conversely,

we prove that (e) implies (4) of Theorem B. By [5, Proof of Lemma 2.5], we see that

each connected component Xλ of X is locally connected. It follows from Lemma

1.10 and 1.11 that (e) implies (4) of Theorem B, and the proof is complete. �

2. Remarks on n-th root closedness for commutative C∗-algebras

2.1. Introduction. Let n ∈ N with n ≥ 2. We say that C(X) is n-th root

closed if for every f ∈ C(X) there exists g ∈ C(X) such that gn = f . Clearly, C(X)

is n-th root closed for every n ∈ N whenever C(X) is algebraically closed. In this

section, we will make up some results obtained in the preceding section with respect

to n-th root closedness.

2.2. Results.

Theorem 1.12. Let X be a first countable compact Hausdorff space. Then the

following conditions are equivalent:

(1) C(X) is n-th root closed for some n ∈ N with n ≥ 2

(2) C(X) is n-th root closed for every n ∈ N with n ≥ 2

(3) C(X) is algebraically closed.
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Corollary 1.13. Let X be a first countable compact Hausdorff space. Then the

following conditions are equivalent:

(1) C(X) is n-th root closed for some n ∈ N with n ≥ 2

(2) C(X) is n-th root closed for every n ∈ N with n ≥ 2

(3) C(X) is algebraically closed

(4) C(X) is square-root closed

(5) For every f ∈ C(X) there exist g ∈ C(X) and p, q ∈ N such that q/p 6= N

and gp = f q

(6) X is almost locally connected and hereditarily unicoherent

(7) X is almost locally connected, dimX ≤ 1 and Ȟ1(X; Z) = 0.

Proof of Theorem 1.12. By definition, the implications (3) ⇒ (2) ⇒ (1) are

true. So, it is enough to show that (1) ⇒ (3) holds. By definition, the implication

(1) ⇒ (a) of Corollary 1.3 is true. Since X is first countable, Corollary 1.3 shows

that (a) is equivalent to the condition that C(X) is algebraically closed. So we have

that (1) implies (3), and this completes the proof. �

Proof of Corollary 1.13. This immediately follows from Theorem 1.12 and

Corollary 1.3. �

Example 1.14. Let X be the closure of ∪n∈N({1/n} × [0, 1/n]) in R2. Then it

is easy to see that X is hereditarily unicoherent and almost locally connected. Thus

Corollary 1.3 shows that C(X) is algebraically closed. In particular, C(X) is n-th

root closed for every n ∈ N.

Example 1.15. Let X be the closure of ∪n∈N({1/n} × [0, 1]) in R
2. Then it is

easy to verify that X is not almost locally connected. So, by Corollary 1.13, C(X)

is not n-th root closed for any n ≥ 2.
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Example 1.16. Let S1 be the unit circle. Then S1 is not hereditarily unicoher-

ent. So, by Corollary 1.13, C(S1) is not n-th root closed for any n ≥ 2.

Remark. By Theorem 1.12 and Corollary 1.13, if X is first countable, then

n-th root closedness is equivalent to square-root closedness and to algebraic closed-

ness. The same holds for locally connected X (see Corollary 1.2 and Remark in the

preceding section).

Remark. Let us consider the following two conditions:

(a) The set {fn : f ∈ C(X)} is uniformly dense in C(X) for every n ∈ N

(b) The set {fn : f ∈ C(X)} is uniformly dense in C(X) for some n ∈ N with

n ≥ 2.

The implications (2) in Theorem 1.12 ⇒ (a) ⇒ (b) is obviously true for any compact

Hausdorff space X. In the preceding section, it was shown that if X is locally

connected, then the implication (b) ⇒ (2) holds. For first countable X, however,

the situation is different. For example, let X be the closure of ∪n∈N({1/n} × [0, 1])

in R2. Then, from [13], we see that dimX = 1 and Ȟ1(X; Z) = 0. So, by Lemma

1.8, the set {fn : f ∈ C(X)} is uniformly dense in C(X) for every n ≥ 2. But, as

in Example 1.15, C(X) is not n-th root closed for any n ≥ 2.

Remark. From Theorem 1.12, we see that n-th root closedness for some n ≥ 2

implies m-th root closedness for all m ∈ N whenever X is first countable. The

implication is true for locally connected X (see Corollary 1.2 and Remark in the

preceding section). So, a natural question arises: is this implication true for all com-

pact Hausdorff spaces? Countryman, Jr. [5, Remarks (2)] noted that there exists a

compact Hausdorff space X, which is not first countable nor locally connected, with

the following property: there exists f ∈ C(X) such that f has a continuous 2n-th

root in C(X) for every n ∈ N but that no continuous fifth root. Here, continuous
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k-th root of f means a continuous function in C(X) whose k-th power equals f .

Recently, Kawamura and Miura [24] gave a negative answer to the question above.

More explicitly, they showed that for each pair of relatively prime positive integers

m and n, there exists a compact Hausdorff space X such that C(X) is n-th root

closed but not m-th root closed.



CHAPTER 2

On isomorphisms between algebras of continuous functions

1. Surjections on the algebras of continuous functions

which preserve peripheral spectrum

1.1. Introduction. For a locally compact Hausdorff space X, we denote by

C0(X) the Banach algebra of all complex-valued continuous functions on X which

vanish at infinity with supremum norm ‖ · ‖. Let T be a surjection from C0(X)

onto C0(Y ) and we do not assume that T is linear and multiplicative. Molnár [31]

proved that for a first countable compact Hausdorff space X, if T is a surjection

from C0(X) onto itself which satisfies the ‘range multiplicativity’ condition :

(
TfTg

)
(X) = (fg)(X) (f, g ∈ C0(X)),

where ·̄ denotes complex conjugate, then there exist a homeomorphism φ from X

onto itself and a continuous function τ from X into the unit circle S1 such that

Tf(x) = τ (x)f(φ(x)) (x ∈ X, f ∈ C0(X)). In particular, if T (1) = 1, then T is

an algebra *-isomorphism. Hatori-Miura-Takagi [14] have generalized this result for

the case of compact Hausdorff spaces which need not be first countable.

In this section, we will replace the ‘range multiplicativity’ condition for T in

above result by a ‘peripheral range multiplicativity’ condition which is inspired by

a result of Luttman and Tonev [27]. And we give an extension of above result for

the case of arbitrary locally compact Hausdorff spaces.

24
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1.2. Results. Let X be a locally compact Hausdorff space. Let f ∈ C0(X).

The peripheral range of f , denoted by Ranπ(f), is defined as follows:

Ranπ(f) = {f(x) : |f(x)| = ‖f‖, x ∈ X}.

A net {eλ}λ∈Λ in C0(X) which satisfies lim
λ∈Λ

‖eλf − f‖ = 0 for every f ∈ C0(X) is

called an approximate identity. C0(X) always contains an approximate identity.

Our main result is the following.

Theorem 2.1. Let X and Y be locally compact Hausdorff spaces, which need not

be compact. If T is a surjection from C0(X) onto C0(Y ) which satisfies the following

condition :

(∗) Ranπ
(
TfTg

)
= Ranπ(fg) (f, g ∈ C0(X)),

then there exist a homeomorphism φ from Y onto X and a continuous function τ

from Y into the unit circle S1 such that

Tf(y) = τ (y)f(φ(y)) (y ∈ Y, f ∈ C0(X)).

In particular, if T preserves an approximate identity, then T is an isometric algebra

*-isomorphism.

