3944

日本機械学会論文集(C編) 62巻602号(1996-10)

論文 No.96-0020

鉄道車両のアクティブ制振における制振性能の改善* (H...制御則を適用した模型実験装置による検討)

谷藤克也*1,永江哲哉*2

Improvement of Control Performance for Active Vibration Control of Railway Vehicle (Adoption of H_{∞} Control Law to a Scaled Model on a Test Apparatus)

Katsuya TANIFUJI and Tetsuya NAGAE

Recently, the application of active suspension has been studied for improving the ride quality of railway vehicles. In active vibration control of railway vehicles, it is important that the control system be robust against parameter variations. In one such study, it was indicated that a LQG controller had low stability of the robustness to mass variation of the car body due to the varying number of passengers. In this paper, the H_{∞} controllaw is adopted for a 3 d. o. f. half-vehicle model, and the improvement of control performance is investigated experimentally. As a result, it is shown that the addition of a bogie-related state variable to body-related ones provides better control performance. The control performance is improved further by shortening the sampling period. Moreover, it is also shown that the H_{∞} controller is more robust against mass variation of the car body.

Key Words: Railway, Vibration Control, Vibration of Moving Body, Robust Control, Active Suspension, Scaled Experimental Model, H_{∞} Control, Stability Robustness

1. 緒 言

鉄道車両の高速化が進むにつれ、ばねやダンパ等で 構成される従来のパッシブなサスペンションにより、 十分な制振性を得るのは困難になりつつある。そこで 昨今では、この対応策として空気圧や油圧を用いたア クティブサスペンションの導入が考えられ、その研究 および開発が行われている^{(1)~(3)}.

鉄道車両や自動車などの乗り物の制振において問題 となるのは、人の乗り降りや荷物の量により制御対象 の質量が変動することである。従って、アクティブサ スペンションを取り入れた制御系の設計において、こ のようなパラメータの変動に対する制振性能の頑健 性、つまり、ロバスト性が重要となる。著者らの一人は これまでに、アクティブサスペンション系のロバスト 性について検討しているが、文献(4)では車体質量の 変動に対する Linear Quadratic Gaussian 制御系の弱 さが指摘された。特に鉄道車両の場合、乗客の乗降に よる車体質量の変動に対する検討は重要である。 本報では、鉄道車両の油圧式アクティブサスペンション系に H_∞制御則を適用し、観測状態量、サンプリ ング周期の適切な選択による制振性能の向上、および 車体質量の変動に対するロバスト性の改善について、 模型車両を用いた実験装置による検討を行う。

2. 模型実験装置

2・1 実験装置の構成 本報で用いる模型実験装置の構成を図1に示す.この装置の車両模型は,左右動とロールの連成振動を対象とした約1/6の縮小半車両モデルである⁽⁴⁾.この輪軸相当部に対し,1.0~30.0

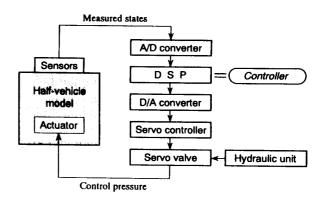


Fig. 1 Block diagram of the experimental equipment

^{* 1995} 年 3 月 18 日 北陸信越支部第 32 期総会・講演会にお いて講演, 原稿受付 1996 年 1 月 8 日.

^{*1} 正員, 新潟大学工学部 (● 950 21 新潟市五十嵐二の町 8050).

^{*2} 学生員, 新潟大学大学院.

