3091

複合スノータイヤ車輪の粘着特性*

下	田	茂**,	石	橋	達	弥**
新	田	勇**,	鎌	田	美	昭***

The Adhesional Characteristics of the Compound Snow Tire System

by Shigeru SHIMODA, Tatzuva ISHIBASHI. Isami NIITA, and Yoshiaki KAMATA

As a preventive method of pavement wear due to studded tires, we have introduced the device of compound snow tire wheel system. It is composed of a normal snow tire wheel and a spike wheel which has projection-ajustable studded tread, according to the road surface condition. To get practical information of adhesional characteristics of such a new wheel system, experimental and analytical works were carried out, on slippery condition surfaces of snow-or ice-covered roads. These results show that the adhesional property of the compound snow tire wheel system is affected strongly by the road condition and weight distribution between the two elemental wheels.

Key Words : Automobile, Adhesion of Tire, Pavement Wear, Compound Wheel System, Snow and Ice

1. 緒 實

積雪路面や氷結路面など、自動車用タイヤの粘着特 性が低下する恐れのある路面条件下にあっては、スノ ータイヤを中心とする各種の氷雪路面用タイヤの使用 が必要となる. これらの中で, スノータイヤはそのト レッドパターン山部の食い込みが期待できる,ごく低 温下の粉雪路面や,気温が0℃を超えるような軟質圧 雪面では効果的に利用できる場合が多いが、氷結路面 や硬い圧雪面では極端に粘着性が低下し無力化する。 このような状況下では従来より防滑チェーンが有効に 利用されている⁽¹⁾が、騒音の発生⁽²⁾など乗りごこちの 悪化,着脱作業の負担など使用に伴う問題点も多い。 スパイクタイヤはこのような防滑チェーンの使用に随 伴するトラブルを減少し、しかも氷結路面における粘 着特性を向上させる効果を有し、広く普及するに至っ たが,スパイクの必要のない無雪,無氷結の路面上で も冬期間を通じて常時使用されるため、最近では舗装 路面を摩耗させることにより生ずる粉じん公害が大き な問題となり⁽³⁾使用制限または禁止の動きも見られる

に至っている.

本研究では,路面状況に応じて防滑ピンの突出量を 変化させることにより路面摩耗の発生を防止し、しか も氷雪路面に対して良好な粘着特性を維持できる複合 スノータイヤ車輪の構想に基づき、先の報告(")に示し たスノータイヤの粘着特性を解析する手法を応用し て,この複合スノータイヤの有用性に関する検討を行 った.

2. 複合スノータイヤ車輪の原理と構造

図1に示すように、一般のスノータイヤ車輪の外側 面にスパイク車輪が複輪状に取付けてあり、このホイ

図 1 複合スノータイヤ車輪

昭和60年10月2日 第63期全国大会講演会において講演, 原稿受付 昭和 59 年 10 月 29 日.

^{**} 正員,新潟大学工学部 (2950-21 新潟市五十嵐 2).

^{***} 学生員, 新潟大学大学院.

ールの外周に配列された防滑スパイクを有するゴム製 ベースブロックは半径方向に移動可能な構造となって おり,路面状況に対応してその突出量を変化させ,常 に最適な粘着特性を保持させようとするものである. すなわち,無氷雪の舗装路面上においては,スノータ イヤ荷重配分比100%,スパイク車輪荷重配分比0% の状態で走行することにより,スパイク車輪荷重配分比0% の状態で走行することにより,スパイクによる舗装路 面損傷を完全に防止し,氷結または圧雪面上において はスパイク車輪荷重配分比を0%以上,100%以下の 間で変化させ,車輪のすべり状況に対応してスパイク による防滑効果をコントロールし,常に最適な粘着状 態の維持を可能とする機能を有する.なお防滑効果を 高めるため,防滑スパイクの接地面は外径10mmを 有するフラット形スパイクを採用している.

