2484

日本機械学会論文集(B編) 59巻564号(1993-8) 論文 No.93-0038

相対的に回転する2ロール間の流体により 生じる力に関する研究*

関野龍男*1,長谷川富市*2,鳴海敬倫*2

Study of Normal Forces Generated in the Flow between Two Rolls Rotating at Relatively Different Speeds

Tatsuo SEKINO, Tomiichi HASEGAWA and Takatsune NARUMI

Normal forces generated in the flow between two-rolls, one rotating and the other fixed, are measured. Water and glycerin-water solutions are used in the experiments and the forces measured under the usual experimental condition are in good agreement with one-dimensional theoretical predictions obtained by Cameron using the Reynolds equation and the half Sommerfeld condition. A thin liquid film is produced on the surface of the rotating roll under the usual experimental conditions. But when the liquid film is stripped off with a spatula, the measured normal force is reduced. In the case of a small quantity of supplying fluids and the low speeds of rotating, the measured normal force is negative for water but positive for glycerin-water solutions.

Key Words: Viscous Flow, Shear Flow, Lubrication, Roll Coating, Normal Force, Liquid Film

1. 緒 言

相対的に回転する2ロール間の流れは、転がり潤滑、 歯車,カムなどの各種機械要素の流体潤滑のみならず 装輪式車両においてその走行を支える車輪や圧延など の塑性加工の分野まで関連し重要な問題となってい る。しかし本研究のように流体がせん断と伸張の両方 の影響を受ける2ロール間潤滑場についての研究例は わずかに行われているにすぎない^{(1)~(5)}. Oliver らは回 転する大ロールと平行に近接固定した小ロールとの間 に流体を供給したときこの小ロールに作用する反発力 と摩擦力を測定した⁽¹⁾.その結果,高分子を添加する ことによりニュートン流体のときよりも摩擦力は減少 し、反発力についてはスクイーズ膜潤滑場と同様に(6) 著しく増加することを明らかにした. Doremus, Piau らもロール間の流れに注目し反発力によって生じるロ ールの引き離される方向の変位測定を行い同様な知見 を得ている⁽²⁾.しかし、この現象に対する理論的な解 明は定性的にもなされていない.

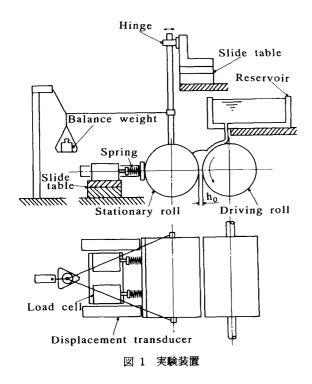
一方, 最近の塗装分野においても操業効率の高いロ

ールコーティングは広く使用されている塗装方式の一 つである。しかしその塗布流動によって生じる種々の 現象(しま模様,さざなみ模様等)はいまだ解明されて いない部分が多く⁽⁷⁾⁽⁸⁾,これに関係すると思われるロ ール間の流体による摩擦力,反発力や流動の解析が望 まれている。

本研究では、二つの同一直径のロールを狭いすきま を隔てて平行に設置し、その一方のみを回転させ他方 の静止ロールに生じる反発力を測定する. ロール間に 供給する流体はニュートン流体で比較的低速回転にお ける測定を行う.

2. 実験装置および使用流体

2・1 実験装置 実験装置の概略を図1に示す.実 験に使用した二つのロールはともに半径 R=40 mm, 長さ L=100 mm である.ステンレス製の回転ロール は、ステッピングモータによって駆動されパーソナル コンピュータにより制御される.アクリル製の静止ロ ールは、アルミニウムパイプを介して上部のスライド テーブルに固定されたヒンジに取付けられ、そこを回 転中心として微小回転できるようになっている.この 静止ロールは、外部から作用する力が零のとき自重に よるモーメントのため内側(回転ロール方向)に回転


^{*} 原稿受付 平成5年1月18日.

^{*1} 正員, 新潟大学大学院(1950-21 新潟市五十嵐 2 の町 8050).

^{*2} 正員, 新潟大学工学部.