Hzの範囲で加振可能な振動発生機により, 左右方向 の正弦波状加振変位が外乱として与えられる。車両模 型の振動の情報は, 装置に取付けられた加速度センサ により得られる。加速度は実際の鉄道車両上で観測可 能な状態量であり, この検討に用いる H_∞制御では, それらの加速度のみを使用して, 出力フィードバック 制御を行う。この観測状態量をもとに DSP を使用し て制御信号を算出し, 車体・台車間の油圧式アクチュ エータにより, 車体振動の制御を行う。

2・2 解析モデルと状態方程式 図2は,実験に 用いた半車両模型の解析モデルであり,台車左右動 (*x*₁),車体左右動(*x*₂)および車体ロール(φ)の3自由 度を有する。このモデルの運動方程式は以下のように なる。

台車左右動の運動方程式

 $m_1\ddot{x}_1 - k_{L2}(x_2 + h_1\phi - x_1)$

 $+k_{L1}x_1 = -A_{S}p + k_{L1}x_R \quad \cdots \quad (1)$

車体左右動の運動方程式

 $m_2 \ddot{x}_2 + k_{L2} (x_2 + h_1 \phi - x_1) = A_{sp}$ …………(2) 車体ロールの運動方程式

 $I\ddot{\phi} + k_{L2}h_1(x_2 + h_1\phi - x_1)$

本模型では車体・台車間の二次ばね部の左右方向に 油圧式アクチュエータを用いているが,油圧シリンダ の特性式はシリンダへの供給量およびサーボ弁の流量 から次式のように表される⁽⁵⁾.

 $p=-A_{svprp}+p_v$(4) ここでは、サーボ弁の時定数は十分小さいものとし、 また油の圧縮性については体積弾性係数が非常に大き いため、無視できるものとしている。また、式(1) ~(4)で使用する記号は以下のとおりである。

m1:台車質量

m2:車体質量

I:車体ロールの慣性モーメント

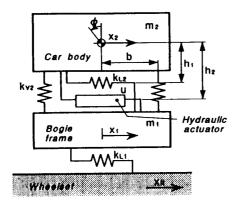


Fig. 2 Analytical model of the half-vehicle model

k_{L1}:台車あたりの一次ばね左右剛性
 k_{L2}:台車あたりの二次ばね左右剛性
 k_{V2}:台車あたりの二次ばね上下剛性
 2b:上下方向二次ばねの左右間隔
 h₁:左右方向二次ばねから車体重心までの高さ
 h₂:アクチュエータから車体重心までの高さ
 p:油圧シリンダ内の圧力差
 A_s:油圧シリンダのピストン受圧面積
 v_P:ピストン速度(= x₂+h₂φ - x₁)
 r_P:制御弁の等価抵抗係数

- pv:制御圧力
- x_R:輪軸位置の左右加振変位

なお、本検討で用いる状態方程式は、式(1)~(3) の運動方程式および式(4)を微分し、文献(4)におい て示されるように、速度および加速度を状態変数とす る形に変換する。結果として得られる状態方程式は以 下のようになる。

 $\dot{x}_0 = A_0 x_0 + B_{01} w + B_{02} u$(5) ここで,状態変数 $\dot{x}_0 = [\dot{x}_1 \quad \ddot{x}_1 \quad \dot{x}_2 \quad \ddot{x}_2 \quad \dot{\phi} \quad \ddot{\phi}]^T$, 制御入力 $u = \dot{p}_v A_s$, そして外乱入力 $w = \dot{x}_R$ である. 以下に, A_0 , B_{01} および B_{02} 行列を示す.

$$A_{0} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66} \end{bmatrix}$$

$$B_{01} = \begin{bmatrix} 0 & k_{L1}/m_{1} & 0 & 0 & 0 & 0 \end{bmatrix}^{T}$$

$$B_{02} = \begin{bmatrix} 0 & -1/m_{1} & 0 & 1/m_{2} & 0 & h_{2}/I \end{bmatrix}^{T}$$

$$a_{21} = -(k_{L1} + k_{L2})/m_{1}, a_{22} = -r_{P}A_{5}^{2}/m_{1}$$

$$a_{23} = k_{L2}/m_{1}, a_{24} = r_{P}A_{5}^{2}/m_{1}$$

$$a_{43} = -k_{L2}/m_{2}, a_{44} = -r_{P}A_{5}^{2}/m_{2}$$

$$a_{43} = -k_{L2}/m_{2}, a_{44} = -r_{P}A_{5}^{2}/m_{2}$$

$$a_{45} = -k_{L2}h_{1}/m_{2}, a_{46} = -r_{P}A_{5}^{2}h_{2}/m_{2}$$

$$a_{61} = k_{L2}h_{1}/I, a_{64} = -r_{P}A_{5}^{2}h_{2}/I$$

$$a_{65} = -(k_{L2}h_{1}^{2} + k_{V2}b^{2})/I, a_{66} = -r_{P}A_{5}^{2}h_{2}^{2}/I$$