Let X be a locally compact Hausdorff space. For r > 0, we write Dr = {z ∈

C : |z| < r}. For each x ∈ X we denote by Px the set of all peak functions in

C0(X) peaking at x, that is, Px = {f ∈ C0(X) : f(X) ⊂ D1 ∪ {1}, f(x) = 1} 1.

Let PX = ∪x∈XPx. In other words, PX is the set of all peak functions in C0(X).

For each x ∈ X, PPx = {f ∈ C0(X) : f(x) = ‖f‖ = 1}. Let PPX = ∪x∈XPPx .

Clearly Px ⊂ PPx, so PX ⊂ PPX. For f ∈ PX , the level set of f is defined by

Lf = {x ∈ X : f(x) = 1}.

1An element in Px may have other points where it takes the value one; not merely at the point
x.
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In the following four lemmata, X is assumed to be a locally compact Hausdorff

space.

Lemma 2.2. Let f ∈ C0(X) and x0 ∈ X. If λ = f(x0) and λ 6= 0, then there

exists u ∈ Px0 such that (1/λ)fu ∈ Px0.

Proof. Suppose λ 6= 0. Put F0 = {x ∈ X : |f(x) − λ| ≥ |λ|/2} and

Fn =

{
x ∈ X :

|λ|

2n+1
≤ |f(x) − λ| ≤

|λ|

2n

}
(n = 1, 2, . . . ).

Clearly, F0, F1, . . . , Fn, . . . are all closed subsets of X which do not contain x0. By

Urysohn’s lemma, for each n ∈ {0, 1, 2, . . . } there exists un ∈ Px0 such that un = 0

for all x ∈ Fn. Now we put

u = u0

∞∑

n=1

un
2n
.

The above series is majorized by the convergent series
∑

1
2n , so u is well defined

and u ∈ C0(X). Moreover it is easy to see that u ∈ Px0. We put g = (1/λ)fu. To

verify g ∈ Px0 , pick x ∈ X. If x ∈ F0, since u(x) = 0, g(x) = 0. If x ∈ Fn for some

n ∈ {1, 2, . . . }, then

|g(x)| ≤
1

|λ|
|f(x)|

∣∣∣∣∣
∑

k 6=n

uk
2k

∣∣∣∣∣

≤
1

|λ|
(|f(x) − λ| + |λ|)

(
1 −

1

2n

)

≤
1

|λ|

(
|λ|

2n
+ |λ|

)(
1 −

1

2n

)

< 1.

If x ∈ X\ ∪∞
n=0 Fn, then f(x) = λ and so g(x) = u(x) ∈ D1 ∪ {1}. Thus we obtain

g(X) ⊂ D1 ∪ {1}. In particular, g(x0) = u(x0) = 1. Hence g ∈ Px0 and the proof is

complete. �

Lemma 2.3. For f, g ∈ C0(X), f = g if and only if Ranπ(fu) = Ranπ(gu) for

every u ∈ PX .
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Proof. The ‘only if’ part is trivial. To show the ‘if’ part, we assume that

f 6= g and will find a peak function u such that Ranπ(fu) 6= Ranπ(gu). There is an

element x0 ∈ X such that f(x0) 6= g(x0). Without loss of generality, we can assume

that |f(x0)| ≤ |g(x0)|.

If f(x0) 6= 0, then Lemma 2.2 gives a function u ∈ Px0 such that (1/λ)fu ∈ Px0,

where λ = f(x0). Then fu(X) ⊂ D|λ| ∪ λ, so Ranπ(fu) = {λ}. However |λ| ≤

|g(x0)| = |(gu)(x0)| and (gu)(x0) = g(x0) 6= λ, so Ranπ(fu) 6= Ranπ(gu).

On the other hand, if f(x0) = 0, then g(x0) 6= 0. We put r = |g(x0)| and

F = {x ∈ X : |f(x)| ≥ r}. Since F is a closed subset of X with x0 /∈ F , by

Urysohn’s lemma, there exists u ∈ Px0 such that u(x) = 0 for x ∈ F . It follows that

|(fu)(x)| = |f(x)||u(x)|

{
= 0 (x ∈ F )

≤ |f(x)| < r (x ∈ X\F ).

Hence for each x ∈ X, |(fu)(x)| < r = |g(x0)| = |(gu)(x0)|. This implies that

Ranπ(fu) 6= Ranπ(gu). Thus the proof is complete. �

Lemma 2.4. Let f, g ∈ PX . Then Lf ⊂ Lg if and only if 1 ∈ (gu)(X) for each

u ∈ PX with 1 ∈ (fu)(X).

Proof. Suppose Lf ⊂ Lg and assume that u ∈ PX satisfies 1 ∈ (fu)(X).

f(x)u(x) = 1 for some x ∈ X. Since f, u ∈ PX , f(x) = u(x) = 1. Hence x ∈ Lf ⊂

Lg. This implies g(x) = 1 and g(x)u(x) = 1. Thus 1 ∈ (gu)(X) and the ‘only if’

part is proved.

Suppose Lf 6⊂ Lg. Then we find an element x0 ∈ Lf \ Lg. Since Lg is a closed

subset with x0 6∈ Lg, there is a peak function u ∈ Px0 such that u vanishes on Lg by

Urysohn’s lemma. Thus we have

1 ∈ (fu)(X) and 1 6∈ (gu)(X),

because f(x0)u(x0) = 1 and (gu)(X) ⊂ D1. The ‘if’ part is proved. �
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Lemma 2.5. Let x, y ∈ X and α, β ∈ C. If αPP x ⊂ βPPy , then x = y and

α = β.

Proof. If x = y and α 6= β, then it is clear that αPP x 6⊂ βPPy. We assume that

x 6= y. Then by Urysohn’s lemma, for each α and β, there is a function u ∈ αPP x

such that u(y) = 0. Thus u ∈ αPP x\βPPy. Hence αPP x 6⊂ βPPy. �

1.3. A proof of Theorem 2.1.

Claim 1. T is injective.

Proof. Suppose that Tf = Tg for f, g ∈ C0(X). Then for each u ∈ P , we

apply (∗) to see that

Ranπ(fu) = Ranπ
(
TfT ū

)
= Ranπ

(
TgT ū

)
= Ranπ(gu).

Therefore by Lemma 2.3 we obtain f = g. Hence T is injective. �

Since T is a bijection from C0(X) onto C0(Y ), we can consider its inverse T−1

from C0(Y ) onto C0(X). Clearly, T−1 has the similar property as T :

Ranπ
(
T−1fT−1g

)
= Ranπ(fḡ) (f, g ∈ C0(Y )).

Claim 2. Let |Tf |, |Tg| ∈ PY . If L|Tf | ⊂ L|Tg|, then L|f | ⊂ L|g|.

Proof. For |Th| ∈ PY , we apply (∗) to see that Ranπ (|h|2) = Ranπ (|Th|2).