3. 踏面の対路面すべり特性に 関するモデル式の適用

複合車輪を構成するスノータイヤおよびスパイク車 輪の踏面に関し、それぞれ前報⁽⁴⁾に示した対路面すべ り特性に関するモデル式を適用する.すなわち図2に 示すように、平面上に配列され均一接地圧 w_1, w_2 が 作用しているスノータイヤのトレッドパターンサンプ ル(踏面面積 A_1)およびスパイク車輪のトレッドサン プル(踏面面積 A_2)に関して、トレッドベース部分の 対路面変位 d_1, d_2 の変化に伴って発生する単位面積 当りすべり抵抗力はそれぞれ

$$0 < d_1 \le d_{01} \quad s_1 = s_{01} \frac{d_1}{d_{01}} e^{a_1(1-d_1/d_{01})}$$

$$d_{01} < d_1 \quad s_1 = (s_{01} - s_{f1}) e^{s_1(1-d_1/d_{01})} + s_{f1}$$

.....(1)

となり、ここに s_{01} および s_{02} は、それぞれの踏面接 触部が粘着域よりすべり域に移行する臨界点 $d_1 = d_{01}$, $d_2 = d_{02}$ における s_1 および s_2 の値であり、 s_{f1} , s_{f2} は すべり域における最終値である。

また, これらの so1, so2 および s_{f1}, s_{f2} はそれぞれ の踏面に作用する接地圧 w1, w2 によって変化する値 であって, 次のように表すことができる.

 $s_{01} = c_1 + w_1 \tan \phi_1, \ s_{f1} = w_1 \tan \phi'_1 \dots \dots (3)$

 $s_{02} = c_2 + w_2 \cdot \tan \phi_2, \ s_{f2} = w_2 \tan \phi'_2 \cdot \dots \cdot (4)$

 c_1, c_2 は粘着域においてのみ観察される, 路面材の 粘結力 (cohesion) によるすべり抵抗成分であり, また tan ϕ_1 , tan ϕ_2 はこの粘着域において接地圧 w_1, w_2 に 関係して発生する総合的な最大摩擦抵抗力の係数であ って, スノータイヤ踏面にあって路面材内部のせん断 力 R_s に関係した内部摩擦およびタイヤトレッド材と 路面材間の境界摩擦抵抗 F_f が総合されて関与し, ま たスパイク車輪踏面にあってはスパイクの引っかき抵 抗 R_{es} およびベースブロック材と路面材間の境界摩 擦抵抗 F_f が総合的に関与するものと考えられる. 一 方 tan ϕ_1 , tan ϕ_2 はすべり域における動摩擦抵抗力に 関する係数であり, やはりこれらの R_s , R_{es} , F_f が総 合的に関係するものと考えられる.

転動する複合車輪の 粘着力に関する理論式

前章においては、均一の接地圧下におけるすべり特 性モデルの適用について考察したが、実物の空気入り スノータイヤおよび軟質ゴムベースブロックで構成さ れるスパイク車輪の外周面が路面上を転動する場合に は、その前後方向の接触長に沿って接地圧が変化する ことを考慮し、前出モデル式(1)~(4)を用い、前 報⁽⁴⁾において示した理論計算の手法により、転動状態 下にある複合車輪において発生する全粘着力を求める ための理論式を次のように導入した。

まずスノータイヤおよびスパイク車輪それぞれの接 地圧分布に関しては、長方形状の接地面幅 B_1 , B_2 方 向には一定で、接地長 L_1 , L_2 方向にのみ放物線状の 二次曲線に沿って変化するものとすれば、各踏面接地 部先端を x_1 および x_2 軸の原点にとって、次式により 表すことができる.

$$w_{1}(x_{1}) = \frac{6W_{1}}{L_{1}^{3}B_{1}}x_{1}(L_{1}-x_{1}) \dots (5)$$

$$w_{2}(x_{2}) = \frac{6W_{2}}{L_{2}^{3}B_{2}}x_{2}(L_{2}-x_{2}) \dots (6)$$

したがって先の式(3),(4)で示した,均一接地圧 を受けるトレッドサンプルに関するすべり抵抗力は, 転動状態下の実物のタイヤおよびスパイク車輪におい ては、それぞれの踏面接地長に沿った位置すなわち x_1, x_2 の値により局部的に異なった値を示し、次式に より与えられる。

$$s_{01} = c_1 + \tan \phi_1 w_1(x_1) s_{f1} = \tan \phi_1' w_1(x_1) s_{02} = c_2 + \tan \phi_2 w_2(x_2) s_{f2} = \tan \phi_2' w_2(x_2) \} \dots (8)$$

次に複合車輪を構成する両転動輪のすべり比は、転 がり半径がほぼ等しいとみなせることから, 全く同一 値を示すものとして取扱うことができる。すなわち両 転動輪の転がり半径を R. 回転角速度を ω. 車輪中心 の進行速度を v とすれば、それぞれの構成車輪および 複合車輪に共通したすべり比*i*は次式により定義され る.

