Invariant subspaces of L?(T?) for

irrational rotation unitary systems

Atsushi Hasegawa

Doctoral Program in Information Science and Engineering
Graduate School of Science and Tecnology

Niigata University



Contents

1 Introduction 2
2 Notations and preliminaries 6
2.1 von Neumann algebras . . . .. ... ... ... . . 6
9.2 Invariant subspaces of L3(T) and L%(T?) . .. ... ... ... ... ... 9
2.3 Decompositions . . . . . . e 13
2.4 Unitary systems . . . .« o . 16
3 Irrational rotation unitary systems 19
3.1 Irrational rotation C*-algebras . . . . . .. ... . ... ... . 19
3.2 Representation of irrational rotation unitary systems . . . ... .. .. .. 23

4 Invariant subspaces of L*(T?)

for certain von Neumann algebras 27
4.1 Introduction . . . . . . v v i e 27
4.2 Beurling-Type invariant subspace of L*(T?) . ... .. .. ... ... ... 29
4.3 Two-sided invariant subspaces of L2(T?) . . . .. . .. ... ... ... .. 34
4.4 Popovici Decomposition . . .. ... 36
Bibliography 39
Acknowledgement 44



Chapter 1

Introduction

In [2], Bewrling characterized the invariant subspaces (2901 C 90) of the Hardy space
H?(T) (T the unit circle), that is, if 90 is an invariant subspace of H?(T), then 90 is of
the form ¢H?(T), where ¢ is an inner function. Wiener proved that the doubly invariant
subspaces (2907 = 91) of the Lebesgue space L*(T) are of the form xeL?(T), where xg is
the characteristic function of a Borel subset E in T, while the simply invariant subspaces
(290 C 9M) of L*(T) are of the form ¢H?(T), where ¢ is a unimodular function. The most
general technique indicated was the Wold-type decomposition.

We let T? be the torus that is the cartesian product of 2 unit circles T. The usual
Lebesgue spaces on T? are denoted by L*(T?). A closed subspace D of L*(T?) is said
to be invariant if M, 9t C 9T and M, C M, where M, and M, are the multiplication
operators with the coordinate functions on L?*(T?), that is, M,f = zf and M, f = wf
(f € L*(T?)). As is well known, the form of invariant subspaces of L*(T?) or even
H?(T?) is much more complicated. In general, the invariant subspaces of L*(T?) are not
necessarily of the form ¢H?(T?) with some unimodular function ¢. But the structure
of Beurling-type invariant subspaces has been studied in recent years and, in particular,

some necessary and sufficient condition for invariant subspaces to be Beurling-type have



been given by many researchers (cf. [9, 10, 19, 20, 21, 22, 28, 32, 33], etc.).

In [28], the invariant subspaces 90 of H 2(T?) of the Beurling-type were characterized
as the subspaces on which M, and M, are doubly commuting (that is, M|;m commutes
with M |on).

In [42], an extension of the Wold-type decomposition was given for two doubly commut-
ing isometries (this extension was further extended for an arbitrary commuting isometries
by Popovici in [41]). In [10], this decomposition was used to characterize the form of
invariant subspaces of L2(T?) on which M, and M, are doubly commuting.

An irrational rotation C*-algebra Ag is a C*-algebra generated by a pair of unitary
elements U and V which satisfy the relation UV = e*™V U, where 0 is an irrational
number in (0,1). It has received a lot of special attention in recent years(cf. [6,7,8, 25, 40],
etc.). A unitary system I/ is a subset of the unitary operators acting on a separable Hilbert
space H which contains the identity operator /. A norm one element p € H is called a
complete wandering vector for U ifUyp = {U : U € U} is an orthonormal basis for U. The
set of all complete wandering vector for U is denoted by W(U). In [13], Han introduced
a notion of an irrational rotation unitary system Uyy = {U™V™ : m,n € Z}, where U
and V are defined above rule and claimed that, up to unitary equivalence, there exists a
unique faithful representation m of A on L*(T?). Operators L, and L, constructed in
the proof are very interesting, because ¢ = {LT'L%, : m,n € Z} is an irrational rotation
unitary system and has some properties, that is, W(U) is a non-empty closed connected
subset of L2(T?) and the closure of the linear span of W(U) is L*(T?).

Motivated by these facts, in this paper, we consider a von Neumann algebra £ gen-
erated by L, and L, and study invariant subspace structure of L?(T?) with respect to
£, whose meaning is different from ”usual” invariant subspace, that is, our setting is the

following. Let § be an irrational number in (0,1). As in the proof of {13, Theorem 1], we



define the unitary operators on L*(T?) satisfying:
L.(z2"w") = 2™ Tw™ and Ly, (2mw") = g~ 2miml ym bl

where (z,w) € T2. Moreover we also define the unitary operators R, and R,, as follows:
Rz(zmwn) — e—27rinezm+lwn and Rw(zmwn) — zmwn-}-l’

where (z,w) € T2, Let £ (resp. %) denote the von Neumann algebra generated by L.
and L, (resp. R, and R,). Then £ and 2R are II;-factors, which are important classes of
von Neumann algebras. Let 90U be a closed subspace of L*(T?). Then we say that 9T is
left-invariant (resp. right-invariant) if L,9% C 90 and L, M C M (vesp. R, 9N C 9M and
R, C OM). If 9T is both left-invariant and right-invariant, then 9 is called two-sided
invariant.

In chapter 2, we recall some notions about the theory of von Neumann algebra which
will be used later. We also recall the invariant subspaces of L%space on both T and T?.
About the invariant subspaces of L?(T), we only recall the Beurling theorem. On the
other hand, about the invariant subspaces 9% of L2(T?), at first we recall the result of
the doubly invariant case (290t = w9 = M), and then recall some results of the simply
invariant case (2900 C 9N, w9 C M), which have not been complete characterization
of the invariant subspaces of L?(T?) yet. These results of the invariant subspaces of
L*(T?) should be compared with the results in §4.2. We also describe the Popovici’s
Wold-type decomposition for commuting isometries which will be used in §4.4. Needed
in §3.2, we prepare for the notion of unitary systems. Although unitary systems were
first introduced as a generalization of wavelet systems, conversely we introduce wavelet
systems as a example of unitary systems.

In chapter 3, we study irrational rotation C*-algebras As. In particular, we prove the

existence of a unique trace on Ay and prove that 4g is simple. We also prove the Han’s
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theorem that an irrational rotation C*-algebra can be representated on L?(T?) and that
there is an irrational rotation unitary system &/ which has complete wandering vectors,
W(U) is closed connected subset of L*(T?) and the closure of the linear span of U is
L?(T?).

In chapter 4, we have the invariant subspace structure of L*(T?). At first, we give a
characterization of Beurling-type left-invariant subspaces of L?(T?), which is a general-
ization of the Mandrekar’s result ([28]) in a sense. We also give a structure theorem of a
non-trivial two-sided invariant subspace of L*(T?). Finally, let 97 be a non-trivial two-
sided invariant subspace of L?(T?%). We consider the Popovici’s Wold-type decomposition
for certain commuting isometries U = (L, Ly )|on and V = (R, R,)|on, and prove that the

couple W = (U, V) is a weak bi-shift on 91.