It follows from this that |f |, |g| ∈ PX . Hence L|Tf |, L|Tg|, L|f |, L|g| are all well

defined. Suppose L|Tf | ⊂ L|Tg| and assume that u ∈ PX with 1 ∈ (|f |u)(X). There

is an element x0 ∈ X such that |f(x0)|u(x0) = 1. Since |f |, u ∈ PX , |f(x0)| =

u(x0) = 1. We put λ = f(x0)u(x0). Then we see that |λ| = 1 and λ is contained

in Ranπ(fu), so in Ranπ
(
TfTu

)
. It follows that 1 ∈ Ranπ (|Tf ||Tu|). Since

|Tu| ∈ PY , 1 ∈ Ranπ(|Tg||Tu|) by Lemma 2.4. There is an element y0 ∈ Y such

that |Tg(y0)||Tu(y0)| = 1. We put γ = Tg(y0)Tu(y0). Then we see that |γ| = 1 and
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γ is contained in Ranπ
(
TgTu

)
, so in Ranπ(gu). Therefore 1 ∈ Ranπ(|g|u), since

u ∈ PX . We apply Lemma 2.4 to conclude that L|f | ⊂ L|g|. �

Claim 3. For each y ∈ Y , there exist x ∈ X and λx ∈ S1 such that T−1(αPP y) ⊂

αλxPPx holds for all α ∈ S1.

Proof. Fix y0 ∈ Y . We put

L =
⋂

α∈S1

f∈T−1(αPPy0)

L|f |.

First we observe that L is non-empty. To see this, it is enough to show that the

family {L|f | : f ∈ T−1(αPPy0), α ∈ S1} has the finite intersection property, since

each L|f | is compact. Pick α1, . . . , αn ∈ S1 and f j1 , . . . , f
j
m(j) ∈ T−1(αjPPy0) for

j = 1, . . . , n. Since T is surjective, there exists g ∈ C0(X) such that

Tg =
∏

1≤j≤n
1≤k≤m(j)

Tf jk .

Since
∣∣Tf jk

∣∣ ∈ Py0 , |Tg| ∈ Py0 . And L|Tg| ⊂ L|Tf j

k|
. Thus by Claim 2 we see that

L|g| ⊂ L|f j
k|

, namely L|g| ⊂ L|f1
1 |
∩· · ·∩L˛̨

˛fn
m(n)

˛̨
˛
. Since 1 ∈ Ranπ(|Tg|2) = Ranπ(|g|2),

L|g| is non-empty and so is L|f1
1 |
∩· · ·∩L˛̨

˛fn
m(n)

˛̨
˛
. Thus {L|f | : f ∈ T−1(αPPy0), α ∈ S1}

has the finite intersection property. Hence L is non-empty.

Pick an element x0 from L arbitrarily. Next we observe that αf(x0) is uniquely

determind for f ∈ T−1(αPP y0) with α ∈ S1. Let f ∈ T−1(αPP y0), g ∈ T−1(βPPy0)

with α, β ∈ S1. We show that αf(x0) = βg(x0). Let ε > 0 be given. Since Tf and

Tg are continuous, there exists an open neighborhood Gε of y0 such that

Tf(Gε) ⊂ {z ∈ C : |z − α| < ε},

T g(Gε) ⊂ {z ∈ C : |z − β| < ε}.

Y \Gε is a closed subset of Y which does not contain y0. By Urysohn’s lemma, there

exists Hε ∈ Py0 such that H−1
ε (1) ⊂ Gε. Since T is surjective, there exists hε in

C0(X) such that Thε = Hε. Thε ∈ Py0 ⊂ PP y0 . Thus |hε(x0)| = 1 and ‖hε‖ = 1.
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Now we consider the function fhε. Since Tf ∈ αPP y0 with α ∈ S1, |f(x0)| = 1 and

‖f‖ = 1. Thus
∥∥fhε

∥∥ =
∣∣∣f(x0)hε(x0)

∣∣∣ = 1. It follows from this that

f(x0)hε(x0) ∈ Ranπ
(
fhε
)

= Ranπ
(
TfThε

)
= Ranπ(TfHε)

⊂ {z ∈ C : |z − α| < ε},

since H−1
ε (1) ⊂ Gε. Thus

∣∣∣f(x0)hε(x0) − α
∣∣∣ < ε. Hence

(1) ᾱf(x0)hε(x0) −→ 1 as ε → 0.

We repeat the similar argument for ghε, we obtain

(2) βg(x0)hε(x0) −→ 1 as ε → 0.

It follows from (1) and (2) that αf(x0) = βg(x0). Now we put λx0 this unique

number αf(x0), then it is easily seen that T−1(αPPy0) ⊂ αλx0PPx0 for all α ∈ S1.

Thus the proof is complete. �

Claim 4. For each y ∈ Y , there corresponds a unique pair of x ∈ X and γx ∈ S1

such that T (αPPx) = αγxPPy for all α ∈ S1.

Proof. Fix y0 ∈ Y . By Claim 3, there exist x0 ∈ X and λx0 ∈ S1 such that

(3) T−1(αPPy0) ⊂ αλx0PP x0 (α ∈ S1).

Since T−1 has the similar property as T , we can apply Claim 3 to T−1 and find an

element y1 ∈ Y and a complex number λy1 ∈ S1 such that

(4) T (αPPx0) ⊂ αλy1PPy1 (α ∈ S1).

It follows from (3) and (4) that

(5) αPPy0 = T (T−1(αPPy0)) ⊂ T (αλx0PPx0) ⊂ αλx0λy1PPy1

for all α ∈ S1. Put α = 1, then (5) gives PP y0 ⊂ λx0λy1PP y1. This relation implies

that y0 = y1 and λx0λy1 = 1 by Lemma 2.5. Here we put γx0 = λx0 = λy1 , then it
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follows from (5) that

(6) T (αPPx0) = αγx0PP y0 (α ∈ S1).

To show the uniqueness of x0 and γx0 , suppose that

(7) T (αPPx1) = αγx1PPy0 (α ∈ S1)

for some pair of x1 ∈ X and γx1 ∈ S1. In (6) and (7), we put α = γx0 and α = γx1

respectively, then we see that

γx0PPx0 = T−1(PP y0) = γx1PPx1.

By Lemma 2.5, we see that x0 = x1 and γx0 = γx1. �

Claim 4 gives two maps φ : Y → X and τ : Y → S1 which satisfy that

(♯) T
(
αPPφ(y)

)
= ατ (y)PPy (y ∈ Y, α ∈ S1).

Claim 5. For every f ∈ C0(X), Tf(y) = τ (y)f(φ(y)) holds for all y ∈ Y .

Proof. Let f ∈ C0(X) and y0 ∈ Y . Put α = f(φ(y0)) and β = Tf(y0). We

show that τ (y0)α = β.

First we assume that α 6= 0 and β 6= 0. Since α 6= 0, by Lemma 2.2, there

exists u ∈ Pφ(y0) such that (1/α)fu ∈ Pφ(y0). Since u ∈ Pφ(y0) ⊂ PPφ(y0), it follows

from (♯) that Tu ∈ τ (y0)PPy0 . Applying (∗), we also have that Ranπ
(
TfTu

)
=

Ranπ(fu) = {α}, since (1/α)fu ∈ Pφ(y0). Then we see that

(8) βτ (y0) = Tf(y0)Tu(y0) ∈
(
TfTu

)
(Y ) ⊂ D|α| ∪ {α}

On the other hand, since β 6= 0, by Lemma 2.2, there exists v ∈ Py0 such that

(1/β)(Tf)v ∈ Py0 . By (♯), there exists w ∈ PPφ(y0) such that Tw = τ (y0)v. It

follows from this that

Ranπ(fw) = Ranπ
(
TfTw

)
= Ranπ

(
Tfτ (y0)v

)
=
{
βτ (y0)

}
.

Combining (8), we see that
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βτ (y0) ∈ D|α| ∪ {α} and α ∈ D|β| ∪
{
βτ (y0)

}
.

Therefore α = βτ (y0), that is, τ (y0)α = β.

