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CHAPTER 1

Introduction

1. Organization

The aim of this dissertation is to study homomorphisms and isome-

tries between spaces or algebras of continuous functions and vector-

valued continuous maps. A long tradition of inquiry seeks sufficient

sets of the properties of Banach algebras in terms of surjective linear

isometries. A linear isometry on a Banach algebra encodes not only the

geometric structure as a Banach space but also the algebraic structures

of the underlying Banach algebra. The most prominent result along

these lines is the Banach-Stone theorem on a linear map between the

commutative C∗-algebra of all complex-valued continuous functions on

a compact Hausdorff space. This theorem states that two compact

Hausdorff spaces Y1 and Y2 are homeomorphic if and only if their cor-

responding algebras C(Y1) and C(Y2) are isomorphic if and only if they

are isometrically isomorphic as Banach spaces. Thus the basic prob-

lem of interest is to derive extensions of the Banach-Stone theorem for

several different settings. We consider the problem whether underlying

commutative Banach algebras are isomorphic or not when there exists

a linear map U between the algebras which preserves the distance of

elements in the algebras.

The algebra of Lipschitz functions and the algebra of continuously

differentiable functions are typical commutative Banach algebras. Let

(X, d) be a compact metric space. A complex-valued continuous func-

tion f : X → C is called a Lipschitz function if there exists a positive

number L such that

|f(x) − f(y)| ≤ Ld(x, y)

5



6 1. INTRODUCTION

for every x, y ∈ X. For any Lipschitz function f , we define Lipschitz

constant L(f) by

(1.1) L(f) = sup
x̸=y

|f(x) − f(y)|
d(x, y)

.

We denote by Lip(X) the space of all Lipschitz functions on X. The

space Lip(X) is a Banach space under the following two norms respec-

tively:

(1) max norm ‖ · ‖max

For any f ∈ Lip(X), we define

‖f‖max = max{sup
x∈X

|f(x)|, L(f)};

(2) sum norm ‖ · ‖Σ
For any f ∈ Lip(X), we define

‖f‖Σ = sup
x∈X

|f(x)| + L(f).

We point out that Lip(X) is an algebra and the sum norm ‖ · ‖Σ is

submultiplicative in the sense of the inequality;

‖fg‖Σ ≤ ‖f‖Σ‖g‖Σ, f, g ∈ Lip(X).

Thus, Lip(X) is a unital commutative Banach algebra with ‖·‖Σ. Note

that the algebra Lip(X) needs not be a Banach algebra with respect

the max norm since ‖ · ‖max needs not satisfy the submultiplicativity.

We prefer to study Lip(X) with the sum norm in this dissertation.

Although the algebra Lip(X) needs not be a Banach algebra in the

strict sense, it does satisfy the following inequality

‖fg‖max ≤ 2‖f‖max‖g‖max, f, g ∈ Lip(X).

Therefore, Lip(X) has a weak-∗ topology with each norms and the

algebraic structure of Lip(X) has been studied for many years. The

seminal works of the study of Banach space and Banach algebra of

Lip(X) are due to Mirkil [81] and de Leeuw [28]. They studied the

space of periodic Lipschitz functions on the real line. Among them de

Leeuw showed the existence of the predual of the space of Lipschitz

functions by applying the so called de Leeuw’s map, which is now very

familiar to us. His result first turned the attention of mathematicians
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to the new theory. Sherbert has developed the structure of the algebra

of Lipschitz functions [111, 112]. In [111], he exhibited the following

foundamental result.

Proposition 1.1. Let A be a semi-simple commutative Banach

algebra with identity. Then the Gelfand mapping is a continuous iso-

morphism of A onto a subalgebra of Lip(M), where M is the space of

the maximal ideals with the topology induced by the operator norm.

This implies that any unital semi-simple commutative Banach al-

gebra can be seen as a subalgebra of the algebra of Lipschitz functions.

This is the basic motivation for the author of the study on the al-

gebras of Lipschitz functions and mappings. It is well known by the

Gelfand theory that M is compact in the Gelfand topology, which is

the relative weak-∗ topology. On the other hand M with the topology

induced by the operator norm is complete metric space which needs

not be compact.

Sherbert [111, Theorem 5.1] characterized the unital algebra ho-

momorphism on Lip(X).

Theorem 1.2. Let Xj be a compact metric space for j = 1, 2. Then

every unital algebra homomorphism T : Lip(X1) → Lip(X2) is of the

form

(1.2) (Tf)(x) = f(φ(x)), f ∈ Lip(X1), x ∈ X2,

where φ : X2 → X1 satisfies

(1.3) d(φ(x1), φ(x2)) ≤ Kd(x1, x2) x1, x2 ∈ X2

for some positive constant K. Conversely, if T is defined on Lip(X1)

by (1.2) where φ : X2 → X1 satisfies (1.3), then T is a unital algebra

homomorphism of Lip(X1) into Lip(X2). T is one-to-one if and only

if φ(X2) = X1, T takes Lip(X1) onto Lip(X2) if and only if φ satisfies

the additional condition

K ′d(x1, x2) ≤ d(φ(x1), φ(x2)) x1, x2 ∈ X2

for some positive constant K ′.
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Recently the studies on the algebra of vector-valued Lipschitz maps

are popular. Let E be a Banach space with the norm ‖ · ‖E. For a

metric space X, a continuous map F : X → E is a Lipschitz map if

there exists a positive number L such that

‖F (x) − F (y)‖E ≤ Ld(x, y)

for every x, y ∈ X. The definition of Lipschitz constant L(F ) is the

same with (1.1) by substituting ‖ · ‖E for | · |. We define the algebra of

E-valued Lipschitz maps by

Lip(X,E) = {F : X → E ;F is a Lipschitz map}.

If E is a Banach algebra with ‖ · ‖E, Lip(X,E) is also Banach algebra

with ‖ · ‖Σ. In addition, if E is a semi-simple Banach algebra then so

is Lip(X,E) with ‖ · ‖Σ. On the other hand, in the case of ‖ · ‖max, we

have by the similar way as the case of complex-valued functions that

‖FG‖max ≤ 2‖F‖max‖G‖max, F,G ∈ Lip(X,E).

The constant 2 in the above inequality is best and it implies that even

if E is a Banach algebra ‖ · ‖max needs not be a Banach algebra norm

on Lip(X,E). This is one of the major differences between ‖ · ‖max and

‖ · ‖Σ. There are various studies on algebras of vector-valued Lipschitz

maps with each of the norms.

On the other hand, what is a motivation of the study on Lip(X,E)?

One of the motivation of the author is that the comparison of a given

Banach space E and the algebra of Lipschitz functions Lip(X), and to

clarify how much different between E and Lip(X).

In Chapter 2 we study homomorphisms on the algebras of vector-

valued maps. We introduce a notion of admissible quadruple (cf.

Definition 2.16) which is equivalent to the one defined by Nikou and

O’Farrell [95]. The Banach algebra of the all Lipschitz maps on a com-

pact metric space with the value in a unital commutative C∗-algebra

is an admissible quadruple. We prove that a unital homomorphism

on certain admissible quadruple is of a peculiar form which is called

of type BJ. In particular, we have under some additional assumption

that a unital homomorphism between the Banach algebra of the all

Lipschitz maps with the value in a unital commutative C∗-algebra is
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of type BJ. This result means that the Banach algebra of all Lipschitz

functions and a unital commutative C∗-algebra are completely different

in its manner.

In Chapter 3 isomorphisms on admissible quadruple which is a gen-

eralization of the Banach algebra of Lipschitz maps with the values in

a uniform algebra. We prove that algebra isomorphisms on certain ad-

missible quadruples with the value in a uniform algebra is of type BJ

(Theorem 3.3), while unital homomorphisms need not be of type BJ

(Example 2.32).

Not only algebra homomorphisms but also surjective linear isome-

tries on algebras of Lipschitz functions have been studied for decades

of years. Let Bj be a Banach space with the norm ‖ · ‖j for j = 1, 2.

Recall that a map T : B1 → B2 is an isometry if ‖T (b1) − T (b2)‖B2 =

‖b1 − b2‖B1 for every pair b1, b2 ∈ B1. For instance, a classical prob-

lem on the spaces of the Lipschitz maps is as follows. Let Xi be

a compact metric space for i = 1, 2. Suppose that Lip(X1, E) and

Lip(X2, E) are isometric. Does it follow that X1 and X2 are isomet-

ric? The answer is not. They are not even homeomorphic. For ex-

ample, let Ei = Lip(Xi) for i = 3, 4, where Xi is a compact metric

space. Let T : Lip(X1,Lip(X3)) → Lip(X2,Lip(X4)) be an algebra

homomorphism. Since we have Lip(X1,Lip(X3)) = Lip(X1 ×X3) and

Lip(X2,Lip(X4)) = Lip(X2 ×X4), by Theorem 1.2 we get there exists

Lipschitz map φ : X2 ×X4 → X1 ×X3 such that

TF (x, y) = F (φ(x, y)), F ∈ Lip(X1,Lip(X3)), (x, y) ∈ X2 ×X4.

Even if φ is a homeomorphism and X3 and X4 are homeomorphic, X1

needs not be homeomorphic to X2. In this dissertation, we focus on this

problem. In the other words, one of the purpose of this dissertation is to

give a view point on the matter whether each operator from Lip(X1, E)

into Lip(X2, E) can be induced by a homeomorphism between X1 and

X2. We study surjective linear isometries on admissible quadruples of

type L in Chapter 4.

Roy proved the following theorem by applying the de Leeuw’s map

in [106, Theorem 1.7].
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Theorem 1.3. Let X be a compact, connected metric space with

diameter at most 1. Then T : Lip(X) → Lip(X) is a surjective linear

isometry with ‖ · ‖max if and only if

Tf(x) = eiθf(φ(x)),

where φ : X → X is an isometry of X onto itself and θ is a constant

in [0, 2π).

As for the problem on isometries with respect to the sum norm,

Rao and Roy [104] proved that every surjective linear isometry on

Lip([0, 1]) is represented as a weighted composition operator, which is

sometimes called the canonical form. Rao and Roy [104, p.189] posed

a problem if a similar result is valid for ‖ · ‖Σ on a compact metric

space X instead of [0, 1]. This problem on surjective linear isometries

T : Lip(X) → Lip(X) had not been solved until quite recently. We

point out that the problem for ‖ · ‖Σ is substantially harder than that

one for ‖ · ‖max by the fact that the structure of the extreme points

of the closed unit ball of the dual space are complicated in the former

case. Jarosz and Pathak exhibited in [48, Example 8] that a surjective

isometry on Lip(X) and lip(X) of a compact metric space X with

respect to the norm ‖ · ‖Σ is canonical. There seems to be a confusion

of the status of the result and we clarify the current situation. After the

publication of [48] some authors expressed their suspicion about the

argument there and the validity of the statement there had not been

confirmed when the authors of [75] pointed out a gap by referring the

comment of Weaver [116, p. 243]. While Weaver in [116] pointed out

that the argument of [48] failed on p.200 in which the norm ‖·‖max was

studied, he did not seem to have stated explicitly that the argument in

the Example 8 contained a flaw.

In Chapter 4, we prove that a form of surjective isometries on admis-

sible quadruples of type L (Theorem 4.5) is of type BJ. As a corollary

we solve the problem of Rao and Roy affirmatively (Corollary 4.15).

In Chapters 5 and 6 we study Hermitian operators. Recall that

C1([0, 1]) is the algebra of complex-valued continuously differentiable
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functions on [0, 1]. On C1([0, 1]), there are various types of norms on

C1([0, 1]). We introduce the well known one among them.

(1) max norm ‖ · ‖max

For any f ∈ C1([0, 1]), we define

‖f‖max = max{ sup
x∈[0,1]

|f(x)|, sup
x∈[0,1]

|f ′(x)|}.

(2) sum norm ‖ · ‖Σ
For any f ∈ C1([0, 1]), we define

‖f‖Σ = sup
x∈[0,1]

|f(x)| + sup
x∈[0,1]

|f ′(x)|.

We also define the algebra of vector-valued continuously differentiable

maps on [0, 1] with ‖ · ‖Σ. We denote the set of all E-valued contin-

uously differentiable maps on [0, 1] by C1([0, 1], E). This is a Banach

algebra with ‖ · ‖Σ provided that E is a Banach algebra. For C1([0, 1])

and C1([0, 1], E), there are also wide range of studies for algebra homo-

morphisms, Hermitian operators and surjective linear isometries with

respect to various norms. By previous results, we can see a lot of results

for C1([0, 1]), which resemble the statement for Lip(X). This means

that both Banach spaces must have similar properties. It is strange

that the studies on the algebra of Lipschitz maps, and on the alge-

bra of continuously differentiable maps on [0, 1] are independent. At

this point as second purpose of this dissertation, we propose a unified

approach for both of the Banach spaces. In Chapters 2 and 4, we de-

fine the admissible quadruples. The admissible quadruple enable us to

study Lip(X), C1([0, 1]), Lip(X,E) and C1([0, 1], E) simultaneously,

where E is certain Banach spaces.

In Chapter 7 we study a Hermitian operators on the tensor product

of a uniform algebra and a unital C∗-algebra and the Banach-Stone

properties.

We study a local map in Chapter 8. A Local map has a long

history. To among other important subjects, it is strongly related to

the Kaplansky’s problem which is posed in 1970; whether invertibility

preserving linear operators on algebras is Jordan homomorphisms or

not? Recall it as follows.
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Problem 1.4. For i = 1, 2, let Bi be a semi-simple Banach algebras

and let ϕ : B1 → B2 be a surjective linear operator such that

ϕ(1) = 1

and

a ∈ B1 is invertible =⇒ ϕ(a) ∈ B2 is invertible.

Then is ϕ a Jordan homomorphism?

This concerns with the problem how the local properties of an op-

erator determine the global properties. In 1967 and 1968, Gleason and

Kahane and Żelazko proved a classical result in the theory of Banach

algebras.

Theorem 1.5. Let B be a complex Banach algebra (we do not

assume that B is unital nor commutative). Let ∆ : B → C be a linear

functional such that

∆(a) ∈ σ(a), a ∈ B,

where σ(a) is the spectrum of a. Then ∆ is multiplicative, i.e.

∆(ab) = ∆(a)∆(b), a, b ∈ B.

It is greatly attracted in what local behavior of the operator decide

the operator globally. The study of a local map was initiated by Kadi-

son [63], Larson [71], and Larson and Sourour [72]. Kadison in [63]

proved that a local derivation on a von Neumann algebra R into a dual

R-bimodule is a derivation. Larson and Sourour in [72] showed that

every local derivation of the algebra of all bounded linear operators

on a Banach space is a derivation and if a Banach space is infinite-

dimensional, every invertible local automorphism is an automorphism.

This results have been improved by Brešar and Šemrl [19, 20, 21].

Let Ai be a complex Banach space for i = 1, 2. Denote by B(A1, A2)

the set of all bounded linear operators from A1 into A2. We call the

subset S ⊂ B(A1, A2) algebraically reflexive if every bounded linear

operator T belongs to S whenever T ∈ B(A1, A2), T f ∈ Sf for every

f ∈ A1. Recently, the study of algebraic reflexivity of the subspace of

bounded linear operators is attracted greatly. Many researcher study
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the algebraic reflexivity for various operators on Banach spaces. In

this dissertation, we consider the set of surjective linear isometries on

unital semi-simple commutative Banach algebras.

In Chapter 9 and Appendix A, we study 2-local isometry. A 2-local

map is initially studied by Šemrl in [110]. His motivation to define and

study a 2-local map comes from the Kowalski-S lodkowski theorem as

follows;

Theorem 1.6. Let B be a complex Banach algebra. We do not

assume that B is unital or commutative. Let ∆ : B → C such that

∆(0) = 0

and

∆(a) − ∆(b) ∈ σ(a− b), a, b ∈ B.

Then ∆ is linear and multiplicative.

This theorem is a generalization of the Gleason-Kahane-Żelazko

Theorem. Our interest is whether 2-local map T is in S or not. In this

dissertation, we mainly study a 2-local isometry on a various Banach

space. In Chapter 9, we study 2-local reflexivity of the set of all sur-

jective isometries between certain function spaces. We do not assume

linearity for isometries. Without assuming the linearity of isometries,

the problem is much harder. Whether every 2-local isometry (do not

assume the linearity) on C(Y ), where Y is a first countable compact

Hausdorff space, is a surjective isometry or not had been unsolved.

This problem is posed by Molnár. We prove that a 2-local map in

the group of all surjective isometries on the algebra of all continuously

differentiable functions is a surjective isometry. In Appendix A, we

generalize the Kowalski-S lodkowski theorem. By applying the gener-

alization of the Kowalski-S lodkowski theorem, we prove that a 2-local

isometry on a certain semi-simple commutative Banach algebra is a

surjective isometry. In Section 3, we give a positive answer to the

Molnár’s problem.
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2. Definitions

Throughout this section E is a Banach space and Bc is a unital

commutative Banach algebra. We denote the unity for Bc by 1Bc. If

no confusion can arise, we write just 1. A non-zero multiplicative linear

functional on Bc is automatically continuous with norm 1. Hence the

set M(Bc) of all non-zero multiplicative linear functionals on Bc is a

subset of the unit sphere of the dual space Bc∗ with the usual functional

norm ‖ ·‖∗. We call M(Bc) maximal ideal space or Gelfand space. We

sometime denote the maximal ideal space for Bc by M or Mj for Bcj,

just for simplicity. The Gelfand topology on M(Bc) is the relative

topology of the weak-∗ topology of Bc∗; thus M(Bc) is a compact

Hausdorff space. The kernel ϕ−1(0) for ϕ ∈ M(Bc) is a maximal ideal

of Bc. Conversely for any maximal ideal M of Bc, there exists a

unique ϕ ∈ M(Bc) with M = ϕ−1(0). The maximal ideal space of

Bc is M(Bc) with the Gelfand topology. The Gelfand transform of

a ∈ Bc is denoted by ΓBc(a); ΓBc(a) : M(Bc) → C, ΓBc(a)(ϕ) = ϕ(a)

for ϕ ∈ M(Bc). For simplicity of notation, we sometimes denote the

Gelfand transform of a by â. The Gelfand topology on M(Bc) is the

weakest topology that â is continuous for every a ∈ Bc. We denote

the set {ΓBc(a) : a ∈ S} by ΓBc(S) for a subset S of Bc. The set

ΓBc(Bc) is called the Gelfand transform of Bc and is also denoted by

B̂c. We denote the spectrum of a by σ(a), the spectral radius by r(a),

the group of all invertible elements by Bc−1. The Jacobson radical, the

intersection of all maximal ideals, of Bc is denoted by rad(Bc). We

have a ∈ rad(Bc) if and only if r(a) = 0 if and only if σ(a) = {0} (see

[70, Proposition 3.5.1, Theorem 3.5.1]). We say that Bc is semi-simple

if rad(Bc) = {0}. Hence Bc is semi-simple if and only if the Gelfand

map ΓBc : Bc→ B̂c is an isomorphism. For the theory of commutative

Banach algebras, see for instance [22, 64, 70, 101].

Let Y be a compact Hausdorff space. The space of all continuous

maps from a compact Hausdorff space Y into E is denoted by C(Y,E).

For S ⊂ Y we denote

‖f‖∞(S) = sup
x∈S

‖f(x)‖E, f ∈ C(Y,E).
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When no confusion will result we omit the subscript S and write just

‖·‖∞. The supremum norm ‖·‖∞(Y ) makes C(Y,E) a complex Banach

space. Note that C(Y,Bc) is a unital commutative Banach algebra,

and it is semisimple provided that so is Bc. The algebra C(Y,C)

is abbreviated by C(Y ). The real-algebra of all real-valued continuous

functions on Y is denoted by CR(Y ). A uniform algebra A on a compact

Hausdorff space Y is a closed subalgebra of C(Y ) which contains the

constants and separates the points of Y . A uniform algebra A on Y is

a semi-simple commutative Banach algebra with the supremum norm

on the set Y .

2.1. The space of Lipschitz maps. Let X be a compact metric

space and 0 < α ≤ 1. For F ∈ C(X,E), put

Lα(F ) = sup
x ̸=y

‖F (x) − F (y)‖E
d(x, y)α

,

which is called an α-Lipschitz constant of F , or just a Lipschitz constant

of F . When α = 1 we usually omit the subscript α and write only

L(F ). The space of all F ∈ C(X,E) such that Lα(F ) <∞ is denoted

by Lipα(X,E). When α = 1 we usually omit the subscript α and write

Lip(X,E). When 0 < α < 1 the closed subspace

lip(X,E)

= {F ∈ Lipα(X,E) : lim
x→x0

‖f(x0) − f(x)‖E
d(x0, x)α

= 0 for every x0 ∈ X}

of Lipα(X,E) is called a little Lipschitz space. In this dissertation the

norm ‖ · ‖Σ of Lipα(X,E) (resp. lip(X,E)) is defined by

‖F‖Σ = ‖F‖∞(X) + Lα(F ), F ∈ Lipα(X,E) (resp. lip(X,E)),

unless otherwise stated. Note that if d(·, ·) is a metric, then so is d(·, ·)α,

and is denoted by dα which is called a Hölder metric. For a compact

metric space (X, d), The space Lipα((X, d), E) (resp. Lipα((X, d),Bc))

is a Banach space (resp. unital commutative Banach algebra, and it

is semi-simple provided that so is Bc). Lipα((X, d), E) is isometrically

isomorphic to Lip((X, dα), E) as a Banach space and Lipα((X, d),Bc)

is isometrically isomorphic to Lip((X, dα),Bc)) as a Banach algebra.
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We introduce the algebraic tensor product space with a crossnorm.

For any g ∈ Lip(X) and e ∈ E, we define g ⊗ e : X → E by

(g ⊗ e)(x) = g(x)e.

Then g ⊗ e ∈ Lip(X,E) and we have two equalities

‖g ⊗ e‖∞ = ‖g‖∞‖e‖E,

L(g ⊗ e) = L(g)‖e‖E.

These imply that ‖g⊗e‖Σ = ‖g‖Σ‖e‖E. We define the algebraic tensor

product space with a crossnorm.

Definition 1.7. Let

Lip(X) ⊗ E = {Σn
i=1gi ⊗ ei; gi ∈ Lip(X), ei ∈ E n ∈ N}.

By a partition of unity we have that C(Y ) ⊗ E is uniformly dense

in C(Y,E). For any compact metric space X, the Stone-Weierstrass

theorem asserts that Lip(X) is uniformly dense in C(X). By a partition

of unity, the algebraic tensor product Lip(X) ⊗ E is uniformly dense

in Lip(X,E). On the other hand, for an infinite dimensional Banach

space E, it is not an easy question of whether the closure of Lip(X)⊗E
with Banach space norm ‖ · ‖Σ is the space Lip(X,E) or not.

2.2. The space of continuously differentiable maps. Let

C1([0, 1], E) be the space of all E-valued continuously differentiable

maps on the unit interval [0, 1]. Note that C1([0, 1], E) is a Banach

space with respect to the sum norm

‖F‖Σ = ‖F ′‖∞([0,1]) + ‖F‖∞([0,1])

for F ∈ C1([0, 1], E). We mainly consider this norm on C1([0, 1]) in

this dissertation. Note also that C1([0, 1],Bc) is a unital commutative

Banach algebra with respect to the sum norm and it is semi-simple

provided that so is Bc. The algebra C1([0, 1],C) is abbreviated by

C1([0, 1]). In the same way as in the case of Lip(X,E) we define the

algebraic tensor product space of C1([0, 1]) and a Banach space E by

C1([0, 1]) ⊗ E = {Σn
i=1gi ⊗ ei; gi ∈ C1([0, 1]), ei ∈ E n ∈ N}.
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By a partition of unity C1([0, 1])⊗E is uniformly dense in F ∈ C1([0, 1], E).

Since Lipα(X,E) and C1([0, 1], E) have common feature in some sense,

the author expect that unified arguments for C1([0, 1], E) and Lip(X,E)

are possible.

2.3. Algebra homomorphisms on Banach algebras. Let Aj

be an algebra for j = 1, 2. Then an algebra homomorphism ψ : A1 →
A2 is a complex-linear map such that

ψ(ab) = ψ(a)ψ(b)

for every a, b ∈ A1. An algebra homomorphism is essential operator to

study the structure of algebra. Moreover, if an algebra homomorphism

is a bijection, we call it an isomorphism. The Banach-Stone theorem

asserts that two compact Hausdorff spaces Y1 and Y2 are homeomor-

phic if and only if their corresponding algebras of all complex valued

continuous functions on Y1 and Y2 respectively are isomorphic.