Chapter 2

Notations and preliminaries
2.1 von Neumann algebras

In this section we recall some notions about the theory of von Neumann algebra
which will be often used later. For a von Neumann algebra A, P(A) denotes a set of all
projections of A. Let B(H) be the set of all bounded linear operators on a Hilbert space
24 and I denotes an identity operator on H. For an element A in A, we call it positive,
we write A > 0, if (Az,z) > 0 for all = € H. For a subset S of B(H), we use W*(S)
to denote the von Neumann algebra generated by &, use U(S) to denote the set of all
unitary operators in S, and use Sy to denote the set of all positive elements in §. The
commutant of S is S’ = {T € B(H) : TS — ST =05 €S} Z=ANA is called the
center of A. If Z = CI, then A is called a factor. For a subset M of H, we use [M] to

denote the closure of the linear span of M.

Definition 2.1.1 Let A be a von Neumann algebra. Let P and @ be two projections in
P(A). P and Q are said to be ; equivalent (relative to A), and we write P ~ @, if there
exists an element V € A such that V*V = P and VV* = Q ; partially equivalent (relative

to A), and we write P < @, if there exists an element R € P(A) such that P ~ R< Q.

Definition 2.1.2 Let A be a von Neumann algebra. A projection P € P(A) is said
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to be ;abelian if PAP is abelian ; finite if any projection Q € P(A) with P < @ and
P ~ @ implies @ = P. Moreover A is said to be ; finite if I is finite ; semi-finite if for
all non-zero element P € Z there exists a non-zero finite pro jection Q € P(A) such that
Q < P ; typell if A contains no non-zero abelian projection and is semi-finite ; typells if

A is type II and finite.

Proposition 2.1.3 ([27, Proposition 6.3.1]) Let A be a von Neumann algebra. Then A

is finite if and only if any isomelry in A is unitary.

Proof. Suppose that A is finite. Putting V'V = P, since P e P(A) and V*V = I, we
have P ~ I. Tt is clear that P < I. Since [ is finite, we see P =1, thatis, VV* = I.

Conversely suppose that P < [, P ~ [ and P € P(A). Then there exists a isometry V
such that VV* = P, V*V = [. But by assumption we have VV* = I. Thus we see P = I,

that is, A is finite. |

Definition 2.1.4 Let A be a von Neumann algebra on a Hilbert space H. A vector
¢ € His said to be ; a cyclic vector for A if [Az] = H ; a trace vector for Aif (ABz,z) =

(BAgz,z) for all Aand B in A.

The next two results are used to prove Theorem 3.2.1. They are proved in detail in

[24], and so we omit the proof.

Lemma 2.1.5 ([24, Lemma 7.2.14]) Let A be a von Neumann algebra. If x is a cyclic

trace vetctor for A, Then z is a cyclic trace vetctor for A'.

Theorem 2.1.6 ([24, Theorem 7.2.15]) Let A be a von Neumann algebra. If A has a

cyclic trace vector x, then A is finite.



Definition 2.1.7 ([27, Definition 6.5.1]) Let A be a von Neumann algebra. A trace on
Ay is a function 7 on A, taking non-negative, possibly infinite, real values, possessing
the following properties:

(1) T(A+ B) =7(A) +7(B), 4, B € Ay;

(2) (@A) = ar(A), A € A4, a > 0 (with the convention that 0 - 40 = 0);

(3) T(A*A) = T(AA*), A€ A

A trace T on Ay is said to be ; faithful if A € Ay is such that 7(A) =0, then A=0;
finite if 7(I) < oo ; semi-finite if for all non-zero element A € A, there exists a non-zero
element B € A, and B < A such that 7(B) < +oo. ; normal if for all bounded increasing

net A, of Ay, we have
T(supyAy) = sup\T(Ay).
The next theorems is needed in §4.1.

Theorem 2.1.8 ([44, Theorem 4.64]) A von Neumann algebra A is finite if and only if

there is a family of finite normal trace.

Theorem 2.1.9 ([44, Theorem 4. 67],[27, Theorem 6.5.8]) A von Neumann algebra A is

semi-finite if and only if there is a faithful semi-finite normal trace.

More about von Neumann algebras, we refer to [4, 24, 27, 43, 44], etc..



2.2 Invariant subspaces of L*(T) and L*(T?)

Let T be the unit circle in C. The usual Lebesgue spaces, with respect to the Haar
Measure m on T, are denoted by L*(T), and H?(T) is the space of all f in L?(T) whose

Fourier coeflicients

P

fm)=(f,=") = [Ef(Z)Emdm

satisfy f(m) =0 for m < 0.

A closed subspace 90T of L*(T) is said to be invariant if
zIM C M.

In [2], Beurling characterized the invariant subspaces of the Hardy space. In [17], Beurling

theorem was extended to obtain the invariant subspaces of L*(T).

Theorem 2.2.1 (Beurling [17]) Let M be an invariant subspace of L*(T).
(1) If 290t = M, then

M = xgL*(T)

where x5 is a characteristic function of Borel set E C T.

(2) If z901 # M, then
M = pH*(T)

where ¢ is a unimodular function, that is, |¢| =1 a.e. on T.

In particular, if 9 be an invariant subspace of H*(T), then
MM = $H2(T)

where ¢ is an inner function, that is, a unimodular function in H=(T).



We let T2 be the torus that is the cartesian product of 2 unit circles in C. The usual

Lebesgue spaces, with respect to the Haar Measure m on T2, are denoted by L?(T?), and

H?(T?) is the space of all f in L?(T?) whose Fourier coefficients

f(m,n) = (f,zMuw") =

= f(z,w)z"w"dm,
T2

satisfy f(m,n) =0 form < 0orn<O0.

A closed subspace 9T of L%(T?) is sald to be invariant if
MM C M and M9 C M

where M, and M,, are the multiplication operators with the coordinate functions on

L*(T?), that is, for f € L*(T?)

M,f=zf and M,f=wf.
More simply, we also say 91 is invariant if

Z2MCM and wIN C M.

As is well known, the problem of invariant subspaces of L?(T?) on the 2-dimensional
torus or even in the corresponding H2(T?) is more complicated than that of L*(T).

If M, 9% = 9 and M9 = 9N, M is called doubly invariant. It is well known that:

Lemma 2.2.2 ([10, Lemma 3]) Every doubly invariant subspace of L%(T?) is of the form

x5L?(T?), where xg is a characteristic function of Borel set E C T2.

We shall say 9 is simply invariant if M, 90 C D and M, C M. The simply invari-
ant subspaces of L2(T?) are not fully known, their structure being much more complicated.
But they have been studied in various ways (cf. [9, 10, 19, 20, 21, 22, 28, 32, 33], etc.).

In [28], the invariant subspaces 9 of H?(T?) of the Beurling form were characterized as
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the subspaces on which multiplication operators M, and M,, are doubly commuting (that
is, M|m commutes with M |ox). We note that if 2 is an invariant subspace, then M. |m

commutes with M, |on.