$$c_{53}, \ \mu_{II} = 3.00 \times 10^{1} \text{ kg}, \ m_{2} = 3.02 \times 10^{1} \text{ kg}$$

$$I = 1.04 \text{ kg} \cdot \text{m}^{2}, \ k_{L1} = 2.30 \times 10^{2} \text{ kN/m}$$

$$k_{L2} = 1.80 \times 10^{1} \text{ kN/m}, \ k_{V2} = 1.06 \times 10^{1} \text{ kN/m}$$

$$2b = 4.00 \times 10^{-1} \text{ m}, \ h_{1} = 1.69 \times 10^{-1} \text{ m}$$

 $h_2 = 2.00 \times 10^{-1} \text{ m}, A_s = 1.25 \times 10^{-4} \text{ m}^2$

-207 ----

3946

鉄道車両のアクティブ制振における制振性能の改善

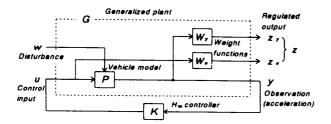
 $r_P = 1.27 \times 10^{11} \text{ Pa}/(\text{m}^3/\text{s})$

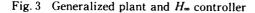
3. *H*∞ コントローラ

3・1 コントローラの設計 2章で示した3自由 度半車両モデルに対して H_{∞} 制御を適用し,制御系の 設計を行う.図3に本検討で用いた H_{∞} 制御系のブロ ック線図を示す.ここで, w は外乱入力(軌道不整), uは制御入力,そして y は観測出力(加速度), z_{y} , z_{u} は それぞれ y, uに関する評価出力である.また, P は制 御対象(車両モデル), K は H_{∞} コントローラ, W_{y} , W_{u} はそれぞれ y, uに対する重み関数である.また, G は一般化プラント(拡大系)であり,これは状態方 程式および2本の出力方程式により,以下のように表 される.

 $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}_1 \boldsymbol{w} + \boldsymbol{B}_2 \boldsymbol{u} \quad \dots \dots \quad (6)$ $\boldsymbol{z} = \boldsymbol{C}_1 \boldsymbol{x} + \boldsymbol{D}_{11} \boldsymbol{w} + \boldsymbol{D}_{12} \boldsymbol{u} \quad \dots \dots \quad (7)$ $\boldsymbol{y} = \boldsymbol{C}_2 \boldsymbol{x} + \boldsymbol{D}_{21} \boldsymbol{w} \quad \dots \dots \quad (8)$

ここで、*x*は拡大系における状態変数である。なお、 観測出力 *y* としては 3・2 節で述べるように、 $y_2 = [\ddot{x}_2 \dot{\phi}]^T$, または $y_3 = [\ddot{x}_1 \ \ddot{x}_2 \ \dot{\phi}]^T$ の 2 種類を考慮する。 この際、車体の加速度のみを観測する $y = y_2$ の場合、 コントローラの安定性の改善を目的として仮想外乱を 考慮した⁽⁷⁾. そこでは、式(8)を式(9)のように変更 する。


 $\boldsymbol{y}_{2} = \boldsymbol{C}_{2}\boldsymbol{x} + \boldsymbol{\bar{D}}_{21} [\dot{\boldsymbol{x}}_{R} \quad \delta_{x2} \quad \delta_{\boldsymbol{\phi}}]^{T} \quad \cdots \cdots \cdots (9)$ $\boldsymbol{t}_{c} \boldsymbol{t}_{c}^{c} \boldsymbol{U}$


$$\overline{\boldsymbol{D}}_{21} = [\boldsymbol{D}_{21} \quad \text{diag} (d_{x2}, d_{\phi})]$$

