
444

ダイズ根粒超着生変異株と親株の単葉根に おける根粒形成と窒素固定*1

佐藤 孝*²・八島裕幸*²・James E. HARPER*³ 赤尾勝一郎*⁴・大山卓爾*²

キーワード ダイズ,根粒,根粒超着生変異株, 単葉根,オートレギュレーション

1. はじめに

ダイズは、根粒の過剰着生を抑制する調節機能を有し ており、根粒形成のオートレギュレーションと呼ばれて いる。近年、化学変異剤処理により親株と比べ多数の根 粒を形成する根粒超着生変異株(スーパーノジュレー ションまたはハイパーノジュレーション変異株)が得ら れた¹⁾. 米国のダイズ品種 Williams から NOD 1-3, NOD 2-4, NOD 3-7 が²⁾, 我が国のダイズ品種エンレイ より En 6500 が得られている³⁾。これらの変異株はオー トレギュレーション機構の欠如、または機能が低下した 変異体と考えられている. ダイズ根粒超着生変異株と親 株の交互接ぎ木実験により根粒超着生の形質は根ではな く茎葉部によってコントロールされていることが明らか になった4,5)。しかし、茎葉部から根へ伝達されるオー トレギュレーションシグナルは同定されておらず、ま た, 茎葉部のどの部位が制御に関与しているかも明ら かではない. FRANCISCOと HARPER はダイズ品種 Williams とその根粒超着生変異株 NOD 1-3 の複葉(第 一本葉の3枚の葉)から根を伸長させ,根粒を形成させ た。その結果,NOD1-3の複葉から発生した根でも根 粒超着生の形質を示したことから,根粒形成は頂芽では なく葉身または葉柄部で支配されていると推察した⁶.

*2 新潟大学農学部(950-21 新潟市五十嵐 2-8050)

** 農業生物資源研究所(305 つくば市観音台 2-1-2)
1996年12月17日受付・受理
日本土壌肥料学雑誌 第68巻 第4号 p.444~447(1997)

沢田らは、炭水化物同化のシンク・ソースに関する研究 のアッセイ系として、ダイズの葉を植物体から切断し、 単葉から根を伸長させた系(単葉根)を用いた⁷⁾.本報 告では、ダイズ品種 Williams とエンレイ、およびそれ ぞれの根粒超着生変異株 NOD 1-3 と En 6500 を用い、 沢田らと同様に葉柄部をほとんど含まない単葉から根を 伸長させ、根粒着生について比較した.さらに、根粒菌 接種ダイズと非接種ダイズから切断した初生葉と本葉を 比較して、根粒着生ダイズおよび非着生ダイズから分離 した単葉根において根粒形成の制御に変化があるかどう かも合わせて検討した.

2. 実験材料および方法

実験試料としてダイズ品種 Williams, エンレイと根 粒超着生変異株 NOD 1-3, En 6500 を用いた。種子は 70%エタノール、0.5%次亜塩素酸ナトリウム溶液に浸 漬して滅菌した後,根粒菌懸濁液(Bradyrhizobium) *japonicum* USDA 110 1×10⁸ cells mL⁻¹) に 15 分間浸 して根粒菌を接種した。種子をバーミキュライトに播種 し、人工気象装置 (BIOPHOTOCHAMBER LX-3000 TAITEC)内で明期(照度 20000 ルクス) 25°C16 時間, 暗期18℃8時間の条件で栽培した。培養液は3日ごと にバーミキュライト培地に与えた。培養液は1L当た b K₂SO₄ 109 mg, K₂HPO₄ 8.5 mg, KCl 0.935 mg, $CaCl_2 \cdot 2 H_2O 183.0 mg, MgSO_4 \cdot 7 H_2O 123 mg,$ H₃BO₄ 0.367 mg, CuSO₄ • 5 H₂O 0.032 mg, MnSO₄ $0.189 \text{ mg}, \text{ZnSO}_4 \cdot 7 \text{ H}_2\text{O} 0.144 \text{ mg}, (\text{NH}_4)_6 \text{Mo}_7 \text{O}_{24}$ 0.004 mg, CoSO₄ 0.028 mg, NiSO₄ • 6 H₂O 0.0035 mg, EDTA \cdot Na₂ 18.6 mg, FeSO₄ \cdot 7 H₂O 13.9 mg ϵ 含むものを用いた。播種2週間後,初生葉が完全展開し たところでカミソリの刃を用いて培養液中で葉身基部の 葉柄を切断し、直ちに滅菌した培養液を満たしたバーミ キュライトに、葉の基部を下にして1cm 程度差し込ん だ。10日間上記条件で培養し、根が分化、伸長したと ころで基部に根粒菌懸濁液(USDA110 1×10⁸ cells mL-1)を1 mL 接種した. また,対照区として,根粒 菌を接種しない単葉根の培養も平行して行った。根粒菌 接種3週間後に、試料を採取し、インタクトなまま50 mL 容のガラス容器に入れゴム栓をした。容器内の空気 の約10%をアセチレンと置換し、25℃で20分間イン キュベートしてアセチレン還元活性を測定した。試料は 凍結乾燥した後,根粒数と各部位の乾物重を測定した。 その後試料を粉砕して、ケルダール分解した後、インド フェノール法⁸⁾で窒素の定量を行った。