Theorem 2.2.3 ([28, Theorem 2]) An invariant subspace M # {0} of H?%(T?) is of form

gH?(T?) with q inner function if and only if M, and My, are doubly commuting on 9.

By using Stociniski’s Wold-type decomposition (cf. Theorem 2.3.2), the generalization
of Theorem 2.2.3 follows. H; (resp. H,) is the space of all f € L*(T?) so that f(m,n) =0
for m < 0 (resp. n < 0) and L, (resp. Lj) is the space of all f € L*(T?) so that
f(m,n) =0 for n # 0 (resp. m # 0).

Theorem 2.2.4 ([10, Theorem 2]) Let 9t be an invariant subspace of L%(T?). Then M,

and M, are doubly commuting on 9 if and only if
M = gHX(T?) + X5 ¢t H1 + X5, @ Ha + x5 L*(T)
where ¢, g, gs are unimodular functions, xg € L*(T?), x&, € L2 and xg, € L.

In [32], the invariant subspace 9 of L*(T?) with M M, = {0} was paid attention

to.

Theorem 2.2.5 ([32, Theorem 5]) Let M be an invariant subspace of L¥(T?) and M6
M0 = &, # {0}.
(1) M8, = &, if and only if

M = xg,qH2 ® x5, L*(T?)

where ¢ is a unimodular function, xg, € L1, xg, + x5, <1 ae..

(2) M6, C &, if and only if
M = qH*(T?)
where ¢ is a unimodular function.

11



Remark 2.2.6 As is written in [10], Theorem 2.2.5 and Theorem 2.2.3 are corollaries

of Theorem 2.2.4.
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2.3 Decompositions

Wold introduced, in a probabilistic language, a remarkable decomposition for sta-
tionary stochastic processes ([45]). The study of isometric operators on Hilbert spaces is
reduced to the study of unitary operators and unilateral shifts.

A (unilateral) shift is an operator S on a Hilbert space H unitarily equivalent to
multiplication by the independent variable z on a certain Hardy space on the torus T.
More precisely, there exists a Hilbert space W and a unitary operator U : H — H 2T)yew
such that § = U*(T. ® I)U (the symbol "®@” denotes the Hilbertian tensor product). The
following characterization illustrates the shift’s geometrical structure: an isometry 5 on
H is a shift if and only if there exists a subspace W such that H = Y @n>0S"W. W is
unique (W = ker S*) and is said to be the defect of 5.

An operator V on H is said to be reduced by a (closed) subspace Ho C H if Ho is

invariant under both V and V*, that is, VHo C Ho and V*Ho C Ho.

Theorem 2.3.1 (Wold [37], Chapter 1) For any isometry V on H there corresponds a

unique orthogonal decomposition of the form
H= Hu & Hs

such that V is reduced by H, to a unitary operator and by H, to a shift. More exactly,

Ho=[\V"H
n>0
and
Ho= > &V"W
n>0

where W = ker V*.

13



We want to underline the importance of this decomposition in invariant subspace theory.
In [42], an extension of the Wold-type decomposition Is given for two doubly commuting
isometries. Let V = (Vi,V3) be a commuting isometries on a Hilbert space H and p =
(p1,p2) be a pair of integers. We use the notation V7 for ; VPV ifpr,pa 20 V1*|p1|1/'2p2

fp < 0,ps >0 VP lVP ifpr >0, <05 yrlmlyeel ) by < 0.

Theorem 2.3.2 ([42, Theorem 3]) To any doubly commuting isometric pair V = (W1, V2)

there corresponds a unique orthogonal decomposition of the form
H=Hu® Hus © %su D Hss

such that Ha,a, reduces Vi to a unitary operator if o; = u and to a unilateral shift if

a;=s,1=1,2. More exactly,

Huw= [ WHO [ VaH
m>0 n20

Hus = 3 _@VE([ | VI"W2)
n>0 m>0

Hsu = Z Vlm(ﬂ V;anl)
m>0 n>0

and
= > V"W

peZ?

where Wy = ker V', Wy = ker V5 and W = Wy N W

Definition 2.3.3 ([41]) Let H be a Hilbert space and V' = (V1,V3) be a commuting pair
of isometries (in short, a bi-isometry). We shall say that V is ; a bi-unitary on H if the
both V; and Vj, are unitary operators on H ; a unitary-shift on H if V; is a unitary and
Vy is a shift on H ; a shift-unitary on H if V} is a shift and V2 is a unitary on ‘H ; a
weak bi-shift if

Vﬂneo ker V; Vi Vg)mjzo kervpvy and ViVs are shifts on H.

14



Popovici obtained such a Wold-type decomposition for an arbitary bi-isometry, the

bi-shift part H,s being replaced by the weak bi-shift part Hys.

Theorem 2.3.4 ([41, Theorem 2.8]) Let V = (V1, ;) be a bi-isometry on H. Then there

is a unique orthogonal decomposition of the form
H = Huu @ %us @ HS’U @ H’I.US

into reducing subspaces for V such that Vly,, is a bi-unitary, Viu,, is a unitary-shift,

Vlw,, is @ shift-undtary and Vy,, is a weak bi-shift. More exactly,

'Huu = ﬂ (‘/’1 ‘/’2)”7_[1

n>0
'Hu-ﬂ — Z @Vzn( ﬂ ‘/'fﬂ(ﬂ ker ‘/? Vlz))
n>0 m>0 i>0

and

Hou = Z (:BVlm(ﬂ Vzn(ﬂ ker Vl*%j)).

m>0 n>0 j>0
Remark 2.3.5 In the above theorem, putting Hi, = Hus ® Heu ® Hus, the orthogonal

decomposition
H = Huu & Hy,

coinscides with the Wold decompositon attached to the isometry Vi Va.
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2.4 Unitary systems

Following Dai and Larson [5], a unitary system U is a subset of the unitary operators
acting on a separable Hilbert space H which contains the identity operator /. A norm
one element ¥ € H is called a wandering vector for U if Usp = {Uy : U € U} is an
orthonormal set; that is, (U, V) =01 U,V e U and U # V. If Usp is an orhonormal
basis for H, then 1 is called a complete wandering vector for U. The set of all complete
wandering vector for U is denoted by W(U).

If U and V are unitary operators in B(H), we wiite Uyy = {U™V" : m,n € Z}.
Unitary systems of this form have an importance in wavelet theory (about wavelet theory,
we refer to [1, 11, 26, 36, 46], etc.). If U and V' satisfy the relation UV = e2™0V 7 with
0 € (0,1) an irrational number, then we call Uy y an irrrational rotation unitary system.

If U is a unitary system and ¢ € W(UA), the local commutant Cy(U) at ¢ is defined by
{VeBH): (VU-UV)p=0YU €U} Auseful result is the one-to-one correspondence

between the complete wandering vectors and the unitary operators in Cy(U):

Proposition 2.4.1 ([5, Proposition 1.3]) Let U be a unitary system. Suppose b € W(U).
Then

W) = U(C @) = (Vi : V € U(Co(U))}.
Moreover, the correspondence
UC,U)) 2V — Vip e WU)

15 one-to-one.

16



The following result is also interesting.