2.4. Surjective linear isometries. Let (Mj, dj) be a metric space

for j = 1, 2. An isometry U : M1 → M2 is a distance preserving map,

i.e, d2(Ua, Ub) = d1(a, b) for a, b ∈ M1. Let Nj be a normed space for

j = 1, 2 we call U an isometry from N1 into N2 if ‖Ua−Ub‖ = ‖a− b‖
for any a, b ∈ N1. Suppose that U is a real-linear. Then U is an isom-

etry if and only if ‖Ua‖ = ‖a‖ for a ∈ N1. A celebrated Mazur-Ulam

Theorem states that every surjective isometry (need not to be linear)

between real normed spaces is affine, so if surjective isometry preserve

0, then it is a real-linear isometry. We denote the set of all surjective

complex-linear isometry from M1 onto M2 by IsoC(M1,M2) and the

set of all surjective real-linear isometry by IsoR(M1,M2).

2.5. Hermitian operators. The notion of a Hermitian operator

on a Banach space dates back to the seminal papers by Vidav [115]

and Lumer [76]. Lumer considered a definition in terms of semi-inner

product. We introduce the definition of semi-inner product on a Banach

space as presented in [76].
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Definition 1.8. Let E be a Banach space. A map [·, ·] : E×E → C
is called a semi-inner product if the following conditions hold for every

x, y, z ∈ E and λ ∈ C:

(1) [x+ y, z] = [x, z] + [y, z],

(2) [λx, y] = λ[x, y],

(3) [x, x] > 0 if x 6= 0,

(4) |[x, y]|2 ≤ [x, x][y, y].

A semi-inner product [·, ·] is said to be compatible with the norm if

[x, x] = ‖x‖2 for every x ∈ E.

The following proposition is well known.

Proposition 1.9. Any Banach space E has a semi-inner product.

Proof. Let E∗ be the dual space of E. By Hahn-Banach theorem,

for any x ∈ E, there exists linear functional ϕx ∈ E∗ such that ϕx(x) =

‖x‖2E. We define a semi-inner product on E by [x, y] = ϕy(x) for

x, y ∈ E. We get a semi-inner product immediately. □

This proposition shows that a semi-inner product which is compat-

ible with the norm is not unique in general.

A bounded linear operator T on E is called a Hermitian operator

if there exists a semi-inner product on E compatible with the norm of

E such that

[T (a), a] ∈ R, a ∈ E,

where R is the set of all real numbers. The operator norm is usually

denoted by ‖ · ‖. Note that if T is a Hermitian operator on E, then for

every semi-inner product [·, ·] on E compatible with the norm, [Ta, a] ∈
R for every a ∈ E (see [76, 7, 30]). Let B be a Banach algebra and B∗

its dual space as a Banach space. We define the algebraic numerical

range V (a) for a ∈ B. The algebraic numerical range for a ∈ B is

given by

V (a) = {φ(a) : φ ∈ B∗, ‖φ‖ = φ(1) = 1}.

We call an element a ∈ B Hermitian if V (a) ⊂ R. It is known that

a ∈ B is Hermitian if and only if ‖ exp(ita)‖ = 1 for all t ∈ R (see
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[7, 30]). The set of all Hermitian elements in B is a real linear subspace

of B and is denoted by Her(B).

Note that we denote the usual Banach algebra of all bounded linear

operators on a Banach space E equipped with the operator norm by

B(E). We introduce the famous and important theorem for Hermitian

operator [30, Theorem 5.2.6].

Theorem 1.10. [30, Theorem 5.2.6] Let T be a bounded linear

operator on a Banach space E. The following are equivalent:

(1) T is a Hermitian operator;

(2) ‖I + itT‖ = 1 + o(t), t ∈ R;
(3) ‖ exp(itT )‖ = 1 for all t ∈ R;
(4) exp(itT ) is an isometry for each t ∈ R.

This characterization for Hermitian operators is useful.

2.6. Local maps. Next, we define a local map from a Banach

space E1 to E2.

Definition 1.11. Let Ei be a Banach space for i = 1, 2. Let T be

a bounded linear operator from E1 into E2, i.e., T ∈ B(E1, E2). Let

S be a non-empty subset of B(E1, E2). We call T local in S if for any

x ∈ E1, there exists a bounded linear operator Tx ∈ S such that

Tx = Tx(x).

2.7. 2-local maps. Motivated by the Kowalski-S lodkowski theo-

rem, the concept of a 2-local map was introduced by Šemrl [110], who

proved the first results on 2-local automorphisms and derivations on

algebras of operators. We define a 2-local map. Let Ni be a normed

space for i = 1, 2. The set of all maps from N1 into N2 is denoted by

M(N1, N2).

Definition 1.12. Let Ni be a normed space for i = 1.2. Let T be

a map from N1 into N2. Note that we do not assume that linearity and

continuity for T . Let S be a non-empty subset of the set of all maps

from N1 into N2; ∅ 6= S ⊂ M(N1, N2). We call a T ∈ M(N1, N2) is a
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2-local map in S if for any x, y ∈ N1, there exists a map Tx,y ∈ S such

that

Tx = Tx,y(x), T y = Tx,y(y).

We call a 2-local map in the set of all surjective isometries 2-local

isometry.



CHAPTER 2

Peculiar homomorphisms on algebras of
vector-valued maps

1. Introduction to peculiar homomorphisms

Gelfand theory asserts that a unital homomorphism between unital

semi-simple commutative Banach algebras is represented by a compo-

sition operator.

Proposition 2.1. Let Bj be a unital semi-simple commutative Ba-

nach algebra for j = 1, 2. Let Mj be a maximal ideal space for Bj for

j = 1, 2. If ψ : B1 → B2 is a unital algebra homomorphism, then there

exists a map h : M2 → M1 such that

ψ̂(b) = b̂ ◦ h

for every b ∈ B1, where the map b→ b̂ denotes Gelfand transformation.

Example 2.2. Let Xj and Yj be a compact Hausdorff space for

j = 1, 2. Suppose that ψ : C(X1, C(Y1)) → C(X2, C(Y2)) is an algebra

homomorphism such that ψ(1) = 1. Then there exists a continuous

map h : X2 × Y2 → X1 × Y1 such that

ψ(F )(x, y) = F ◦ h(x, y), F ∈ C(X1, C(Y1)).

The converse also holds.

As we see in the above simple example, there exists a lot of algebra

homomorphisms which are composition operators defined by contin-

uous maps from X2 × Y2 into X1 × Y1 which are homeomorphic to

the maximal ideal spaces. Moreover, suppose that ψ : Lip(X1, E1) →
Lip(X2, E2) is a unital homomorphism between the algebras of all Lips-

chitz maps on a compact metric space Xj into a unital semi-simple com-

mutative Banach algebra Ej with the maximal ideal space M(Ej). The

maximal ideal space of Lip(Xj, Ej) is homeomorphic toXj×M(Ej) and

21
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we may suppose that Lip(Xj, Ej) is a subalgebra of C(Xj×M(Ej)) of

the algebra of all complex-valued continuous functions on Xj×M(Ej)

through the Gelfand transform (see (2.3)). Then there exists a con-

tinuous map Φ : X2 × M(E2) → X1 ×M(E1) denoted by Φ(x, ϕ) =

(φ1(x, ϕ), φ2(x, ϕ)) such that ψ(F )(x, ϕ) = F (φ1(x, ϕ), φ2(x, ϕ)) for ev-

ery (x, ϕ) ∈ X2×M(E2) and F ∈ Lip(X1, E1). Does the converse hold

in general? There exist variety of examples of Lipschitz algebras for

which the converse statement does not hold.

On the other hand, Botelho and Jamison [13] proved the following

theorem. If X2 is connected, and both of E1 and E2 are the algebra

of convergent sequences or the algebra of bounded sequences, then φ2

depends only on M(E2), not on X2. The author [98] generalized this

result by showing that it is the case where Ej is a unital commutative

C∗-algebra as follows.

Theorem 2.3. [98, Theorem 1] Let Xj be a compact metric space

for j = 1, 2. Suppose that X2 is connected. Let Yj be a compact

Hausdorff spaces for j = 1, 2. If τ : Y2 → Y1 is a continuous map,

{φ(·, y)}y∈Y2 is a set of Lipschitz maps from X2 into X1 with the

bounded Lipschitz constants such that y 7→ φ(x, y) is a continuous map

from Y2 into X1 for every x ∈ X2 , then

(1.1) ψ(F )(x, y) = F (φ(x, y), τ(y)),

F ∈ Lip(X1, C(Y1)), y ∈ Y2 and x ∈ X2 gives an algebra homomor-

phism from Lip(X1, C(Y1)) into Lip(X2, C(Y2)) with ψ(1X1) = 1X2.

Conversely suppose that ψ : Lip(X1, C(Y1)) → Lip(X2, C(Y2)) is

an algebra homomorphism such that ψ(1X1) = 1X2. Then there exist

a continuous map τ : Y2 → Y1, a Lipschitz map φ(·, y) : X2 → X1

for each y ∈ Y2, where the set of Lipschitz constants {L(φ(·, y))}y∈Y2 is

bounded and y 7→ φ(x, y) is a continuous map from Y2 into X1 for every

x ∈ X2 such that the equation (1.1) holds for every F ∈ Lip(X1, C(Y1)),

y ∈ Y2 and x ∈ X2.

1.1. Proof of Theorem 2.3. We give a proof.
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Definition 2.4. Given f ∈ C(Y ), we denote the constant map

ΦX(f) ∈ Lip(X,C(Y )) by

ΦX(f)(x) = f(x)

for all x ∈ X.

The subalgebra of all constant maps in Lip(X,C(Y )) is denoted by

Const(X,C(Y )). For any constant map f , as the Lipschitz constant

L(ΦX(f)) vanishes, f 7→ ΦX(f) ( f ∈ C(Y )) gives the natural isometric

isomorphism from C(Y ) onto Const(X,C(Y )).

Definition 2.5. For any y ∈ Y , we define PX
y : Lip(X,C(Y )) →

Lip(X) by

(PX
y F )(x) = F (x, y), F ∈ Lip(X,C(Y ))

for all x ∈ X.

To prove the necessity part of Theorem 2.3 we need several lem-

mas. In the following Lemma 2.6 through Lemma 2.12, we assume the

hypotheses in Theorem 2.3. We define T : C(Y1) → Lip(X2, C(Y2)) by

T = ψ ◦ΦX1 . It is straightforward that the map T is an algebra homo-

morphism. Fix y ∈ Y2, and we consider the map PX2
y ◦ T : C(Y1) →

Lip(X2). As C(Y1) and Lip(X2) are semi-simple commutative Banach

algebras, we can prove following lemma immediately.

Lemma 2.6. The map PX2
y ◦ T is a continuous algebra homomor-

phism from C(Y1) into Lip(X2).

Note that (PX2
y ◦ T )(1) = 1 and ‖PX2

y ◦ T‖ ≥ 1 are simple observa-

tions.

Let us now consider the adjoint (PX2
y ◦T )∗ : (Lip(X2))

∗ → (C(Y1))
∗

of PX2
y ◦ T , where (Lip(X2))

∗ and (C(Y1))
∗ are the dual spaces of

Lip(X2) and C(Y1) as Banach spaces respectively.

For any x ∈ X2 (resp. y′ ∈ Y1), we denote by δx (resp. δ′y) the

evaluational functional at x on Lip(X2) (resp. at y′ on C(Y1)). It is

well known that the maximal ideal space of Lip(X2) (resp. C(Y1)) is

{δx;x ∈ X2} (resp. {δy′ ; y′ ∈ Y1}) with the Gelfand topology.
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Lemma 2.7. For any x ∈ X2, there exists a unique y′ ∈ Y1 such

that

(PX2
y ◦ T )∗(δx) = δy′ .

Proof. We obtain (PX2
y ◦T )∗δx is a multiplicative linear functional

on C(Y1).

((PX2
y ◦ T )∗δx)(1) = δx(P

X2
y ◦ T )(1) = 1,

which asserts that (PX2
y ◦T )∗δx 6= 0. Hence there corresponds a unique

evaluational functional at a point y′ ∈ Y1 with (PX2
y ◦T )∗(δx) = δy′ . □

Lemma 2.7 asserts that (PX2
y ◦ T )∗ gives a map from the maximal

ideal space of Lip(X2) into that of C(Y1).

Lemma 2.8. If y′1 6= y′2 ∈ Y1, then ‖δy′1 − δy′2‖
∗ = 2, where ‖ · ‖∗

denotes the usual functional norm for the dual space of C(Y1).

Proof. Applying Urysohn’s lemma, there exists g ∈ C(Y1) such

that 0 ≤ g ≤ 1, g(y′1) = 1, g(y′2) = 0. By Lemma 2.6.1 in [22], we

infer that ‖δy′1 − δy′2‖
∗ ≥ 2. Since it is also clear that ‖δy′1 − δy′2‖

∗ ≤
‖δy′1‖

∗ + ‖δy′2‖
∗ = 2, we conclude that ‖δy′1 − δy′2‖

∗ = 2. □

The following lemma shows that (PX2
y ◦ T )∗({δx;x ∈ X2}) is a

singleton.

Lemma 2.9. Let y ∈ Y2. Then there exists a unique ỹ ∈ Y1 such

that

(PX2
y ◦ T )∗({δx;x ∈ X2}) = {δỹ}.

Proof. By Lemma 2.7, the set (PX2
y ◦T )∗({δx;x ∈ X2}) is a subset

of {δy′ ; y′ ∈ Y1}. Suppose that (PX2
y ◦ T )∗({δx;x ∈ X2}) contains

at least two elements y′1 and y′2 of Y1 with δy′1 6= δy′2 . There exist

x1, x2 ∈ X2 such that

(PX2
y ◦ T )∗(δx1) = δy′1 , (P

X2
y ◦ T )∗(δx2) = δy′2 .

Let A = {x ∈ X2; (PX2
y ◦ T )∗(δx) = δy′1} and B = {x ∈ X2; (PX2

y ◦
T )∗(δx) 6= δy′1}. By Lemma 2.6, we have already known that (PX2

y ◦T )∗

is a continuous map from (Lip(X2))
∗ into (C(Y1))

∗. Hence A is a closed

set. We now prove that B is also closed. In order to verify this, let
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{zn} ⊆ B be a sequence such that zn → z0 ∈ X2 (n → ∞). For any

n ∈ N ∪ {0}, there corresponds ξn ∈ Y1 with

(PX2
y ◦ T )∗(δzn) = δξn

by Lemma 2.7. Since the sequence {zn} is a converge sequence, there

exists n0 ∈ N such that d(zn, z0) <
1

3∥PX2
y ◦T∥

holds for every n ≥ n0.

For any x, z ∈ X2, we have

‖δx − δz‖∗ = sup
∥f∥Σ≤1

|f(x) − f(z)| ≤ sup
∥f∥Σ≤1

L(f)d(x, z) ≤ d(x, z).

By [107, Theorem 4.10], we get ‖PX2
y ◦ T‖ = ‖(PX2

y ◦ T )∗‖∗. Thus, if

n ≥ n0, then

‖δξn − δξ0‖∗ = ‖(PX2
y ◦ T )∗(δzn) − (PX2

y ◦ T )∗(δz0)‖∗

≤ ‖(PX2
y ◦ T )∗‖∗‖δzn − δz0‖∗

≤ ‖PX2
y ◦ T‖d(zn, z0)

<
1

3
.(1.2)

By Lemma 2.8 and the inequality (1.2), it must be

δξ0 = δξn 6= δy′1 .

By the definition of the set B, we have z0 ∈ B. This implies that the

set B is closed. However, since x1 ∈ A, x2 ∈ B and X2 = A∪B, where

A and B are disjoint and closed, it contradicts to the connectedness of

X2. Therefore (PX2
y ◦ T )∗({δx;x ∈ X2}) is a singleton. □

Applying Lemma 2.9, we define τ : Y2 → Y1 given by

(PX2
y ◦ T )∗({δx;x ∈ X2}) = {δτ(y)}

for all y ∈ Y2. For any f ∈ C(Y1), due to the definition of τ , we have

((Tf)(x))(y) = f(τ(y))(1.3)

for all x ∈ X2. This implies that T (C(Y1)) ⊆ Const(X2, C(Y2)). In

view of this, we can consider Φ−1
X2

◦ T : C(Y1) → C(Y2) such that

(1.4) (Φ−1
X2

◦ T )(f)(y) = f(τ(y))

for all y ∈ Y2.

Lemma 2.10. The map τ : Y2 → Y1 is continuous.
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Due to the definition of τ and the equality (1.3), we claim that

ψ(Const(X1, C(Y1))) ⊂ Const(X2, C(Y2)).

Let y ∈ Y2. We define an algebra homomorphism Jy : Lip(X1) →
Lip(X2) by

(Jyu)(x) = ψ(uX1)(x, y), u ∈ Lip(X1)

for all x ∈ X2, where uX1 denote the function from X1 into C(Y1) with

uX1(x) = u(x) on Y1 for every x ∈ X1. Since X1 and X2 are compact

metric spaces, Theorem 5.1 in [111] asserts that there exists a Lipschitz

map φ(·, y) : X2 → X1, which satisfies

(1.5) (Jyu)(x) = u(φ(x, y))

for all u ∈ Lip(X1) and x ∈ X2. Thus for any u ∈ Lip(X1), we have

(1.6) ψ(uX1)(x, y) = u(φ(x, y)).

By (1.3) and the definition of T , for any f ∈ C(Y1), we also have

(1.7) ψ(ΦX1(f))(x, y) = f(τ(y)).

Multiplying (1.6) by (1.7), we have

(ψ(uX1)(x, y) · (ψ(ΦX1(f))(x))(y) = u(φ(x, y)) · f(τ(y)).(1.8)

Since ψ is an algebra homomorphism, Lemma 2.11 follows immedi-

ately from (1.8) and Lemma 2.10.

Lemma 2.11. There exist a continuous map τ : Y2 → Y1 and a set

of Lipschitz maps φ(·, y) : X2 → X1 such that, for every u ∈ Lip(X1),

f ∈ C(Y1), y ∈ Y2 and x ∈ X2,

(ψ(uX1ΦX1(f))(x))(y)

= ((uX1ΦX1(f))(φ(x, y))(τ(y)) = u(φ(x, y)) · f(τ(y)).

Lemma 2.12. For any x ∈ X2, a map y 7→ φ(x, y) from Y2 into X1

is continuous.

We get by simple calculations, we omit the proof. We obtain the

maximal ideal space of Lip(X,C(Y )). We omit a proof since we prove

the general case after (Proposition 2.18).
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Proposition 2.13. Let X be a compact metric space and Y be a

compact Hausdorff space. Then the maximal ideal space of Lip(X,C(Y ))

is homeomorphic to X × Y .

Proposition 2.13 and Proposition 2.1 imply that there exists a map

h : X2 × Y2 → X1 × Y1 such that

(1.9) ψ̂(F ) = F̂ ◦ h

for all F ∈ Lip(X1, C(Y1)). We are now ready to prove Theorem 2.3.

Proof of the necessity part of Theorem 2.3. Let F ∈ Lip(X1, C(Y1)).

In the same way as in [13], we have that the algebraic tensor product

space C(X1)⊗C(Y1), with the least crossnorm, is dense in C(X1, C(Y1))

equipped with || · ||∞ since X1 is a compact metric space and C(Y1)

is a Banach space. In addition, by the Stone-Weierstrass theorem,

Lip(X1) is dense in C(X1), therefore there exists a sequence {Fn} in

Lip(X1) ⊗ C(Y1) that converges uniformly to F. Thus given ϵ > 0,

there exists n0 ∈ N such that ‖F − Fn‖∞ < ϵ for any n ≥ n0. We

identify the space Lip(X1) ⊗ C(Y1) with all the functions of the form∑k
i=1(ui)X1ΦX1(fi) with ui ∈ Lip(X1) and fi ∈ C(Y1). Each function

Fn is represented as follows :

Fn =
kn∑
i=1

(u
(n)
i )X1ΦX1(f

(n)
i )

with some u
(n)
i ∈ Lip(X1) and f

(n)
i ∈ C(Y1). By Lemma 2.11, we have

ψ(Fn)(x, y) = ψ(
kn∑
i=1

(u
(n)
i )X1ΦX1(f

(n)
i ))(x, y)

=
kn∑
i=1

ψ((u
(n)
i )X1ΦX1(f

(n)
i ))(x, y)

=
kn∑
i=1

u
(n)
i (φ(x, y)) · f (n)

i (τ(y)) = Fn(φ(x, y))(τ(y)).

For each F∈ Lip(X1, C(Y1)), F̂ is continuous on X1 × Y1 in Gelfand

topology. Hence we have ‖F −Fn‖∞ = ‖F̂ − F̂n‖∞ for all n ∈ N. Thus

for any n ≥ n0, by the existence of a map h : X2 × Y2 → X1 × Y1 as
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described in (1.9), we have

|ψ(F )(x, y) − F (φ(x, y))(τ(y))|

≤ |ψ(F )(x, y) − ψ(Fn)(x, y)| + |Fn(φ(x, y))(τ(y)) − F (φ(x, y))(τ(y))|

≤ |δ(x,y)(ψ(F )) − δ(x,y)(ψ(Fn))| + ‖Fn − F‖∞

= |ψ̂(F )(δ(x,y)) − ψ̂(Fn)(δ(x,y))| + ‖Fn − F‖∞
= |(F̂ ◦ h)(δ(x,y)) − (F̂n ◦ h)(δ(x,y))| + ‖Fn − F‖∞

≤ ‖F̂ ◦ h− F̂n ◦ h‖∞ + ‖Fn − F‖∞
≤ ‖F̂ − F̂n‖∞ + ‖Fn − F‖∞ ≤ 2ϵ.

As ϵ > 0 was chosen arbitrarily, we obtain

ψ(F )(x, y) = F (φ(x, y))(τ(y))

for all x ∈ X2 and y ∈ Y2. Finally we prove that the set of Lipschitz

constants {L(φ(·, y))}y∈Y2 is bounded. Let y ∈ Y2. For Jy : Lip(X1) →
Lip(X2), we recall the definition and the equation (1.5) as follows:

(Jyu)(x) = ψ(uX1)(x, y) = u(φ(x, y)), x ∈ X2

for every u ∈ Lip(X1). For any x1, x2 ∈ X2, we have

|(Jyu)(x1) − (Jyu)(x2)| = |ψ(uX1)(x1, y) − ψ(uX1)(x2, y)|

≤ ‖ψ(uX1)(x1) − ψ(uX1)(x2)‖∞ ≤ L(ψ(uX1))d(x1, x2).

This implies that

L(Jyu) ≤ L(ψ(uX1)) ≤ ‖ψ(uX1)‖L.

As ψ is an algebra homomorphism between semi-simple commutative

Banach algebras, ψ is continuous, so that

L(Jyu) ≤ ‖ψ‖‖uX1‖L = ‖ψ‖‖u‖L.

We also obtain

‖Jyu‖∞ = ‖u ◦ φ(·, y)‖∞ ≤ ‖u‖∞ ≤ ‖u‖L.

Thus

‖Jyu‖L = ‖Jyu‖∞ + L(Jyu) ≤ (‖ψ‖ + 1)‖u‖L.

for any u ∈ Lip(X1). Putting K = ‖ψ‖ + 1 we have

‖Jy‖ ≤ K
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for any y ∈ Y2. Let y ∈ Y2. For any x1, x2 ∈ X2, we define uy ∈ Lip(X1)

by uy(x) = d(x, φ(x2, y)). We have

d(φ(x1, y), φ(x2, y))

d(x1, x2)
=

|uy(φ(x1, y)) − uy(φ(x2, y))|
d(x1, x2)

=
|(Jyuy)(x1) − (Jyuy)(x2)|

d(x1, x2)
≤ L(Jyuy) ≤ ‖Jyuy‖L ≤ ‖Jy‖‖uy‖Σ

= ‖Jy‖(‖uy‖∞ + L(uy)) ≤ K(diam(X1) + 1).

Therefore,

L(φ(·, y)) ≤ K(diam(X1) + 1).

We conclude that the set of Lipschitz constants {L(φ(·, y))}y∈Y2 is

bounded. 2

1.2. Remarks on a generalization of Theorem2.3. Since ψ

in Theorem 2.3 is a unital algebra homomorphism on a semi-simple

Banach algebra, the Gelfand theory asserts that there exists a con-

tinuous map between the maximal ideal spaces by which the given

homomorphism is represented as a composition operator. The form of

the homomorphism given in Theorem 2.3 is called of type BJ, in the

sense that the second variable depends only on the second variable.

This means that the Lipschitz algebra Lip(X) and the algebra C(Y )

are completely different; they are not miscible with each other.