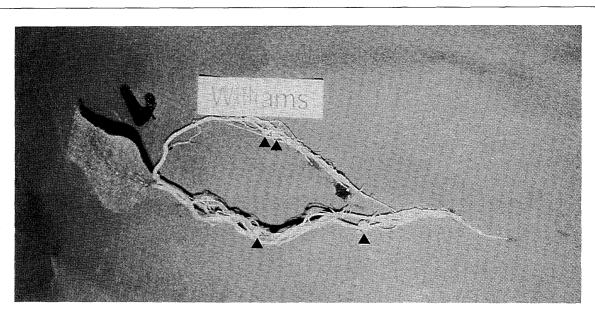

3. 結果および考察

写真1と写真2に培養した Williams と NOD 1-3の

Takashi SATO, Hiroyuki YASHIMA, James E. HARPER, Shoichiro AKAO and Takuji OHYAMA: Nodule Formation and N_2 Fixation Traits of the Rooted-Single Leaf Isolated from Hypernodulating Mutants and the Wild Type

^{*1} 本報告の一部は1996 年 4 月日本土壌肥料学会東京大会にお いて発表した。

^{*3} Plant Physiology and Genetic Research Unit USDA/ ARS Univ. Illinois (1201 West Gregory Dr. Urbana, IL 61801 USA)

佐藤・八島・HARPER・赤尾・大山:ダイズ単葉根における根粒形成

写真1 Williamsより分離した単葉根に着生した根粒

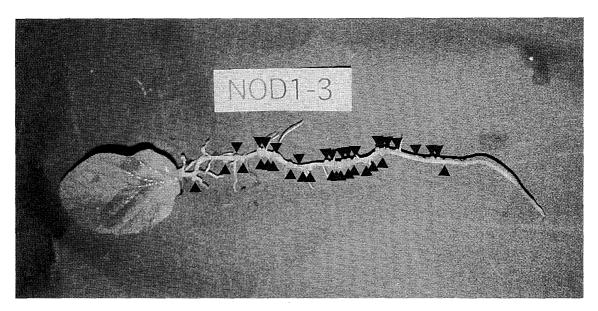
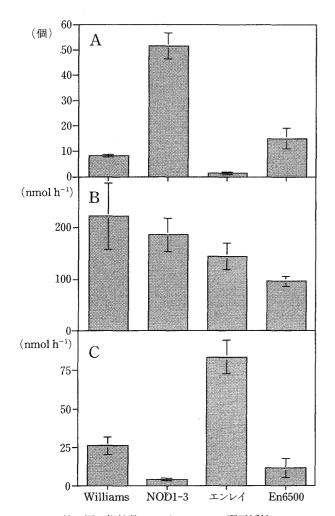