Lemma 2.4.2 ([5, Lemma 1.1]) IfU be a unitary system and if = is a cyclic vector for
U, then

(1) a is separating for Cx(U).
(2) IfU is a semigroup, then C.(U)y=U".

Proof. (1)If A € Co(U) and if Az =0, then for any U € U we have AUz = UAz = 0. S0
AUz =0, hence A= 0.

(2)The inclusion ”D” is trivial. For " suppose A € C,(U). Then for each U,V € U

we have UV € U, and so
AU(Vz)=(UV)Az = U(AVz) = UA(Vz).

9o since V € U was arbitrary and [Uz] = H, it follows that AU =UA. i

This section will be concluded with a few examples of a unitary system.

Example 2.4.3 ([5]) Let T and D be the operators on L*(R) defined by
(TH)(t) = f(t—1) and (Df)()=V2f(2t), f€ L*R), fER.
Then they fail to commute, but for f € L*(IR) we have
(TDF)() = T(VBF(2t)) = V2F(2(t — 1) = V2f (2t = 2) = (DT*f)(t),
so TD = DT?. Let
Upr = {D™T":m,n € Z}.

Then Up 1 is a unitary system. Particularly, Up r is called a wavelet system. If P €

W(Up 1), then ¢ is called a wavelet.

17



Example 2.4.4 ([5, Example 1.9]) Let {e,}22 _, be an orthonormal basis for 1(Z), and

let Se, = eny1 be the bilateral shift of multiplicity one. Let U = {S™ :n € Z} be the

group generated by S. Each e, is in W(U). By Proposition 2.4.1 and Lemma 2.4.2 part

(2),
W) = {Veo : V € TSI

Here {S}' coincides with the set of Laurent operators. Let T be the unit circle. If we
represent S on L*(T) in the usual way by identifying it with the multiplication operator
M., then U({S}) is identified with (multiplication by) the set of unimodular functions on
T, and eg is identified with the constant function 1. Then Proposition 2.4.1 just recovers
the well-known fact that the set of complete wandering vectors for the shift coincides
(under this representation) with the set of unimodular functions on T. In this case W(U)
is clearly a closed, connected subset of the unit ball of H in the norm topology with dense

linear span.



Chapter 3

Irrational rotation unitary systems
3.1 Irrational rotation C*-algebras

A C*-algebra is a Banach *-algebra A with the additional norm condition

A" A

= ||A|®> for all A€ A

We say that an element A of a C*-algebra A is self-adjoint if A= A*; normal if A*A =
AA*: unitary if A*A = AA™ = I; positive, we write A > 0, if A = A* and the spectrum
oc(A)={re C: \[—-Alisnot invertible} is contained in the non-negative real line [0, 00).
A positive linear functional f on a C*-algebra is a linear functional such that f(A) > 0
whenever A > 0. A state is a positive linear functional of norm 1. A representation of a
C*-algebra A on a Hilbert space H 1s & #-homomorphism from A into B(#H). More about
C*-algebra, we refer to [3, 4, 6, 23, 27, 31, 39, 43, 44], etc..

An irrational rotation C*-algebra is a C*-algebra generated by a pair of unitary ele-

ments U and V which satisfy the relation
Uv = VU (1)

where 6 € (0,1) is an irrational number.
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For any constants A, u on the unit circle (JA| = |u| = 1), the unitary pair (AU, xV)
satisfies (). Thus there is an endomorphism py , of Ag such that py .(U) = AU and
pau(V) = pV. Let o = p5ps,. Since o(U) = U and o(V) = V, we have 0 = I. Thus
pa,u 1s an automorphism.

For each fixed A in A, the map from T? to Ag given by fa(A, u) = pru(A) is norm
continuous. To verify this, notice that it is true for all non-commuting polynomials in
U,V,U* and V*. These are dense and automorphisms are contractive; so the rest follows
from a simple approximation argument.

Define two maps of Ay into itself by the formula

0, (A) = /1 p1e2mie(A)dt
0
and
1
0s(4) = [ parsa(A)i
These integrals make sense as Riemann sums because the integrand is a norm continuous
function. Some of the nice properties of these maps are captured in the following theorem.
An ezpectation of C*-algebra onto a subalgebra is a positive, unital idempotent map.
Expectations occur frequently in the study of operator algebras, and have many nice
properties. The point of this next theorem is to show that ®; and &, are expectations.
Recall that a map @ is contractive if ||®|| < 1, idempotent if ®* = @, and a positive map
is faithful if A > 0 and ®(A) =0 implies that A = 0.
Theorem 3.1.1 ([6, Theorem VI.1.1}) @, is positive contractive idempotent and faithful,

and maps Ay onto C*(U). Moreover,

0., (f(U)Ag(U)) = F(U)®:1(A)g(U)

for all f,g in C(T). For any finite linear combination of {U*V': k,l € Z},
@1(2 CZk[Ule) = Z akon.
k1 k

20



In addeition, for every A in Ay,

2,(4) = lim ‘)n - S viAu,

j=-n

The corresponding results for ®, also hold. Combining them, we obtain:

Corollary 3.1.2 ([6, Corollary VI.1.2]) The map 7 = ®,®; = ®,8, is a faithful unital

scalar valued trace on Ay.
We have enough structure to show that 7 is in fact the only trace on A,.
Proposition 3.1.3 ([6, Proposition VI.1.3]) T is the unique trace on Ay.

Proof. Suppose that « is another trace on Ag. Then for any A in Ay, we have x(A) =

K(AUIUI) = k(U AU-Y). So by Theorem 3.1.1,

. 1 ¢
w(A) = 7}_1+I1r"10 2n +1 j:z_n ~(4)

l n
= lim

Jim s > (U AUT)

j=-n

= i Vi y
nl_l;l’oloh, 2n Z UTAU~

]—-'—TL
—_— J "]
= &(lim - pro J_X; UJ AU
:H((I)l(f"l))

Similarly, k(A) = £(®2(A)). Thus we have
r(A) = £(D3(A)) = £(2185(4)) = r(r(A)) = 7(4)

because k(I) = I and 7(A) is always a scalar. 1
Now we are prepared to prove the main result of this section, which is the uniqueness

of the C*-algebra generated by unitaries satisfying ().
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Theorem 3.1.4 ([6, Theorem VI.1.4]) Ay is simple. Thus if U’ and V' are any unitary

elements satisfying (1), then C*(U', V") is canonically isomorphic to A,.

Proof. Suppose that J is a non-zero ideal of Ap. Then there is a positive, non-zero

element X in J. Since U/ XU~ belongs to J, the limit formula for ®; shows that

i VAU €3.

j=-n

, _ 1
B = e

Similarly we have ®3(X) € J. Hence 7(X) belongs to J. But since 7 is a faithful trace,
7(X) is non-zero multiple of the identity. Therefore J = A,.