We call a unital homomorphism represented by the composition

operator induced by a continuous map Φ(x, ϕ) = (φ1(x, ϕ), φ2(ϕ)) is

of type BJ. A precise definition of a unital homomorphism of type BJ

is given at the end of the next section (see Definition 2.20). In this

chapter, we show that several unital homomorphisms between certain

Banach algebra are of type BJ. On the other hand, it is not the case

in general; if a unital commutative C∗-algebra is replaced by a cer-

tain uniform algebra, a homomorphism needs not be of type BJ (see

Example 2.32). It is interesting to note that isomorphisms between

algebras of the all Lipschitz maps on connected compact metric spaces

into uniform algebras are of type BJ (see Section 2 in Chapter 3). We
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give several sufficient conditions on Banach algebras which ensure that

every unital homomorphism on them is of type BJ.

2. Preliminary with Definitions

Let E be a unital commutative Banach algebra. An E-valued func-

tion algebra in the strong sense is as follows.

Definition 2.14. We say that A is an E-valued function algebra

on a compact Hausdorff space X in the strong sense if A is a subalgebra

of C(X,E) for a unital commutative Banach algebra E such that the

following conditions are satisfied.

(1.1) A is a Banach algebra under some norm ‖ · ‖A,

(1.2) A contains the constant maps,

(1.3) A separates the points of X,

(1.4) for every x ∈ X the evaluation map ex : A → E defined by

f 7→ f(x) is continuous.

The algebra C(X,E) is an E-valued function algebra on X in the

strong sense with the norm ‖ · ‖∞(X). If E is semi-simple, and a sub-

algebra A of C(X,E) is a Banach algebra under some norm, then

ex : A → E is automatically continuous for every x ∈ X by a theorem

of Šilov (see [101, Theorem 3.1.11]). Nikou and O’Farrell defined an

E-valued function algebra [95, Definition 1.1]. But we have pointed

out a minor error in [95, Definition 1.1] of an E-valued function al-

gebra. Recently, Nikou and O’Farrell have published the corrigendum

[96].

Let K be a compact metric space and E a unital commutative

Banach algebra. We have ‖ex(F )‖E ≤ ‖F‖L for every x ∈ K and

F ∈ Lip(K,E). Therefore Lip(K,E) is an E-valued function algebra

on K.

If B is a C-valued function algebra on X (in the strong sense), then

{ex : x ∈ X} ⊂ M(B) and the map x 7→ ex from X into M(B) is

a continuous injection. Hence X is embedded in M(B) as a compact

subset. We introduce the definition of natural.
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Definition 2.15. We call B is natural if the map x 7→ ex is a

surjection, that is, if X is homeomorphic to {ex : x ∈ X} = M(B)

through the map x 7→ ex.

The Gelfand transform of a unital commutative semi-simple Ba-

nach algebra is natural. As Lip(K,C) is dense in C(K) and Lip(K,C)

is inverse-closed, we can prove that Lip(K,C) is natural; K is home-

omorphic to {ex : x ∈ K} = Lip(K,C). We discuss natural in more

detail (Proposition 4.2).

Definition 2.16 (see [95]). Let X be a compact Hausdorff space

and E a commutative Banach algebra with unit. By an admissible

quadruple we mean a quadruple (X,E,B, B̃), where

(2.1) B ⊂ C(X) is a natural C-valued function algebra on X,

(2.2) B̃ ⊂ C(X,E) is an E-valued function algebra on X in the

strong sense,

(2.3) B ⊗ E ⊂ B̃ and

(2.4) {λ ◦ f : f ∈ B̃, λ ∈M(E)} ⊂ B.

In fact, two definitions of an admissible quadruple by Definition

2.1 in [95] and Definition 2.16 are formally different. However An

admissible quadruple defined by Definition 2.1 in [95] and one defined

by Definition 2.16 in this dissertation are equivalent.

Let X be a compact Hausdorff space and E a unital commutative

Banach algebra. Then (X,E,C(X), C(X,E)) is an admissible quadru-

ple. LetK be a compact metric space. Then (K,E,Lip(K,C),Lip(K,E))

is an admissible quadruple.

Definition 2.17. Let (X,E,B, B̃) be an admissible quadruple.

Let π : X × M(E) → M(B̃) be given by π(x, ϕ) = ϕ ◦ ex, where

ϕ◦ex(F ) = ϕ(F (x)) for every F ∈ B̃. Then by a routine argument π is a

continuous injection. We say that an admissible quadruple (X,E,B, B̃)

is natural if the associated map π is bijective.

As X×M(E) is compact and M(B̃) is Hausdorff, π is a homeomor-

phism if (X,E,B, B̃) is natural. In this case the maximal ideal space of

B̃ coincides with {ϕ ◦ ex : x ∈ X, ϕ ∈ M(E)}, which is homeomorphic
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to X ×M(E). Hence we may suppose that

(2.1)
̂̃
B ⊂ C(X ×M(E))

through the homeomorphism π : X × M(E) → M(B̃); identifying

(x, ϕ) and ϕ ◦ ex through π.

Proposition 2.18. Let (X,E,B, B̃) be an admissible quadruple.

Suppose that B is dense in C(X). Suppose also that B̃ is inverse-

closed; F ∈ B̃ with ΓB̃(F )(ϕ ◦ ex) 6= 0 for every pair x ∈ X and

ϕ ∈ M(E) implies F−1 ∈ B̃. Then (X,E,B, B̃) is natural.

Proof. Suppose that π : X × M(E) → M(B̃) is defined by

(x, ϕ) 7→ ϕ ◦ ex. We prove that π is surjective. Suppose that π

is not surjective. Choose any Φ0 ∈ M(B̃) \ π(X × M(B̃)) and fix

it. Since π(X × M(E)) is compact there exist a finite number of

F1, F2, . . . , Fn ∈ Ker Φ0 = {F ∈ B̃ : Φ0(F ) = 0} such that
n∑
j=1

|ϕ(Fj(x))| =
n∑
j=1

|ϕ ◦ ex(Fj)| > 1/2

for every (x, ϕ) ∈ X ×M(E). As M(E) is the maximal ideal space of

E, for each x ∈ X there exist bx1 , b
x
2 , . . . , b

x
n ∈ E with

n∑
j=1

ϕ(Fj(x)bxj ) = 1.

for every ϕ ∈ M(E). For every x ∈ X there exists an open neighbor-

hood Gx with∣∣∣∣∣ϕ
(

n∑
j=1

Fj(y)bxj − 1

)∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

ϕ(Fj(y)bxj ) − 1

∣∣∣∣∣ < 1/2, y ∈ Gx.

for every ϕ. Note that ∪x∈XGx = X. Since X is compact, there exist

a finite number of x1, x2, . . . , xm ∈ Xsuch that ∪mi=1Gxi = X. We have∣∣∣∣∣ϕ
(

n∑
j=1

Fj(y)bxij − 1

)∣∣∣∣∣ < 1/2, y ∈ Gxi

for every ϕ ∈ M(E) and i = 1, 2, . . . ,m. Put Hi =
∑n

j=1 Fj(1B ⊗ bxij )

for i = 1, 2, . . . ,m. As 1B ⊗ bxij ∈ B ⊗ E ⊂ B̃, we have Hi ∈ B̃.

We also have Hi ∈ Ker Φ0 since Fj ∈ Ker Φ0 for j = 1, 2, . . . , n. Let
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{λi}mi=1 ⊂ C(X) be the decomposition of unity related to {Gi}mi=1;

0 ≤ λi ≤ 1, λi = 0 on the complement of Gi (i = 1, 2, . . . ,m), and∑m
i=1 λi = 1. Put

Hϕ(y) =
m∑
i=1

λi(y)ϕ(Hi(y)), y ∈ X.

Then for every ϕ ∈ M(E) we have Hϕ is in C(X) and

|Hϕ(y) − 1| ≤
m∑
i=1

λi(y)|ϕ(Hi(y)) − 1| ≤ 1/2

for every ϕ ∈ M(E) and y ∈ X since λi(y)|ϕ(Hi(y))−1| = 0 for y 6∈ Gi

and |ϕ(Hi(y)) − 1| < 1/2 for y ∈ Gi. Since B is dense in C(X), there

exist λ′1, λ
′
2, . . . , λ

′
m ∈ B such that∣∣∣∣∣

m∑
i=1

λ′i(y)ϕ(Hi(y)) −
m∑
i=1

λi(y)ϕ(Hi(y))

∣∣∣∣∣ < 1/6, y ∈ X

for every ϕ ∈ M(E). We infer that∣∣∣∣∣
m∑
i=1

λ′i(y)ϕ(Hi(y)) − 1

∣∣∣∣∣ < 2/3, y ∈ X

for every ϕ ∈ M(E). Put H̃ =
∑m

i=1(λ
′
i ⊗ 1E)Hi ∈ B̃. Then H̃ ∈

Ker Φ0 as Hi ∈ Ker Φ0, and we have

ϕ ◦ ey(H̃) = ϕ(H̃(y)) =
m∑
i=1

λ′i(y)ϕ(Hi(y)), (y, ϕ) ∈ X ×M(E).

Hence |ϕ ◦ ey(H̃) − 1| < 2/3 for every (y, ϕ) ∈ X × M(E). As B̃ is

inverse closed, H̃−1 ∈ B̃. This contradicts to H̃ ∈ Ker Φ0. □

Let K be a compact metric space and E a unital commutative

Banach algebra. By the Stone-Weierstrass theorem Lip(K,C) is dense

in C(K), and Lip(K,E) is inverse-closed by the definition of a vector-

valued Lipschitz maps. Hence by Proposition 2.18 the maximal ideal

space of Lip(K,E) is homeomorphic to K×M(E). Thus the quadruple

(K,E,Lip(K,C),Lip(K,E)) is a natural admissible quadruple and

(2.2) ̂Lip(K,E) ⊂ C(K ×M(E)).

We say that (X,E,B, B̃) is semi-simple if so is B̃.
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Proposition 2.19. An admissible quadruple (X,E,B, B̃) is semi-

simple if and only if E is semi-simple.

Proof. Suppose that E is semi-simple. Let F ∈ B̃ satisfy ΓB̃(F ) =

0 on M(B̃). Then (ΓB̃(F ))(ϕ ◦ ex) = 0 for every (x, ϕ) ∈ X ×M(E)

since π(X × M(E)) ⊂ M(B̃). Hence for every x ∈ X, we have

ϕ(F (x)) = 0 for ϕ ∈ M(E). As E is semi-simple we get F (x) = 0

for every x ∈ X, hence F = 0. We have that B̃ is semi-simple.

Conversely suppose that B̃ is semi-simple. Suppose that a ∈ E

satisfies σ(a) = {0}. We show that a = 0. By a simple calculation we

have σ(a) = σ(1 ⊗ a). Since B̃ is semi-simple, we have that 1 ⊗ a = 0

and thus a = 0. □

We have by (2.2) and Proposition 2.19 that we may suppose that

(2.3) Lip(K,E) ⊂ C(K ×M(E))

if E is semi-simple. In general, we have the following. Suppose that E

is semi-simple and (X,E,B, B̃) is natural. Then B̃ is semi-simple by

Proposition 2.19; we may identify B̃ and
̂̃
B. Hence we may suppose

that

(2.4) B̃ ⊂ C(X ×M(E))

by (2.1).

Suppose that ψ : (X1, E1, B1, B̃1) → (X2, E2, B2, B̃2) is a unital

homomorphism between semi-simple and natural quadruples. Gelfand

theory asserts that there exists a continuous map Φ : X2 ×M(E2) →
X1×M(E1) denoted by Φ(x, ϕ) = (φ1(x, ϕ), φ2(x, ϕ)) such that ψ(F )(x, ϕ) =

F (φ1(x, ϕ), φ2(x, ϕ)) for every (x, ϕ) ∈ X2×M(E2) and F ∈ (X1, E1, B1, B̃1).

Definition 2.20. Suppose that Ej is semi-simple and (Xj, Ej, Bj, B̃j)

is natural for j = 1, 2. Suppose that ψ : (X1, E1, B1, B̃1) → (X2, E2, B2, B̃2)

is a unital homomorphism. We say that ψ is of type BJ if φ2 depends

only on the second variable;

ψ(F )(x, ϕ) = F (φ1(x, ϕ), φ2(ϕ)), (x, ϕ) ∈ X2 ×M(E2)

for every F ∈ (X1, E1, B1, B̃1).
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3. Results and Proofs

Let Ej be a unital commutative Banach algebra. We say that a

homomorphism ψ : E1 → E2 is unital if ψ(1E1) = 1E2 . In this section

we study sufficient conditions on an admissible quadruple which ensure

that every unital homomorphism on it is of type BJ.

Lemma 2.21. Let Ej be a unital commutative Banach algebra. Sup-

pose that ψ : E1 → E2 is a unital homomorphism. Then we have

ψ(rad(E1)) ⊂ rad(E2). Hence the map ψ̂ : Ê1 → Ê2 defined by

ψ̂(ΓE1(a)) = ΓE2(ψ(a)), ΓE1(a) ∈ Ê1, is well defined. ψ̂ is a uni-

tal homomorphism from Ê1 into Ê2. There exists a continuous map

h : M(E2) → M(E1) such that

ψ̂(ΓE1(a)) = ΓE1(a) ◦ h, ΓE1(a) ∈ Ê1.

In particular, if ψ is an isomorphism, then ψ̂ is an isomorphism and

h is a homeomorphism.

Proof. Suppose that a ∈ rad(E1). Then, by Proposition 3.5.1

and Theorem 3.5.1 in [70], λ1E1 − a ∈ E−1
1 for every non-zero complex

number λ. As we assume ψ(1E1) = 1E2 , λ1E2 − ψ(a) ∈ E−1
2 . As λ 6= 0

can be chosen arbitrary, we have that σ(ψ(a)) = {0}. We conclude

that ψ(a) ∈ rad(E2) and thus ψ(rad(E1)) ⊂ rad(E2).

The rest of a proof is a routine argument and we omit it.

□

Let AC be a C-valued function algebra on a compact Hausdorff

space X in the strong sense and E a unital commutative Banach alge-

bra. For f ∈ AC and b ∈ E, f ⊗ b denotes the map in C(X,E) such

that (f ⊗ b)(x) = f(x)b for x ∈ X. We denote

AC ⊗ E =

{
n∑
j=1

fj ⊗ bj : n ∈ N, fj ∈ AC, bj ∈ E (j = 1, 2, . . . , n)

}
,

where N is the set of all positive integers.

Suppose that (X,E,B, B̃) is an admissible quadruple. The subal-

gebra of all constant maps in B̃ is denoted by Const(B̃); Const(B̃) =

{1B ⊗ a : a ∈ E}.
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Proposition 2.22. Let Ej be a unital commutative Banach algebra

and (Xj, Ej, Bj, B̃j) an admissible quadruple for j = 1, 2. Suppose that̂̃
B1 ⊂ ΓB̃1

(B1 ⊗ E1), where ·̄ denotes the uniform closure on M(B̃1).

Let ψ : B̃1 → B̃2 be a unital homomorphism. Suppose that for every

F ∈ Const(B̃1) there exists bF ∈ E2 such that ΓE2(ψ(F )(x)) = ΓE2(bF )

for every x ∈ X2. Then there exists continuous maps τ : M(E2) →
M(E1) and φ : X2 ×M(E2) → X1 which satisfy that

ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ΓB̃1

(F )(τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ X2 ×M(E2)

for every F ∈ B̃1.

Note that if a homomorphism ψ : B̃1 → B̃2 satisfies that ψ(Const(B̃1)) ⊂
Const(B̃2), then for every F ∈ Const(B̃1) we have ΓE2(ψ(F )(x)) =

ΓE2(bF ) for every x ∈ X2, where bF = ψ(F )(x0) for some x0 ∈ X2. The

converse can be false unless E2 is semi-simple.

Proof. Recall that X2 = M(B2) by (2.1) of Definition 2.16. Let

x ∈ X2. For b ∈ E1, we denote b̃ = 1B1 ⊗ b. Define ψ̃x : E1 → E2

by E1 3 b 7→ ψ̃x(b) = ψ(̃b)(x). The map ψ̃x is well defined since

Bj ⊗ Ej ⊂ B̃j by (2.3) of Definition 2.16. By a simple calculation we

have that ψ̃x is a homomorphism. As 1Bj
⊗ 1Ej

= 1B̃j
for j = 1, 2, we

infer that

ψ̃x(1E1) = ψ(1B1 ⊗ 1E1)(x) = ψ(1B̃1
)(x)

= 1B̃2
(x) = (1B2 ⊗ 1E2)(x) = 1E2 .

Thus the map ψ̃x is a unital homomorphism. By Lemma 2.21 the

induced map
̂̃
ψx : Ê1 → Ê2 defined by

̂̃
ψx(ΓE1(b)) = ΓE2(ψ̃x(b)),

ΓE1(b) ∈ Ê1, is a unital homomorphism. As 1B1 ⊗ b ∈ Const(B̃1),

there exists bF ∈ E2 such that ΓE2(ψ(1B1 ⊗ b)(x)) = ΓE2(bF ) for every

x ∈ X2. Thuŝ̃
ψx(ΓE1(b)) = ΓE2(ψ̃x(b)) = ΓE2(ψ(1B1 ⊗ b)(x)) = ΓE2(bF ).

Hence we have that
̂̃
ψx does not depend on x ∈ X2. By the Gelfand

theory there exists a continuous map τ : M(E2) → M(E1) such that̂̃
ψx(ΓE1(b)) = ΓE1(b) ◦ τ, ΓE1(b) ∈ Ê1.
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Thus we have that

ΓE2(ψ̃x(b)) = ΓE1(b) ◦ τ
for every x ∈ X2 and b ∈ E1.

Choose an arbitrary ϕ ∈ M(E2). Let f ∈ B1. Since f ⊗ 1E1 ∈
B1 ⊗ E1 ⊂ B̃1, ψ(f ⊗ 1E1) ∈ B̃2. Then by (2.4) of Definition 2.16, we

have that ϕ ◦ ψ(f ⊗ 1E1) ∈ B2. Define ψ̃ϕ : B1 → B2 by ψ̃ϕ(f) = ϕ ◦
ψ(f⊗1E1), f ∈ B1. By a simple calculation we infer that ψ̃ϕ is a unital

homomorphism. By (2.3) of Definition 2.16, Xj 3 x 7→ ex ∈ M(Bj)

is a surjection (homeomorphism) for j = 1, 2. Then by the Gelfand

theory there exists a continuous map φ(·, ϕ) : X2 → X1 such that

ψ̃ϕ(f) = f ◦ φ(·, ϕ)

holds for every f ∈ B1.

Given
∑n

j=1 fj ⊗ bj ∈ B1 ⊗ E1, as ψ is a homomorphism, we have

ψ(
n∑
j=1

fj ⊗ bj) =
n∑
j=1

ψ(fj ⊗ bj) =
n∑
j=1

ψ(fj ⊗ 1E1)ψ(1B1 ⊗ bj).

For every x ∈ X2 and ϕ ∈ M(E2) we have

ϕ((ψ(1B1 ⊗ bj))(x)) = ϕ(ψ(b̃j)(x)) = ϕ(ψ̃x(bj))

= ΓE2(ψ̃x(bj))(ϕ) = ΓE1(bj) ◦ τ(ϕ) = (τ(ϕ))(bj),

and

ϕ((ψ(fj ⊗ 1E1))(x)) = (ϕ ◦ ψ(fj ⊗ 1E1))(x)

= ψ̃ϕ(fj)(x) = fj(φ(x, ϕ)) = fj ◦ φ(x, ϕ).

Considering ϕ and τ(ϕ) being multiplicative linear functionals, we have

ϕ

(
(ψ(

n∑
j=1

fj ⊗ bj))(x)

)
=

n∑
j=1

fj ◦ φ(x, ϕ)τ(ϕ)(bj)

= τ(ϕ)

(
n∑
j=1

fj(φ(x, ϕ))bj

)
= τ(ϕ)

(
(
n∑
j=1

fj ⊗ bj)(φ(x, ϕ))

)
.

We have proved that

(3.1) ϕ ((ψ(F ))(x)) = τ(ϕ) (F (φ(x, ϕ)))

for every F ∈ B1 ⊗ E1, x ∈ X2 and ϕ ∈ M(E2).
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As ψ : B̃1 → B̃2 is a unital homomorphism we have by Lemma

2.21 that ΓB̃1
(F ) 7→ ΓB̃2

(ψ(F )) gives a unital homomorphism from̂̃
B1 into

̂̃
B2. By the Gelfand theory there exists a continuous map

h : M(B̃2) → M(B̃1) such that ΓB̃2
(ψ(F )) = ΓB̃1

(F ) ◦ h. For x ∈ X2

and ϕ ∈ M(E2), we have ϕ ◦ ex ∈ M(B̃2) and

ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ϕ((ψ(F ))(x)

for every F ∈ B̃1. Suppose that Fn, F ∈ B̃1 and

‖ΓB̃1
(Fn) − ΓB̃1

(F )‖∞(M(B̃1))
→ 0

as n→ ∞. Then

(3.2)
‖ΓB̃1

(Fn) − ΓB̃1
(F )‖∞(M(B̃1))

≥ ‖ΓB̃2
(Fn) ◦ h− ΓB̃2

(F ) ◦ h‖∞(M(B̃2))

≥ |ϕ ((ψ(Fn))(x)) − ϕ ((ψ(F ))(x)) |

for any x ∈ X2 and ϕ ∈ M(E2).

Suppose that F ∈ B̃1. Then by the assumption (̂B̃1) ⊂ ΓB̃1
(B1 ⊗ E1)

there exists a sequence {Fn} ⊂ B1 ⊗ E1 with

‖ΓB̃1
(Fn) − ΓB̃1

(F )‖∞(M(B̃1))
→ 0

as n→ ∞. By (3.1) we have

ϕ ((ψ(Fn))(x)) = τ(ϕ) (Fn(φ(x, ϕ)))

for every positive integer n, x ∈ X2 and ϕ ∈ M(E2). By (3.2) we have

ϕ ((ψ(Fn))(x)) → ϕ ((ψ(F ))(x))

as n→ ∞. On the other hand as τ(ϕ) ◦ eφ(x,ϕ) ∈ M(B̃1) we have

‖ΓB̃1
(Fn) − ΓB̃1

(F )‖∞(B̃1)
≥ |τ(ϕ) (Fn(φ(x, ϕ))) − τ(ϕ) (F (φ(x, ϕ))) |.

Hence we have that

τ(ϕ) (Fn(φ(x, ϕ))) → τ(ϕ) (F (φ(x, ϕ)))

as n → ∞. As ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ϕ (ψ(F ))(x)) and ΓB̃1

(F )(τ(ϕ) ◦
eφ(x,ϕ)) = τ(ϕ) (F (φ(x, ϕ))) we have

(3.3) ΓB̃2
(ψ(F ))(ϕ ◦ ex)

= ΓB̃1
(F )(τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ X2 ×M(E2).
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On the other hand we have

ΓB̃2
(ψ(F ))(λ) = ψ̂(ΓB̃1

(F ))(λ) = (ΓB̃1
(F ))(h(λ)), λ ∈ M(B̃2),

hence

(3.4) ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ψ̂(ΓB̃1

(F ))(ϕ ◦ ex)

= (ΓB̃1
(F ))(h(ϕ ◦ ex)), (x, ϕ) ∈ X2 ×M(E2).

Letting πj : Xj ×M(Ej) → M(B̃j) for j = 1, 2 by πj(x, ϕ) = ϕ ◦ ex we

have by (3.3) and (3.4) that

ΓB̃1
(F )(π1(φ(x, ϕ), τ(ϕ)) = (ΓB̃1

(F ))(h(π2(x, ϕ))), (x, ϕ) ∈ X2×M(E2).

As F ∈ B̃1 is arbitrary, we have

h(π2(x, ϕ)) = τ(ϕ)◦eφ(x,ϕ) = π1(φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ X2×M(E2).

As π1 can be seen a homeomorphism from X1 ×M(E1) onto {ϕ ◦ ex :

x ∈ X1, ϕ ∈ M(E1)}, we see that π−1
1 ◦ h ◦ π2 is continuous, hence

φ : X2 ×M(E2) → X1 is continuous. □

We give a sufficient condition for admissible quadruples on which

every unital homomorphism is of type BJ.

Theorem 2.23. Let Ej be a unital commutative Banach algebra

and (Xj, Ej, Bj, B̃j) an admissible quadruple for j = 1, 2. Suppose that̂̃
B1 ⊂ ΓB̃1

(B1 ⊗ E1), where ·̄ denotes the uniform closure on M(B̃1).