である.ここで、 δ_{x2} 、 δ_{θ} はそれぞれ車体左右加速度、 車体ロール角加速度における仮想外乱である。 d_{x2} , d_{θ} は仮想外乱の係数で計算上,極が安定領域に収まるよ う試行錯誤的に調整し、以下の値とした。

 $d_{x2}=1.0, d_{\phi}=0.1$

2章のように観測状態量は車両の加速度のみとしていることから、本検討におけるコントローラの設計は、 H_∞出力フィードバック問題を解くことになる。この H_∞出力フィードバック問題とは、

つ w から $z = [z_y \quad z_u]^r$ までの閉ループ伝達関数 G_{zw} が、ある γ の値に対し、

を満たす K を決定する問題である。

なお,本報でのコントローラの設計は,制御系解析 ソフトウェアパッケージ MATLAB⁽⁶⁾を使用して行 う.

3・2 コントローラの種類 本報において用いる 4種類のコントローラを表1に示す。実際の鉄道車両 において観測可能な状態量は,本実験モデルの場合, 車体左右動、車体ロールおよび台車左右動に関する三 つの加速度のみであると考える。本検討では、観測状 態量と制振性能の関係を調べるために、これら三つの 加速度のうち車体の二つの加速度を観測する場合(タ イプ1,2)と、台車を含め加速度三つすべてを観測す る場合(タイプ3,4)を考える。さらに重み関数の違い による制振性能をみるため、車体の加速度に対して1 次の固有振動数を効果的に整形する重み(W_M)を用 いる場合(タイプ1,3)と、一次固有振動から二次固有 振動までの広い周波数領域での特性整形を考えた重み (₩yB)を用いる場合(タイプ2,4)を考える、これらの 重み関数を以下に示す。

ここで, 添字 L, R はそれぞれ車体左右動, 車体ロー ルに対応し, 係数 γ は計算, 実験を通して決定するも のとする. なお, 一次固有振動数における車体左右加

Table 1 Types of controller

Туре	1	2	3	4	
Neasured acc.		Body lateral Body roll		Body lateral Body roll Bogie lateral	
Weight. func. for body late. body roll	Wyal Wyar	Wyol Wyon	Wyal Wyar	Wybl Wybr	
bogie late.			Wy7		
control inp.		w.			

鉄道車両のアクティブ制振における制振性能の改善

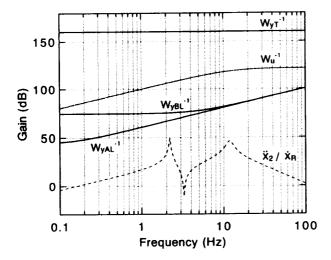


Fig. 4 Shape of weighting function

速度 \ddot{x}_2 と車体ロール角加速度 $\ddot{\phi}$ のゲイン差を考慮し て、 $\ddot{\phi}$ に対する重みは \ddot{x}_2 に対する重みの 20 倍として 与えている。一方、台車左右加速度 \ddot{x}_1 に対しては次式 に示すような制振効果に悪影響を及ぼさない程度の定 数重み (W_{yT})1 種類を与える。

 $W_{yr}(s) = 10^{-8}$ (16)

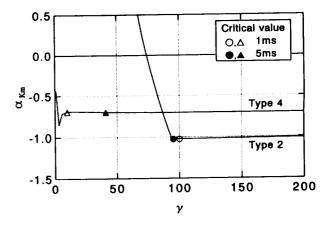
また,制御入力 u は対する重み (W_u)については,低 周波数領域での振動増大を抑制できるように設定す る.