If U’ and V' are any unitary elements satisfying (1), then there is a canonical homo-
morphism ¢ of Ay onto C*(U', V') such that ¢(U) = U’ and ¢(V) = V'. Since Ay is

simple, this homomorphism must be an isomorphism. |
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3.2 Representation of irrational rotation unitary sys-
tems

Let Ay be an irrational rotation C*-algebra generated by a pair of unitary ele-
ments U and V satisfying (). We will call the set Uyy = {U™V" : m,n € Z} an
irrational rotation unitary system. If B is a C*-algebra and A and B are two elements in
B satisfying (1), then it is known that there is a faithful #-isomorphism 7 from Ay into B
satisfying n(U) = A and 7(V) = B (see [12] or [40]).

Two representations m; and my of C*-algebra A are called unitarily equivalent if there
exists a corresponding unitary operator W such that Wy (A)W* = my(A) for every A € A.
A representation is called faithful if the mapping is injective. The next theorem shows

that Ay can be represented on L2(T?).

Theorem 3.2.1 ([13, Theorem 1]) Let Ay be an irrational rotation C*-algebra with uni-

tary generators u,v for which uv = €*™%

vu for some irrational number § € (0,1). Then,
up to unitary equivalence, there exists a unique faithful representation m of Ay on L*(T?)
such that irrational rotation unitary systemU = {U™V™ : m,n € Z}, where U = 7(u) and

V = n(v), has a complete wandering vector. Moreover, W(U) is a closed and connected

subset of H and [W(U)] = L*(T?).

Proof. Tor existence of such a representation 7, let us consider the following unitary
system. Let {z™w™ : m,n € Z} be the basis for L*(T?). Define unitary operators U, V on
L2(T?) by

U(z™w") = 2™ and V(2™w") = A" 2w,
where A = €>™, Then UV = AVU follows from
UvVzmrow™ = U()\—mzmwnﬂ) = \Tmpmlgyntl
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= M\ gl ntl AT 2",

Thus Uy y is an irrational rotation unitary system. Let m be the faithful *-isomorphism
from Ay into B(L*(T?)) such that m(uv) = U and n(v) = V. We will show that W(U/) is a
closed and connected subset of L%(T?) and [W(U)] = L*(T?), where Y = {U™V"™ :m,n €
Z}.

We have that U(1) = {zFw' : k,l € Z}. So 1 is a complete wandering vector for
U. Moreover, for any m,n € Z, we have U(zmw") = {A"™zm+hybt k1 € Z}, which
is an orthonormal basis for L?(T?). Thus in fact z™w™ € W(U) for all m,n € Z. So
W(U)] = L2(T?), since {z™w" : m,n € Z} is an orthonormal basis for L*(T?).

Let A € Cy(U) for some ¢p € W(U). The relation UV = AVU implies that span(i/)
is an algebra. So for each S,T € U, we have ST € span(U). So AS(T¢) = (ST)A¢d =
S(AT ) = SA(TY). Since T' € U is arbitary and (U] = L?(T?), it follows that AS = SA.
Thus Cy(U) C U'. The inclusion "D is trivial. Thus Cy(U) = U'. So Cy(U) is a von
Neumann algebra. Since the unitary group of a von Neumann algebra is norm connected,
W(U) = U(U")y is norm-pathwise connected.

We claim that the von Neumann algebra W*(¢/) generated by U and V' is finite and so
is its commutant U. Let ¢ € W(U) be arbitary. First we show that (AB, %) = (BA, )
for all A, B eW*(U). It is enough to verify that this holds for A = Umy®, B = UMV

with m,n, k,| € Z, since the linear span of U is an algebra. In fact, this follows from

(Umankvlw, ¢> — e—2nkwi9(zjm+kvn+l¢’ ¢>

_[o (m+En+1) # (0,
= e-—znkmﬁ, (m + k,n + l) — (0,

0)’
0),

and

ky/lyrmy/n - 0, (m—|—k’,n+l)#(07
<U VU V@b,'ﬁb)—{ »—2lmm'9’ (m+k-,n+l):(0

0),
e 0).

,0)
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Thus ¥ is a trace vector of W*(U). Note that ¢ is also a cyclic vector for W*(U),
since U1 is an orthonormal basis for L2(T?). Thus, by Lemma 2.1.5, ¢ is a joint cyclic
trace vector for W*(i) and U'. By Theorem 2.1.6, this implies that both w*(/) and &’
are finite von Neumann algebras.

For the closedness of W(U), suppose that {1} is a sequence in W(U) converging in
norm to a vector 7. Fix v € W(U). Then by Proposition 2.4.1, since Cy(U)} = U', there
are unitary operators V,, € U’ with ¢, = V1. In order to show that n € W(U), again by
Proposition 2.4.1, it is enough to show that n = Wt for some unitary operator W in 2{".

Let {U,,} be a subsequence of {V,} such that U,, — Up in the weak operator
topology for some operator Uy € U’'. Then U,y — 71 in norm and Uy b — Uoy
in the weak topology on L*(T?). So n = Upy. Now for any f € L*(T?), we have
(U2, (Ut — Uot), /)] < [[Untp = Ul [IfI} — 0 and (Uotp, Un, f) — (Uoth, Uof) =
(UgUo, f). Thus

(¢7 f) = <U':kUﬂk¢7f>
= (Up (Unetp = Us¥), f) + (U, Un,.f)

which implies that UjUgty = 2.

Since ¥ is cyclic for span(U), it follows that 1 separates U’. So since Ul € U’ and
(UzUy — Itp = 0, we get UzUs = I. But U’ is finite, so Uy is a unitary in U’ as required.

Let m; and 7, be faithful representations on Hilbert spaces H; and H,, respectively,
suth that Uy, v, has a complete wandering vector ¢;, where U; = mi(u), Vi = mi(v),1 = 1,2.
Since u,v are generators for Ay, we only need to prove that there is a unitary operator
W satisfying WU, W* = U, and WV, W* = V. For this purpose, write d)ﬁﬁ)n = UV,
for1=1,2 and m,n € Z. Then {v,b,(,i)n :m,n € Z} is an orthonormal basis for H;. Define

W :H, — Hy by szf,i?n = ¢£3?n for all m,n € Z. Then W is a unitary operator, and
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we have
WUD, = WULUT Vi, = UpUg Vit = Us Wil
and

Wil = WUV, = e 2 ™ W Ur Vit

m,n

_ e—ZWim9175”1/2"+1¢v2 — %U;n%nlpz = Vﬂ/V'l,ZJ’(i’)n.

Thus WU,W* = Uy and WV, W* = V4, since these relations hold on an orthonormal

basis for H;. Hence m; and m, are unitarily equivalent. |



Chapter 4

Invariant subspaces of L?(T?)
for certain von Neumann algebras

4.1 Introduction

In this section, we introduce the four unitary operators and construct the certain
von Neumann algebras which are II;-factors. Let 8 be an irrational number in (0,1). We

consider the unitary operators on L*(T?) satisfying:
L,(zmw™) = z™Tu?,

Lw(zmwn) — e—27mm9zmwn+1,

R,(Zm 'n.) — e~27rin62m+1wn

and

Rw (zmwn) — zmwn-i—l’

where (z,w) € T2, As in the proof of Theorem 3.2.1, we have

L.L,=e"%L,L, and R,R,= e R, Ry,



If we define JA1 = A*1 for all A € £, then J is a conjugate linear isometry from L*(T?)

onto L2(T?). Since L% L™(1) = e~>™mnfzm ", we have

Tt = (@I (1) = (LT (1)

-1

— e—2mmn9L;mL;n(1) — e—27rzmn0L;mw—n — e-—21rzmn6z—m,w

Thus we see JL,J = R,* and JL,J = R,”*. Let £ (resp. R) denote the von Neumann
algebra generated by L, and L, (resp. R, and R, ), then J&J =R and JRJ = L. If we
define 7(4) =< Al,1 > for all A € £, then 7 is a unique faithful tracial state on £. So

we have
Proposition 4.1.1 £ and R are II;-factors. Moreover, £=R" and R = .