する. そこで静止ロールに釣合い重りを糸を介して取 付け, ロールを外側に引っ張ることでその影響を解消 した. また, ロードセル (オリエンテック社製 U ゲー ジ式検出器 T 1 形)を静止ロール外側のスライドテー ブル上部に2個取付け, その検出部であるピンをばね を介してロールに接触させる. このばねは, 二つのロ ードセルにかかる力を均等化するとともに急激な力に 対してロードセルを防御するために用いられている. さらに力測定時のロールすきまんの確認を常時行う ため変位計(岩通電子社製 ST 3501)を静止ロールの外 側両端に2個取付けている. ロードセルの値はアンプ (豊田工機社製 AA 3004 形直流増幅器)を通してパー ソナルコンピュータに出力させ、変位計の値はディジ タルマルチメータに出力させて読取る.

実験では、まず二つのロールを接触させた状態より ヒンジを取付けたスライドテーブルとロードセルを固 定したスライドテーブルをおのおの微調整しロール間 のすきま h_0 を設定する (h=0.02, 0.05, 0.1, 0.15, 0.2, 0.3 mm の 6種). 次にリザーバを設置し溶液が その底面にあるスリットから回転ロール上部に流れ落 ちるようにする. ロールが停止したままで溶液が重力 によってのみロールのすきまを流れ落ちている状態で h_0 を確認して静止ロールに作用する水平方向の力を 測定しこれを F_0 とする. ここで回転ロールを回転さ せ (周速度 $V=0.042\sim0.436$ m/s) 十分安定した後、す きまが h_0 となるようロードセルの位置を微調整し力 F_{an} を測定する. この測定値 F_{an} から F_0 を差引くこと

により重力による影響が消去され回転による正味の力 F が求められる。ロール間のすきま h_0 のひずみ速度 は線形速度分布を仮定すると $\dot{\gamma} = 140 \sim 21\ 800\ [s^{-1}]$ と なる。

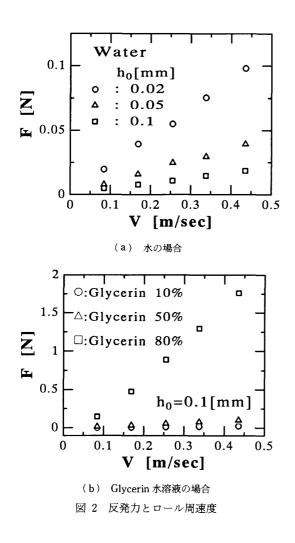
2・2 使用流体 本実験には水と Glycerin 10, 50, 80%水溶液(重量濃度)を用いた。おのおのの溶液の 実験時における平均温度と同条件下での物性値を表 1 に示す。粘度測定には Cone-Plate 形回転式粘度計(東 京計器社製 E 形粘度計)を使用した.なお,水の物性値 は理科年表より引用した。

3. 実験結果および考察

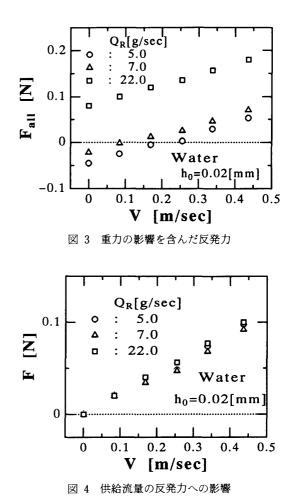
3-1 反発力の測定結果 図2は反発力F[N]の 値をロール周速度V[m/s]に対して示した例である. 図2(a)は水について h_0 を変化させた場合,図2 (b)は $h_0=0.1 \text{ mm}$ の条件下でGlycerin水溶液の濃 度を変化させた場合の測定例である。図2より反発力 はすきまの増加とともに減少し、周速度の増加ととも に大きくなっていることがわかる。また、Glycerin水 溶液のFは濃度の増加すなわち溶液粘度の増加とと もに大きくなっている。なお、ここで示した反発力Fの値は前述したようにロール回転中に測定した力 F_{an} の値から停止状態での力 F_0 を差引くことによって求 めている。

3・2 供給流量変化による影響 ロール間に供給 された溶液は入口領域をある程度満たし余分な流量が ロール両端面より下方に流れ落ちている。この入口領 域を満たしている溶液の水位はリザーバからの流量 Q_R を変えるとわずかながら変化し、その結果測定基 準としている力 F_0 に影響を与える。図3は水につい て流量 Q_R を変化させた場合の重力による影響を含ん だ力 F_{an} の測定結果である。図3より停止状態 V=0[m/s](すなわち、ロールを回転させず重力によってす きまに流体を流したとき)における力 $F_{an}(=F_0)$ は流 量 Q_R が大きいほど大きくなっていることがわかる。 この傾向は Glycerin 水溶液についても同様であった。