Next we consider the case α = 0. Let ε > 0 be given. Put F = {x ∈ X : |f(x)| ≥

ε}. Since F is a closed subset of X which does not contain φ(y0), by Urysohn’s

lemma, there exists u ∈ Pφ(y0) such that u vanishes on F . By (♯), Tu ∈ τ (y0)PPy0 .

So Tu(y0) = τ (y0). Then we see that

|(fu)(x)| = |f(x)||u(x)|

{
= 0 (x ∈ F )

≤ |f(x)| < ε (x ∈ X\F ).

Thus (fū)(X) ⊂ Dε. Combining (∗), we see that
(
TfTu

)
(Y ) ⊂ Dε. So

βτ (y0) = Tf(y0)Tu(y0) ∈
(
TfTu

)
(Y ) ⊂ Dε.

Thus |β| =
∣∣∣βτ (y0)

∣∣∣ < ε. Since ε is arbitrary, we conclude that β = 0 = τ (y0)α.

Finally we consider the case β = 0. Let ε > 0 be given. Put F = {y ∈ Y :

|Tf(y)| ≥ ε}. F is a closed subset of Y which does not contain y0, so by Urysohn’s

lemma, there exists u ∈ Py0 such that u vanishes on F . Then, it is easy to see that

∣∣∣Tf(y)τ (y0)u(y)
∣∣∣ < ε

for every y ∈ Y . By (♯), there exists v ∈ PPφ(y0) such that Tv = τ (y0)u. It follows

from this that

(TfTv)(Y ) =
(
Tfτ (y0)u

)
(Y ) ⊂ Dε.

Combining (∗), we see that (fv̄)(X) ⊂ Dε. So

α = f(φ(y0)) = f(φ(y0))v(φ(y0)) ∈ (fv̄)(X) ⊂ Dε.

Hence |α| < ε. Since ε is arbitrary, we see that α = 0 and conclude that τ (y0)α =

0 = β. �

Since T−1 has the similar property as T , we can apply above argument to T−1

and obtain two maps ψ : X → Y and η : X → S1 such that

(♮) T−1
(
αPPψ(x)

)
= αη(x)PPx (x ∈ X, α ∈ S1),
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and T−1 is presented as follows :

(
T−1f

)
(x) = η(x)f(ψ(x)) (f ∈ C0(Y ), x ∈ X).

From (♯) and (♮), we see that for each y ∈ Y

PPψ(φ(y)) = T
(
T−1

(
PPψ(φ(y))

))

= T
(
η(φ(y))PPφ(y)

)

= η(φ(y))τ (y)PPy.

Applying Lemma 2.5, we see that ψ(φ(y)) = y for every y ∈ Y . Thus ψ ◦ φ is the

identity mapping on Y . In a similar way, we see that φ ◦ ψ is the identity mapping

on X. These facts imply that φ is a bijection from Y onto X and φ−1 = ψ.

Pick y ∈ Y and let {yλ}λ∈Λ be a convergent net in Y with lim
λ∈Λ

yλ = y. Then for

every f ∈ C0(X), we see that

lim
λ∈Λ

|f |(φ(yλ)) = lim
λ∈Λ

|τ (yλ)f(φ(yλ))| = lim
λ∈Λ

|Tf(yλ)| = |Tf(y)|

= |τ (y)f(φ(y))| = |f |(φ(y)).

Thus φ(yλ) converges to φ(y) with respect to the weak topology generated by all

|f |’s. Since this weak topology is equal to the given topology on X by complete

regularity of X, φ is continuous on Y . We can apply the similar argument to

ψ = φ−1 and see that φ−1 is also continuous. Hence φ is a homeomorphism from

Y onto X. Pick an element h ∈ C0(X) such that h(φ(y)) 6= 0. Without loss of

generarity, we assume that h(φ(yλ)) 6= 0 for λ ∈ Λ. Then we see that limλ∈Λ τ (yλ) =

limλ∈Λ Th(yλ)h(φ(yλ))
−1 = Th(y)h(φ(y))−1 = τ (y). Thus τ is continuous.

Suppose that T preserves an approximate identity {eλ}λ∈Λ of C0(X). For each

x ∈ X, we can find a continuous function fx ∈ C0(X) such that fx(x) = 1. Then we

see that |eλ(x)− 1| = |eλ(x)fx(x)− fx(x)| ≤ ‖eλfx− fx‖. Since lim
λ∈Λ

‖eλfx− fx‖ = 0,

we obtain lim
λ∈Λ

eλ(x) = 1. Since {T (eλ)} is an approximate identity, in a similar

way, we see that lim
λ∈Λ

(Teλ)(x) = 1. Then we see that for each y ∈ Y , τ (y) =
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lim
λ∈Λ

τ (y)eλ(φ(y)) = lim
λ∈Λ

(Teλ)(y) = 1. Thus τ (y) = 1 for every y ∈ Y . It follows from

this that Tf = f ◦φ for f ∈ C0(X). Hence T is an isometric algebra *-isomorphism.

2. Norm-preserving surjections on algebras

of continuous functions

2.1. Introduction. There are many papers dealing with spectrum-preserving

mappings between Banach algebras. Molnár [31] initiated the study of multiplica-

tively spectrum-preserving mappings and essentially showed that a unit preserving

surjection T : C(X) → C(X) for a first countable compact Hausdorff space X is an

algebra isomorphism if

σ(TfTg) = σ(fg)

holds for every pair of f and g in C(X). Rao and Roy [35] dealt with uniform

algebras on compact Hausdorff spaces which are regarded as the maximal ideal

space and generalized the result of Molnár. Hatori, Miura and Takagi [14] extended

the result of Molnár by replacing the spectrum with the range and showed that a

unit preserving surjection T : A → B between two uniform algebras is an algebra

isomorphism if

Ran(TfTg) = Ran(fg)

holds for every pair of f and g inA, where Ran(h) denotes the range of h. Recall that

the peripheral range, Ranπ(f), of f in a uniform algebra is defined by Ranπ(f) =

{z ∈ Ran(f) : |z| = ‖f‖}, where ‖f‖ is the supremum norm of f . Luttman and

Tonev [27] extended the result of Hatori, Miura and Takagi by replacing the ranges

with the peripheral ranges and showed that a unit preserving surjection T : A → B

is an algebra isomorphism if T is Ranπ-multiplicative, i.e.

Ranπ(TfTg) = Ranπ(fg) (f, g ∈ A).
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Lambert, Luttman and Tonev [26] considered multiplicatively norm-preserving map-

pings and showed that if a map T : A → B preserves the class of peak functions

and is norm-multiplicative, i.e.

‖TfTg‖ = ‖fg‖ (f, g ∈ A),

then there exists a homeomorphism φ : δA→ δB so that the equality |(Tf)(φ(x))| =

|f(x)| holds for every f ∈ A and all x in the Choquet boundary δA of A.

Molnár [31] also gave a characterization on algebra *-isomorphisms: A unit

preserving surjection T : C(X) → C(X) for a first countable compact Hausdorff

space X is an algebra *-isomorphism if

σ
(
TfTg

)
= σ(fg)

holds for every pair of f and g in C(X). Hatori, Miura and Takagi [15] generalized

this result for certain semisimple commutative Banach *-algebras. In the preced-

ing section, the result of Molnár was extended by considering the peripheral ranges

instead of the spectra and in particular, it was proved that a unit preserving sur-

jection T : C(X) → C(Y ) for compact Hausdorff spaces X and Y (not necessarily

first countable) is an algebra *-isomorphism if

Ranπ
(
TfTg

)
= Ranπ(fg)

holds for every pair f and g in C(X).