Thus we shall call £ and 9 the left von Neumann algebra and the right von Neuman
algebra, respectively. I[j-factor is an important class in the theory of von Neumann
algebras. If 0 should be an integer, then £ and R are equal to W*(M,, M,,), which is
isometric to L°°(T?). Thus it is a maximal abelian von Neumann algebra (masa). Masa
is also an important class in the theory of von Neumann algebras, but it is the opposite

side of II;-factor.



4.2 Beurling-Type invariant subspace of L*(T?)

In this section, we introduce the notions of left-invariant and right invariant. Our
goal of this section is to characterize the Beurling-type left-invariant subspaces of L*(T?).
Let &, (vesp. M) denote the o-weakly closed subalgebra of £ (resp. R) generated

by the positive powers of L, and Ly (resp. R, and Ry).

Definition 4.2.1 Let 9 be a closed subspace of L*(T?). We shall say that M is; left-
invariant, if £.900 C M; left-reducing, if LM C D left-pure, if MM contains no lefi-
reducing subspace; left-full, if the smallest left-reducing subspace containing M is all of

L2(T?). The right-hand versions of these concepts are defined similarly.

Remark 4.2.2  Let 9% be a closed subspace of L*>(T?). Then M is left-invariant if and
only if L, C MM and L, C M, left-reducing if and only if there exists a projection
P ¢ R such that 9% = PLX(T?), left-pure if and only if Nmazo L™ Lo = {0}, and left-

full if and only if U neo L7 Ly = L*(T?). The right-hand versions of this property hold

similarly.

Lemma 4.2.3 Let My = 3. Dmnzol:"Lu"[q] for some norm one element q of L*(T?).

Then there exists o unitary operator V € R such that Mo = Vv H*(T?).

Proof. Suppose that Mg = Y Gmazol:" L,,"[q] for some norm one element ¢ of L?(T?).
Then we note that < Lszw”q,L:kLwlq >= 0 for all m,n,k,l € Z such that (m,n) #
(k,1). Now we define an operator V by

V(Y @amal: L") = D, Bomal:"Lu"e

m,n>0 m,n>0



Then V is an isometry and VL, = L,V,VL, = L,V. Hence V is in the commutant of £.
That is, V is in 2. Since R is a finite von Neumann algebra, V is unitary. Since ¢ = V1,
Mo =D PrmnsoLl:" L, [V1] = VH?(T?). This completes the proof. 1
We note that subspaces of the form V H?(T?) can be represented:
VEYT?) = > @L,™L,"[V1] (4.1)
mn>0

where V is a partial isometry in the commutant 9 of £. From above lemmas we now get
the following Beurling-type theorem.
Let § be a closed subspace of L?(T?). We shall say that § is a wandering subspace, if

L™L"E and L™ L' F are orthogonal for any different (m,n) and (m',n’) in Z2.

Theorem 4.2.4 Let 9T be a left-invariant subspace of L*(T?) and put V, = L,

o, Vi =
Ly, §: = MO V.M and F, = MO VL,IN. Then the following statements are equivalent:

(1) There exists a wandering subspace § such that M = Y Bz V2" VL"F,

(2) Vi, Vi are shift operators on 9 and V,V." = 0V *V,,

(3) Vi, is a shift operator on M and §,, = > B0 V2" (B:NBw), or Ve is a shift operator
on M and Fo =Y BmxoVa™ (8= N Sw),

(4) T. N T, is a wandering subspace and M = > Bmonso V" Vo (B2 N B,

(5) 9 is of the form V H*(T?), where V' is a unitary operator in R.

In this case, dim(F. NFw) =1

Proof. (1) = (2). Let § be a wandering subspace such that 9T = Y BmaroVa" VLS.

We define
5 =) oW"F
m>0
and
TS =) OV"T
n>0
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Since
M= OV."F.' = > eV,"3,
n>0 m>0
V, and V,, are shift operators. It follows that §. = §.’ and F, = Fu'. Now we shall show

V, V" = eV,*V,,. Ifz € M, thenz =Y, ., Vo, where z,,, € §,. Then we have

®Y/7 o * m _ —-2mimfy; *y,m
Vi Vuz = Y VWYL mm—ge VoV Ve

m>0 m>0

— 26—27rim6"/;.'m—1‘/wirm n V:*Vwi‘-o-

m2>1

On the other hand, we have

Vw‘/;*m = Z Vw%*‘/zmxm = Z vaz':m—l\fm + va;*mo

m>0 m>1

— eEm@ E e—27r17n0‘/:2m—1vwwm + Vsz*\’Eo-
m>1

Since V,*V,zo = 0 and V,V.*zo = 0, we have V,,V,* = e>"?1,*V,.
(2) = (3). We shall prove that Fy = 3 Bn>0V2"(F: N Fw). The second assertion can be

obtained in the same way. First we notice that §, reduces V,. Hence for all n > 0,

V."(8> N Fw) C B

Evidently ¥, N §, is a wandering subspace for V,. Then we have

> BV (F: NBw) C .
n>0
Let §o = Fw © V,Tw. If we prove that §y C §. N Fw, then we get
Fu= 8V."FoC > oV."(3.N%u) C Fu,
n>0 n>0
which finishes this part of the proof. Suppose that = € Fo. Then z L V., and conse-
quently V,*z L F,. On the other hand = € §,. Since §,, reduces V;, we have V,"z € §,.

This implies that V,*z = 0 and so ¢ € §,. Since ¢ € §, our proof is complete.
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(3) = (4). Suppose that the first condition of (3) is fullfilled. Since V,, is a shift, we have
MM =350 DV Fu. Then
M= @V,"(> eV (FNF) = Y V.V (ENT).
m>0 n>0 m,n>0
In the second case the proof is the same.
(4) = (1). (1) follows (4) immediately.
(5) = (2). It is clear from (2.1).
(4) = (5). Suppose
m= 3 SV (3. N5
m,n>0
We shall now prove that §. N §, is one-dimensional. Suppose dim(F. N Fw) > 1, and fix
norm one orthogonal elements ¢y, ¢ in §. N Fw. Let
M, = Z ®L:."Ly"[q]
m,n>0

and

mg = z @Lszwn[QQ]

m,n>0

By Lemma 4.2.3 there exists unitary operators Uy and U in R such that
M, = U, HYT?) and M, = U, HY(T?).
Since q; L ¢q, we have
U, H*(T?) L U, H*(T?).
Putting Uy = U;*Us, then Uy is a unitary operator in R. Moreover we have

H*(T?) L U, HX(T?).
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So we see that L,™L,"1 L UyH?*(T?) for all m,n € Z. Therefore we see
LT L UpH*(T?).