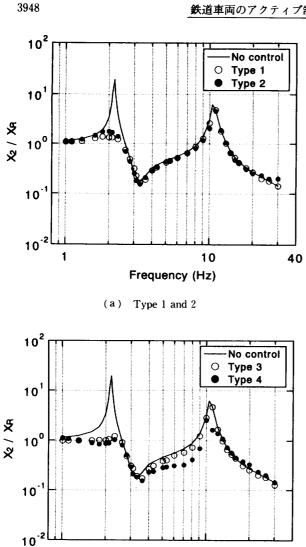
これらの重み関数の周波数特性を図4に示す.なお, \ddot{x}_2 に対する重み W_{yAL} , W_{yBL} は、 $\gamma = 50$ のときのもの であり、 W_{yAR} , W_{yBR} については同じ形状なので省略 している.また、観測状態量とそれに対する重み関数 との関係をみるために、車体左右加速度の応答特性に ついても、あわせて図中に示す.

4. 実験結果および考察

4・1 観測状態量の選択と制振性能 3・2 節で述 べたように、車体左右加速度 淀₂、車体ロール角加速度 φ の二つの状態量を観測する場合と、この二つの状態 量に台車左右加速度 淀₁を加え、三つの状態量を観測 する場合の二つの場合を考え、観測状態量の選択とコ ントローラの安定性および制振効果との関係について 調べる.

4・1・1 安定性 図5は、表1に示すコントロー ラのうち幅広い周波数領域での周波数整形を考えた重 み関数を与えたコントローラであるタイプ2,4を用 い、重み関数 W_{rBL}, W_{rBR} における係数 γ とコントロ ーラの安定性との関係を示したものである.なお、安




Fig. 5 Effect of measured states on α_{Km}

定性の評価にはコントローラ K の極の実部の最大値 α_{Km}を用い, γの範囲については1~200の間で計算を 行った。ここで、○、 △および●、 ▲印はそれぞれ、サ ンプリング周期1ms, 5msによる実験での安定な制 御が可能な限界の値を示す。この図から、車体、台車に 関する三つの状態量すべてを観測するタイプ4では計 算上, γを1まで小さくしても安定性は保たれるが, 車体の状態量のみ観測するタイプ2の場合,γを約95 より小さくすると,安定性は著しく劣化している.一 方、実験においてもタイプ4はタイプ2より小さいγ に対して安定な制御が行われた。また,両者を安定な 制御が可能な ακm の最大値で比較するとタイプ4の ほうが大きく, 安定性の余裕が小さい。それにもかか わらず, タイプ4で γ をより小さな値に下げられるの は、観測状態量の数を増やすことにより、モデル誤差 の影響が低減されるためと考えられる。

次に,両タイプの実験におけるサンプリング周期の 影響を調べる。まず,タイプ4についてサンプリング 周期を1msまで短縮する制御では,γを下げても安 定な制御が可能であった。一方,タイプ2では,サンプ リング周期を短縮すると実軸上の1に極めて近い位置 に零点が現れるため安定性に問題が生じ,1msでは5 msの場合よりもγ値を小さくすることができなかっ た。

このように、車体に関する二つの加速度のみではな く、台車の左右加速度を加えた三つの状態量を観測す ることにより、より大きな重み関数を与えても安定な コントローラの設計が可能となる。

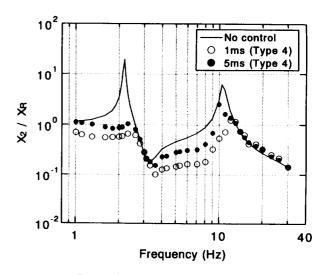
4・1・2 制振効果 図6は、表1に示す各コント ローラの実験結果を車体左右変位の周波数応答により 示したもので、図6(a)は車体に関する状態量のみを 観測した場合、図6(b)は車体と台車の両方に関する 状態量を観測した場合である。なお、各コントローラ

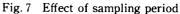
Frequency (Hz) (b) Type 3 and 4 Fig. 6 Effect of weighting function