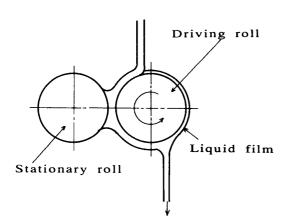
表 1 使用流体

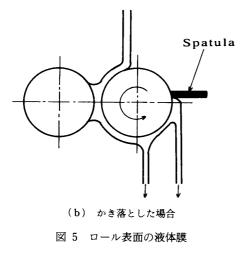

Solution	Temp. [℃]	Density [kg/m³]	Viscosity ×10-3[Pa•s]
Vater	15	999	1.138
Glycerin 10%	18	1036	1.43
Glycerin 50%	17	1132	6.22
Glycerin 80%	27	1282	100.5

-145 -


2486

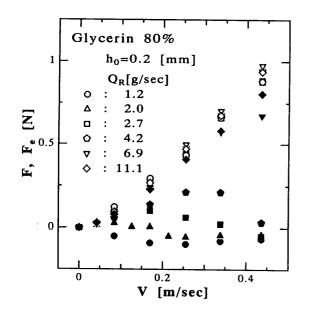
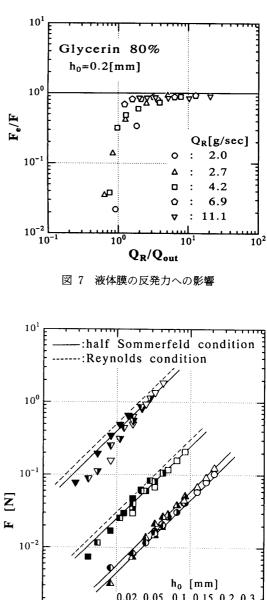
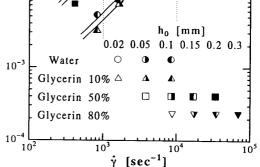
ここで注意を要することは、力 F_{au} は流量 Q_{B} が少な く周速度が小さいとき負の値を示していることであ る. ここには示していないが Glycerin 水溶液の場合, F_{all} は流量 Q_{R} および周速度 V によらず各濃度とも 常に正の値を示す結果が得られており、本実験で負の 力が生じるのは水の場合だけである。これは潤滑理論 でよくいわれるようにニップ部近傍において負圧領域 が生じていることによるものなのか、あるいは水の持 つ力学的特性によるものなのかは現時点では明らかで ない.次に種々の Q_R について得られた水の反発力 Fを図4に示す。回転によって生じた反発力 $F(=F_{all})$ $-F_{0}$) は流量 Q_{R} および F_{0} の符号にかかわらずおの おのほぼ同じ値になっている。3・3節で示すがこれは Glycerin 水溶液についても同様である.以上のことか らロールが回転することにより生じるニップ部近傍の 流れは供給流量の変化による影響を受けないことが推 察される.

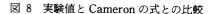

3・3 ロール表面の液体膜の影響 ここではロー ルを回転するとき生じる回転ロール面上の薄い液体膜 が反発力 F に及ぼす影響について考察を行う.いま液



体がロール間のすきまをすべて満たして流れるとし, そのときの流量を Qout とすると上部リザーバからの 供給流量 Q_R が Q_{out} より少ない場合は溶液の供給不 足になる.このとき液体はロール間隙のすべてを満た して流れることができなくなり、 ロールの長手方向に 一部液体の流れない空隙が生じることが予想される。 しかし実際には図5(a)に示すように回転ロール表面 に付着している液体膜が入口領域まで維持されてお り、これによって流量不足が補われロール間を満たし て液体が流れる。この液体膜の反発力に及ぼす影響を 調べるため図5(b)に示すようにへら状のもので液体 膜をかき落とし F の測定を行った. Glycerin 80%水 溶液についてリザーバからの流量を変化させ測定した 結果を図6に示す。図6中黒塗りが液体膜をかき落と した場合の反発力 Fe, 白抜きが液体膜をそのままに して測定した反発力 F である。図6より液体膜をその ままにしたとき, 3・2節の水の場合について述べたよ うにFは流量 Q_R によらずほぼ同じ値を示すが、 F_e は QRの減少とともに減少することがわかる。これに ついて供給流量 Q_R が少ない場合は液体膜をかき落と すことによって入口領域を満たす溶液の水位が周速度