In this section we consider a further extension; multiplicatively norm-preserving

mappings. First of all one can modify an example of Lambert, Luttman and Tonev

[26, Example 1] and exhibit a mapping which is not linear while the equality

∥∥TfTg
∥∥ = ‖fg‖

holds for every pair of f and g in C(X). In the following we mainly consider the

condition
∥∥TfTg − 1

∥∥ = ‖fg − 1‖ (f, g ∈ C(X))
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on a mapping T from C(X) onto C(Y ). If T satisfies the hypothesis

σ(TfTg) = σ(fg) (f, g ∈ C(X)),

then T satisfies the above condition.

2.2. Results. Our main result is the following.

Theorem 2.6. Let X, Y be two compact Hausdorff spaces. If a surjection T :

C(X) → C(Y ) satisfies the conditions

(a) Tλ = λ for λ ∈ {±1,±i} and

(b)
∥∥TfTg − 1

∥∥ = ‖fg − 1‖ for all f, g ∈ C(X),

then there exists a homeomorphism φ from Y onto X such that Tf = f ◦φ for every

f in C(X); in particular, T is an isometric algebra *-isomorphism.

Let X be a compact Hausdorff space. We denote by σπ(f) the peripheral

spectrum of an element f ∈ C(X):

σπ(f) = {z ∈ σ(f) : |z| = r(f)},

where r(f) denotes the spectral radius of f . Clearly, σπ(f) = Ranπ(f). We denote

by P−1
X the set of all peak functions in C(X)−1, that is, P−1

X = {u ∈ C(X)−1 :

σπ(u) = {1}}. For each x ∈ X, P−1
x = {u ∈ P−1

X : u(x) = 1} 2. Clearly, P−1
X =

∪x∈XP−1
x . For x ∈ X, set PP−1

x = C(X)−1 ∩ {f ∈ C(X) : |f(x)| = 1 = ‖f‖}.

Clearly, PP−1
x properly contains P−1

x .

Lemma 2.7. Let x0 ∈ X and let F be a closed subset of X with x0 6∈ F . Then

for each ε > 0 there exists u ∈ P−1
x0

such that |u(x)| < ε for x ∈ F .

Proof. Let ε > 0 be given. Since {x0} and F are disjoint closed subsets of X,

by Urysohn’s lemma there exists a continuous function v1 : X → [0, 1] such that

2An element in P
−1

x
may have other points where it takes the value one; not merely at the

point x.
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v1(x0) = 1 and v1 = 0 on F . Let v2 = 2−1(1 + v1). Then v2 ∈ P−1
x0

and v2 = 2−1 on

F . We see that u = vn2 has the required properties for some sufficiently large n. �

On the following lemma, the same result for a not necessary invertible, peak

function is proved in [26] for arbitrary uniform algebra.

Lemma 2.8. Let f ∈ C(X) and x0 ∈ X. If λ = f(x0) and λ 6= 0, then there

exists u ∈ P−1
x0

such that σπ((1/λ)fu) = {1}.

Proof. Suppose λ 6= 0. Let F0 = {x ∈ X : |f(x) − λ| ≥ 2−1|λ|} and

Fn = {x ∈ X : 2−n−1|λ| ≤ |f(x) − λ| ≤ 2−n|λ|}

for n = 1, 2, · · · . Clearly, F0, F1, · · · are closed subsets of X that do not contain

x0; so by Urysohn’s lemma, there exist continuous functions v0, v1, · · · such that

0 ≤ vj ≤ 1, vj(x0) = 1 and vj = 0 on Fj for j = 0, 1, · · · . For each j we take a

positive integer nj so that uj = 2−nj (1 + vj)
nj may have the property: If j = 0,

|u0(x)| <
|λ|

‖f‖
(x ∈ F0)

and if j > 0,

|uj(x)| <
1

2j + 1
(x ∈ Fj).

Now put u = u0

∑∞
n=1 2−nun. This series is majorized by the convergent series

∑
2−n, so u is well defined and u ∈ C(X). Moreover, u is easily seen to be a

function in P−1
x0

.

Put g = (1/λ)fu. To verify σπ(g) = {1}, pick x ∈ X. If x ∈ F0, then we see

|g(x)| =
1

|λ|
|f(x)||u0(x)|

∞∑

n=1

|un(x)|

2n
<

1

|λ|
‖f‖

|λ|

‖f‖

∞∑

n=1

1

2n
= 1.
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If x ∈ Fn for some positive integer n, then

|g(x)| =
1

|λ|
|f(x)||u0(x)|

(
|un(x)|

2n
+
∑

j 6=n

|uj(x)|

2j

)

≤
1

|λ|
(|f(x) − λ| + |λ|)

(
|un(x)|

2n
+
∑

j 6=n

1

2j

)

<
1

|λ|

(
|λ|

2n
+ |λ|

)(
1

2n
1

2n + 1
+ 1 −

1

2n

)
= 1.

If x ∈ X \ ∪∞
j=0Fj, then f(x) = λ and g(x) = u(x) ∈ D ∪ {1}, where D = {z ∈

C : |z| < 1}. Thus g(X) ⊂ D ∪ {1}. In particular g(x0) = u(x0) = 1. Hence

σπ(g) = {1}. This completes the proof. �

Lemma 2.9. For x1, x2 ∈ X, x1 = x2 if and only if PP−1
x1

⊂ PP−1
x2

.

Proof. The ‘only if’ part is trivial. We will show the ‘if’ part. Assume that

x1 6= x2. Then, by Lemma 2.7, there exists u ∈ P−1
x1

such that |u(x2)| < 1. Thus we

see that u ∈ PP−1
x1

\ PP−1
x2

, that is, PP−1
x1

6⊂ PP−1
x2

. �

2.3. A proof of Theorem 2.6. Throughout this section, T denotes a surjec-

tion which satisfies the hypotheses of Theorem 2.6:

(a) Tλ = λ for λ ∈ {±1,±i} and

(b)
∥∥TfTg − 1

∥∥ = ‖fg − 1‖ for all f, g ∈ C(X),

Claim 1. T (C(X)−1) = C(Y )−1.

Proof. Let f ∈ C(X)−1. Then we see that
∥∥∥Tf T (f−1) − 1

∥∥∥ = ‖ff−1−1‖ = 0,

thus Tf T (f−1) = 1. Hence Tf ∈ C(Y )−1. Let f ∈ C(Y )−1. Since T is surjective,

there is f and g in C(X) such that Tf = f and Tg = f−1. Then we see that

‖fg − 1‖ =
∥∥TfTg − 1

∥∥ = ‖f f−1 − 1‖ = 0. Thus we have that fg = 1, and

f ∈ C(X)−1. �

Claim 2. T is injective.
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Proof. Suppose Tf = Tg for f, g ∈ C(X). We will show that f = g. Let

x ∈ X. First we consider the case where f(x) 6= 0 and g(x) 6= 0. By Lemma

2.8, there exist uf , ug ∈ P−1
x such that σπ(fuf ) = {f(x)} and σπ(gug) = {g(x)}.

Let u = ufug. Then u is an element in P−1
x such that σπ(fu) = {f(x)} and

σπ(gu) = {g(x)}. Then we see that

2 =

∥∥∥∥f
−1

f(x)
u− 1

∥∥∥∥ =

∥∥∥∥∥Tf T
(

−u

f(x)

)
− 1

∥∥∥∥∥

=

∥∥∥∥∥Tg T
(

−u

f(x)

)
− 1

∥∥∥∥∥ =

∥∥∥∥g
−1

f(x)
u− 1

∥∥∥∥

≤
1

|f(x)|
‖gu‖+ 1 =

|g(x)|

|f(x)|
+ 1.