10

40

1


はサンプリング周期は5msとし、それぞれ実験上、 最良とみなせるものを用いた。ここでの検討で用いた コントローラについて、設計の際に与えた重み関数の 係数 γを表2に示す。タイプ2、4に用いる重み関数 Wrb はタイプ1、3の重み関数 Wrd に比べ折れ点周波 数を高周波数側に増分させ、中間周波数領域における 制振効果を期待して設定したものであるが、この図を 見ると、タイプ2ではほとんど制振効果の改善は見ら れない。しかし、タイプ4では中間周波数領域での制 振効果の改善が見られる。これは、上で述べたように、 観測状態量に台車左右加速度を加えたことによりコン トローラの安定性が向上し、中間周波数領域において も、より大きな制御力をかけることが可能になるため と考えられる。


次に,図7はタイプ4のコントローラを用いて,サ ンプリング周期が制振効果へ及ぼす影響について見た

鉄道車両のアクティブ制振における制振性能の改善

Table 2 Value of γ for designing controller

		Type 1	Type 2	Type 3	Type 4
	r	150	95	75	40

ものであり、このコントローラは、図5における△、 ▲印に相当する。この図から、車体、台車両方の状態量 を観測し、サンプリング周期を5msから1msに短縮 することにより、さらに大幅な制振性能の改善が可能 となる。なお、サンプリング周期5msでの実験は γ= 40 が限界であるが、1msにすると γ=10 まで安定な 制御を行うことができた。図7の各コントローラはこ れらの γ 値で設計したものである。

以上の結果から,車体,台車両方の状態量を観測す ることにより,安定性,制振効果ともに向上し,制振 性能を改善できることが示される。

4・2 車体質量の変動に対するロバスト制振性能 図8は、車体質量の変動と制振効果の関係について、 車体左右変位と車体ロール角変位の周波数応答で示し たものである。図8(a)は、半車体質量を基本値の 30.2 kgでコントローラの設計を行い、このコントロ ーラを用いて制御対象の半車体質量を30.2 kgから 40.2 kg、50.2 kgへ増加させて制御したものである。 また、図8(b)は半車体質量を50.2 kgとしてコント ローラを設計し、反対に対象質量を減少させたもので ある。ただし、ここでのコントローラはタイプ4であ り、サンプリング周期は1 ms(γ=10)としている。図 中の非制御の応答は、それぞれコントローラの設計に 用いた半車体質量での実験結果である。これらの実験 結果から、車体質量が増加する場合および減少する場 合の両方において、顕著な制振効果の劣化は認められ 鉄道車両のアクティブ制振における制振性能の改善

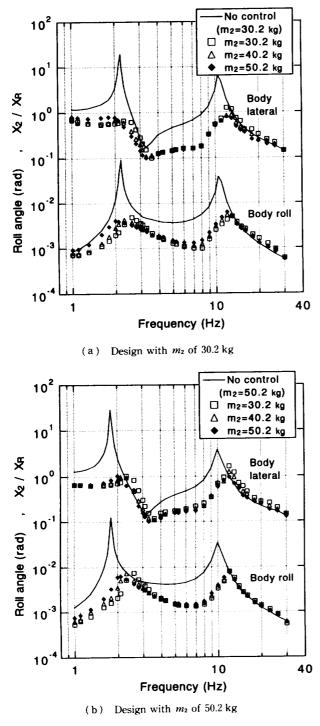


Fig. 8 Effect of splung mass variation

ない.すなわち, ロバスト性が保たれており, 文献(4) で示された車体質量変動に対する LQG 制御の弱点が, H_{∞} 制御により改善できることが示される.なお, 半車 体質量が 50.2 kg のほうが 30.2 kg よりもノミナル条 件での制振効果が小さいのは, 50.2 kg の場合のコン トローラの設計においても 30.2 kg のものと同じ重み 関数および γ を使用したためと考えられる.