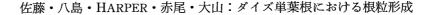
写真 2 NOD 1-3 より分離した単葉根に着生した根粒

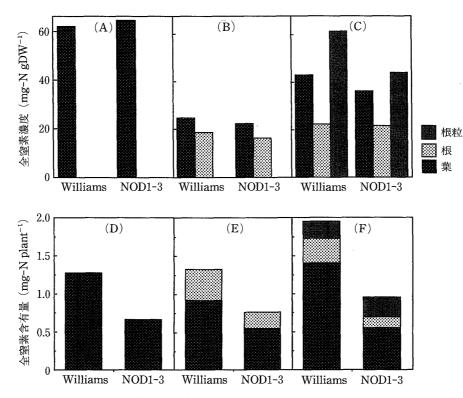
単葉から生じた根における根粒形成の様子を示す.1枚 の葉の基部から伸長した根にも根粒が形成された.写真 からも明らかなように,NOD1-3の単葉根はWilliams の単葉根と比べて多数の根粒が形成され,根粒超着生の 形質を保持していることを示した.一方,NOD1-3の 根の発育は明らかに親株より劣っていた.

根粒数とアセチレン還元活性(ARA)を測定した結 果を第1図に示す。Williams は一個体当たり10個前後 の根粒を着生したのに対し,NOD1-3では約50個と親 株の約5倍の数の根粒が着生した。エンレイとEn 6500 も同様の傾向を示したが,WilliamsとNOD1-3よりも 根粒着生数は少なかった。以上の結果から根粒超着生の 形質発現は単葉根系においても維持されており,オート レギュレーションは成熟した葉身に支配されていること が示唆された。一方,株当たりのアセチレン還元活性は どちらも親株のほうがやや高い活性を示し,根粒一個当 たりの活性ではその差はさらに顕著であった。このこと から変異株では根粒数は多いが,おそらく宿主からの養 分の供給に制限があるため,個々の根粒が十分発育でき ず,窒素固定能も低くなったと考えられる。 凍結乾燥後に各部位の乾物重を測定した結果を第1表 に示す。培養開始時のWilliamsとNOD1-3の乾物重 はそれぞれ20mgと10mgであったが、根粒菌無接種 で培養した場合、全体の乾物重はどちらも3~5倍程度 増加した。培養開始時の大きさの差のためか、葉も根も 親株より変異株のほうが小さい傾向がみられた。根粒菌 接種培養では全体の乾物重は無接種植物よりも低い傾向 がみられ、変異株でその傾向が著しかった。変異株は親 株と比較して、葉は約2分の1、根は約3分の1と小さ かったが、根粒重は約2倍近く高かった。根粒菌無接種 培養と比べて、根粒菌接種培養ではいずれの系統でも根 が小さくなる傾向を示した。

培養開始時の単葉と培養開始後の単葉根の全窒素濃度 と全窒素含有量を、Williams と NOD 1-3 で比較した結

第1図 根粒数およびアセチレン還元活性 A:一個体当たりの根粒数,B:一個体当たりのアセチレン還元 活性,C:根粒一個当たりのアセチレン還元活性. ※エラーバーは標準誤差を示す.


果を第2図に示す。根粒菌無接種培養では葉の窒素濃度 は培養開始前の半分以下に下がった(AからB). この とき葉から根への窒素の移行がみられたが、株当たりの 全窒素量は処理前の単葉と変化がないことが確認された (DからE).根粒菌接種培養でも葉の窒素濃度は処理前 よりやや低下したが、根粒菌無接種の葉より高い値を示 した(C).根粒菌を接種したときには、全窒素量が増 加したが (DからF),根粒が形成されて窒素を固定し たためと考えられた。Williams では根粒菌無接種培養 より 0.6 mg 程度の窒素の増加がみられたが, NOD 1-3 では0.2 mg程度にとどまった。さらに、根粒菌接種培 養において NOD 1-3 の根粒の窒素濃度が, Williams の 根粒と比べて低くなった(C). これらの結果は、変異 株では根粒数は多いが根粒の発達が劣り、窒素固定活性 が低いという第1図の結果をうらづけている.根粒菌接 種培養において全窒素含有量が増加しているにもかかわ らず、根や全乾物重が無接種培養よりも小さくなった理 由としては、根粒の形成と固定活性の維持のために、光 合成産物の消費量が増大したためと考えられる.