Therefore |f(x)| ≤ |g(x)| holds. In a similar way, we see that |g(x)| ≤ |f(x)|.

So we have |f(x)| = |g(x)|. This fact implies that
∥∥∥g −1

f(x)
u
∥∥∥ = 1. It follows that

−1 ∈ σπ
(
g −1
f(x)

u
)
, since

∥∥∥g −1
f(x)

u− 1
∥∥∥ = 2. Thus f(x) ∈ σπ(gu) = {g(x)}, and

f(x) = g(x).

Next we consider the case where f(x) = 0 or g(x) = 0. Without loss of generality

we may assume f(x) = 0. We will show that g(x) = 0. Suppose not. Let ε be a

positive number with ε < |g(x)|. Let F = {x′ ∈ X : |f(x′)| ≥ ε}. Since F is a

closed subset of X with x 6∈ F , by Lemma 2.7 there exists uf ∈ P−1
x such that

|uf(x′)| < ε(‖f‖+1)−1 for all x′ ∈ F . We have that |fuf | < ε on X. Since g(x) 6= 0,

by Lemma 2.8 there exists ug ∈ P−1
x such that σπ(gug) = {g(x)}. Let u = ufug.

Then u is an element of P−1
x such that |fu| < ε on X and σπ(gu) = {g(x)}. Choose

α ∈ C such that |α| = 1 and (αgu)(x) = −|g(x)|. Then we see that

|g(x)| + 1 = ‖αgu− 1‖ =
∥∥∥Tg T (αu) − 1

∥∥∥

=
∥∥∥Tf T (αu) − 1

∥∥∥ = ‖αfu − 1‖

≤ 1 + ε.
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Thus we have |g(x)| ≤ ε. This contradicts ε < |g(x)|. Hence g(x) = 0. This

completes the proof. �

By Claim 2, we can consider the inverse T−1 from C(Y ) onto C(X). Clearly

T−1 has the same properties as T :

(a’) T−1λ = λ (λ ∈ {±1,±i}),

(b’)
∥∥∥T−1fT−1g − 1

∥∥∥ = ‖f g − 1‖ (f, g ∈ C(Y )).

Claim 3. If f, g ∈ C(X)−1, then the equation
∥∥Tf Tg

∥∥ = ‖f g‖ holds; in partic-

ular, ‖Tf‖ = ‖f‖ holds for every f ∈ C(X)−1. Since |zw| = |zw| for any z, w ∈ C,

as a consequence of it T is norm-multiplicative on C(X)−1, that is, ‖TfTg‖ = ‖fg‖

for every pair f and g in C(X)−1.

Proof. Let f, g ∈ C(X)−1. We will show that ‖f g‖ ≤
∥∥Tf Tg

∥∥. From Claim 1,

Tf, T g ∈ C(Y )−1. Let Kn = T (nf)(Tf)−1 for n = 1, 2, · · · . In the proof of Claim 1,

we have shown that (Tf)−1 = T (f−1). It follows that Kn = T (nf)T (f−1). Then we

have that ‖Kn‖ ≤ n for each n, since ‖Kn‖−1 ≤ ‖Kn−1‖ =
∥∥∥T (nf)T (f−1) − 1

∥∥∥ =

‖(nf)f−1 − 1‖ = n− 1. For each n we have

n‖f g‖ − 1 ≤ ‖(nf) g − 1‖ =
∥∥T (nf)Tg − 1

∥∥

≤
∥∥T (nf)Tg

∥∥+ 1 ≤ ‖Kn‖
∥∥Tf Tg

∥∥+ 1.

Since ‖Kn‖ ≤ n for every n, it follows that

‖f g‖ −
1

n
≤
∥∥Tf Tg

∥∥+
1

n
.

Letting n tend to ∞, gives ‖f g‖ ≤
∥∥Tf Tg

∥∥. Apllying a similar argument to T−1,

yields
∥∥Tf Tg

∥∥ ≤ ‖f g‖. Hence
∥∥Tf Tg

∥∥ = ‖f g‖ holds for every pair f and g in

C(X)−1. �

Claim 4. If f and g are elements in C(X)−1 which satisfies that ‖Tf‖ = 1 =

‖Tg‖ and |Tf |−1(1) ⊂ |Tg|−1(1), then |f |−1(1) ⊂ |g|−1(1).
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Proof. We assume that |Tf |−1(1) ⊂ |Tg|−1(1). We will show that |f |−1(1) ⊂

|g|−1(1). Suppose not. Then there exists x ∈ X such that x ∈ |f |−1(1) \ |g|−1(1).

By Claim 3 we have that ‖f‖ = ‖Tf‖ = 1 and ‖g‖ = ‖Tg‖ = 1. |g|−1(1) is a closed

subset of X which does not contain x. By Lemma 2.7 there exists u ∈ P−1
x such that

|u(x′)| < 1 for x′ ∈ |g|−1(1). Then we have that |ug| < 1 on X, that is, ‖ug‖ < 1.

Then we have

(1)
∥∥TuTg

∥∥ = ‖ug‖ = ‖ug‖ < 1.

On the other hand, since
∣∣(uf )(x)

∣∣ = 1 and ‖f‖ = 1 = ‖u‖, we have
∥∥TuTf

∥∥ =
∥∥uf

∥∥ = 1. Hence there exists y ∈ Y such that |Tu(y)||Tf(y)| = 1. Since by

Claim 3 ‖Tu‖ = ‖u‖ = 1 = ‖Tf‖, we have |Tu(y)| = 1 = |Tf(y)|. This implies
∣∣(TuTg )(y)

∣∣= |Tu(y)||Tg(y)| = 1 because |Tf |−1(1) ⊂ |Tg|−1(1). Hence we have

that
∥∥TuTg

∥∥ = 1. This contradicts the inequality (1). �

We will construct a homeomorphism from Y onto X which satisfies the resulting

conditions of Theorem 2.6. Lambert, Luttman and Tonev [26] proved that if a

mapping T : A → B between two uniform algebras preserves the class of peak

functions and is norm-multiplicative, then there exists a homeomorphism φ : δA→

δB so that the equality |(Tf)(φ(x))| = |f(x)| holds for every f ∈ A and all x in the

Choquet boundary δA of A. A similar argument was used in [27, 35]. The idea of

our construction of a homeomorphism has the same vein. First, we will show that

there exists a homeomorphism φ from Y onto X such that |Tf(y)| = |f(φ(y))| holds

for every f ∈ C(X)−1 and y ∈ Y . Next, we will show that the indicated mapping

has the desired properties.

Claim 5. For each y ∈ Y , there corresponds a unique element x ∈ X such that

T
(
PP−1

x

)
= PP−1

y .
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Proof. Let y ∈ Y . First, we will show that there exsits x ∈ X such that

T−1
(
PP−1

y

)
⊂ PP−1

x . Set

Ly =
⋂

f∈T−1(PP
−1
y )

|f |−1(1).