駆動時 $i = (R\omega - v)/R\omega$ }.....(9) 制動時 $i=(v-R\omega)/v$ 」 このようなすべり比で転動する二つの構成車輪の踏 面において、接地長に沿った局部的な位置 x1, x2 に

より、その微小面積部分の対路面変位量は

により変化することになる.

以上の両構成車輪に関する接地圧分布, 踏面各局部 におけるすべり抵抗力の変化および対路面変位量の変 化などを考慮して、接地面全域にわたりすべり抵抗力 を積分することにより、スノータイヤおよびスパイク 車輪の両構成輪それぞれについて駆動力あるいは制動 力としての全粘着力が求められ、さらにこれらの値を 両構成輪荷重配分比を考慮して総合することにより複 合車輪としての総合粘着力を求めることができる.

(1) スノータイヤ車輪の粘着係数 すべり特性 に関するモデル式(1)を適用し、接地長L1、接地幅 B1の長方形状接地面について積分すれば、転動スノ ータイヤ部に発生する全粘着力 F₁は

これを前報(4)に示した計算手順により整理し無次元化すれば. スノータイヤ単体の粘着係数は次式によって表さ れることになる.

ここに

なお、 $i \leq d_{01}/L_1$ で接地長 L_1 の範囲内にすべり域が発生しない場合には、 $\lambda_1 = \beta_1$ とする.

(2) スパイク車輪の粘着係数 この場合にはすべり特性に関するモデル式(2)を適用し、スノータイヤ車輪 と同様な積分計算を行うことにより、転動スパイク車輪部に発生する全粘着力 № が求められる.

これを整理し無次元化すれば、スパイク車輪単体の粘着係数は次式によって求められることになる。

$$\mu_{02} = \frac{F_2}{W_2} = \frac{B_2 c_2 L_2}{W_2 \varkappa_2} \left(\frac{e^{\alpha_2}}{\alpha_2} \right) \left\{ 1 - (1 + \varkappa_2) e^{-\varkappa_2} \right\} + \frac{6 \tan \phi_2}{\varkappa_2^3} \left(\frac{e^{\alpha_2}}{\alpha_2} \right) \\ \times \left[\varkappa_2^3 e^{-\varkappa_2} + (3 - \varkappa_2) \left\{ (\varkappa_2^2 + 2\varkappa_2 + 2) e^{-\varkappa_2} - 2 \right\} \right] + \frac{B_2 c_2 L_2}{W_2 \lambda_2} (1 - e^{\beta_2 - \lambda_2}) + \frac{6 (\tan \phi_2 - \tan \phi_2')}{\lambda_2^3} \\ \times \left[\beta_2 + 1 \right] (\lambda_2 - 2) - \beta_2^2 - \left\{ (\lambda_2 - 2) (\lambda_2 + 1) - \lambda_2^2 \right\} e^{\beta_2 - \lambda_2} - \tan \phi_2' \left\{ 1 - \frac{1}{(\lambda_2 / \beta_2)^3} \left(3 \frac{\lambda_2}{\beta_2} - 2 \right) \right\}$$
(16)
$$\kappa_2 = i \alpha_2 L_2 / d_{02}, \qquad \lambda_2 = i \beta_2 L_2 / d_{02}$$

なお $i \leq d_{02}/L_2$ で接地長 L_2 の範囲内にすべり域が発生しない場合には $\lambda_2 = \beta_2$ とする.

(3) 複合車輪の粘着係数 (1),(2)項に示した結果により,任意のすべり比 i に対応した,荷重配分比が それぞれ W1/(W1+W2), W2/(W1+W2)であるスノータイヤおよびスパイク両構成車輪の粘着係数 μα1, μα2 は 式(13)および式(16)により求められるが、これらの構成車輪よりなる複合車輪の粘着係数 µaの値は次式により算 出される.

5. 実験装置および方法

以上に示した式(13),(16),(18)により,複合スノ ータイヤ車輪に関して任意のすべり比および構成輪荷 重配分比における粘着力を理論計算できるが,これに 対応する構成車輪並びに複合車輪の転動状態下での実

図 4 すべり抵抗-接地圧線図の例 (スパイク車輪)

験値を求め、また理論計算に必要なモデル式(1) ~(4)における諸定数を決定するために、前報⁽⁴⁾に示 したと同様な台上形試験装置および方法を用いた.よ って試験装置およびスノータイヤ部に関する実験方法 は省略し、ここでは図3によりスパイク車輪部に関す る実験要領について説明する.同図(a)はスパイク車 輪踏面に関するすべり特性実験の要領図であって、非 回転状態に固定したホィールリムに対して防滑スパイ ク付ベースブロックを平面配列状に固定したトレッド サンプルを用い、これを鉛直荷重を加えることによ り、トレッドサンプル接地面と路面材間に均一接地圧 を発生させる.