相対的に回転する2ロール間の流体により生じる力に関する研究


図 6 反発力 F と Fe
(白抜き:液体膜をそのままにした場合の F, 黒塗
り:液体膜をかき落とした場合の Fe)

の増加とともに下がり、その結果として反発力が減少 したと考えられる。しかし流量 Q_R を十分大きくした 場合においてもわずかながら反発力の減少が生じてい る。ここでロール間のすきま h_0 において、回転ロール 上で速度 V、静止ロール上で速度零の線形速度分布を 仮定すると、 h_0 を通過する流量 Q_{out} は

$$Q_{\text{out}} = \frac{Vh_0L}{2}$$

2488

となる. ただし Lはロール長さである. 重力による流 れは今の場合すきま h_0 が小さくまた粘度が高いこと から回転による流れより十分少なく無視できると考え られる. ここで供給流量 Q_R とこの場合の出口流量 Q_{out} の比をとり反発力の減少率 F_e/F を整理した結果 を図7に示す. 図7より $Q_R/Q_{out}=1$ でも $F_e/F=0.3$ 程 度であり, Q_R が Q_{out} の10倍程度になっても反発力 に若干の減少がみられる. したがって液体膜をかき落 とすことによる反発力の減少は見掛けの供給流量の減 少のみより生じた現象ではなく,液体膜そのものの消 失にも原因があると考えられる. 換言すれば,回転ロ ール面上に付着している液体膜がニップ部付近で流れ に何らかの影響を及ぼし反発力を増大させるのであろ う. 今後液体膜厚さを測定するなどして検討を加えた いと考えている.

3・4 反発力 F の計算値との比較 一次元流れの 考えのもとで2物体間の流れを解析した Cameron⁽⁹⁾ によれば反発力は次式で表される.

 $F = \alpha \frac{\eta VRL}{h_0}$

ただし,

η:液体粘度 R:ロール半径

である. ここで係数 α は full Sommerfeld の条件では 零, half Sommerfeld の条件では 1, Reynolds の条 件では 1.22 をとり, 従来どの条件が実験結果と合う のかはっきりしていない. 図 8 に α =1 とした計算値 (図 8 中実線)と各溶液の液体膜をかき落とさない場合 の実験値を比較した結果を示す.また Glycerin 50, 80%水溶液については α =1.22 の計算値を破線で示し てある.各溶液にわたって実験値と α =1 とした計算 値はよく一致している.これから本実験による流動場 を説明するには half Sommerfeld の条件が妥当であ ることがわかる.

4. 結 言

一方が回転し他方が静止している2ロール間を流れ る液体により生じる反発力を測定した。ニュートン流 体である水, Glycerin 水溶液についてロール周速度と すきまを変えて実験を行った結果次のことが明らかに なった。

(1) 反発力はロール間のすきまが狭くなると大き くなりまた溶液粘度の増加とともに大きくなる.

(2) 使用流体が水でその供給流量が少ないとき, ロール停止状態で流れが重力のみによっている場合あ るいはロール回転数が小さい場合,ロールを接近させ る方向に力が作用する.

(3) 回転ロール表面に付着している薄い液体膜を 強制的に除去すると反発力は減少する.

(4) 本実験で測定された反発力は half Sommerfeld の条件を適用した Cameron の式によく一致する.

本実験装置の製作に際し助力いただいた近野正昭氏 (現:山形大学工学部技官),ならびに卒業研究として 本実験にご支援いただいた渡辺裕己氏に深く感謝の意 を表す.

文 献

- Oliver, D. R., Bakhtiyarov, S. I. and Shahidullah, M., J. Non-Newtonian Fluid Mech., 12(1983), 269.
- (2) Doremus, P. and Piau, J. M., J. Non-Newtonian Fluid Mech., 9(1981), 389.
- (3) Doremus, P. and Piau, J. M., J. Non-Newtonian Fluid Mech., 13(1983), 79.
- (4) Sinha, P. and Singh, C., Trans. ASME, J. Lubr. Technol., 104(1982), 168.
- (5) 黒田・荒川, 機論, 50-459, B(1984), 2854.
- (6) Oliver, D. R. and Ashton, R. C., J. Non-Newtonian Fluid Mech., 7(1980), 369.
- (7) 足立, 塗装工学, 21-8(1986), 367.
- (8) 反町・長谷川, 機論, 58-547, B(1992), 773.
- (9) Cameron, A., Basic Lubrication Theory, (1981), 80-90, John Wiley.