Let f1, · · · , fn ∈ T−1
(
PP−1

y

)
. Let f = Tf1 · · ·Tfn and f = T−1f. Then we see that

f ∈ C(Y )−1 and |f(y)| = 1. Since ‖Tfj‖ = 1 for every j, we have that ‖f‖ = 1. Thus

by Claim 3, we have that ‖f‖ = ‖Tf‖ = ‖f‖ = 1. Thus |f |−1(1) is nonempty. Since

‖Tfj‖ = 1, we have that |Tf |−1(1) ⊂ |Tfj|−1(1) for every j. By Claim 4 we see that

|f |−1(1) ⊂ |fj|−1(1) for every j, that is, the intersection of all |fj|−1(1) contains the

non-empty set |f |−1(1). Thus the class
{
|f |−1(1) : f ∈ T−1

(
PP−1

y

)}
has the finite

intersection property. Since |g|−1(1) is compact for every g ∈ T−1
(
PP−1

y

)
, Ly is

non-empty. Take an element, say x, from Ly, then we see that T−1
(
PP−1

y

)
⊂ PP−1

x .

Secondly, we show that T
(
PP−1

x

)
= PP−1

y . Applying the above argument to

T−1, there exists y′ ∈ Y such that T
(
PP−1

x

)
⊂ PP−1

y′ because T−1 has tha same

properties as T . Since T is surjective, we have that PP−1
y = T

(
T−1

(
PP−1

y

))
⊂

T
(
PP−1

x

)
⊂ PP−1

y′ . By Lemma 2.9, we see that y = y′ and hence T
(
PP−1

x

)
= PP−1

y .

Finally, we show the uniqueness of x. Suppose that there is x′ ∈ X such that

T
(
PP−1

x′

)
= PP−1

y . Then the injectivity of T implies that PPx = T−1
(
PP−1

y

)
=

PP−1
x′ . Lemma 2.9 yields that x = x′. This completes the proof. �

By Claim 5, we can consider a mapping φ of Y into X such that T
(
PP−1

φ(y)

)
=

PP−1
y for every y ∈ Y .

Claim 6. φ is a homeomorphism from Y onto X such that |Tf(y)| = |f(φ(y))|

holds for every f ∈ C(X)−1 and y ∈ Y .

Proof. First, we will show that |Tf(y)| = |f(φ(y))| holds for every f ∈ C(X)−1

and y ∈ Y . Let f ∈ C(X)−1 and y ∈ Y . Then f(φ(y)) 6= 0. By Lemma 2.8, there
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exists an u ∈ P−1
φ(y) such that σπ(fu) = {f(φ(y))}. Thus

(2) ‖fu‖ = |f(φ(y))|.

Since P−1
φ(y) ⊂ PP−1

φ(y), by the definition of φ, we see that |Tu(y)| = 1 = ‖Tu‖. Since

f, u ∈ C(X)−1 and |Tu(y)| = 1, by Claim 3 we have that

‖fu‖ = ‖Tf Tu‖ ≥ |Tf(y)||Tu(y)| = |Tf(y)|.

This fact and the equality (2) imply that

(3) |Tf(y)| ≤ |f(φ(y))|.

Since Tf ∈ C(X)−1, Tf(y) 6= 0. By Lemma 2.8 there exists v ∈ P−1
y such that

σπ((Tf)v) = {Tf(y)}. Let v = T−1v. Then v is also in PP−1
y , thus |v(φ(y))| = 1

from the definition of φ. Since v ∈ C(Y )−1, we have that v ∈ C(X)−1 by Claim 1.

Thus by Claim 3 we have that |Tf(y)| = ‖(Tf)v‖ = ‖fv‖ ≥ |f(φ(y))|. This fact

and the inequality (3) imply that |Tf(y)| = |f(φ(y))|.

Secondly, we will show that φ is continuous. Let T1 be the given topology on X

and let {yα} be a convergent net in Y with lim yα = y. Then the first part shows

that lim |f(φ(yα))| = lim |Tf(yα)| = |Tf(y)| = |f(φ(y))| for every f ∈ C(X)−1.

Thus φ(yα) converges to φ(y) with respect to the weak topology T2 on X generated

by |C(X)−1| = {|f | : f ∈ C(X)−1}. The identity mapping of (X,T1) onto (X,T2)

is continuous, and (X,T2) is Hausdorff because |C(X)−1| separates the points of X;

since (X,T1) is compact, the mapping is a homeomorphism. Hence φ is continuous.

Finally, we will show that φ is a homeomorphism from Y onto X. Since T−1 has

the same properties as T , there exists a continuous mapping ψ from X into Y such

that T−1
(
PP−1

ψ(x)

)
= PP−1

x and |T−1f(x)| = |f(ψ(x))| for every f ∈ C(Y )−1. Let

y ∈ Y and f ∈ C(X)−1 with f = Tf . Then we have that

|Tf(y)| = |f(φ(y))| = |T−1f(φ(y))| = |f(ψ(φ(y)))|

= |Tf(ψ(φ(y)))|.
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Thus y = ψ(φ(y)), since |C(Y )−1| = |T (C(X)−1)| separates the points of Y . In a

similar way, we have x = φ(ψ(x)) for every x ∈ X. Hence φ is bijection from Y onto

X with φ−1 = ψ. Since ψ is continuous, φ is a homeomorphism from Y onto X. �

Claim 7. Tλ = λ holds for every λ ∈ S1, where S1 = {z ∈ C : |z| = 1}.

Proof. Let λ ∈ S1. We may assume that λ 6∈ {±1,±i}. From the condition

(b), we have that ‖|Tλ|2 − 1‖ =
∥∥TλTλ− 1

∥∥ =
∥∥λλ− 1

∥∥ = 0, thus |Tλ| = 1, or

equivalently, (Tλ)(Y ) ⊂ S1. Since T 1 = 1, we have

(4) ‖Tλ− 1‖ =
∥∥TλT 1 − 1

∥∥ =
∥∥λ 1 − 1

∥∥ = |λ− 1|.

Since T (−1) = −1, we have

(5) ‖Tλ+ 1‖ =
∥∥∥TλT (−1) − 1

∥∥∥ =
∥∥λ(−1) − 1

∥∥ = |λ+ 1|.

Since (Tλ)(Y ) ⊂ S1, (4) and (5) imply that (Tλ)(Y ) ⊂
{
λ, λ

}
. If Imλ > 0, the

condition T i = i gives

‖Tλ− i‖ =
∥∥TλT i− 1

∥∥ =
∥∥λ i− 1

∥∥ = |λ− i|.

This implies that (Tλ)(Y ) = {λ}, that is, Tλ = λ. If Imλ < 0, in a similar way, we

have that ‖Tλ+ i‖ = |λ+ i| because T (−i) = −i. It follows that Tλ = λ. Thus the

proof is complete. �

Claim 8. T
(
αP−1

φ(y)

)
= αP−1

y holds for every α ∈ S1 and y ∈ Y .

Proof. Let α ∈ S1. First, we will show that T
(
αP−1

X

)
= αP−1

Y . Let f ∈ P−1
X .

From Claim 7 we have

2 = ‖ − ααf − 1‖ =
∥∥∥T (αf)T (−α) − 1

∥∥∥

= ‖−α T (αf) − 1‖ .
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Thus α ∈ σπ(T (αf)) since ‖T (αf)‖ = ‖αf‖ = 1 by Claim 3. Let β ∈ σπ(T (αf)).

Claim 7 gives

2 =
∥∥−β T (αf) − 1

∥∥ =
∥∥∥T (−β)T (αf) − 1

∥∥∥

=
∥∥−βαf − 1

∥∥ .