この条件下でスライドテーブルを移動してすべり状 態を発生させ、すべり量の増加に伴って変化するすべ り抵抗力を測定した.また同図(b)は転動状態下での スパイク車輪の粘着力試験の実施要領を示し、スライ ドテーブル速度 vと車輪周速 $R\omega$ の組合せにより、任 意のすべり比を設定して発生粘着力を測定した.

なお複合車輪については図1に示すような複合状態 下で、スパイク車輪の荷重配分比を零より100%に至 る間で変化させながら、粘着係数とすべり比の関係を

求める転動試験を行った.

また実験路面条件としては氷路面(melting ice) お よび硬い圧雪面[木下式硬度 H = 約4.0 MPa {41 kgf/cm²}]の2種類を選んだ.

6. 実験結果および考察

均一接地圧状態におけるスパイク車輪のトレッドサ ンプル試験によって得られた,すべり特性を現す実験 曲線を解析し, s_{02} , s_{f2} などのすべり抵抗値を求めて, 接地圧 w_2 との関係を図示した例を図4に示す. 氷路 面, 圧雪面とも,前報⁽⁴⁾に示したスノータイヤの場合 と同様に直線的に変化する傾向が見られ,モデル式 (3),(4)の形の表現が適用できることを示してお り,これらの結果より理論計算に必要なモデル式中の 諸定数が決定される.

次に図5はスパイク車輪単独の場合について粘着係 数とすべり比の関係を求め、これをスノータイヤ単独 の場合と比較した例(氷路面等)であり、実線は式 (13)、(16)による理論計算結果、また白丸点および黒 丸点はそれぞれ制動および駆動時の実験値を示す.ス ノータイヤ単独の場合の粘着係数レベルが0.1以下と 極端な低下状態にあるのと対比的に、フラットタイプ の防滑スパイクタイヤの効果が顕著であって、スパイ ク車輪の最終値レベルが0.9近くにまで達している.

さらにこれらのスノータイヤ車輪およびスパイク車 輪を複合化した場合の粘着特性を例示すると図6のよ うな結果となり、スパイク車輪荷重配分比40%にお いても、粘着係数レベルが0.4程度にまで増加してお り、スノータイヤ単独使用時に比して、十分なレペル アップ効果を発揮することが認められる。

また図7は複合車輪の総合粘着特性に及ぼす荷重配 分比の影響をすべり比 *i*=0.2 および1.0の場合につ いて求めた結果であって,直線で示される理論計算値 およびプロット点で示される実験値いずれによって

図 7 複合スノータイヤ車輪の粘着係数に及ぼす荷 重配分比の影響

も、スパイク車輪に対する荷重配分のコントロール効 果を明りょうに認めることができる.紙面の都合で説 明を省略したが、圧雪面に関しても同様な結果が得ら れている.

7. 結 論

以上の研究結果を要約すれば

(1) 一般のスパイクタイヤの使用による舗装道路 の摩耗,粉じん公害防止の一手段として,路面冠氷・ 雪の状況に応じて防滑スパイク部の突出量をコントロ ールできる複合スノータイヤ車輪の構想を導入した.

(2) この複合スノータイヤ車輪に関し,前報⁽⁴⁾に 示したと同様な手法を応用して,粘着係数-滑り比の 関係を与える理論式を導入した.

(3) 理論式による計算結果および台上形試験装置 による粘着力実験結果によれば、スノータイヤにスパ イク車輪を結合した複合車輪に関しては、スノータイ ヤ単独では極めてすべりやすく危険な氷路面および圧 雪面上においても良好な粘着特性を示し、さらに構成 車輪間の荷重配分比の変化により、無氷・雪路面より 完全氷・圧雪路面に至るまでの広範囲にわたる路面状 況に適応した skid-control 特性の得られることが明 らかとなった.

本研究における結果は、今後に予定されている実車 テストの結果とあいまって、実用的な複合スノータイ ヤ車輪の開発のための基礎データとして有用であると 考えられる。

文 献

(1) 下田,自動車工学,(昭54),137,共立出版社.

(2) 下田・ほか2名,雪氷誌,43-3(昭56),163.

(3) 例えば,小笠原,潤滑誌,29-6(昭59),404.

(4) 下田・ほか3名, 機論, 50-454, C (昭 59), 996.