Suppose that X2 is connected with respect to the relative topology in-

duced by the metric inherited from the dual space of B2 and that M(E1)

is totally disconnected with respect to the relative topology induced by

the metric inherited from the dual space of E1. Let ψ : B̃1 → B̃2

be a unital homomorphism. Then there exists a continuous map τ :

M(E2) → M(E1) and a continuous map φ : X2×M(E2) → X1 which

satisfies that

ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ΓB̃1

(F )(τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ X2 ×M(E2)

for every F ∈ B̃1.

Proof. By Proposition 2.22 it is enough to prove that for every

F ∈ Const(B̃1) there exists bF ∈ E2 such that ΓE2(ψ(F )(x)) = ΓE2(bF )

for every x ∈ X2.
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Let ϕ ∈ M(E2) be arbitrary. Define S : E1 → B2 by S(b) =

ϕ ◦ ψ(1B1 ⊗ b) for b ∈ E1, where we consider ϕ as a multiplicative

linear functional on E2. Then S is a homomorphism. It is unital since

1Bj
⊗1Ej

= 1B̃j
and ψ(1B̃1

) = 1B̃2
. As B2 is C-valued function algebra

on X2 in the strong sense by Definition 2.16, it is semi-simple. Thus S

is continuous by a theorem of Šilov (see [101, Theorem 3.1.11]). Let

S∗ : B∗
2 → E∗

1 be the dual of S. Then S∗ is continuous with respect

to the norm topology on B∗
2 and E∗

1 . Since S is multiplicative, by a

simple calculation we have S∗(M(B2)) ⊂ M(E1). Since X2 = M(B2)

is connected with respect to the relative topology induced by the metric

inherited from the B∗
2 and M(E1) is totally disconnected with respect

to the relative topology induced by the metric inherited from E∗
1 , we

infer that S(M(B2)) is a singleton; there exists a unique νϕ ∈ M(E1)

with S∗(M(B2)) = {νϕ}. Hence S∗(ex) = νϕ for every x ∈ X2. Let

F ∈ Const(B̃1). Then there exists a unique b ∈ E1 with F (x) = b for

every x ∈ X1. Hence F = 1B1 ⊗ b, where ex is a point evaluation on

B2 at x. It follows that

ϕ ((ψ(F ))(x)) = ex(ϕ ◦ ψ(1B1 ⊗ b))

= ex(S(b)) = (S∗(ex))(b) = νϕ(b)

for every x ∈ X1. Let x0 be any point in X1. Put bF = ψ(F )(x0).

Then bF ∈ E2 and

ϕ ((ψ(F ))(x)) = νϕ(b) = ϕ ((ψ(F ))(x0)) = ϕ(bF )

for every x ∈ X1. As ϕ is an arbitrary element in M(E2), we obtain

ΓE2(ψ(F )(x)) = ΓE2(bF ) for every x ∈ X2. By Theorem 2.22 there

exists a continuous map τ : M(E2) → M(E1) and a continuous map

φ : X2 ×M(E2) → X1 which satisfies that

ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ΓB̃1

(F )(τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ X2 ×M(E2)

for every F ∈ B̃1. □

If Ej is semi-simple, and (Xj, Ej, Bj, B̃j) is natural, then we may

suppose by (2.4) that B̃j ⊂ C(Xj ×M(Ej)). Thus we have the follow-

ing.
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Corollary 2.24. Suppose that Ej is semi-simple and (Xj, Ej, Bj, B̃j)

is natural. Suppose that B̃1 ⊂ B1 ⊗ E1, where ·̄ denotes the uniform

closure on M(B̃1). Suppose that X2 is connected with respect to the

relative topology induced by the metric inherited from the dual space

of B2 and that M(E1) is totally disconnected with respect to the rel-

ative topology induced by the metric inherited from the dual space of

E1. Let ψ : B̃1 → B̃2 be a unital homomorphism. Then there ex-

ists a continuous map τ : M(E2) → M(E1) and a continuous map

φ : X2 ×M(E2) → X1 which satisfies that

ψ(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ X2 ×M(E2)

for every F ∈ B̃1.

Theorem 2.25. Let Ej be a unital commutative Banach algebra

and (Xj, Ej, Bj, B̃j) an admissible quadruple for j = 1, 2. Suppose that̂̃
B1 ⊂ ΓB̃1

(B1 ⊗ E1), where ·̄ denotes the uniform closure on M(B̃1).

Suppose that X2 is connected and M(E1) is totally disconnected. Let

ψ : B̃1 → B̃2 be a unital homomorphism. Then there exists a con-

tinuous map τ : M(E2) → M(E1) and a continuous map φ : X2 ×
M(E2) → X1 which satisfies that

ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ΓB̃1

(F )(τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ X2 ×M(E2)

for every F ∈ B̃1.

Proof. Defining S in the same way as in the proof of Theorem

2.23, S∗ is continuous with respect to the weak-∗ topology on B∗
2 and

E∗
1 . The rest of the proof is similar to that of Theorem 2.23. □

As in the same way as Corollary 2.24 we have the following.

Corollary 2.26. Suppose that Ej is semi-simple and (Xj, Ej, Bj, B̃j)

is natural. Suppose that B̃1 ⊂ B1 ⊗ E1, where ·̄ denotes the uniform

closure on M(B̃1). Suppose that X2 is connected and M(E1) is totally

disconnected. Let ψ : B̃1 → B̃2 be a unital homomorphism. Then there

exists a continuous map τ : M(E2) → M(E1) and a continuous map

φ : X2 ×M(E2) → X1 which satisfies that

ψ(F )(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ X2 ×M(E2)
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for every F ∈ B̃1.

4. The case of algebras of vector-valued Lipschitz maps

Lemma 2.27. Let K be a compact metric space. Suppose that

G1, . . . , Gn are open sets with ∪nj=1Gj = K. Then there exist f1, . . . , fn ∈
Lip(K,C) such that 0 ≤ fj ≤ 1 on K and fj = 0 on K \ Gj for

j = 1, 2, . . . , n and
∑n

j=1 fj = 1 on K.

It is well known and we omit a proof.

Lemma 2.28. Let K be a compact metric space and E a unital

commutative Banach algebra. Then we have

̂Lip(K,E) ⊂ ΓLip(K,E)(Lip(K,C) ⊗ E),

where · denotes the uniform closure in C(K ×M(E)).

Proof. Let F ∈ Lip(K,E). Let ε > 0 be arbitrary. Then there

exists a finite number of points x1, . . . , xn ∈ K and open neighborhoods

x1 ∈ G1, . . . , xn ∈ Gn such that ∪nj=1Gj = K and

‖F (x) − F (xj)‖E ≤ ε, x ∈ Gj

for every j = 1, 2, . . . , n. Then we have by Lemma 2.33 that there

exist Λ1,Λ2, . . . ,Λn ∈ Lip(K,C) such that 0 ≤ Λj ≤ 1 on K, λj = 0

on K \ Gj for j = 1, 2, . . . , n, and
∑n

j=1 Λj = 1 on K. Put Fε =∑n
j=1 ΛjF (xj) ∈ Lip(K,C) ⊗ E. By some calculation we obtain that

‖ΓLip(K,E)(F ) − ΓLip(K,E)(Fε)‖∞(K×M(E)) ≤ ε.

As F ∈ Lip(K,E) and ε are arbitrary, we have the conclusion. □

Lemma 2.29. Suppose that K is a compact metric space. Then, the

original topology on K, the Gelfand topology induced by Lip(K,C), and

the relative topology induced by the metric induced by operator norm

topology on the dual space of Lip(K,C) all coincide with each other.

Proof. It is well known that the maximal ideal space M(Lip(K,C))

with the Gelfand topology is homeomorphic to K. In fact, x 7→ ex de-

fines a homeomorphism from K onto M(Lip(K,C)). We prove that

the Gelfand topology of M(Lip(K,C)), which is the topology induced
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by the weak-∗ topology inherited from the dual space of Lip(K,C), is

homeomorphic to the topology induced by the metric inherited from the

dual space of Lip(K,C). Just for the simplicity we denote M(Lip(K,C))

with the Gelfand topology by Mw and M(Lip(K,C)) with the topol-

ogy induced by the metric inherited from the dual space of Lip(K,C)

by Ms. Let Id : Ms → Mw be the identity map. Since the topol-

ogy induced by the metric inherited from the dual space of Lip(K,C)

is stronger than the Gelfand topology, the map Id is continuous. For

every pair x, y ∈ K we have

‖ex − ey‖∗ = sup
∥f∥L≤1

|f(x) − f(y)| ≤ sup
L(f)≤1

|f(x) − f(y)| ≤ d(x, y).

Since the original topology and the Gelfand topology coincide we infer

that Id−1 is continuous. We conclude that Id is a homeomorphism. □

Corollary 2.30. Let Kj be a compact metric space and Ej a unital

commutative Banach algebra for j = 1, 2. Suppose that K2 is connected.

Suppose that M(E1) is totally disconnected with respect to either the

Gelfand topology (the original topology as the maximal ideal space) or

the relative topology induced by the metric inherited from the dual space

of E1. Let ψ : Lip(K1, E1) → Lip(K2, E2) be a unital homomorphism.

Then there exists a continuous map τ : M(E2) → M(E1) and a contin-

uous map φ : K2 ×M(E2) → K1 such that the map φ(·, ϕ) : K2 → K1

is a Lipschitz map for each ϕ ∈ M(E2), which satisfies that

ΓLip(K2,E2)(ψ(F ))(ϕ ◦ ex)

= ΓLip(K1,E1)F (τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ K2 ×M(E2)

for every F ∈ Lip(K1, E1). Furthermore if Ej is semi-simple for j =

1, 2, then we may write

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ K2 ×M(E2)

for every F ∈ Lip(K1, E1); ψ is of type BJ.

Proof. We apply Theorems 2.23 or 2.25 for the admissible quadru-

ple (Kj, Ej,Lip(Kj,C),Lip(Kj, Ej)). The maximal ideal space of Lip(Kj, Ej)

is homeomorphic to Kj×M(Ej) by Lemma 2.18. We have the inclusion

̂Lip(K1, E1) ⊂ ΓLip(K1,E1)(Lip(K1,C) ⊗ E1)
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by Lemma 2.34. Since K2 is connected we have that K2 is connected

also with respect to the relative topology induced by the metric inher-

ited from the dual space of Lip(K2,C) by Lemma 2.35. By Theorems

2.23 or 2.25 there exists a continuous map τ : M(E2) → M(E1) and a

continuous map φ : K2 ×M(E2) → K1 which satisfies that

(4.1) ΓLip(K2,E2)(ψ(F ))(ϕ ◦ ex)

= ΓLip(K1,E1)F (τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ K2 ×M(E2)

for every F ∈ Lip(K1, E1). The rest is to prove that the map φ(·, ϕ) :

K2 → K1 is a Lipschitz map for each ϕ ∈ M(E2). Let ϕ ∈ M(E2). De-

fine ψ̃ϕ : Lip(K1) → Lip(K2) by ψ̃ϕ(f) = ϕ(ψ(f ⊗ 1E1)), f ∈ Lip(K1).

Then ψ̃ϕ is a unital homomorphism from Lip(K1) into Lip(K2). Then

ψ̃ϕ is continuous by a theorem of Šilov (see [101, Theorem 3.1.11]);

there exists K > 0 such that ‖ψ̃ϕ(f)‖L ≤ K‖f‖L for every f ∈
Lip(K1). On the other hand we have by (4.1) that ψ̃ϕ(f) = f(φ(·, ϕ)),

f ∈ Lip(K1). Suppose that φ(·, ϕ) : K2 → K1 is not a Lipschitz map.

Then there exist sequences {xn} and {yn} in K2 such that

0 < nd2(xn, yn) ≤ d1(φ(xn, ϕ), φ(yn, ϕ))

for every positive integer n. Put fn : K1 → C by fn(x) = d1(x, φ(yn, ϕ)),

x ∈ K1. Then ‖fn‖L ≤ 1+diam(K1), where diam denotes the diameter.

On the other hand

0 < nd2(xn, yn) ≤ d1(φ(xn, ϕ), φ(yn, ϕ)) = |(ψ̃ϕ(fn))(xn)−(ψ̃ϕ(fn))(yn)|

for every positive integer n. Hence the Lipschitz constant L
ψ̃ϕ(fn)

≥

n for every positive integer n, so ‖ψ̃ϕ(fn)‖L ≥ L
ψ̃ϕ(fn)

→ ∞, which

contradicts to the continuity of ψ̃ϕ. We conclude that the map φ(·, ϕ) :

K2 → K1 is a Lipschitz map for each ϕ ∈ M(E2). □

We exhibit several examples of unital semi-simple commutative Ba-

nach algebras E such that the maximal ideal space are discrete with

respect to the relative topology induced by the metric inherited from

the dual space of E. We also exhibit an example of a unital semi-simple

commutative Banach algebra whose maximal ideal space is totally dis-

connected. We say that a C-valued function algebra on X in the strong
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sense is a uniform algebra on X if it is uniformly closed (see [22] for

general theory of uniform algebras). Note that a uniform algebra is

semi-simple.

Example 2.31. (1) Let Y be a compact Hausdorff space. The

Banach algebra C(Y ) of all complex-valued continuous func-

tions on Y . Then Y is homeomorphic to the maximal ideal

space of C(Y ). By the Urysohn’s lemma we infer that Y is

discrete with respect to the relative topology induced by the

metric inherited from the dual space of C(Y ).

(2) Let T be the unit circle in the complex plane. Recall that the

Wiener algebra is the algebra of all complex-valued continuous

functions on T which have absolute converging Fourier series;

W (T) = {f ∈ C(T) :
∑

|f̂(n)| < ∞} with the norm ‖f‖W =∑
m |f̂(m)| for f ∈ W (T). The maximal ideal space of W (T)

is homeomorphic to T. Let w1, w2 ∈ T be different. There

exists a positive integer n such that |wn1 − wn2 | > 1. The

function g(z) = zn is in W (T) with ‖g‖W = 1. Hence the

norm of w1 −w2 as the bounded linear functional on W (T) is

greater than 1. Hence T is discrete with respect to the relative

topology induced by the metric inherited from the dual space

of W (T).

(3) Let A be a uniform algebra such that the maximal ideal space

coincides with the Choquet boundary. The Choquet boundary

for a uniform algebra A is discrete with respect to the relative

topology induced by the metric inherited from the dual space

of A. It is known as the Cole’s counterexample to the peak

point conjecture [22] that such a uniform algebra which is not

a C∗-algebra exists.

(4) Let G be a compact Abelian group and Γ its dual group. The

group algebra A(G) of all Fourier transforms of functions in

L1(Γ) is a unital semi-simple commutative Banach algebra

with the maximal ideal space G. If Γ is a discrete group

of bounded order, then G is a totally disconnected compact

Abelian group [108, Example 2.5.7. (iii)]. See the paper of
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Katznelson and Rudin [65] and a book of Rudin [108] for

further examples and informations.

By (1) of Example 2.31 we see that Corollary 2.30 generalizes a

part of Theorem 2.3 concerning to the case where Ej is a commutative

C∗-algebra. On the other hand we cannot replace a commutative C∗-

algebra by a uniform algebra. The following example shows that a

unital homomorphism between algebras of Lipschitz maps with values

in uniform algebras need not be of type BJ.

Example 2.32. Let D = {z ∈ C : |z| < 1} and D̄ = {z ∈ C : |z| ≤
1}. Put

A(D̄) = {f ∈ C(D̄) : f is analytic on D}.

Then A(D̄) is a uniform algebra on D̄, which is called the disk algebra

on D̄. By the celebrated Schwartz lemma the map

ψ(F )(t, ϕz) = F (t, ϕ 1
2
tz), F ∈ Lip([0, 1], A(D̄))

is well defined from Lip([0, 1], A(D̄)) into itself, where ϕw is the point

evaluation on A(D̄) at w ∈ D̄. Then ψ is a homomorphism which is

not of type BJ.

5. The case of algebras of vector-valued continuously

differentiable maps

Let C1([0, 1]) be the algebra of all continuously differentiable complex-

valued functions on the unit interval [0, 1].Let E be a unital commu-

tative Banach algebra. By the Stone-Weierstrass theorem C1([0, 1]) is

dense in C([0, 1]), and C1([0, 1], E) is inverse-closed by the definition of

a vector-valued continuously differentiable maps. Hence by Proposition

2.18 the maximal ideal space of C1([0, 1], E) is homeomorphic to [0, 1]×
M(E). Hence the admissible quadruple ([0, 1], E, C1([0, 1]), C1([0, 1], E))

is natural and

(5.1) ̂C1([0, 1], E) ⊂ C([0, 1] ×M(E)).

Lemma 2.33. Suppose that G1, . . . , Gn are open sets with ∪nj=1Gj =

[0, 1]. Then there exist f1, . . . , fn ∈ C1([0, 1]) such that 0 ≤ fj ≤ 1 on
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[0, 1] and fj = 0 on [0, 1] \ Gj for j = 1, 2, . . . , n and
∑n

j=1 fj = 1 on

[0, 1].

Lemma 2.33 is well known and we omit a proof.

Lemma 2.34. Let E be a unital semi-simple commutative Banach

algebra. Then we have

C1([0, 1], E) ⊂ ΓC1([0,1],E)(C1([0, 1]) ⊗ E)

where · denotes the uniform closure on [0, 1] ×M(E).

Proof. Let F ∈ C1([0, 1], E). Let ε > 0 be arbitrary. Then there

exists a finite number of points x1, . . . , xn ∈ [0, 1] and open neighbor-

hoods x1 ∈ G1, . . . , xn ∈ Gn such that ∪nj=1Gj = [0, 1] and

‖F (x) − F (xj)‖E ≤ ε, x ∈ Gj

for every j = 1, 2, . . . , n. Then we have by Lemma 2.33 that there

exist Λ1,Λ2, . . . ,Λn ∈ C1([0, 1]) such that 0 ≤ Λj ≤ 1 on [0, 1], Λj = 0

on [0, 1] \ Gj for j = 1, 2, . . . , n, and
∑n

j=1 Λj = 1 on [0, 1]. Put

Fε =
∑n

j=1 ΛjF (xj) ∈ C1([0, 1]) ⊗ E. By some calculation we obtain

that ‖F−Fε‖∞([0,1]×M(E)) ≤ ε. As F ∈ C1([0, 1], E) and ε are arbitrary,

we have the conclusion. □

Lemma 2.35. The usual topology on [0, 1], the Gelfand topology

induced by C1([0, 1]), and the relative topology induced by the operator

norm topology on the dual space of C1([0, 1]) all coincide with each

other.

Proof. It is well known that the maximal ideal space M(C1([0, 1]))

with the Gelfand topology is homeomorphic to [0, 1] with the usual

topology. In fact, x 7→ ex defines a homeomorphism from [0, 1] onto

M(C1([0, 1])). We prove that the Gelfand topology of M(C1([0, 1])),

which is the topology induced by the weak-∗ topology inherited from

the dual space of C1([0, 1]), is homeomorphic to the topology induced

by the metric inherited from the dual space of C1([0, 1]). Just for the

simplicity we denote M(C1([0, 1])) with the Gelfand topology by Mw

and M(C1([0, 1])) with the topology induced by the metric inherited

from the dual space of C1([0, 1]) by Ms. Let Id : Ms → Mw be the
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identity map. Since the topology induced by the metric inherited from

the dual space of C1([0, 1]) is stronger than the Gelfand topology, the

map Id is continuous. For x ∈ [0, 1], ex denotes the point evaluation

on C1([0, 1]) at x. We denote the norm of the dual space of C1([0, 1])

by ‖ · ‖∗. Let f ∈ C1([0, 1]). Recall that the Lipschitz constant of f is

L(f) = supt̸=s
|f(t)−f(s)|

|t−s| . It is easy to see that ‖f ′‖∞([0,1]) ≤ L(f). By

the mean value theorem we have

|f(s) − f(t)|
|s− t|

≤ |Re f(s) − Re f(t)|
|s− t|

+
| Im f(s) − Im f(t)|

|s− t|
≤ ‖Re f ′‖∞([0,1]) + ‖ Im f ′‖∞([0,1]) ≤ 2‖f ′‖∞([0,1])

for every s, t ∈ [0, 1] with s 6= t. Thus L(f) ≤ 2‖f ′‖∞([0,1]). Hence we

have

‖ex−ey‖∗ = sup
∥f∥C1≤1

|f(x)−f(y)| ≤ sup
∥f ′∥∞([0,1])≤1

|f(x)−f(y)| ≤ 2|x−y|.

Since the usual topology and the Gelfand topology on [0, 1] coincide we

infer that Id−1 is continuous. We conclude that Id is a homeomorphism.

□

Applying Theorems 2.23 or 2.25 for ([0, 1], Ej, C
1([0, 1]), C1([0, 1], Ej))

we obtain the following.

Corollary 2.36. Suppose that Ej is a unital semi-simple commu-

tative Banach algebra for j = 1, 2. Let ψ : C1([0, 1], E1) → C1([0, 1], E2)

be a unital homomorphism. Suppose that M(E1) is totally disconnected

with respect to either the Gelfand topology or the relative topology in-

duced by the metric inherited from the dual space of E1. Then there

exist a continuous map τ : M(E2) → M(E1) and a continuous map

φ : [0, 1] × M(E2) → [0, 1] such that for each ϕ ∈ M(E2) the map

φ(·, ϕ) : [0, 1] → [0, 1] is continuously differentiable, which satisfy that

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ [0, 1] ×M(E2)

for every F ∈ C1([0, 1], E1).

Proof. The maximal ideal space of C1([0, 1], Ej) is homeomorphic

to [0, 1] ×M(Ej) by Proposition 2.18. We have the inclusion

C1([0, 1], Ej) ⊂ ΓC1([0,1],Ej)(C
1([0, 1]) ⊗ Ej)
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by Lemma 2.34. Since [0, 1] is connected we have that [0, 1] is also

connected with respect to the relative topology induced by the metric

inherited from the dual space of C1([0, 1]) by Lemma 2.35. By Theo-

rems 2.23 or 2.25 there exist a continuous map τ : M(E2) → M(E1)

and a continuous map φ : [0, 1] ×M(E2) → [0, 1] which satisfy that

(5.2) (ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ [0, 1] ×M(E2)

for every F ∈ C1([0, 1], E1). To prove that the map φ(·, ϕ) : [0, 1] →
[0, 1] is continuously differentiable for each ϕ ∈ M(E2), define ψ̃ϕ :

C1([0, 1]) → C1([0, 1]) by ψ̃ϕ(f)(x) = ϕ(ψ(f ⊗ 1E1)(x)), f ∈ C1([0, 1]).

Then ψ̃ϕ is a unital homomorphism from C1([0, 1]) into C1([0, 1]). Then

ψ̃ϕ is continuous by a theorem of Šilov (cf. [101, Theorem 3.1.11]). On

the other hand we have by (5.2) that ψ̃ϕ(f) = f(φ(·, ϕ)), f ∈ C1([0, 1]).

Letting f the identity function we have that φ(·, ϕ) : [0, 1] → [0, 1] is

continuously differentiable. □





CHAPTER 3

Peculiar isomorphisms on algebras of
vector-valued maps

1. Results and Proofs

In this chapter 3, we study on algebra isomorphisms on algebras

of vector-valued maps. We exhibit an example of a unital endomor-

phism of an algebra of Lipschitz maps with values in a uniform algebra

which is not of type BJ (Example 2.32). We will prove in this chapter

that any isomorphism between algebras of Lipschitz maps with values

in uniform algebras, under some hypothesis of connectedness on the

Choquet boundary, is of type BJ .

Let X be a compact Hausdorff space. Let L be a linear subspace

of C(X) such that L separates the points of X and contains constants.

We set

K = {ϕ ∈ L∗ : ϕ(1) = 1 = ‖ϕ‖},

where we consider L as a normed space with the supremum norm on

X. The Choquet boundary of L, denoted by Ch(L), is the set of all

x ∈ X such that the point evaluation ex on L is an extreme point of

K. It is known [102, Proposition 6.2] that x ∈ X is in Ch(L) if and

only if the Dirac measure at x is a unique probability measure µ on X

such that u(x) =
∫
udµ for every u ∈ L. Let A be a uniform algebra

on X. We say that S ⊂ X is a peak set if there exists f ∈ A such that

S = {x ∈ X : f(x) = 1} = {x ∈ X : |f(x)| = ‖f‖∞(X)}.