補足実験として、以下の実験を行った。品種Williams を用い,前述した方法と同様に根粒菌を接種した 株と、根粒菌無接種の株を14日間栽培した。第一本葉 が完全展開するまで生育させ、初生葉と本葉を切断し て、バーミキュライトで培養し、根粒菌を接種した。そ れぞれの根粒数を測定し、初生葉と本葉、また、根粒菌 を接種した株から切断した葉と根粒菌無接種の株から切 断した葉の根粒着生数を比較した。根粒菌を接種した株 から分離した本葉と初生葉に形成された根粒数(平均 値)を比較すると、本葉においては3.5個、初生葉にお いては4.5 個であった。また、根粒菌無接種株から分離 した初生葉においては3.8 個となり,初生葉と本葉,ま た元の植物に根粒菌を接種したか否かで差は無いと判断 できる。この結果は、根粒菌を接種した株の葉において オートレギュレーション効果が長く持続して、非接種株 から分離した葉より根粒形成が強く抑制されることはな

第1表	根粒菌を接種して培養した単葉根と根粒菌を接種し
	ないで培養した単葉根における各部位の乾物重量

亚林	根粒菌無接種培養			根粒菌接種培養			
系統	葉	根	全体	葉	根	根粒	全体
Williams	36.5	25.2	61.7	33.0	16.3	3.7	53.0
NOD 1-3	32.0	15.0	47.0	15.5	6.5	5.8	27.8
エンレイ	49.5	18.7	68.2	50.3	16.5	3.0	69.8
En 6500	39.5	12.7	52.2	28.6	6.2	5.0	39.8

(mg plant⁻¹)

第2図 全窒素濃度および全窒素含有量

(A)処理前の初生葉の全窒素濃度,(B)根粒菌無接種の単葉根の全窒素濃度,(C)根粒菌接種した単葉根の全窒素濃度,(D)処理前の初生葉の全窒素含有量,(E)根粒菌無接種の単葉根の全窒素含有量,(F)根粒菌接種した単葉根の全窒素含有量.

かったことを示している.

本実験結果から、葉身から直接発生した根においても 根粒が形成され、根粒超着生変異株とその親株の表現型 も維持された。このことは根粒菌の感染を認識してオー トレギュレーションシグナルを合成する部位が成熟した 葉身であることを支持する。ただし、感染により根から 葉へ移行する「感染シグナル」と葉から根へ輸送され、 根粒形成を抑制する「オートレギュレーションシグナ ル」は実体としてはとらえられていない。このアッセイ 系はソース器官である葉と、シンク器官である根の2器 官しか存在せず、長期間培養しても新芽は形成されない 単純な系なので、根粒形成に関する研究において、アッ セイ系として有効であると考えられた。

文 献

- CARROLL, B. J., MENEEIL, D. L. and GRESSHOFF, P. M.: A supernodulation and nitrate-tolerant symbiotic (*nts*) soybean mutant. *Plant Physiol.*, **78**, 34~40 (1985)
- 2) GREMAUD, M. F. and HARPER, J. E.: Selection and initial characterization of partially nitrate tolerant

nodulation mutants of soybean. *ibid.*, **89,** 169 \sim 173 (1989)

- AKAO, S. and KOUCHI, H. : A supernodulating mutant isolated from soybean cultiver enrei. Soil Sci. Plant Nutr., 38, 183~187 (1992)
- BARBERA, A. C. and HARPER, J. E.: Interaction of shoot and root on nodulation control of grafted soybean and mung bean. *Riv. di Agron.*, 27, 445~450 (1993)
- DELVES, A. C., HIGGINS, A. V. and GRESSHOFF, P. M.: Shoot control of supernodulation in a number of mutant soybeans. *Glycine max* (L.) Merr. *Aust. J. Plant Physiol.*, 128, 473~478 (1987)
- FRANCISCO, P. B., Jr. and HARPER, J. E.: Translocatable leaf signal autoregulates soybean nodulation. *Plant Sci.*, 107, 167~176 (1995)
- SAWADA, S., HAYAKAWA, T., FUKUSHI, K. and KASAI, M.: Influence of carbohydrate on photosynthesis in single, rooted soybean leafs used as a source-sink model. *Plant Cell Physiol.*, 27, 591~600 (1986)
- 8) 大山卓爾・伊藤道秋・小林京子・荒木 創・安吉佐和子・佐々 木修・山崎拓也・曽山久美子・種村竜太・水野義孝・五十嵐 太郎:硫酸-過酸化水素分解法による,植物,厩肥試料中 に含まれる,N,P,Kの分析,新潟大学農学部研究報告, 43,111~119(1991)