That is UpH?*(T?) = {0}, a contradiction. So we have norm one element ¢ in F. N Fu.
Again from Lemma 4.2.3 we have 901 = VH*(T?) for some unitary operator V € 9R. This

completes the proof. i

Thus we can describe the result of Beurling-type left-invariant subspaces.

Corollary 4.2.5 A nonzero left-pure and left-invariant subspace M of L*(T?) is of the
form VH*(T?) with V € R if and only if V,V,* = e™V,*V,,, where V, = L., Vi =

Ly|on.

Corollary 4.2.6 A nonzero left-invariant subspace 9 of H*(T?) is of the form V H?(T?)
with V € R if and only if V,V,* = *0V,*V,,, where V, = L,

M, v;u = LwIDJT-
Similarly, we have the following result about right-invariant subspace.

Corollary 4.2.7 A nonzero right-pure and right-invariant subspace MM of L*(T?) is of
the form UH*(T?) with U € £ if and only if U,U,” = e°U,*U,, where U, = R,|om,

L[w — Rw'DJT-

Corollary 4.2.8 A nonzero right-invariant subspace M of H*(T?) is of the form U H?(T?)
with U € £ if and only if U, U,* = ¥™°U,*U,,, where U, = R,|oy, U, = Ry|om.

Remark 4.2.9 Since unitary operators in L®(T?) are inner functions, Corollary 4.2.6

and Corollary 4.2.8 are generalization of Theorem 2.2.3 in a sense.
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4.3 Two-sided invariant subspaces of L*(T?)

In this section we shall study about two-sided invariant subspaces of L*(T?). We
also prove that a non-trivial two-sided invariant subspace of L?(T?) is two-sided pure and

two-sided full.

Definition 4.3.1 Let 9 be a closed subspace of L*(T?). We shall say that 9 is; two-
sided invariant, if M is both left-invariant and right-invariant; two-sided reducing, if M is
both left-reducing and right-reducing, two-sided pure, if 2 is both left-pure and right-pure;
two-sided full, if M is both left-full and right-full.

To prove the theorem about two-sided invariant subspaces of L2(T?), we need the following

lemma.

Lemma 4.3.2 If90 is a right-invariant subspace of L*(T?) and a left-reducing subspace
of L2(T?), then M is either {0} or L*(T?).

Proof. Let P be the projection with range 91. Then since 91 is left reducing, P belongs
to B . Since 91 is right-invariant, we have R.PR; < P. It is easy to see R,PR: ~ P.
Since R is a finite von Neumann algebra, we have R.PR; = P, that is, R,P = PR..
Similarly, we have R,P = PR,,. Hence P lies in . Therefore P belongs to the center
of TR. Since M is a factor, P is either 0 or 1 . This completes the proof. |

Reverse version of the previous lemma is valid.
Lemma 4.3.3 If 901 is a left-invariant subspace of L*(T?) and a right-reducing subspace

of L*(T?), then M is either {0} or L*(T%).

Remark 4.3.4 If 8 is an integer, then the assumption of the above lemmas is that "9
is doubly invariant (M, = 90, M, 2 = M)”. In this case M is of the form x5 L*(T?%)

where yg is a characteristic function of Borel set £ C T? (see Lemma 2.2.2).
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Theorem 4.3.5 A non-trivial two-sided invariant subspace of L*(T?) is two-sided pure

and two-sided full.

Proof. Let 9 be a non-trivial two-sided invariant subspace of [3(T?). Put Me =
Mo L7 LN and let P, be the projection from L%(T?) onto M. Then we have that

P, #1,PeRand M is right-invariant and left-reducing. Indeed,

LM, =1L, () LrLam= (] LIF'ILm

m,n2>0 m,n>0
= () LrpaLanc () LELum= T
mm>0 m,n>0

Similarly we have that LMo C Moo, LMoo C Mooy LM C M, R. M., C M, and
R, M, C M., From Lemma 4.3.2 we have M, = {0}. Thus M is left-pure.
The right-pureness is similarly proved by considering 2 projection from L*(T?) onto

ﬂm’nm R™R2IN. The left-fullness and the right-fullness is similarly proved by cosidering

projections onto Unnco LT L» 9 and onto Unm.n<o RM RN respectively. This completes

the proof. |



4.4 Popovici Decomposition

In this section we shall characterize two-sided invariant subspaces of L?(T?) by using

Popovici’s decomposition with respect to a bi-isometry.

Definition 4.4.1 Let S be an isometry on L*(T?) and 9 be a closed subspace of L*(T?).
We shall say that M is; S-invariant, if SO C M.

Let 9 be a non-trivial two-sided invariant subspace of L?*(T?). Then 90 is both
(L,L,)-invariant and (R, R, )-invariant. So putting U = (L,Ly)|m and V = (R, Ry)|m,
then the couple W = (U, V) is a bi-isometry on 91, but U* is not commuting with V. We
note that 91 is both U-invariant and V-invariant.

By Popovici’s decomposition of 9T with respect to W, we have
SDt = muu tTj i)“Rus 65 m&u EB mws-

such that W|en,, is a bi-unitary (that is, both Ulon,, and Vs, are unitary operators),
Won,, is a unitary-shift (that is, Ulsn,, is a unitary and Vlon,, is a shift), W|m,, is a shift-
unitary (that is, Ulm,, is a shift and V|sm,, is a unitary) and W/ay,, is a weak bi-shift

(that is, Uln,,  kervevis VN, sokerv+vi @and (Ulomy,)(Vom,,) are shift operators).

720

We have the following:

Theorem 4.4.2  Let 9 be a non-trivial two-sided invariant subspace of L*(T?). Then

the couple W = (U, V) is a weak bi-shift on M, that is, IM = M.

Proof. Both U and V are unitary on M, thus MMy, is two-sided reducing by [22,

Proposition 1]. By Lemma 4.3.2, we have that 9,, = {0}. Since 90 is U-invariant, we
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have the Wold-type decomposition of 90T with respect to U as follows;

Mm=[\UMma > av"g",

n>0 n>0
where Y = 91 6 UM. Define MY = Muso UM and MY = 3 B,5oUFY. Then it is
clear that MY is right-invariant.

For each n € Z, we have

L.(L,L,)" = L.(e¥™*L,L,)"

— eanB(Lsz)'an.
Since M is two-sided invariant, we have

L] = () L(L:Ly)"9

n>0

= (\(L.Ly)"L.

n>0

Similarly we see L,9MY C MY. On the other hand, for each n € Z, we have

Ly(L.Ly)" = Ly(L,Ly)(L,Ly)" !

= Lw(Lsz)”“l.
Thus we have

Ly = () Li(L.Lu)"

n>0
= Ly [ )(L:L)" 90
n>0
= L, MY
comy
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Moreover we have

Li(L:Ly)* = Lo (L L) (LoLy)" !
— Lz(ezwiBLsz)(Lsz)n—l

— 627ri6Lz(Lsz)n—1.