A point x ∈ X is called a peak point in the weak sense if {x} is the

intersection of some collection of peak sets. It is known that x ∈ X

is a peak point in the weak sense for A if and only if x ∈ Ch(A) [22,

Theorem 2.3.4]. Hence x ∈ X is in Ch(A) if and only if for every

open neighborhood U of x there exists a function f ∈ A such that

51
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f(x) = 1 = ‖f‖∞(X) and |f | < 1 on X \ U . By a routine argument

we see that Ch(A) with the relative topology induced by the metric

inherited from the dual space of A as a Banach space is a discrete space.

For the definition and properties of the Choquet boundary for function

spaces and uniform algebras, we refer to [102] and [22], respectively.

Lemma 3.1. Let A be a uniform algebra and (X,A,B, B̃) an admis-

sible quadruple. Suppose that B̃ is natural. Then π(Ch(B)×Ch(A)) =

Ch(B̃).

Proof. Let B be the uniform closure of B in C(X) and B̃ the uni-

form closure of B̃ in C(M(B̃)). Then B and B̃ are uniform algebras.

By a routine argument the restriction ϕ 7→ ϕ|B gives a homeomor-

phism from M(B) onto M(B) = X. Similarly the restriction gives

a homeomorphism from M(B̃) onto M(B̃). Thus we may suppose

that B ⊂ B ⊂ C(X) and B̃ ⊂ B̃ ⊂ C(X × M(A)). We infer that

Ch(B) = Ch(B) and Ch(B̃) = Ch(B̃) by the definition of the Choquet

boundary.

We prove that π(Ch(B) × Ch(A)) = Ch(B̃). Let (x, ϕ) ∈ Ch(B) ×
Ch(A). Suppose that G is an open neighborhood of π(x, ϕ) in M(B̃).

Then there exists an open neighborhood U1 of ϕ in M(A) and an open

neighborhood V1 of x in X such that V1×U1 ⊂ G. As ϕ ∈ Ch(A), there

exists u ∈ A such that u(ϕ) = 1 = ‖u‖∞(M(A)) and |u| < 1 on X \ U1.

As x ∈ Ch(B), there exists f ∈ B such that f(x) = 1 = ‖f‖∞(X)

and |f | < 1 on M(A) \ V1. By (5) of Definition 2.16, we see that

B ⊗ A ⊂ B̃. It follows that f ⊗ u ∈ B̃ such that f ⊗ u(π(x, ϕ)) =

1 = ‖f ⊗ u‖∞(X×M(A)) and |f ⊗ u| < 1 on X × M(B) \ G. Thus

π(x, ϕ) ∈ Ch(B̃). We have that π(Ch(B) × Ch(A)) ⊂ Ch(B̃).

Next we prove that Ch(B̃) ⊂ Ch(B) × Ch(A). Let Φ ∈ Ch(B̃).

Since Ch(B̃) = Ch(B̃) ⊂ M(B̃) and π : X × M(A) → M(B̃) is

surjective, there exists (x, ϕ) ∈ X × M(A) with π(x, ϕ) = Φ. Let U

be an open neighborhood of ϕ in M(A) and V an open neighborhood

of x in X. Then π(V × U) is a open neighborhood of π(x, ϕ). As

π(x, ϕ) = Φ ∈ Ch(B̃) there exists F ∈ B̃ such that F (π(x, ϕ)) =

1 = ‖F‖
∞(M(B̃))

and |F | < 1 on π(X × M(A)) \ π(V × U). Now we
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look at F (x). As F ∈ B̃, there is a sequence {Fn} ⊂ B̃ such that

‖Fn − F‖∞(M(B̃)) → 0 as n → ∞. As π(X ×M(A)) = M(B̃), we see

that ‖Fn(x) − F (x)‖∞(M(A)) → 0 as n → ∞. As Fn(x) ∈ A for every

positive integer n and x ∈ X, we have that F (x) ∈ A for every x ∈ X.

Then ϕ(F (x)) = 1 = ‖F (x)‖∞(M(A)) and |F (x)| < 1 on M(A) \ U .

As U is arbitrary, we see that ϕ ∈ Ch(A). By the condition (2.4) of

Definition 2.16, we have ϕ ◦ Fn ∈ B for every positive integer n. Then

‖ϕ ◦ Fn − ϕ ◦ F‖∞(X) ≤ ‖Fn − F‖∞(M(B̃)) → 0

as n→ ∞. Hence ϕ◦F ∈ B. We obtain that ϕ◦F (x) = 1 = ‖ϕ◦F‖∞(X)

and |ϕ ◦F | < 1 on X \V . As V is arbitrary, we see that x ∈ Ch(B). It

follows that Ch(B̃) ⊂ π(Ch(B) × Ch(A)). We conclude that Ch(B̃) =

π(Ch(B) × Ch(A)), hence π(Ch(B) × Ch(A)) = Ch(B̃). □

Theorem 3.2. Let Aj be a uniform algebra and (Xj, Aj, Bj, B̃j)

an admissible quadruple for j = 1, 2. Suppose that B̃j is natural for

j = 1, 2. Suppose that Ch(B2) is connected with respect to the relative

topology induced by the metric inherited from the dual space of B2. Let

ψ : B̃1 → B̃2 be an isomorphism. Then there exists a homeomorphism

τ : M(A2) → M(A1) and a continuous map φ : X2 × M(A2) → X1

such that the map φ(·, ϕ) : X2 → X1 is a homeomorphism for each

ϕ ∈ M(A2) which satisfies that

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ X2 ×M(A2)

for every F ∈ B̃1. In particular, A1 is isomorphic to A2 and B1 is

isomorphic to B2.

Proof. Let ϕ ∈ Ch(A2) be arbitrary. Define S : A1 → B2 by

S(b) = ϕ ◦ ψ(1B1 ⊗ b), b ∈ A1. Note that S is well defined by the

condition (2.4) in Definition 2.16. Then S is a homomorphism. It

is unital since 1B1 ⊗ 1A1 = 1B̃1
. As B2 is C-valued function algebra

on X2 in the strong sense by Definition 2.16, it is semi-simple. Thus

S is continuous by a theorem of Šilov (see [101, Theorem 3.1.11]).

Let S∗ : B∗
2 → A∗

1 be the dual of S. Since S is multiplicative, by a

simple calculation S∗(M(B2)) ⊂ M(A1). As B2 is natural, the map

x 7→ ex, where ex is the point evaluation on B2 at x ∈ X, gives a
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homeomorphism from X2 onto M(B2). Hence we have

(S∗(ex))(b) = (S(b))(x) = ϕ((ψ(1B1 ⊗ b))(x))

for every x ∈ X2 and b ∈ A1. We prove that S∗(Ch(B2)) ⊂ Ch(A1).

As ψ is an isomorphism there exists a homeomorphism h : M(B̃2) →
M(B̃1) such that ψ̂(ΓB̃1

(F )) = ΓB̃2
(ψ(F )) = ΓB̃1

(F ) ◦ h for every

F ∈ B̃1 by Lemma 2.21. As B̃j is natural, we may suppose that

M(B̃j) = Xj × M(Aj) for j = 1, 2. Hence we may write h : X2 ×
M(A2) → X1 ×M(A1). As Aj is semi-simple, we have by Proposition

2.19 that B̃j is also semi-simple. Thus we may consider that B̃j is a

C-valued function algebra on Xj ×M(Aj) in the strong sense. Then

we may suppose that

ψ(F )(x, ϕ) = F ◦ h(x, ϕ), (x, ϕ) ∈ X2 ×M(A2)

for every F ∈ B̃1. Defining

ψ(G)(x, ϕ) = G ◦ h(x, ϕ), (x, ϕ) ∈ X2 ×M(A2)

for G in the uniform closure of B̃1 on X1 ×M(A1), it follows that ψ

can be extended to an isomorphism from the uniform closure of B̃1 in

C(X1 × M(A1)) onto the uniform closure of B̃2 in C(X2 × M(A2)).

As the uniform closure of B̃j is a uniform algebra on Xj × M(Aj),

Ch(B̃j) coincides with the Choquet boudary of the uniform closure of

B̃j. Hence we have that h(Ch(B̃2)) = Ch(B̃1). As Ch(B̃j) = Ch(Bj)×
Ch(Aj) by Lemma 3.1 we may consider h|Ch(B̃2)

: Ch(B2) × Ch(A2) →
Ch(B1)×Ch(A1) denoted by h(x, γ) = (h1(x, γ), h2(x, γ)) with continu-

ous maps h1 : Ch(B2)×Ch(A2) → Ch(B1) and h2 : Ch(B2)×Ch(A2) →
Ch(A1). For x ∈ Ch(B2) we have for every b ∈ A1

b(S∗(ex)) = ϕ ((ψ(1B1 ⊗ b))(x)) = ϕ ◦ ex (ψ(1B1 ⊗ b))

= ΓB̃1
(1B1 ⊗ b)(h(x, ϕ)) = b(h2(x, ϕ)).

As b ∈ A1 is arbitrary we infer that S∗(ex) = h2(x, ϕ) ∈ Ch(A1). We

have proved that S∗(Ch(B2)) ⊂ Ch(A1).

As A1 is uniform algebra, Ch(A1) is discrete with respect to the

relative topology induced by the metric inherited from the dual space

of A1. Since Ch(B2) is connected with respect to the relative topology
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induced by the metric inherited from the dual space of B2 and S∗ is

continuous with respect to the norm topology on the dual spaces, we

conclude that S∗(Ch(B2)) is a singleton; there exists a unique k(ϕ) ∈
Ch(A1) that S∗(ex) = k(ϕ) for every x ∈ Ch(B2). Note that k(ϕ)

depends on ϕ.

We now prove that ψ(Const(B̃1)) ⊂ Const(B̃2). Let F ∈ Const(B̃1).

Then there exists b ∈ A1 such that F = 1B1 ⊗ b. Suppose that there

exist different points y1, y2 ∈ X2 with (ψ(F ))(y1) 6= (ψ(F ))(y2). As A2

is a uniform algebra, there exists ϕ0 ∈ Ch(A2) with

b(k(ϕ0)) = ϕ0 ((ψ(F ))(y1)) 6= ϕ0 ((ψ(F ))(y2)) = b(k(ϕ0)),

which is a contradiction proving that ψ(F ) is constant on X2. Thus

ψ(Const(B̃1)) ⊂ Const(B̃2). Then by Proposition 2.22 there exists

continuous maps τ : M(A2) → M(A1) and φ : X2 × M(A2) → X1

which satisfy that

ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ΓB̃1

(F )(τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ X2 ×M(A2)

for every F ∈ B̃1. As Aj is semi-simple and (Xj, Aj, Bj, B̃j) is natural

we have by (2.4) that

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ X2 ×M(A2)

for every F ∈ B̃1.

By considering ψ−1 instead of ψ we see that ψ−1(Const(B̃2)) ⊂
Const(B̃1) and there exists continuous maps τ ′ : M(A1) → M(A2)

and φ′ : X1 ×M(A1) → X2 which satisfy that

(1.1) ΓB̃1
(ψ−1(F ′))(ϕ′ ◦ ex′)

= ΓB̃2
(F ′)(τ ′(ϕ′) ◦ eφ′(x′,ϕ′)), (x′, ϕ′) ∈ X1 ×M(A1)

for every F ′ ∈ B̃2. Substituting F ′ = ψ(F ) for F ∈ B̃1, ϕ
′ = τ(ϕ) and

x′ = φ(x, ϕ) for ϕ ∈ M(A2) and x ∈ X2 in (1.1) we get

ΓB̃1
(F )(τ(ϕ) ◦ eφ(x,ϕ)) = ΓB̃2

(ψ(F ))(τ ′(τ(ϕ)) ◦ eφ′(φ(x,ϕ),τ(ϕ))).

As

ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ΓB̃1

(F )(τ(ϕ) ◦ eφ(x,ϕ))



56 3. PECULIAR ISOMORPHISMS

we have

(1.2) ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ΓB̃2

(ψ(F ))(τ ′(τ(ϕ)) ◦ eφ′(φ(x,ϕ),τ(ϕ))).

On the other hand we have ψ(Const(B̃1)) = Const(B̃2) since

ψ(Const(B̃1)) ⊂ Const(B̃2) and ψ−1(Const(B̃2)) ⊂ Const(B̃1). Hence

for every 1B2⊗b′ ∈ Const(B̃2) there exists F ∈ Const(B̃1) with ψ(F ) =

1B2 ⊗ b′. Thus

ψ(F )(x) = b′, ψ(F )(φ′(φ(x, ϕ), τ(ϕ))) = b′

for every b′ ∈ A2 and x ∈ X2. By (2.1) we have ϕ(b′) = τ ′(τ(ϕ))(b′)

for every b′ ∈ A2. Thus ϕ = τ ′(τ(ϕ)) for every ϕ ∈ M(A2). In the

same way we see that ϕ′ = τ(τ ′(ϕ′)) for every ϕ′ ∈ M(A1). We have

that τ is a homeomorphisms from M(A2) onto M(A1) and τ ′ is a

homeomorphism from M(A1) onto M(A2). Then by (2.1) we have

ΓB̃2
(ψ(F ))(ϕ ◦ ex) = ΓB̃2

(ψ(F ))(ϕ ◦ eφ′(φ(x,ϕ),τ(ϕ)))

for every ϕ ∈ M(A2). Thus we have that

ψ(F )(x) = ψ(F )(φ′(φ(x, ϕ), τ(ϕ)))

for every F ∈ B̃1. As ψ is a surjection, we have by the condition (2.4)

of Definition 2.16 that

(1.3) x = φ′(φ(x, ϕ), τ(ϕ))

for every x ∈ X2; φ
′(φ(·, ϕ), τ(ϕ)) is the identity on X2 for every ϕ ∈

M(A2). In the same way

y = φ(φ′(y, ϕ′), τ ′(ϕ′))

for every y ∈ X1 and ϕ′ ∈ M(A1). Letting ϕ′ = τ(ϕ) we have

φ(φ′(·, τ(ϕ)), ϕ) is the identity on X1 for every ϕ ∈ M(A2) since τ ′ ◦ τ
is the identity on M(A2). It follows that φ(·, ϕ) : M(A2) → M(A1)

is a homeomorphism for every ϕ ∈ M(A2). In the same way φ′(·, ϕ′) :

M(A1) → M(A2) is a homeomorphism for every ϕ′ ∈ M(A1).

Let x ∈ X2 arbitrary. Define T : A1 → A2 by T (b) = ψ(1B1 ⊗ b)(x).

Since ψ(Const(B̃1)) ⊂ Const(B̃2) we have

ΓB̃2
(ψ(1B1 ⊗ b))(ϕ ◦ ex) = ΓB̃1

(1B1 ⊗ b)(τ(ϕ) ◦ eφ(x,ϕ)) = (τ(ϕ))(b),



1. RESULTS AND PROOFS 57

hence ϕ(T (b)) = (τ(ϕ))(b) for every b ∈ A1. Thus T does not depend

on x ∈ X2 and T is an isomorphism from A1 onto A2.

Next let ϕ ∈ M(A2) be arbitrary. Define U : B1 → B2 by U(f) =

f ◦ φ(·, ϕ). It is well defined. A proof is the following. Let f ∈ B1.

Then f ⊗ 1A1 ∈ B̃1 and

ϕ (ψ(f ⊗ 1A1)(x))

= ΓB̃2
(ψ(f ⊗ 1A1))(ϕ ◦ ex) = ΓB̃1

(f ⊗ 1A1)(τ(ϕ) ◦ eφ(x,ϕ))

= f(φ(x, ϕ)).

By the condition (2.4) of Definition 2.16 we have ϕ ◦ ψ(f ⊗ 1A1) ∈ B2.

Thus U is well defined. It is a homomorphism. In the same way

a homomorphism U ′ : B2 → B1 defined by g 7→ g ◦ φ′(·, τ(ϕ)) is well

defined. As φ′(φ(·, ϕ), τ(ϕ)) is the identity on X2 for every ϕ ∈ M(A2),

and φ(φ′(·, ϕ′), τ ′(ϕ′)) is identity on X1 for every ϕ′ ∈ M(A1) we see

that U is an isomorphism from B1 onto B2. □

Theorem 3.3. Let Aj be a uniform algebra and (Xj, Aj, Bj, B̃j)

an admissible quadruple for j = 1, 2. Suppose that B̃j is natural for

j = 1, 2. Suppose that Ch(B2) is connected with respect to the rela-

tive topology induced by the Gelfand topology of M(B2). Suppose that

Ch(A1) is totally disconnected with respect to the relative topology in-

duced by the Gelfand topology of M(A1). Let ψ : B̃1 → B̃2 be an iso-

morphism. Then there exists a homeomorphism τ : M(A2) → M(A1)

and a continuous map φ : X2 × M(A2) → X1 such that the map

φ(·, ϕ) : X2 → X1 is a homeomorphism for each ϕ ∈ M(A2), which

satisfies that

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ X2 ×M(E2)

for every F ∈ B̃1. In particular, A1 is isomorphic to A2 and B1 is

isomorphic to B2.

Proof. We can prove Theorem 3.3 in a similar way as in the proof

of Theorem 3.2. Let ϕ ∈ Ch(A2) be arbitrary. Define S : A1 → B2

by S(b) = ϕ ◦ ψ(1B1 ⊗ b), b ∈ A1. Note that S is well defined by the

condition (2.4) in Definition 2.16. Then S∗ : B∗
2 → A∗

1 is well defined

and continuous with respect to the weak-∗ topology. We can prove
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S∗(Ch(B2)) ⊂ Ch(A1) in a similar way as in the proof of Theorem 3.2.

The Gelfand topology is the relative topology induced by the weak-∗
topology. Hence S∗|Ch(B2) : Ch(B2) → Ch(A1) is continuous with the

Gelfand topology. Since Ch(B2) is connected and Ch(A1) is totally

disconnected with the Gelfand topology, S∗(Ch(B2)) is a singleton.

The rest of the proof is the same as in the proof of Theorem 3.2. □

Let T be the unit circle in the complex plane C. A Douglas algebra

is a closed subalgebra of L∞ which properly contains H∞(T). The Šilov

boundary of a Douglas algebra and the Choquet boundary coincides

with each other and it is homeomorphic to the maximal ideal space of

L∞(T), which is totally disconnected (see [32]).

2. The case of algebras of vector-valued Lipschitz maps

Corollary 3.4. Let Aj be a uniform algebra for j = 1, 2. Let Kj

be a compact metric space for j = 1, 2. Suppose that K2 is connected.

Let ψ : Lip(K1, A1) → Lip(K2, A2) be an isomorphism. Then there

exists a homeomorphism τ : M(A2) → M(A1) and a continuous map

φ : K2 × M(A1) → K1 such that the map φ(·, ϕ) : K2 → K1 is a

lipeomorphism for each ϕ ∈ M(A2), which satisfies that

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ K2 ×M(A2)

for every F ∈ B̃1. In particular, A1 is isomorphic to A2.

Proof. Applying Theorem 3.2 we can prove Corollary 3.4 as in

the proof of Corollary 2.30 except that the map φ(·, ϕ) : K2 → K1 is a

lipeomorphism for every ϕ ∈ M(A2). We prove that the map φ(·, ϕ) :

K2 → K1 is a lipeomorphism for every ϕ ∈ M(A2). Let ϕ ∈ M(A2)

be fixed. By Theorem 3.2 φ(·, ϕ) is already a homeomorphism. On

the other hand, as in the same way as in the proof of Corollary 2.30

we see that φ(·, ϕ) is a Lipschitz map for every ϕ ∈ M(A2). By the

equation (1.3) of Theorem 3.2 we see that φ(·, ϕ)−1 = φ′(·, τ(ϕ)), and

it is a Lipschitz map. It follows that φ(·, ϕ) is a lipeomorphisms for

every ϕ ∈ M(A2). □
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3. The case of algebras of vector-valued continuously

differentiable maps

Applying Theorem 3.2, we also obtain the case of C1([0, 1], Aj) for

j = 1, 2.

Corollary 3.5. Let Aj be a uniform algebra for j = 1, 2. Suppose

that ψ : C1([0, 1], A1) → C1([0, 1], A2) is an algebra isomorphism. Then

there exist a homeomorphism τ : M(A2) → M(A1) and a continuous

map φ : [0, 1] × M(A2) → [0, 1] such that for each ϕ ∈ M(A2), the

map φ(·, ϕ) : [0, 1] → [0, 1] is a C1-diffeomorphism which satisfy that

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ [0, 1] ×M(A2)

for every F ∈ C1([0, 1], A1). In particular, A1 is algebraically isomor-

phic to A2.

Proof. The Choquet boundary for C1([0, 1]) is [0, 1]. By Lemma

2.35, [0, 1] is connected with respect to the relative topology induced by

the metric inherited from the dual space of C1([0, 1]). Applying Theo-

rem 3.2 we can prove Corollary 3.5 as in the proof of Corollary 2.36 ex-

cept that the map φ(·, ϕ) is a C1-diffeomorphism for every ϕ ∈ M(A2).

Let ϕ ∈ M(A2) be fixed. By Theorem 3.2 and Corollary 2.36 we see

that φ(·, ϕ) is continuouly differentiable, and is a homeomorphism. Ap-

plying the equation (12) in the proof of [45, Theorem 19] we see that

φ(·, ϕ)−1 is continuouly differentiable. It follows that φ(·, ϕ) is C1-

diffeomorphism. □





CHAPTER 4

Surjective linear isometry

1. Preliminary

In this chapter an isometry means a complex-linear isometry. De

Leeuw [28] probably initiated the study of isometries on the alge-

bra of Lipschitz functions on the real line. Roy [106] studied isome-

tries on the Banach space Lip(X) of Lipschitz functions on a compact

metric space X, equipped with the norm ‖f‖ = max{‖f‖∞, L(f)},

where L(f) denotes the Lipschitz constant. Cambern [26] considered

isometries on spaces of scalar-valued continuously differentiable func-

tions C1([0, 1]) with norm given by ‖f‖ = maxx∈[0,1]{|f(x)| + |f ′(x)|}
for f ∈ C1([0, 1]) and proved that the forms of them are canonical.

Jiménez-Vargas and Villegas-Vallecillos in [54] considered isometries

of spaces of vector-valued Lipschitz maps on a compact metric space

with values in a strictly convex Banach space, equipped with the norm

‖f‖ = max{‖f‖∞, L(f)}, see also [52]. Botelho and Jamison [9] stud-

ied isometries on C1([0, 1], E) with maxx∈[0,1]{‖f(x)‖E+‖f ′(x)‖E}. See

also [104, 80, 55, 2, 8, 67, 18, 103, 14, 84, 57, 58, 59, 74, 60,

75, 50]

In what follows, unless otherwise mentioned, α denotes a real scalar

in (0, 1). Jarosz and Pathak [48] studied a problem when an isometry

on a space of continuous functions is a weighted composition operator.

They provided a unified approach for certain function spaces including

C1(X), Lip(X), lip(X) andAC[0, 1]. On the other hand, in many cases,

isometries on algebras of Lipschitz maps and continuously differentiable

maps have been somehow studied independently.

We propose a unified approach to the study of isometries on al-

gebras Lip(X,C(Y )), lip(X,C(Y )) and C1(K,C(Y )), where X is a

compact metric space, K = [0, 1] or T (in this dissertation T denotes

61
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the unit circle on the complex plane), and Y is a compact Hausdorff

space. We define an admissible quadruple of type L (see Definition

4.4) as a common abstraction of Lipschitz algebras and algebras of

continuously differentiable maps. We prove that a surjective isometry

between admissible quadruple of type L is canonical (Theorem 4.5), in

the sense that it is represented as a weighted composition operator. As

corollaries we describe isometries on Lip(X,C(Y )), lip(X,C(Y )) and

C1(K,C(Y )) respectively (Corollaries 4.14, 4.18, 4.19). There is a va-

riety of norms on Lip(X,C(Y )), lip(X,C(Y )) and C1(K,C(Y )). In

this dissertation we consider the norm of sum type; ‖F‖∞(X×Y ) +L(F )

for F ∈ Lip(X,C(Y )), ‖F‖∞(X×Y ) + Lα(F ) for F ∈ lip(X,C(Y )) and

‖F‖∞(K×Y ) + ‖F ′‖∞(K×Y ) for F ∈ C1(K,C(Y )). With these norms

Lip(X,C(Y )), lip(X,C(Y )) and C1(K,C(Y )) are commutative Banach

algebras respectively.

As is pointed above, the description in [48, Example 8] has a gap.

We find it difficult to follow the argument given in the Example 8.