図9は、図8の実験に用いたそれぞれのコントロー ラについて、設計車体質量に対する制御車体の質量比

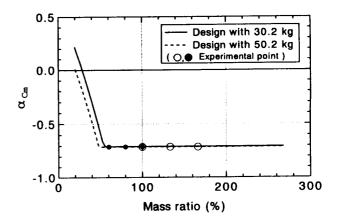


Fig. 9 Relation between mass ratio and α_{cm}

と安定性の関係を示したものである.なお、この図に 用いた安定性の評価量 a_{cm} は閉ループ系の極の実部 の最大値であり、図中の〇印は図 8(a)の実験条件、 ●印は同図(b)のそれに相当する.この図から、車体 の質量比が約 60%以上で安定性はほぼ一定に維持さ れているが、それ以下では急激に不安定方向に変化す ることが示される.これに比べ、文献(4)の LQC コン トローラ(付録参照)では、質量比が 100%付近のとき が最も安定であり、変動が生ずると安定性の低下が、 特に質量比が減少する方向で著しい.ここで、注目す べき両コントローラの違いは、 a_{cm} の値が実験での検 討範囲において、LQG コントローラでは変化するが、 H_{oc} コントローラでは一定であるという点である.こ の違いが実験での質量変動に対するロバスト性の差に 現れたものと考える.

以上のことから、LQG コントローラでは、安定性の 低下を抑えるために空車時の質量比を用いて設計する ことが望ましいのに対し、 H_{∞} コントローラでは、定 員乗車時の車体質量を用いて設計を行ったとしても、 質量変動に対する良好なロバスト制振性能を得ること ができる。鉄道車両の運用では定員乗車時における性 能が最も重要であり、その際の制振性能を考慮して設 計が可能な H_{∞} コントローラの有用性が示された。

5. 結 言

鉄道車両の油圧式アクティブサスペンション系の左 右動とロールの連成振動を対象とした半車両縮小模型 に対して H_∞制御則を適用し,ロバスト性の改善につ いて実験的検討を行い,以下のような結果を得た。

(1) コントローラの安定性向上を図るために,車体のみでなく台車に関する状態量も観測することが望ましい。それにより,車体の1次から2次の固有振動数にわたる幅広い周波数領域における整形を目的とす

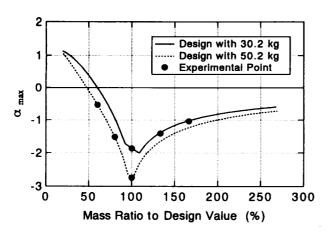


Fig. 10 Relation between mass ratio and α_{max}

る重み関数の効果的適用が可能となる。

(2) 車体,台車両方の状態量を観測することによ りサンプリング周期を短縮したうえ,より大きな重み 関数を与えることができる場合があり,さらに制振効 果の改善が見込まれる.

(3) 車体の質量変動を考える場合, H_∞制御系は 制振効果の劣化が小さく, 現実的な質量比の変動範囲 で安定性が維持されており, ロバストな制御が実現さ れる.

以上のように、鉄道車両のアクティブサスペンショ

ンに H_∞制御を適用し, 観測状態量に車体状態量のみ でなく台車の状態量も加えることにより, 良好な制振 性能および車体質量の変動に対してロバスト性を有す るコントローラを定員乗車の条件で設計できることを 示した.

録

付

文献(4)で述べた LQG コントローラの質量比に対 する α_{max} (閉ループ系の極の実部の最大値であり,本 報の α_{cm} に同じ)の変化は図 10 に示すとおりである.

文 献

- (1) 例えば、黒川悦伸・平田都史彰・ほか4名、機講論、No. 920-98(1992-11)、1-4.
- (2) 由川透・小泉智志・ほか3名,機講論, No. 920-98(1992-11), 5-8.
- (3) 檜垣博・吉江則彦・ほか4名, 機講論, No. 930-81 (1993-12), 71-74.
- (4) 島宗亮平・谷藤克也・坂上俊雄, 機論, 61-586, C(1995), 2320-2327.
- (5) 谷藤克也・島宗亮平・名倉宏明, 機論, 60-574, C(1994), 1955-1961.
- (6) Balas, G. J., Doyle, J. C., ほか3名, µ-Analysis and Synthesis Toolbox User's Guide, (1991), The MATH WORKS Inc.
- (7) 平田都史彰·高橋亮一,計自論,30-7(1994),776-782.