It follows L:9MY C MY, Thus MY is right-invariant and left-reducing. By Lemma 4.3.2
and the assumption, MY = {0}. Similarly, if we consider the Wold-type decomposition
M = MY @MY of W with respect to I, then we have M} = {0}. As in the proof of [41,

Theorem 2.8|, we have
M, CMINMY and D, C W NI,

It follows 90, & M., & M,, = {0} and so M = M,,,,. This completes the proof. i

38



Bibliography

[1] R. Ashino and S. Yamamoto, wavelet analysis, Kyoritsu Publishing Co., (1997).

[2] A. Beutling, On two problems concering linear transformations in Hilbert space, Acta

Math., 81 (1949), 239-255.

[3] J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer-Verlag, New York,
(1990).

[4] J. B. Conway, A Course in Operator Theory, Graduate Studies in Mathematics 21,
Amer. Math. Soc. (2000).

[5] X. Dai and D. R. Larson, Wandering Vectors for Unitary Systems and Orthogonal

Wavelets, Memoirs A.M.S. 134 (1998).

(6] K. R. Davidson, C*-Algebras by Ezample, The Fields Institute for Research in Math-

ematical Sciences 6, Amer. Math. Soc. (1996).

(7] G. A. Elliott and D. E. Evans, The structure of the irrational rotation C*-algebra,

Ann. of Math. (2) 138 (1993), 477-501.

[8] G. A. Elliott and M. Rordam, The automorphism group of the irrational rotation

C*-algebra, Comm. Math. Phys. 155 (1993), 3-26.

[9] D. Gaspar and N. Suciu, On invariant subspaces in the bitorus, J. Operator Theory,

30 (1933), 227-241.

39



[10]

(11]

[12]

[13]

[14]

[15]

[19]

[20]

P. Ghatage and V. Manderkar, On Beurling type invariant subspaces of L*(T?) and

their equivalence, J. Operator Theory, 20 (1988), 31-38.

T. N. T. Goodman, S. L. Lee and W. S. Tang, Wavelets in wandering Sub-
spaces, Trans. Amer. Math. Soc. 338 (1993), 639-654.

U. Haagerup and M. Rordam, Perturbations of the rotation C*-algebras and of the

Heisenberg commutation relations, Duke Math. J. 77 (1995), 627-656.

D. Han, Wandering Vectors for Irrational Rotation Unitary Systems, Trans. Amer.
Math. Soc. 350 (1998), 309-320.

A. Hasegawa, unitary systems and their applications, Master thesis, Department of
Mathematical Science, Graduate School of Science and Technology, Niigata Univer-

sity (2003).

A. Hasegawa, About the invariant subspaces of L*(T?) for certain von Newmann al-
gebras, Suurikaisekikenkyusho Koukyuroku, (Seminar note at RIMS, Kyoto) (2005),
11-20.

A. Hasegawa, The invariant subspace structure of L*(T?) for certain von Neumann

algebras, Hokkaido Math. J., to appear.
H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964.

P. R. Halmos, A Hilbert Space Problem Book, second ed., Springer-Verlag, New York,

1982.
K. Izuchi, Invariant subspaces of L?(T?), Lecture note at Shinshu University (1992).

K. Izuchi and S. Ohno, Selfadjoint commutators and invariant subspaces on the torus,

J. Operator Theory 31 (1994), 189-204.

40



[21]

[31]

K. Izuchi and S. Ohno, Selfadjoint commutators and invariant subspaces on the torus

11, Integr. equ. Oper. theory 27 (1997), 208-220.

G. Ji, T. Ohwada and K.-S. Saito, Certain invariant subspace structure of L2(T?
) y! ,

Proc. Amer. Math. Soc. 126 (1998), 2361-2368.

R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras

Vol.I, Academic Press, New York. (1983).

R. V. Kadison and J. R. Ringrose, [lundamentals of the Theory of Operator Algebras
Vol.II, Academic Press, New York. (1986).

Avising from the Irvational Rolation C™*-Algebra, Amer, J, Math. 112 (1990), 499-

523.

D. R. Larson, von Neumann Algcbras and Wavelels, Kluwer Academic Publishers.

(1997).
B. R. Li, Introduction to Operalor Algchras,World Scientific. (1991).

R. Mandrekar, The validty of Beurling theorems in polidise, Proc. Amer. Math. Soc.

103 (1988), 145-148.

M, McAsey, P. 5. Muhly and K.-S. Saito, Nosclfadjoint crossed procucts(invariant

subspaces and maximalily), Trans. Amer. Math. Soc. 248 (1979), 381-409.

M, McAsey, P. S. Muhly and K.-S. Saito, Equivalence classes of invariant subspaces

in nonselfadjoint crossed products, Publ. Res. Inst. Math. Sci. 20 (1984), 1119-1138.

G. J. Murphy, C*-Algebras and Operator Theory, Academic Press. (1990).

41



[32] T. Nakazi, Certain invariant subspaces of H? and L? on a bidisc, Canadian J. Math.

40 (1988), 1722-1280.

[33] T. Nakazi, Invariant subspaces in the bidisc and commutators, J. Austral. Math. Soc.

56 (1994), 232-242.

[34] K.-S. Saito, The Hardy spaces associated with a periodic flow on a von Neumann

algebra, Tohoku Math. J. 29 (1977), 585-595.

[35] K.-S. Saito, Invariant subspaces and cocycles in nonselfadjoint crossed products, J.

Funct. Anal. 45 (1982), 177-193.
[36] Y. Meyer, Wavelet and Operators, Camb. Studies in Adv. Math. 37 (1992).

[37] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators in Hilbert Space, North-
Holland, Amsterdam, 1970.

[38] T. Ohwada, G. Ji, A. Hasegawa and K.-S. Saito, A note on mazimality of Analytic

crossed products, J. Math. Anal. Appl. 315 (2006), 216-224.

[39] G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press,

(1979).

[40] M. Pimsner and D. Voiculescu, Imbedding the irrational rotation C™-algebra into an

AF algebra, J. Operator. Theory 4 (1980), 201-210.

[41] D. Popovici, A Wold-type decomposition for commuting tsometric pairs, Proc. Amer.

Math. Soc. 132 (2004), 2303-2314.

[42] M. Slocinski, On Wold-type decomposition of a pair of commuting isometries, Ann.

Polon. Math. 37 (1980), 255-262.



[43] M. Takesaki, Theory of Operator Algebras I, Springer, New York, (1979).

[44] H. Umegaki, M. Ohya and F. Hiai, An introduction to operator algebra, Kyoritsu
Publishing Co., (1985).

[45] H. Wold, A study in the analysis of stationary time series, Almqvist and Wiksell,
Stockholm, 1938 (2nd ed., 1954).

[46] M. Yamaguchi, M. Yamada, Wavelets-their theory and applications, Springer-Verlag,
Tokyo (1995).

43



Acknowledgement

[ gratefully acknowledge the invaluable advice and encouragement of Professor

© Kichi-Suke Saito, without which this thesis would have been impossible.

44