Thus β ∈ σπ(αf) since ‖αf‖ = 1. Since σπ(αf) = {α}, we have that β = α

and σπ(T (αf)) = {α}. Thus T
(
αP−1

X

)
⊂ αP−1

Y . In a similar way, we have that

T−1
(
αP−1

Y

)
⊂ αP−1

X . Hence T
(
αP−1

X

)
= αP−1

Y .

Let y ∈ Y and f ∈ P−1
φ(y). From the above argument, we have that T (αf) ∈ αP−1

Y .

We show that T (αf)(y) = α. Since f ∈ C(X)−1, by Claim 3 and 6 we see that

|T (αf)(y)| = |αf(φ(y))| = 1 = ‖αf‖ = ‖T (αf)‖.

Thus we have T (αf)(y) = α. Since f ∈ P−1
φ(y) is arbitrary, we have that T

(
αP−1

φ(y)

)
⊂

αP−1
y . In a similar way, it holds for T−1 that T−1

(
αP−1

φ−1(x)

)
⊂ αP−1

x for every

x ∈ X. Let x = φ(y). Then T−1
(
αP−1

y

)
⊂ αP−1

φ(y), so we see that

αP−1
y = T

(
T−1

(
αP−1

y

))
⊂ T

(
αP−1

φ(y)

)
⊂ αP−1

y .

Thus we have that T
(
αP−1

φ(y)

)
= αP−1

y . �

Claim 9. If f ∈ C(X)−1, then Tf(y) = f(φ(y)) holds for every y ∈ Y .

Proof. Let f ∈ C(X)−1 and y ∈ Y . From Claim 6, we have |Tf(y)| =

|f(φ(y))|. Suppose Tf(y) 6= f(φ(y)). Since Tf(y) 6= 0, there exists u ∈ P−1
y

such that σπ((Tf)u) = {Tf(y)} by Lemma 2.8. Since T is surjective, there exists

u ∈ C(X) such that Tu = u. Since u is also in P−1
y , Claim 8 implies that u ∈ P−1

φ(y)

and σπ
(
Tf Tu

)
= σπ((Tf)u) = {Tf(y)}. Let α = −|f(φ(y))|−1f(φ(y)). Then

we have σπ
(
αTf Tu

)
= {α Tf(y)}. Our assumption Tf(y) 6= f(φ(y)) implies that

α Tf(y) 6= −|Tf(y)|. Thus we see that −|Tf(y)| 6∈
(
αTf Tu

)
(Y ). It follows that

(6)
∥∥αTf Tu− 1

∥∥ < |Tf(y)|+ 1.
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Since αTu ∈ αP−1
y , from Claim 8, there exists u′ ∈ P−1

φ(y) such that T (αu′) = α Tu.

Then we see that

∥∥α Tf Tu− 1
∥∥ =

∥∥∥Tf T (αu′) − 1
∥∥∥ =

∥∥αfu′ − 1
∥∥

≥
∣∣∣αf(φ(y))u′(φ(y)) − 1

∣∣∣ = | − |f(φ(y))| − 1|

= | − |Tf(y)| − 1| = |Tf(y)|+ 1.

Thus
∥∥αTf Tu− 1

∥∥ ≥ |Tf(y)| + 1. This contradicts the inequality (6). Thus we

have that Tf(y) = f(φ(y)). �

Claim 10. If f ∈ C(X), then Tf(y) = f(φ(y)) holds for every y ∈ Y . In

particular, T is an isometric algebra *-isomorphism from C(X) onto C(Y ).

Proof. First, we consider the case that f(φ(y)) 6= 0 and Tf(y) 6= 0. Using

Lemma 2.8, gives u1 ∈ P−1
φ(y) such that σπ(fu1) = {f(φ(y))}. Let α =−f(φ(y))|f(φ(y))|−1.

Then we have σπ(αfu1) = {−|f(φ(y))|}. Also, there exists u2 ∈ P−1
y such that

σπ((Tf)u2) = {Tf(y)}. Let u2 = T−1u2. Since u2 ∈ P−1
y , by Claim 8, u2 ∈ P−1

φ(y).

Thus we have that u2(φ(y)) = 1 = ‖u2‖. It follows that σπ(αfu1u2) = {−|f(φ(y))|}.

Thus we have

(7)
∥∥∥Tf T (αu1u2) − 1

∥∥∥ = ‖αfu1u2 − 1‖ = |f(φ(y))|+ 1.

Since u1, u2 ∈ C(X)−1, Claim 9 shows that T (αu1u2) = (αu1u2) ◦ φ and u2 ◦ φ =

Tu2 = u2. So we see that

∥∥∥Tf T (αu1u2) − 1
∥∥∥ = ‖(Tf)((αu1u2) ◦ φ) − 1‖

≤ |α|‖(Tf)u2‖‖u1 ◦ φ‖ + 1

= ‖(Tf)u2‖ + 1

= |Tf(y)|+ 1.

Combining this inequality and the equality (7), gives that |f(φ(y))| ≤ |Tf(y)|. In

a similar way, we see |f(ψ(x))| ≤ |T−1f(x)|, where f = Tf and x = φ(y). Thus
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|Tf(y)| = |f(φ(y))|. Since σπ(α(Tf)u2) = {α Tf(y)} and u1(φ(y)) = 1 = ‖u1‖,

we have that σπ
(
Tf T (αu1u2)

)
= σπ((Tf)((αu1u2) ◦ φ))) = σπ(α(Tf)u2(u1 ◦

φ)) = {α Tf(y)}. Thus
∥∥∥Tf T (αu1u2)

∥∥∥ = |α Tf(y)| = |f(φ(y))|. The equality

(7) gives that −|f(φ(y))| ∈ σπ
(
Tf T (αu1u2)

)
. Hence −|f(φ(y))| = αTf(y) be-

cause σπ
(
Tf T (αu1u2)

)
= {α Tf(y)}. Since −|f(φ(y))| = αf(φ(y)) holds from the

definition of α, the equality Tf(y) = f(φ(y)) holds.

Next, we consider the case where Tf(y) = 0 and suppose f(φ(y)) 6= 0. Let ε

be a positive number with ε < |f(φ(y))|. Then there exists u1 ∈ P−1
y such that

|(Tf)u1| < ε on Y . Also, there exists u2 ∈ P−1
φ(y) such that σπ(fu2) = {f(φ(y))}.

Choose a complex number α with |α| = 1 such that α f(φ(y))u2(φ(y)) = −|f(φ(y))|.

Let u1 = T−1u1, then since u1 ∈ P−1
φ(y), we see that σπ(αfu1u2) = {−|f(φ(y))|}. It

follows that

(8)
∥∥∥Tf T (αu1u2) − 1

∥∥∥ = ‖αfu1u2 − 1‖ = |f(φ(y))|+ 1.

Applying Claim 9 to αu1u2 and u1,

∥∥∥Tf T (αu1u2) − 1
∥∥∥ = ‖α(Tf)(u1 ◦ φ)(u2 ◦ φ) − 1‖

= ‖α(Tf)u1(u2 ◦ φ) − 1‖

≤ ‖(Tf)u1‖‖u2 ◦ φ‖ + 1 < ε+ 1.

This inequality and (8) show that |f(φ(y))| < ε, and this is a contradiction, so

f(φ(y)) = 0 = Tf(y).

Finally, the case f(φ(y)) = 0. Let f = T−1f, f ∈ C(Y ) and y = ψ(x), x ∈ X.

Then the hypothesis implies that T−1f(x) = 0. Noticing that φ = ψ−1, we can

conclude from the argument in the previous paragraph that f(ψ(x)) = 0 = T−1f(x).

This completes the proof. �
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