Besides non-substantial typos, the well-definedness of the map Ψϑ :

extB∗ → extB∗ ([48, p. 205, line 8]), where extB∗ is the set of

all extreme points in the closed unit ball of the dual space of B =

Lipα′(Y ) given by Ψϑ(γδ(y,ω,β)) = γδ(y,ω,eiϑβ) (note that the formula on

the line 9 of [48, p. 205] reads as in this way) seems to require further

explanation. On the other hand Corollary 4.15 of this dissertation

confirms the statement of [48, Example 8]. Our proof uses a similar

but slightly different vein than that of Jarosz-Pathak’s argument.

The main result in this chapter is Theorem 4.5, which gives the

form of a surjective isometry U between admissible quadruples of type

L. The proof of the necessity of the isometry in Theorem 4.5 comprises

several steps. We give an outline of the proof. The crucial part of the

proof of Theorem 4.5 is to prove that U(1) = 1 ⊗ h for h ∈ C(Y2)

with |h| = 1 on Y2 (Proposition 4.9). To prove Proposition 4.9 we

apply Choquet’s theory with measure theoretic arguments (Lemmas

4.10,4.11). By Proposition 4.9 we have that U0 = (1 ⊗ h̄)U is a sur-

jective isometry fixing the unit. Then by applying a theorem of Jarosz

[47] we see that U0 is also an isometry with respect to the supremum
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norm. By the Banach-Stone theorem U0 is an algebra isomorphism

and applying [45] we see that U0 is a composition operator of type BJ.

Analyzing the maps which produce the composition operator, the final

conclusion of Theorem 4.5 is derived.

In this chapter, we consider the surjective linear isometry on Lip(X,E),

Lipα(X,E), lip(X,E),where X is a compact metric space and C1(K,E)

for K = [0, 1] or T. As we noted, the norm ‖ · ‖ of Lipα(X,E) (resp.

lip(X,E)) is defined by

‖F‖ = ‖F‖∞(X) + Lα(F ), F ∈ Lipα(X,E) (resp. lip(X,E)).

We mainly concern with E = C(Y ). In this case Lipα(X,C(Y )) and

lip(X,C(Y )) are unital semi-simple commutative Banach algebras with

‖·‖. When E = C we abbreviate Lip(X,C) (resp. lip(X,C)) by Lip(X)

(resp. lip(X)). There are a variety of complete norms other than ‖ · ‖.

For example ‖ · ‖max = max{‖ · ‖∞, Lα(·)} is one, but it needs not be

submultiplicative. Hence Lipα(X,C(Y )) and lip(X,C(Y )) need not be

Banach algebras with respect to the norm ‖ · ‖max.

Let F ∈ C(K,C(Y )) for K = [0, 1] or T. We say that F is contin-

uously differentiable if there exists G ∈ C(K,C(Y )) such that

lim
K∋t→t0

∥∥∥∥F (t0) − F (t)

t0 − t
−G(t0)

∥∥∥∥
∞(Y )

= 0

for every t0 ∈ K. We denote F ′ = G. Put C1(K,C(Y )) = {F ∈
C(K,C(Y )) : F is continuously differentiable}. Then C1(K,C(Y ))

with norm ‖F‖ = ‖F‖∞ + ‖F ′‖∞ is a unital semi-simple commuta-

tive Banach algebra. If Y is singleton we may suppose that C(Y )

is isometrically isomorphic to C and we abbreviate C1(K,C(Y )) by

C1(K).

By identifying C(X,C(Y )) with C(X × Y ) we may assume that

Lip(X,C(Y )) is a subalgebra of C(X × Y ) by the correspondence

F ∈ Lip(X,C(Y )) ↔ ((x, y) 7→ (F (x))(y)) ∈ C(X × Y ).

In the same way we may assume that lip(X,C(Y )) is a subalgebra of

C(X × Y ). We may also assume that C1(K,C(Y )) is a subalgebra of
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C(K × Y ). We may assume that

Lip(X,C(Y )) ⊂ C(X × Y ),

lip(X,C(Y )) ⊂ C(X × Y ),

C1(K,C(Y )) ⊂ C(K × Y ).

We say that a subset S of C(Y ) is point separating if S separates the

points of Y . Suppose that B is a unital point separating subalgebra of

C(Y ) equipped with a Banach algebra norm. Then B is semi-simple

because {f ∈ B : f(x) = 0} is a maximal ideal of B for every x ∈ X

and the Jacobson radical of B vanishes. The maximal ideal space of

B is denoted by M(B). We now introduce some definitions. Although

the definition of natural is the same with Definition 2.15, we note it for

the convenience of the reader.

Definition 4.1. We say that B is inverse-closed if f ∈ B with

f(y) 6= 0 for every y ∈ Y implies f−1 ∈ B. We say that B is natural

if the map e : Y → M(B) defined by y 7→ ϕy, where ϕy(f) = f(y) for

every f ∈ B, is bijective. We say that B is self-adjoint if B is natural

and satisfies that f ∈ B implies that f̄ ∈ B for every f ∈ B, where ·̄
denotes the complex conjugation on Y = M(B).

Note that conjugate closedness of B (f ∈ B implies f̄ ∈ B) needs

not satisfy the self-adjointness of B. If B is conjugate closed and

natural, then B is self-adjoint.

Proposition 4.2. Let Y be a compact Hausdorff space. Suppose

that B is a unital point separating subalgebra of C(Y ) equipped with a

Banach algebra norm. If B is uniformly dense in C(Y ) and inverse-

closed, then B is natural.

Proof. Suppose that e : Y → M(B) is not surjective. Then

there exists ϕ ∈ M(B) such that for every y ∈ Y there exists fy ∈ B

with ϕ(fy) = 0 such that fy(y) = 1. As Y is compact, there exists a

finite number of f1, . . . , fn ∈ B with ϕ(fj) = 0 for j = 1, . . . , n such

that
∑n

j=1 |fj|2 > 0 on Y . Since B is uniformly dense in C(Y ) there

exist g1, . . . , gn ∈ B such that
∑n

j=1 fjgj > 0 on Y . As B is inverse-

closed, there exists h ∈ B such that h
∑n

j=1 fjgj = 1. As ϕ(fj) = 0
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for j = 1, . . . , n we have 0 = ϕ(h
∑n

j=1 fjgj) = ϕ(1) = 1, which is a

contradiction. □

Corollary 4.3. The unital Banach algebras Lip(X) with ‖ · ‖∞ +

L(·) and Lip(X,C(Y )) with ‖ · ‖∞ +L(·) are point separating and self-

adjoint. Let 0 < α < 1. The unital Banach algebras lip(X) with

‖ · ‖∞ +Lα(·) and lip(X,C(Y )) with ‖ · ‖∞ +Lα(·) are point separating

and self-adjoint. The unital Banach algebras C1(K) with ‖·‖∞+‖·′‖∞
and C1(K,C(Y )) with ‖ · ‖∞ + ‖ ·′ ‖∞ are point separating and self-

adjoint, where K = [0, 1] or K = T.

Proof. The Lipschitz algebra Lip(X) is a unital point separating

subalgebra of C(X) equipped with a Banach algebra norm ‖ · ‖∞ +

L(·). As Lip(X) is conjugate closed, the Stone-Weierstrass theorem

asserts that Lip(X) is uniformly dense in C(X). Thus it is natural by

Proposition 4.2, so that it is self-adjoint. In a similar way as Lip(X)

we infer that Lip(X,C(Y )) is self-adjoint.

Suppose that 0 < α < 1. Then we see that lip(X) separates the

points of X. (Let x, y be different points in X. Put f : X → C
by f(·) = d(·, y). By a simple calculation we infer that f ∈ lip(X)

and f(x) 6= f(y).) In the same way as above we see that lip(X) and

lip(X,C(Y )) are natural, hence self-adjoint.

Let K = [0, 1] or K = T. In the same way as above we see that

C1(K) is self-adjoint. In the same way as above C1(K,C(Y )) is self-

adjoint. □

2. Admissible quadruples of type L

An admissible quadruple was defined by Nikou and O’Farrell in [95].

The definition is little complicated and we adopt a simpler definition

that is sufficient for our purpose. For a detailed account of admissible

quadruples see [95] and Definition 2.16. Let X and Y be compact

Hausdorff spaces. For functions f ∈ C(X) and g ∈ C(Y ), let f ⊗ g ∈
C(X × Y ) be the function defined by f ⊗ g(x, y) = f(x)g(y), and for



66 4. SURJECTIVE LINEAR ISOMETRY

a subspace EX of C(X) and a subspace EY of C(Y ), let

EX ⊗ EY =

{
n∑
j=1

fj ⊗ gj : n ∈ N, fj ∈ EX , gj ∈ EY

}
.

An admissible quadruple (X,C(Y ), B, B̃) in this chapter is as follows.

Definition 4.4. Let X and Y be compact Hausdorff spaces. Let

B and B̃ be unital point separating subalgebras of C(X) and C(X×Y )

equipped with Banach algebra norms respectively which satisfy

B ⊗ C(Y ) ⊂ B̃, {F (·, y) : F ∈ B̃, y ∈ Y } ⊂ B.

We say that (X,C(Y ), B, B̃) is an admissible quadruple of type L if

the following conditions are satisfied.

1© The algebras B and B̃ are self-adjoint.

2© There exists a compact Hausdorff space M and a complex-

linear operator D : B̃ → C(M) such that

D(B̃ ∩ CR(X × Y )) ⊂ CR(M)

and also

(1) the norm ‖ · ‖ on B̃ satisfies

‖F‖ = ‖F‖∞(X×Y ) + ‖D(F )‖∞(M), F ∈ B̃,

(2) KerD = 1B ⊗ C(Y ),

(3) ‖D((1B⊗g)F )‖∞(M) = ‖D(F )‖∞(M) for every F ∈ B̃ and

g ∈ C(Y ) such that |g| = 1 on Y

It will be appropriate to make a few comments on the above def-

inition. First we do not assume that D(B̃) is point separating. Next

B and B̃ are semi-simple since they are point separating. For a point

x ∈ X define ex : B̃ → C(Y ) by ex(F ) = F (x, ·) for every F ∈ B̃.

A theorem of Šilov (see [101, Theorem 3.1.11] asserts that the evalua-

tion map ex : B̃ → C(Y ) is automatically continuous for every x ∈ X

since C(Y ) is semi-simple. Hence it is straightforward to check that

an admissible quadruple of type L is in fact an admissible quadruple

defined by Nikou and O’Farrell in [95] (see also [45]). In particular if

X is a compact metric space, then (X,C(Y ),Lip(X),Lip(X,C(Y ))),
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(X,C(Y ), lip(X), lip(X,C(Y ))) and (K,C(Y ), C1(K), C1(K,C(Y ))) for

K = [0, 1],T are admissible quadruples of type L. See Section 5.

We define a seminorm ‖| · ‖| on B̃ by ‖|F‖| = ‖D(F )‖∞(M) for

F ∈ B̃. Note that ‖| · ‖| is one-invariant in the sense of Jarosz [47]

(‖|F‖| = ‖|F + 1B̃‖| for every F ∈ B̃) since 1B̃ = 1B ⊗ 1C(Y ) and

D(1B̃) = 0. The norm ‖ · ‖ = ‖ · ‖∞ + ‖| · ‖| is a p-norm (see [47, p.67]).

3. Main Results

The main result in this chapter is the following.

Theorem 4.5. Suppose that (Xj, C(Yj), Bj, B̃j) is an admissible

quadruple of type L for j = 1, 2. Suppose that U : B̃1 → B̃2 is a

surjective isometry. Then there exists h ∈ C(Y2) such that |h| = 1 on

Y2, a continuous map φ : X2 × Y2 → X1 such that φ(·, y) : X2 → X1 is

a homeomorphism for each y ∈ Y2, and a homeomorphism τ : Y2 → Y1

which satisfy

U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ X2 × Y2

for every F ∈ B̃1.

In short a surjective isometry between admissible quadruples of type

L is canonical, that is, a weighted composition operator of a specific

form: the homeomorphism X2×Y2 → X1×Y1, (x, y) 7→ (φ(x, y), τ(y))

has the second coordinate that depends only on the second variable

y ∈ Y2. A composition operator induced by such a homeomorphism is

of type BJ (see Definition 2.20, this is the definition of type BJ). That

every composition operator on an admissible quadruple (X,E,B, B̃)

onto itself is of type BJ indicates that B and E are totally different

Banach algebras.

4. Proofs

We recall some basic properties of regular Borel measures for the

convenience of the readers. As the authors could not find appropriate

references, we exhibit the properties in Lemmas 4.6, 4.7 and 4.8. In

Lemmas 4.6 and 4.7, X is a compact Hausdorff space and µ is a Borel

probability measure (a positive measure on the σ-algebra of Borel sets
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whose total measure is 1). For a non-empty Borel subset S of X, µ|S
denotes the measure on S which is the restriction of µ; µ|S(E) = µ(E)

for a Borel set E ⊂ S. Recall that the support of µ is the set defined

by

suppµ = {x ∈ X : µ(U) > 0 for every open neighborhood U of x}.

Lemma 4.6. Let K be a non-empty compact subset of X and f ∈
C(X). Assume that f ≤ c on K for a constant c > 0. If∫

K

fdµ = cµ(K),

then supp(µ|K) ⊂ f−1(c) ∩K.

Proof. Let x ∈ supp(µ|K). Then x ∈ K by the definition of

the support of µ|K. Suppose that f(x) 6= c. As f ≤ c on K, we

have f(x) < c. Since f |K is continuous on K, there exists an open

neighborhood U of x relative to K such that f < (f(x) + c)/2 on U .

As x ∈ supp(µ|K) we have that µ(U) > 0. Then∫
K

fdµ =

∫
U

fdµ+

∫
K\U

fdµ

≤ f(x) + c

2
µ(U) + cµ(K \ U)

= cµ(K) − c− f(x)

2
µ(U) < cµ(K),

which is a contradiction proving that f(x) = c. Thus we conclude that

supp(µ|K) ⊂ f−1(c) ∩K. □

Lemma 4.7. Suppose that K1 and K2 are non-empty compact sub-

sets of X. Then

supp(µ|K1) ∪ supp(µ|K2) = supp(µ|(K1 ∪K2)).

Proof. Suppose that x ∈ supp(µ|K1). Suppose that G is an ar-

bitrary open neighborhood of x relative to K1 ∪K2. Then there is an

open set G̃ in X with G̃ ∩ (K1 ∪ K2) = G. Then G̃ ∩ K1 is an open

neighborhood of x relative to K1 and G = G̃∩ (K1∪K2) ⊃ G̃∩K1. As

x ∈ supp(µ|K1) we have 0 < µ(G̃∩K1) ≤ µ(G). Since G is arbitrary we

conclude that x ∈ supp(µ|(K1∪K2)); supp(µ|K1) ⊂ supp(µ|(K1∪K2)).
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In the same way we have supp(µ|K2) ⊂ supp(µ|(K1 ∪K2)). Thus we

have supp(µ|K1) ∪ supp(µ|K2) ⊂ supp(µ|(K1 ∪K2)).

Suppose conversely that x ∈ supp(µ|(K1∪K2)). Then x ∈ K1∪K2.

Suppose that x 6∈ supp(µ|K1) ∪ supp(µ|K2). First we consider the

case that x ∈ K1 and x ∈ K2. Then there is an open neighborhood

G1 of x relative to K1 and an open neighborhood G2 of x relative to

K2 such that µ(G1) = µ(G2) = 0 since we have assumed that x 6∈
supp(µ|K1)∪ supp(µ|K2). There exists open sets G̃1 and G̃2 in X such

that G̃1∩K1 = G1 and G̃2∩K2 = G2. Put G̃ = G̃1∩ G̃2. Then G̃ is an

open set in X and x ∈ G̃. Then G̃∩(K1∪K2) is an open neighborhood

of x relative to K1 ∪K2 and

G̃∩(K1∪K2) = (G̃∩K1)∪(G̃∩K2) ⊂ (G̃1∩K1)∪(G̃2∩K2) = G1∩G2.

Then

0 ≤ µ(G̃ ∩ (K1 ∪K2)) ≤ µ(G1 ∪G2) ≤ µ(G1) + µ(G2) = 0,

so that µ(G̃ ∩ (K1 ∪ K2)) = 0, which is a contradiction since x ∈
supp(µ|(K1 ∪ K2)). Next we consider the case where x ∈ K1 and

x 6∈ K2. Then there exists an open neighborhood G1 of x relative

to K1 with µ(G1) = 0 since we have assumed that x 6∈ supp(µ|K1).

There exists an open set G̃1 in X such that G̃1 ∩ K1 = G1. Since

x 6∈ K2 we infer that G̃1∩Kc
2 is an open neighborhood of x in X. Then

(G̃1∩Kc
2)∩ (K1∪K2) is an open neighborhood of x relative to K1∪K2

and

(G̃1 ∩Kc
2) ∩ (K1 ∪K2) = G̃1 ∩Kc

2 ∩K1 ⊂ G̃1 ∩K1 = G1.

As (G̃1∩Kc
2)∩ (K1∪K2) is an open neighborhood of x relative to K1∪

K2, we infer that 0 < µ((G̃1∩Kc
2)∩ (K1∪K2)) since x ∈ supp(µ|(K1∪

K2)). On the other hand (G̃1 ∩Kc
2) ∩ (K1 ∪K2) ⊂ G1 assures that

0 < µ((G1 ∩Kc
2) ∩ (K1 ∪K2)) ≤ µ(G1) = 0,

which is a contradiction. In the same way we will arrive at a contra-

diction also for the case where x 6∈ K1 and x ∈ K2. Therefore we have

the conclusion that x ∈ supp(µ|K1) ∪ supp(µ|K2). □

We assume the regularity for the measure µ in Lemma 1.2. If µ is

a regular Borel probability measure on a compact Hausdorff space Y ,
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then for any Borel set S in Y \ supp(µ) we have µ(S) = 0. Indeed the

regularity of µ assures that µ(S) is approximated arbitrarily closely by

µ(E) for a compact subset E ⊂ S. Since S ∩ supp(µ) = ∅, we use

the compactness to cover E by a finitely many open sets with measure

zero. This implies µ(E) = 0 and thus µ(S) = 0.

Lemma 4.8. Let Y be a compact Hausdorff space and let K be a

non-empty compact subset of Y and let µ be a regular Borel probability

measure on Y × T. Let g ∈ CR(Y ) such that |g| ≤ c on K for some

c > 0. Suppose that there exists γ0 ∈ T such that∫
K×T

γg ⊗ 1C(T)(m, γ)dµ(m, γ) = γ0cµ(K × T).

Then we have the inclusion

supp(µ|K × T)

⊂
{

(g−1(c) ∩K) × {γ0}
}
∪
{

(g−1(−c) ∩K) × {−γ0}
}
.

Note that we write g(m) instead of g ⊗ 1C(T)(m, γ) for simplicity.

Proof. As |γg| = |g| ≤ c on K × T we have

cµ(K × T) =

∣∣∣∣∫
K×T

γg(m)dµ

∣∣∣∣ ≤ ∫
K×T

|g(m)|dµ ≤ cµ(K × T),

hence
∫
K×T |g(m)|dµ = cµ(K × T). By Lemma 4.6 we have

supp(µ|K × T) ⊂ (|g|−1(c) ∩K) × T.

As g is a real-valued function we infer by a simple calculation that

|g|−1(c) = g−1(c) ∪ g−1(−c).

Put K1 = g−1(c) and K2 = g−1(−c). As c > 0, we have K1 ∩K2 = ∅.

Then

supp(µ|K × T) ⊂ (K1 ∩K) × T ∪ (K2 ∩K) × T

= ((K1 ∪K2) ∩K) × T.

As µ is regular, we have that

µ(K × T \ [(K1 ∩K) × T ∪ (K2 ∩K) × T]) = 0.
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It follows that

γ0cµ(K × T) =

∫
K×T

γg(m)dµ

=

∫
(K1∩K)×T

γg(m)dµ+

∫
(K2∩K)×T

γg(m)dµ

= c

∫
(K1∩K)×T

γdµ− c

∫
(K2∩K)×T

γdµ.

Thus we have

(4.1) µ(K × T) =

∫
(K1∩K)×T

γ0γdµ−
∫
(K2∩K)×T

γ0γdµ.

Put M1 =
∫
(K1∩K)×T 1dµ and M2 =

∫
(K2∩K)×T 1dµ. As µ is regular and

K1 ∩K2 = ∅ we have

(4.2) M1 +M2 =

∫
((K1∪K2)∩K)×T

1dµ =

∫
K×T

1dµ = µ(K × T).

Put ∫
(K1∩K)×T

γ0γdµ = eiδ1N1,

∫
(K2∩K)×T

γ0γdµ = eiδ2N2,

where N1, N2 ≥ 0. We may assume that eiδ1 = 1 if N1 = 0 and

eiδ2 = −1 if N2 = 0. Note that N1 ≤ M1 and N2 ≤ M2. By (4.1) and

(4.2) we obtain

M1 +M2 = eiδ1N1 − eiδ2N2.

Then by a simple calculation we have that eiδ1 = −eiδ2 = 1, N1 = M1,

and N2 = M2, that is,∫
(K1∩K)×T

γ0γdµ = µ((K1∩K)×T),

∫
(K2∩K)×T

−γ0γdµ = µ((K2∩K)×T).

Then

(4.3) µ((K1 ∩K) × T) = Re

∫
(K1∩K)×T

γ0γdµ =

∫
(K1∩K)×T

Re γ0γdµ,

(4.4)

µ((K2 ∩K) × T) = Re

∫
(K2∩K)×T

−γ0γdµ =

∫
(K2∩K)×T

Re(−γ0γ)dµ.

Applying Lemma 4.6 for (4.3) we infer that

supp(µ|((K1 ∩K) × T)) ⊂ (K1 ∩K) × {γ0}.
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In the same way we have by (4.4) that

supp(µ|((K2 ∩K) × T)) ⊂ (K2 ∩K) × {−γ0}.

By Lemma 4.7 we have that

supp(µ|(((K1 ∪K2) ∩K)) × T))

⊂ {(K1 ∩K) × {γ0}} ∪ {(K2 ∩K) × {−γ0}} .

Since µ is regular, so is µ|(K × T). Thus µ|(K × T) is a regular Borel

measure on K ×T such that supp(µ|(K ×T)) ⊂ ((K1 ∪K2)∩K)×T.

Thus

supp(µ|(K × T)) = supp((µ|(K × T))|(((K1 ∪K2) ∩K) × T))

= supp(µ|(((K1 ∪K2) ∩K) × T)),

hence the conclusion holds. □

Throughout this Section we assume all the hypotheses in Theorem

4.5 without further mention. For the simplicity of the proof of Theorem

4.5 we assume that X2 is not a singleton in this Section. Now, we aim

to prove Proposition 4.9, which is a crucial part of proof of Theorem

4.5.

Proposition 4.9. There exists h ∈ C(Y2) with |h| = 1 on Y2 such

that U(1B̃1
) = 1B2 ⊗ h.

Lemma 4.11 is crucial for the proof of Proposition 4.9. We prove

Lemma 4.11 by applying Choquet’s theory ([102]) which studies the

extreme point of the dual unit ball of the space of continuous func-

tions with the supremum norm. To apply the theory we first define

an isometry from B̃j into a uniformly closed space of complex-valued

continuous functions. Let j = 1, 2. Define a map

Ij : B̃j → C(Xj × Yj ×Mj × T)

by Ij(F )(x, y,m, γ) = F (x, y)+γDj(F )(m) for F ∈ B̃j and (x, y,m, γ) ∈
Xj×Yj×Mj×T. (Recall that T is the unit circle in the complex plane.)

As Dj is a complex linear map, so is Ij. Let Sj = Xj × Yj ×Mj × T.

For simplicity we just write I and D instead of Ij and Dj without any
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confusion. For every F ∈ B̃j the supremum norm ‖I(F )‖∞ on Sj of

I(F ) is

‖I(F )‖∞ = sup{|F (x, y) + γD(F )(m)| : (x, y,m, γ) ∈ Sj}

= sup{|F (x, y)| : (x, y) ∈ Xj × Yj}

+ sup{|D(F )(m)| : m ∈ Mj}

= ‖F‖∞(Xj×Yj) + ‖D(F )‖∞(M).

The second equality follows by an inspection that γ runs through the

whole T. It follows that

‖I(F )‖∞ = ‖F‖∞ + ‖D(F )‖∞ = ‖F‖

for every F ∈ B̃j. Since 0 = ‖D(1)‖∞, we have D(1) = 0 and I(1) = 1.

Hence I is a complex-linear isometry with I(1) = 1. In particular,

I(B̃j) is a complex-linear closed subspace of C(Sj) which contains 1.

In general I(B̃j) needs not separate the points of Sj.

It follows from the definition in [102] of the Choquet boundary

Ch I(B̃2) of I(B̃2), we see that a point p = (x, y,m, γ) ∈ X2×Y2×M×T
is in Ch I(B̃2) if the point evaluation ϕp at p is an extreme point of the

state space, or equivalently ϕp is an extreme point of the closed unit

ball (I(B̃2))
∗
1 of the dual space (I(B̃2))

∗ of I(B̃2).

Lemma 4.10. Suppose that (x0, y0) ∈ X2 × Y2 and U is an open

neighborhood of (x0, y0). Then there exists a function F0 = b0⊗f0 ∈ B̃2

with 0 ≤ b0 ≤ 1 and 0 ≤ f0 ≤ 1 such that 0 ≤ F0 ≤ 1 = F0(x0, y0)

on X2 × Y2 and F0 < 1/2 on X2 × Y2 \ U. Furthermore there exists

a point (xc, yc,mc, γc) in the Choquet boundary for I2(B̃2) such that

(xc, yc) ∈ U ∩ (b−1
0 (1) × f−1

0 (1)) and γcD(F0)(mc) = ‖D(F0)‖∞ 6= 0.

Proof. Suppose that G and H are open neighborhoods of x0 and

y0 respectively such that G× H ⊂ U. Since B2 is unital and self-

adjoint, also separates the points of X2, the Stone-Weierstrass theorem

asserts that B2 is uniformly dense in C(X2). By the Urysohn’s lemma

there exists v ∈ C(X2) such that 0 ≤ v ≤ 4/5 on X2, v(x0) = 0, and

v = 4/5 on X2 \ G. As B2 is uniformly dense in C(X2), there exists

u1 ∈ B2 such that ‖v−u1‖∞ < 1/40. Put u = u1−u1(x0). By a simple

calculation we infer that u ∈ B2 with u(x0) = 0 and −1 ≤ u ≤ 1 on X2
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and u2 > 1/2 on X2\G. Then b0 = 1−u2 ∈ B2, 0 ≤ b0 ≤ 1 = b0(x0) on

X2, and b0 < 1/2 on X2 \G. We may suppose that b0 is not constant

as we assume that X2 is not a singleton in this Section. In a similar

way, there exists f0 ∈ C(Y2) with 0 ≤ f0 ≤ 1 = f0(y0) and f0 < 1/2 on

Y2 \ H. Put F0 = b0 ⊗ f0. Hence we have that 0 ≤ F0 ≤ 1 = F0(x0, y0)

and F0 < 1/2 on X2×Y2 \U. Since B2⊗C(Y2) ⊂ B̃2 by Definition 4.4,

we infer that F0 ∈ B̃2.

By Proposition 6.3 in [102] there exists c = (xc, yc,mc, γc) in the

Choquet boundary for I(B̃2) with

‖I(F0)‖∞ = |I(F0)(c)|.

As in a similar way as we have mentioned before we see that

(4.5) |I(F0)(c)| = |F0(xc, yc) + γcD(F0)(mc)|

= |F0(xc, yc)| + |D(F0)(mc)| = ‖F0‖∞ + ‖D(F0)‖∞.

As 0 ≤ F0 ≤ 1 = ‖F0‖∞ we have by (4.5) that F0(xc, yc) = 1 = ‖F0‖∞.

Thus (xc, yc) ∈ U∩ (b−1
0 (1)×f−1

0 (1)). Applying that F0(xc, yc) = 1 and

(4.5), we also have that γcD(F0)(mc) = |D(F0)(mc)| = ‖D(F0)‖∞. As

b0 is not a constant function, we have F0 = b0⊗f0 6∈ 1⊗C(Y2) = KerD.

Hence we have ‖D(F0)‖∞ 6= 0, so that D(F0) 6= 0. As F0 is real-valued,

so is D(F0) by the condition 2© of Definition 4.4. Hence we see that

γcD(F0)(mc) = ‖D(F0)‖∞ and γc = 1 or −1. □

Note that γc = 1 if D(F0)(mc) > 0 and γc = −1 if D(F0)(mc) < 0.

Lemma 4.11. Let b0, f0 and F0 = b0 ⊗ f0 be functions obtained in

Lemma 4.10. Suppose that (xc, yc,mc, γc) is in the Choquet boundary

for I(B̃2) such that (xc, yc) ∈ b−1
0 (1) × f−1

0 (1). Then for any 0 < θ <

π/2, cθ = (xc, yc,mc, e
iθγc) is also in the Choquet boundary for I(B̃2).

Proof. Let θ be 0 < θ < π/2. The point evaluation ϕθ(I(F )) =

F (xc, yc) + eiθγcD(F )(mc) at cθ is well defined for I(F ) ∈ I(B̃2) since

I is injective. We prove that the point evaluation ϕθ is an extreme

point of the closed unit ball I(B̃2)
∗
1 of the dual space I(B̃2)

∗ of I(B̃2).

Suppose that ϕθ = 1
2
(ϕ1+ϕ2) for ϕ1, ϕ2 ∈ I(B̃2)

∗ with ‖ϕ1‖ = ‖ϕ2‖ = 1,

where ‖ · ‖ denotes the operator norm here. Let ϕ̌j be a Hahn-Banach

extension of ϕj for each j = θ, 1, 2. By the Riesz-Markov-Kakutani



4. PROOFS 75

representation theorem there exists a complex regular Borel measure

µj on X2×Y2×M2×T with ‖µj‖ = 1 which represents ϕ̌j for j = θ, 1, 2

respectively. In particular, we have∫
I(F )dµj = ϕj(I(F )), I(F ) ∈ I(B̃2)

for j = θ, 1, 2. As
∫

1dµθ = ϕθ(1) = 1 we see that µθ is a probability

measure. By the equation

1 =

∫
1dµθ =

1

2

∫
1dµ1 +

1

2

∫
1dµ2

we see that µ1 and µ2 are also probability measures.

We prove that the support supp(µj) of the measure µj satisfies

supp(µj) ⊂ b−1
0 (1) × f−1

0 (1) ×
{

(K1 × {e−θγc}) ∪ (K2 × {−eiθγc})
}
,

where K1 = D(F0)
−1(D(F0)(mc)) and K2 = D(F0)

−1(−D(F0)(mc)),

for j = θ, 1, 2. Note that mc ∈ K1 and K2 can be empty. Note also

that K1∩K2 = ∅ since |D(F0)(mc)| = ‖D(F0)‖∞ 6= 0. We first consider

the case for j = θ. As (xc, yc) ∈ b−1
0 (1) × f−1

0 (1) we have

ϕθ(I(F0)) = F0(xc, yc) + eiθγcD(F0)(mc) = 1 + eiθγcD(F0)(mc).

As ϕθ(I(F0)) =
∫
I(F0)dµθ we have

1 + eiθγcD(F0)(mc)

=

∫
F0(x, y)dµθ(x, y,m, γ) +

∫
γD(F0)(m)dµθ(x, y,m, γ).

Note that 0 ≤
∫
F0(x, y)dµθ ≤ 1 since 0 ≤ F0 ≤ 1 and µθ is a proba-

bility measure. As γcD(F0)(mc) = ‖D(F0)‖∞, we have∣∣∣∣∫ γD(F0)(m)dµθ

∣∣∣∣ ≤ γcD(F0)(mc).

Taking into account that 0 < θ < π/2 we have by an elementary

calculation that

(4.6) 1 =

∫
F0(x, y)dµθ,

(4.7) eiθγcD(F0)(mc) =

∫
γD(F0)(m)dµθ.
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Since µθ is a regular Borel measure, µθ(L) = 0 for any Borel set L with

L ∩ supp(µθ) = ∅. Hence we have
∫
Gdµθ =

∫
supp(µθ)

Gdµθ for every

G ∈ C(X2 × Y2 ×M2 × T). Then by the equality (4.6) we have

1 =

∫
supp(µθ)

F0(x, y)dµθ.

As 0 ≤ F0 ≤ 1 we have by Lemma 4.6 that

(4.8) supp(µθ) ⊂ F−1
0 (1) ×M2 × T = b−1

0 (1) × f−1
0 (1) ×M2 × T.

Letting K = X2 × Y2 × M2, g = 1C(X2×Y2) ⊗ D(F0), then applying

Lemma 4.8 to the equation (4.7) we get

supp(µθ) ⊂ X2 × Y2 ×
{

(K1 × {eiθγc}) ∪ (K2 × {−eiθγc})
}
.

Combining this inclusion with (4.8) we infer that

supp(µθ) ⊂ b−1
0 (1) × f−1

0 (1) ×
{

(K1 × {eiθγc}) ∪ (K2 × {−eiθγc})
}
,

the desired inclusion for µθ. In order to prove the corresponding inclu-

sion for µj for j = 1, 2, we first have

1 + eiθγcD(F0)(mc) = ϕθ(I(F0))

=

∫
I(F0)d

µ1 + µ2

2
+

∫
γD(F0)d

µ1 + µ2

2

by the equation ϕθ(I(F0)) = 1
2

(ϕ1(I(F0)) + ϕ2(I(F0))). Applying a

similar argument as µθ for µ1+µ2
2

we get

supp(
µ1 + µ2

2
) ⊂ b−1

0 (1)×f−1
0 (1)×

{
(K1 × {eiθγc}) ∪ (K2 × {−eiθγc})

}
.

As µ1 and µ2 are positive measures we have

supp(µj) ⊂ b−1
0 (1) × f−1

0 (1) ×
{

(K1 × {eiθγc}) ∪ (K2 × {−eiθγc})
}

for j = 1, 2.

Next we prove equations

(4.9) F (xc, yc) =

∫
F (x, y)dµθ

and

(4.10) D(F )(mc) = (eiθγc)
−1

∫
γD(F )(m)dµθ

=

∫
L1

D(F )(m)dµθ −
∫
L2

D(F )(m)dµθ
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for every F ∈ B̃2, where Lj = b−1
0 (1) × f−1

0 (1) ×Kj × {(−1)j+1eiθγc}
for j = 1, 2. We first show (4.9) and (4.10) for a real-valued function

F ∈ B̃2. Suppose that F ∈ B̃2 ∩ CR(X2 × Y2). Then we have

F (xc, yc) + eiθγcD(F )(mc) = ϕθ(I(F ))

=

∫
F (x, y)dµθ +

∫
γD(F )(m)dµθ

=

∫
F (x, y)dµθ +

∫
L1

γD(F )(m)dµθ +

∫
L2

γD(F )(m)dµθ

=

∫
F (x, y)dµθ

+ eiθγc

(∫
L1

D(F )(m)dµθ −
∫
L2

D(F )(m)dµθ

)
.

(4.11)

Note that F (xc, yc), D(F )(mc),
∫
F (x, y)dµθ,

∫
Lj
D(F )(m)dµθ for j =

1, 2 are all real numbers since F and D(F ) are real-valued functions

(see Definition 4.4). We also note that eiθγc 6∈ R since 0 < θ < π/2 and

γc = 1 or −1. Then comparing the real and the imaginary parts of the

equation (4.11) we have (4.9) and (4.10) for every F ∈ B̃2∩CR(X2×Y2).
Let F ∈ B̃2 in general. We have assumed that B̃2 is self-adjoint by the

condition 1© in Definition 4.4, therefore the real part ReF and the

imaginary part ImF of F both are in B̃2 ∩ CR(X2 × Y2). Then by the

case for real-valued map in B̃2 we have

ReF (xc, yc) =

∫
ReF (x, y)dµθ,

ImF (xc, yc) =

∫
ImF (x, y)dµθ.

Hence we have

F (xc, yc) =

∫
ReF (x, y)dµθ + i

∫
ImF (x, y)dµθ =

∫
F (x, y)dµθ,
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(4.9) is proved for every F ∈ B̃2. As D is complex-linear we have by

(4.10) for real-valued functions that

D(F )(mc) = D(ReF )(mc) + iD(ImF )(mc)

= (eiθγc)
−1

∫
γD(ReF )(m)dµθ + i(eiθγc)

−1

∫
γD(ImF )(m)dµθ

= (eiθγc)
−1

∫
γD(F )dµθ

=

∫
L1

D(F )(m)dµθ −
∫
L2

D(F )(m)dµθ.

Thus we have just proved (4.10) for every F ∈ B̃2.

For every F ∈ B̃2 we have

ϕθ(I(F )) =
1

2
(ϕ1(I(F )) + ϕ2(I(F )))

=

∫
F (x, y)d

µ1 + µ2

2
+

∫
γD(F )(m)d

µ1 + µ2

2
.

By the same way as the proof of (4.9) and (4.10) we have

(4.12) F (xc, yc) =

∫
F (x, y)d

µ1 + µ2

2

and

(4.13) D(F )(mc) = (eiθγc)
−1

∫
γD(F )(m)d

µ1 + µ2

2

=

∫
L1

D(F )(m)d
µ1 + µ2

2
−
∫
L2

D(F )(m)d
µ1 + µ2

2

for every F ∈ B̃2.

Next define a regular Borel probability measure νj on X2 × Y2 ×
M2 × T for j = θ, 1, 2 by

νj(E) = µj({(x, y,m, eiθγ) : (x, y,m, γ) ∈ E})

for a Borel set E ⊂ X2 × Y2 ×M2 × T. Then we have

(4.14)

∫
F (x, y)dνj =

∫
F (x, y)dµj

for every F ∈ B̃2 and j = θ, 1, 2. As

supp(µj) ⊂ b−1
0 (1) × f−1

0 (1) ×
[
(K1 × {eiθγc}) ∪ (K2 × {−eiθγc})

]
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for j = θ, 1, 2, we have

supp(νj) ⊂ b−1
0 (1) × f−1

0 (1) × [(K1 × {γc}) ∪ (K2 × {−γc})]

for j = θ, 1, 2. Put Tj = b−1
0 (1) × f−1

0 (1) ×Kj × {(−1)j+1γc}. As νj is

regular and K1 ∩K2 = ∅, we have by (4.10) that

∫
γD(F )(m)dνj =

∫
T1

γD(F )(m)dνj +

∫
T2

γD(F )(m)dνj

= γc

∫
T1

D(F )(m)dνj − γc

∫
T2

D(F )(m)dνj

= γc

∫
L1

D(F )(m)dµj − γc

∫
L2

D(F )(m)dµj

= e−iθ
∫
γD(F )(m)dµj

(4.15)

for every F ∈ B̃2 and j = θ, 1, 2. For j = θ, 1, 2, put ψj : I(B̃2) → C
by

ψj(I(F )) =

∫
I(F )dνj, I(F ) ∈ I(B̃2).

As νj is a probability measure we see that ψj ∈ I(B̃2)
∗
1. Let I(F ) ∈

I(B̃2). Then by (4.14) and (4.15) we have

ψθ(I(F )) =

∫
I(F )dνθ

=

∫
F (x, y)dνθ +

∫
γD(F )(m)dνθ

=

∫
F (x, y)dµθ + e−iθ

∫
γD(F )(m)dµθ.

Then by (4.9) and (4.10) we have

ψθ(I(F )) = F (xc, yc) + γcD(F )(mc) = I(F )(xc, yc,mc, γc).
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That is ψθ is the point evaluation for I(B̃2) at (xc, yc,mc, γc). By (4.14),

(4.15), (4.12) and (4.13) we have

1

2
(ψ1(I(F )) + ψ2(I(F )))

=

∫
F (x, y)d

ν1 + ν2
2

+

∫
γD(F )(m)d

ν1 + ν2
2

=

∫
F (x, y)d

µ1 + µ2

2
+ e−iθ

∫
γD(F )(m)d

µ1 + µ2

2

= F (xc, yc) + γcD(F )(mc)

for every F ∈ B̃2. Hence we have

ψθ(I(F )) =
1

2
(ψ1(I(F )) + ψ2(I(F )))

for every I(F ) ∈ I(B̃2); ψθ = 1
2
(ψ1 +ψ2). Since (xc, yc,mc, γc) is in the

Choquet boundary for I(B̃2), ψθ is an extreme point for I(B̃2)
∗
1. Thus

we have that ψθ = ψ1 = ψ2.

Applying the equations ψθ = ψ1 = ψ2 we prove that ϕθ = ϕ1 = ϕ2.

By (4.14) and (4.15) we have

(4.16) ϕj(I(F )) =

∫
F (x, y)dµj +

∫
γD(F )(m)dµj

=

∫
F (x, y)dνj + eiθ

∫
γD(F )(m)dνj, F ∈ I(B̃2)

for every j = θ, 1, 2. Put

P = {G ∈ B̃2 : 0 ≤ G ≤ 1 = G(xc, yc)}.

Then the set P separates the points of X2 × Y2. Suppose that (x1, y1)

and (x2, y2) are different points in X2 × Y2. We may assume that

(xc, yc) 6= (x2, y2). Let U be an open neighborhood of (xc, yc) such

that (x2, y2) 6∈ U. By Lemma 4.10 there is Fc ∈ B̃2 such that 0 ≤
Fc ≤ 1 = Fc(xc, yc) on X2 × Y2 and Fc < 1/2 on X2 × Y2 \ U. Hence

0 ≤ Fc(x2, y2) < 1/2. In the same way there exists F1 ∈ B̃2 such that

0 ≤ F1 ≤ 1 = F1(x1, y1) on X2 × Y2 and 0 ≤ F1(x2, y2) < 1/2. Put

H = 1 − (1 − Fc)(1 − F1) ∈ B̃2. Then we infer that 1 ≤ H ≤ 1 on

X2 × Y2, H(xc, yc) = H(x1, y1) = 1, and H(x2, y2) 6= 1. Hence we have

that H ∈ P and H(x1, y1) 6= H(x2, y2). Let G ∈ P be arbitrary. Since
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P ⊂ B̃2, we have G ∈ B̃2. Hence by the equality (4.14) we have

1

2

(∫
G(x, y)dν1 +

∫
G(x, y)dν2

)
=

1

2

(∫
G(x, y)dµ1 +

∫
G(x, y)dµ2

)
=

∫
G(x, y)d

µ1 + µ2

2
.

By (4.12) ∫
G(x, y)d

µ1 + µ2

2
= G(xc, yc) = 1.

Hence we have

1

2

(∫
G(x, y)dν1 +

∫
G(x, y)dν2

)
= 1.

Since 0 ≤ G ≤ 1 we have 0 ≤
∫
G(x, y)dνj ≤ 1 for j = 1, 2. It follows

that ∫
G(x, y)dν1 =

∫
G(x, y)dν2 = 1.

As G ∈ P is arbitrary we have∫ ∑
anGn(x, y)dν1 =

∑
an =

∫ ∑
anGn(x, y)dν2

for any complex linear combination
∑
anGn for Gn ∈ P . Since P is

closed under multiplication and separates the points in X2 × Y2, we

have that {∑
anGn : an ∈ C, Gn ∈ P

}
is a unital subalgebra of B̃j which is conjugate-closed and separates

the points of X2 × Y2. The Stone-Weierstrass theorem asserts that it

is uniformly dense in C(X2 × Y2), hence so is in B̃2. It follows that we

have

(4.17)

∫
F (x, y)dν1 =

∫
F (x, y)dν2

for every F ∈ B̃2. On the other hand, since ψ1 = ψ2 we have

(4.18)

∫
F (x, y)dν1 +

∫
γD(F )(m)dν1 = ψ1(I(F ))

= ψ2(I(F )) =

∫
F (x, y)dν2 +

∫
γD(F )(m)dν2
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for every F ∈ B̃2. By (4.17) and (4.18) we have∫
γD(F )(m)dν1 =

∫
γD(F )(m)dν2

for every F ∈ B̃2. It follows by (4.16) that ϕ1(I(F )) = ϕ2(I(F )) for

every F ∈ B̃2. We infer that ϕθ = ϕ1 = ϕ2. We conclude that ϕθ is an

extreme point for any 0 < θ < π/2, that is, (xc, yc,mc, e
iθγc) is in the

Choquet boundary for I(B̃2) for any 0 < θ < π/2. □

Proof of Proposition 4.9. Define a map Ũ : I1(B̃1) → I2(B̃2)

by Ũ(I1(H)) = I2(U(H)) for I1(H) ∈ I1(B̃1). The map Ũ is well

defined since I1 is injective. Due to the definition of Ij, we see that Ũ

is a surjective isometry. Then the dual map Ũ∗ : I2(B̃2)
∗ → I1(B̃1)

∗ is

an isometry and it preserves the extreme points of the closed unit ball

I2(B̃2)
∗
1 of I2(B̃2)

∗. Let (x0, y0) be an arbitrary point in X2 × Y2 and U

an arbitrary open neighborhood of (x0, y0). Then by Lemmas 4.10 and

4.11 there exists (xc, yc,mc, γc) ∈ U×M2×T such that (xc, yc,mc, e
iθγc)

is in the Choquet boundary of I(B̃2) for every 0 ≤ θ < π/2. Let ϕθ

be the point evaluation on I(B̃2) at (xc, yc,mc, e
iθγc). Then ϕθ is an

extreme point of the closed unit ball I(B̃2)
∗
1. As Ũ∗ preserves the

extreme point of the closed unit ball, Ũ∗(ϕθ) is an extreme points of

the closed unit ball I1(B̃1)
∗
1 of I1(B̃1)

∗. By the Arens-Kelly theorem we

see that there exists a complex number γ with absolute value 1 and a

point d in the Choquet boundary for I1(B̃1) such that Ũ∗(ϕθ) = γϕd,

where ϕd denotes the point evaluation for I1(B̃1) at d. Thus we have

that

|Ũ∗(ϕθ)(1)| = 1.

As Ũ(ϕθ)(1) = ϕθ(I2(U(1)) we have

1 = |U(1)(xc, yc) + eiθγcD(U(1))(mc)|

for every 0 ≤ θ < π/2. Hence one of the following (i) or (ii) occurs:

(i) U(1)(xc, yc) = 0 and |D(U(1))(mc)| = 1,

(ii) |U(1)(xc, yc)| = 1 and D(U(1))(mc) = 0.
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But (i) never occur. The reason is as follows. Since U is an isometry

we have

(4.19) 1 = ‖1‖ = ‖U(1)‖ = ‖U(1)‖∞ + ‖D(U(1))‖∞.

Suppose that (i) holds. By the second equation of (i) we have

‖D(U(1))‖∞ ≥ 1. Then by (4.19) we have ‖U(1)‖∞ = 0, and U(1) = 0,

which contradicts (4.19). Thus we conclude that only (ii) occurs.

By the first equation of (ii) we infer that ‖U(1)‖∞ ≥ 1. Then by

the equation (4.19), we have 0 = ‖D(U(1))‖∞. By the condition 2©(2)

of Definition 4.4 we have U11) ∈ 1⊗C(Y2); there exists h ∈ C(Y2) with

U(1) = 1 ⊗ h. As |U(1)(xc, yc)| = 1 we have |h(yc)| = 1. Note that h

does not depend on the point (x0, y0) nor a neighborhood U. As U is

an arbitrary neighborhood of (x0, y0) and (xc, yc) ∈ U, the continuity

of h asserts that |h(y0)| = 1. Since y0 is an arbitrary point in Y2, we

infer that |h| = 1 on Y2. □

Finally, we prove Theorem 4.5.

Proof of Theorem 4.5. Suppose first X1 = {x1} and X2 =

{x2} are singletons. In this case Bj is isometrically isomorphic to C
as a Banach algebra and B̃j = 1 ⊗ C(Yj). Thus ‖D(F )‖∞ = 0 for

every F ∈ B̃j. Therefore B̃j is isometrically isomorphic to C(Yj) for

j = 1, 2. Thus we may suppose that U is a surjective isometry from

C(Y1) onto C(Y2). Then applying the Banach-Stone theorem, we see

that |U(1)| = 1 on Y2 and there exists a homeomorphism τ : Y2 → Y1

such that

U(F ) = U(1)F ◦ τ, F ∈ C(Y1).

Letting U(1) = 1⊗ h and ϕ : X2 × Y2 → X1 by ϕ(x1, y) = x2 for every

y ∈ Y2, we have

U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ X2 × Y2

for every F ∈ B̃1.

Suppose that X2 is not a singleton. We prove the conclusion ap-

plying Proposition 4.9. By Proposition 4.9 there exists h ∈ C(Y2) with

|h| = 1 on Y2 such that U(1) = 1 ⊗ h. Define U0 : B̃1 → B̃2 by



84 4. SURJECTIVE LINEAR ISOMETRY

U0(F ) = 1 ⊗ h̄U(F ) for F ∈ B̃1, where h̄ denotes the complex conju-

gate of h. It is easy to see that U0 is a bijection with U0(1) = 1. By

the condition 2©(3) of Definition 4.4 it is also easy to check that U0 is

an isometry. As B̃j is a unital Banach algebra which is contained in

C(Xj × Yj) which separates the points of Xj × Yj. As B̃j is natural,

by [47, Proposition 2] it is a regular subspace of C(Xj × Yj) in the

sense of Jarosz [47, p. 67]. As the norm ‖ · ‖ = ‖ · ‖∞ + ‖| · ‖| is a

p-norm (see [47, p. 67]) and U0(1) = 1, we infer by Theorem in [47]

that U0 is also an isometry with respect to the supremum norm ‖ · ‖∞
on Xj × Yj. As B̃j is a self-adjoint unital subalgebra of C(Xj × Yj)

which separates the points of Xj × Yj, the Stone-Weierstrass theorem

asserts that B̃j is uniformly dense in C(Xj × Yj). Then the Banach-

Stone theorem asserts that U0 is an algebra isomorphism. Since U0 is

an isometry with respect to the original norm ‖ · ‖ on B̃j we have for

every 1 ⊗ g ∈ 1 ⊗ C(Y1) that

‖1 ⊗ g‖∞ + ‖D(1 ⊗ g)‖∞ = ‖1 ⊗ g‖ = ‖U0(1 ⊗ g)‖

= ‖U0(1 ⊗ g)‖∞ + ‖D(U0(1 ⊗ g))‖∞.

By the condition 2©(2) of Definition 4.4 we have ‖D(1⊗g)‖∞ = 0. Since

U0 is also an isometry with respect to the supremum norm we have

‖1⊗g‖∞ = ‖U0(1⊗g)‖∞. Therefore we have that ‖D(U0(1⊗g))‖∞ = 0.

By the condition 2©(2) of Definition 4.4 we have that U0(1 ⊗ g) ∈
1 ⊗ C(Y2). Hence we see that U0(1 ⊗ C(Y1)) ⊂ 1 ⊗ C(Y2). By the

Stone-Weierstrass theorem B1⊗C(Y1) is uniformly dense in C(X1×Y1),
hence B̃1 ⊂ B1 ⊗ C(Y1), where · denotes the uniform closure on X1×Y1.
Then by Proposition 3.2 and the following comments in [45] there exists

continuous maps φ : X2 × Y2 → X1 and τ : Y2 → Y1 such that

U0(F )(x, y) = F (φ(x, y), τ(y)), (x, y) ∈ X2 × Y2

for every F ∈ B̃1. Applying a similar argument for U−1
0 instead of U0

we observe that there exists continuous maps φ1 : X1 × Y1 → X2 and

τ1 : Y1 → Y2 such that

U−1
0 (G)(u, v) = G(φ1(u, v), τ1(v)), (u, v) ∈ X1 × Y1
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for every G ∈ B̃2. Thus we have

(4.20) G(x, y) = U0(U
−1
0 (G))(x, y) = U−1

0 (G)(φ(x, y), τ(y))

= G(φ1(φ(x, y), τ(y)), τ1(τ(y))), (x, y) ∈ X2 × Y2

for every G ∈ B̃2 and

(4.21) F (u, v) = U−1
0 (U0(F ))(u, v) = U0(F )(φ1(u, v), τ1(v))

= F (φ(φ1(u, v), τ1(v)), τ(τ1(v))), (u, v) ∈ X1 × Y1

for every F ∈ B̃1. As B̃1 separates the points in X1 × Y1 and B̃2

separates the points in X2 × Y2, we infer that y = τ1(τ(y)) for every

y ∈ Y2 and v = τ(τ1(v)) for every v ∈ Y1. Hence τ : Y2 → Y1 and

τ1 : Y1 → Y2 are homeomorphisms and τ−1
1 = τ . We have by (4.21)

that u = φ(φ1(u, v), τ1(v)) for every (u, v) ∈ X1 × Y1. As τ1 is a

homeomorphism, we infer that u = φ(φ1(u, τ
−1
1 (y)), y) holds for every

pair u ∈ X1 and y ∈ Y2. It means that for every y ∈ Y2 the map

φ(·, y) : X2 → X1 is a surjection.

We prove that φ(·, y) is an injection for every y ∈ Y2. Let y ∈ Y2.

Suppose that φ(a, y) = φ(b, y) for a, b ∈ X2. Then φ1(φ(a, y), τ(y)) =

a and φ1(φ(b, y), τ(y)) = b by the equation (4.20). Thus we have

a = b. Hence we conclude that φ(·, y) is an injection. It follows that

φ(·, y) : X2 → X1 is a bijective continuous map. As X2 is compact and

X1 is Hausdorff, we at once see that φ(·, y) is a homeomorphism. As

U0(F ) = 1 ⊗ h̄U(F ) for every F ∈ B̃1 we conclude that

U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ X2 × Y2.

Suppose that X1 is not a singleton. By a similar argument for U−1

instead of U we see that there exists a continuous map φ1 : X1 × Y1 →
X2 such that φ1(·, y) : X1 → X2 is a homeomorphism. As X1 is not

a singleton we infer that X2 is not a singleton. Then the conclusion

follows from the proof for the case where X2 is not a singleton. □

5. Examples of admissible quadruples of type L with

applications of Main Results

Example 4.12. Let (X, d) be a compact metric space and Y a

compact Hausdorff space. Let 0 < α ≤ 1. Suppose that B is a closed



86 4. SURJECTIVE LINEAR ISOMETRY

subalgebra of Lip((X, dα)) which contains the constants and separates

the points of X, where dα is the Hölder metric induced by d. Suppose

that B̃ is a closed subalgebra of Lip((X, dα), C(Y )) which contains the

constants and separates the points of X × Y . Suppose that B and B̃

are self-adjoint. Suppose that

B ⊗ C(Y ) ⊂ B̃

and

{F (·, y) : F ∈ B̃, y ∈ Y } ⊂ B.

Let M be the Stone-Čech compactification of {(x, x′) ∈ X2 : x 6=
x′}×Y . For F ∈ B̃, let D(F ) be the continuous extension to M of the

function (F (x, y) − F (x′, y))/dα(x, x′) on {(x, x′) ∈ X2 : x 6= x′} × Y .

Then D : B̃ → C(M) is well defined. We have ‖D(F )‖∞ = Lα(F )

for every F ∈ B̃. It is easy to see that the condition 2© of Definition

4.4 is satisfied. Hence we have that (X,C(Y ), B, B̃) is an admissible

quadruple of type L.

There are two typical example of (X,C(Y ), B, B̃) above. One is

(X,C(Y ),Lip((X, dα)),Lip((X, dα), C(Y )))

By Corollary 4.3 Lip((X, dα)) and Lip((X, dα), C(Y )) are self-adjoint.

The inclusions

Lip((X, dα)) ⊗ C(Y ) ⊂ Lip((X, dα), C(Y ))

and

{F (·, y) : F ∈ Lip((X, dα), C(Y )), y ∈ Y } ⊂ Lip((X, dα))

is obvious. The other example of (X,C(Y ), B, B̃) above is

(X,C(Y ), lip(X), lip(X,C(Y )))

for 0 < α < 1. In fact lip(X) (resp. lip(X,C(Y ))) is a closed subalgebra

of Lip((X, dα)) (resp. Lip((X, dα), C(Y )) which contains the constants.

In this case Corollary 4.3 asserts that lip(X) separates the points of

X. As lip(X) ⊗ C(Y ) ⊂ lip(X,C(Y )) we see that B̃ = lip(X,C(Y ))

separates the points ofX×Y . By Corollary 4.3 lip(X) and lip(X,C(Y ))

are self-adjoint. The inclusions

lip(X) ⊗ C(Y ) ⊂ lip(X,C(Y ))
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and

{F (·, y) : F ∈ lip(X,C(Y )), y ∈ Y } ⊂ lip(X)

is obvious.

Corollary 4.13. Let j = 1, 2. Let (Xj, dj) be a compact metric

space and Yj a compact Hausdorff space. Let α be 0 < α ≤ 1. Sup-

pose that Bj is a closed subalgebra of Lip((Xj, d
α
j )) which contains the

constants and separates the points of Xj. Suppose that B̃j is a closed

subalgebra of Lip((Xj, d
α
j ), C(Yj)) which contains the constants and sep-

arates the points of Xj × Yj. Suppose that Bj and B̃j are self-adjoint.

Suppose that

Bj ⊗ C(Yj) ⊂ B̃j

and

{F (·, y) : F ∈ B̃j, y ∈ Yj} ⊂ Bj.

Suppose that

U : B̃1 → B̃2

is a surjective isometry. Then there exists h ∈ C(Y2) such that |h| = 1

on Y2, a continuous map φ : X2×Y2 → X1 such that φ(·, y) : X2 → X1

is a homeomorphism for each y ∈ Y2, and a homeomorphism τ : Y2 →
Y1 which satisfy

U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ X2 × Y2

for every F ∈ B̃1.

Proof. As in a similar way as in Example 5.6 we see that (Xj, C(Yj), Bj, B̃j)

is an admissible quadruple of type L. Then applying Theorem 4.5 the

conclusion holds. □

Note that Corollary 4.13 holds for B̃j = Lip(Xj, C(Yj)) and B̃j =

lip(Xj, C(Yj)) for 0 < α < 1. In this case we have a complete de-

scription of a surjective isometry for B̃j = Lip(Xj, C(Yj)) and B̃j =

lip(Xj, C(Yj)) for 0 < α < 1. Note that Lipα((Xj, dj), C(Yj)) for

0 < α < 1 is isometrically isomorphic to Lip((Xj, d
α
j ), C(Yj)) by con-

sidering the Hölder metric dj(·, ·)α for the original metric dj(·, ·) on

Xj.
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Corollary 4.14. Let (Xj, dj) be a compact metric space and Yj a

compact Hausdorff space for j = 1, 2. Suppose that U : Lip(X1, C(Y1)) →
Lip(X2, C(Y2)) (resp. U : lip(X1, C(Y1)) → lip(X2, C(Y2))) is a map.

Then U is a surjective isometry with respect to the sum norm ‖ · ‖ =

‖ · ‖∞ + L(·) (resp. ‖ · ‖ = ‖ · ‖∞ + Lα(·)) if and only if there exists

h ∈ C(Y2) with |h| = 1 on Y2, a continuous map φ : X2 × Y2 → X1

such that φ(·, y) : X2 → X1 is a surjective isometry for every y ∈ Y2,

and a homeomorphism τ : Y2 → Y1 which satisfy that

U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ X2 × Y2

for every F ∈ Lip(X1, C(Y1)) (resp. F ∈ lip(X1, C(Y1))).

Proof. Suppose that there exists h ∈ C(Y2) with |h| = 1 on Y2,

a continuous map φ : X2 × Y2 → X1 such that φ(·, y) : X2 → X1 is a

surjective isometry for every y ∈ Y2, and a homeomorphism τ : Y2 → Y1

which satisfy that

U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ X2 × Y2

for every F ∈ Lip(X1, C(Y1)) (resp. F ∈ lip(X1, C(Y1))). We prove

that U is a surjective isometry on Lip(Xj, C(Yj)). A proof for the case

of lip(Xj, C(Yj)) is the same and we omit it. Since φ(·, y) is an isometry

for every y ∈ Y2, we have

|(U(F ))(x, y) − (U(F ))(x′, y)|
d2(x, x′)

=
|h(y)F (φ(x, y), τ(y)) − h(y)F (φ(x′, y), τ(y))|

d2(x, x′)

=
|F (φ(x, y), τ(y)) − F (φ(x′, y), τ(y))|

d2(φ(x, y), φ(x′, y))
, x, x′ ∈ X2, y ∈ Y2

(5.1)

for F ∈ Lip(X1, C(Y1)). Since φ(·, y) is bijective and the map (x, y) 7→
(φ(x, y), τ(y)) gives a bijection from X2 × Y2 onto X1 × Y1, we see

by (5.1) that L(F ) = L(U(F )) for every F ∈ Lip(X1, C(Y1)). Since

‖F‖∞ = ‖U(F )‖∞ is trivial, we conclude that

‖F‖ = ‖F‖∞ + L(F ) = ‖U(F )‖∞ + L(U(F )) = ‖U(F )‖

for every F ∈ Lip(X1, C(Y1)); U is an isometry. We prove that U is

surjective. Let G ∈ Lip(X2, C(Y2)) be arbitrary. Put F by F (x, y) =
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h̄(y)G((φ(·, τ−1(y)))−1(x), τ−1(y)) for (x, y) ∈ X1×Y1, where (φ(·, τ−1(y)))−1

denotes the inverse of φ(·, τ−1(y)) : X2 → X1. Then we infer that

F ∈ Lip(X1, C(Y1)) and U(F ) = G. As G is an arbitrary elements in

Lip(X2, C(Y2)), we conclude that U is surjective. It follows that U is

a surjective isometry.

Next we prove the converse. First consider the case of Lip(Xj, C(Yj)).

Suppose that U : Lip(X1, C(Y1)) → Lip(X2, C(Y2)) is a surjective isom-

etry. Then by Corollary 4.13 there exists h ∈ C(Y2) with |h| = 1 on

Y2, a continuous map φ : X2 × Y2 → X1 such that φ(·, y) : X2 → X1

is a homeomorphism, and a homeomorphism τ : Y2 → Y1 which satisfy

that

(5.2) U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ X2 × Y2

for every F ∈ Lip(X1, C(Y1)). We only need to prove that φ(·, y) :

X2 → X1 is a surjective isometry for every y ∈ Y2. Let x1, x2 ∈ X2

and y ∈ Y2 be arbitrary. Set f : X1 → C by f(x) = d1(x, φ(x2, y)) for

x ∈ X1. Then L(f ⊗1) = 1 and f ⊗1 ∈ Lip(X1, C(Y1)). Then we have

d1(φ(x1, y), φ(x2, y)) = f(φ(x1, y)) = |f(φ(x1, y) − f(φ(x2, y))|

= |f ⊗ 1(φ(x1, y), τ(y)) − f ⊗ 1(φ(x2, y), τ(y))|

= |(U(f ⊗ 1))(x1, y) − (U(f ⊗ 1))(x2, y)|

≤ L(U(f ⊗ 1))d2(x1, x2).

(5.3)

By (5.2) the map U is an isometry with respect to ‖ · ‖∞, thus 1 =

L(f ⊗1) = L(U(f ⊗1)) since U is an isometry for ‖ · ‖ = ‖ · ‖∞ +L(·).
It follows by (5.3) that d1(φ(x1, y), φ(x2, y)) ≤ d2(x1, x2). Since U−1

is a surjective isometry we have by Corollary 4.13 that there exists h1,

φ1 and τ1 such that

U−1(G)(x, y) = h1(y)G(φ1(x, y), τ1(y)), (x, y) ∈ X1 × Y1

for G ∈ Lip(X2, C(Y2)). Then by a similar way as above we infer that

d2(φ1(x
′
1, y

′), φ1(x
′
2, y

′)) ≤ d1(x
′
1, x

′
2) for every pair x′1, x

′
2 ∈ X1 and

y′ ∈ Y1. By a simple calculation we obtain that x = φ1(φ(x, y), τ(y))

for every x ∈ X2 and y ∈ Y2 (see a similar calculation in the proof of
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Theorem 4.5 or on p. 386 of [40]). Thus we have

d2(x1, x2) = d2(φ1(φ(x1, y), τ(y)), φ1(φ(x2, y), τ(y))

≤ d1(φ(x1, y), φ(x2, y)).

Therefore d2(x1, x2) = d1(φ(x1, y), φ(x2, y)) holds for every pair x1, x2 ∈
X2 and y ∈ Y2, that is, φ(·, y) is an isometry for every y ∈ Y2.

Next we consider the case of lip(Xj, C(Yj)). Suppose that 0 < α < 1

and U : lip(X1, C(Y1)) → lip(X2, C(Y2)) is a surjective isometry. As

in the same way as before there exists h ∈ C(Y2) with |h| = 1 on Y2,

a continuous map φ : X2 × Y2 → X1 such that φ(·, y) : X2 → X1 is a

homeomorphism for every y ∈ Y2, and a homeomorphism τ : Y2 → Y1

which satisfy that

U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ X2 × Y2

for every F ∈ lip(X1, C(Y1)). We prove φ(·, y) : X2 → X1 is an

isometry for every y ∈ Y2. Let x1, x2 ∈ X2 and y ∈ Y2 be arbitrary.

Let β with α < β < 1 be arbitrary. Set fβ : X1 → C by fβ(x) =

d1(x, φ(x2, y))β. We have

(5.4)
|fβ(s) − fβ(t)|

d1(s, t)α
=

|d1(s, φ(x2, y))β − d1(t, φ(x2, y))β|
d1(s, t)α

≤ d1(s, t)
β

d1(s, t)α
= d1(s, t)

β−α, s, t ∈ X1.

Since X1 is compact we have sups,t∈X1
d1(s, t) <∞. Put

M = sups,t∈X1
d1(s, t). Then by (5.4) we infer that Lα(fβ⊗1) ≤Mβ−α.

We also infer by (5.4) that lims→t
|fβ(s)−fβ(t)|
d1(s,t)α

= 0. Hence we have

fβ ⊗ 1 ∈ lip(X1, C(Y1)). We have, as before,

d1(φ(x1, y), φ(x2, y))β = |fβ ⊗ 1(φ(x1, y), τ(y)) − fβ(φ(x2, y), τ(y))|

= |(U(fβ ⊗ 1)(x1, y) − (U(fβ ⊗ 1)(x2, y)|

≤ Lα(U(fβ ⊗ 1))d2(x1, x2)
α

= Lα(fβ ⊗ 1)d2(x1, x2)
α = Mβ−αd2(x1, x2)

α.

(5.5)

Letting β → α we have by (5.5) that d1(φ(x1, y), φ(x2, y))α ≤ d2(x1, x2)
α,

hence d1(φ(x1, y), φ(x2, y)) ≤ d2(x1, x2). Applying the same argument
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for U−1 as in the case of Lip(Xj, C(Yj)) we get

d2(x1, x2)
β ≤M ′β−αd1(φ(x1, y), φ(x2, y))α

for every β with α < β < 1, where M ′ = sups,t∈X2
d2(s, t). Letting

β → α we get d2(x1, x2)
α ≤ d1(φ(x1, y), φ(x2, y))α and d2(x1, x2) ≤

d1(φ(x1, y), φ(x2, y)). It follows that d2(x1, x2) = d1(φ(x1, y), φ(x2, y))

for every pair x1, x2 ∈ X2 and y ∈ Y2, that is, φ(·, y) is an isometry for

every y ∈ Y2. □

Note that if Yj is a singleton in Corollary 4.14, then we may suppose

that Lip(Xj, C(Yj)) (resp. lip(Xj, C(Yj))) is Lip(Xj) (resp. lip(Xj)).

Then Corollary 4.14 states that Example 8 in [48] is indeed true.

Corollary 4.15. [48, Example 8] The map U : Lip(X1) → Lip(X2)

(resp. U : lip(X1) → lip(X2)) is a surjective isometry with respect to

the norm ‖ · ‖ = ‖ · ‖∞ +L(·) (resp. ‖ · ‖ = ‖ · ‖∞ +Lα(·)) if and only if

there exists a complex number c with the unit modulus and a surjective

isometry φ : X2 → X1 such that

U(F )(x) = cF (φ(x)), x ∈ X2

for every F ∈ Lip(X1) (resp. F ∈ lip(X1)).

Proof. Suppose that U is a surjective isometry, then by Corollary

4.14 there exists a complex number c with the unit modulus and a

surjective isometry φ : X2 → X1 such that the desired equality holds.

Suppose that c is a complex number with the unit modulus and

φ : X2 → X1 is a surjective isometry. Then U : Lip(X1) → Lip(X2)

(resp. U : lip(X1) → lip(X2)) by U(F )(x) = cF (φ(x)), x ∈ X2 for

F ∈ Lip(X1) (resp. F ∈ lip(X1)) is well defined. Then by Corollary

4.14 we have that U is a surjective isometry. □

Example 4.16. Let Y be a compact Hausdorff space. Then

([0, 1], C(Y ), C1([0, 1]), C1([0, 1], C(Y )))

is an admissible quadruple of type L, where the norm of f ∈ C1([0, 1])

is defined by ‖f‖ = ‖f‖∞+‖f ′‖∞ and the norm of F ∈ C1([0, 1], C(Y ))
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is defined by ‖F‖ = ‖F‖∞ + ‖F ′‖∞. It is easy to see that C1([0, 1]) ⊗
C(Y ) ⊂ C1([0, 1], C(Y )) and

{F (·, y) : F ∈ C1([0, 1], C(Y )), y ∈ Y } ⊂ C1([0, 1]).

Let M = [0, 1] × Y and D : C1([0, 1], C(Y )) → C(M) be defined

by D(F )(x, y) = F ′(x, y) for F ∈ C1([0, 1], C(Y )). Then ‖F ′‖∞ =

‖D(F )‖∞ for F ∈ C1([0, 1], C(Y )). Then the conditions from 1©
through 2©(3) of Definition 4.4 are satisfied.

Example 4.17. Let Y be a compact Hausdorff space. Then

(T, C(Y ), C1(T), C1(T, C(Y )))

is an admissible quadruple of type L, where the norm of f ∈ C1(T) is

defined by ‖f‖ = ‖f‖∞ + ‖f ′‖∞ and the norm of F ∈ C1(T, C(Y )) is

defined by ‖F‖ = ‖F‖∞+‖F ′‖∞. It is easy to see that C1(T)⊗C(Y ) ⊂
C1(T, C(Y )) and

{F (·, y) : F ∈ C1(T, C(Y )), y ∈ Y } ⊂ C1(T).

Let M = T×Y andD : C1(T, C(Y )) → C(M) be defined byD(F )(x, y) =

F ′(x, y) for F ∈ C1(T, C(Y )). Then ‖F ′‖∞ = ‖D(F )‖∞ for F ∈
C1(T, C(Y )). Then the conditions from 1© through 2©(3) of definition

4.4 are satisfied for (T, C(Y ), C1(T), C1(T, C(Y )).

Corollary 4.18. Let Yj be a compact Hausdorff space for j = 1, 2.

The norm ‖F‖ of F ∈ C1([0, 1], C(Yj)) is defined by ‖F‖ = ‖F‖∞ +

‖F ′‖∞. Suppose that U : C1([0, 1], C(Y1)) → C1([0, 1], C(Y2)) is a map.

Then U is a surjective isometry if and only if there exists h ∈ C(Y2)

such that |h| = 1 on Y2, a continuous map φ : [0, 1] × Y2 → [0, 1]

such that for each y ∈ Y2 we have φ(x, y) = x for every x ∈ [0, 1] or

φ(x, y) = 1− x for every x ∈ [0, 1], and a homeomorphism τ : Y2 → Y1

which satisfy that

U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ [0, 1] × Y2

for every F ∈ C1([0, 1], C(Y1)).

Proof. Suppose that U : C1([0, 1], C(Y1)) → C1([0, 1], C(Y2)) is

a surjective isometry. Then by Theorem 4.5 there exists h ∈ C(Y2)

such that |h| = 1 on Y2, a continuous map φ : [0, 1] × Y1 → [0, 1] such
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that φ(·, y) : [0, 1] → [0, 1] is a homeomorphism for each y ∈ Y2, and a

homeomorphism τ : Y2 → Y1 which satisfy

(5.6) U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ [0, 1] × Y2

for every F ∈ C1([0, 1], C(Y1)). We only need to prove that, for ev-

ery y ∈ Y2 φ(x, y) = x for every x ∈ [0, 1] or φ(x, y) = 1 − x for

every x ∈ [0, 1]. Let F0 ∈ C1([0, 1], C(Y1)) be defined by F0(x, y) = x

for every (x, y) ∈ [0, 1] × Y1. Then we have F ′
0 = 1 on [0, 1] × Y1

and ‖F0‖ = ‖F0‖∞ + ‖F ′
0‖∞ = 2. By (5.6) we have U(F0)(x, y) =

h(y)φ(x, y) for every (x, y) ∈ [0, 1] × Y2. Since U(F0) is continuously

differentiable we infer that φ is continuously differentiable and that

U(F0)
′(x, y) = h(y)φ′(x, y) for every (x, y) ∈ [0, 1] × Y2. By (5.6) we

infer that ‖U(F0)‖∞ = ‖F0‖∞, hence ‖U(F0)
′‖∞ = ‖F ′

0‖∞ since U is

an isometry with respect to ‖ · ‖. As |h| = 1 on Y2 we see that

|φ′(x, y)| ≤ ‖U(F0)
′‖∞ = ‖F ′

0‖∞ = 1

for every (x, y) ∈ [0, 1] × Y2. We prove that |φ′(x, y)| = 1 for ev-

ery (x, y) ∈ [0, 1] × Y2. Suppose contrary that there exists (x0, y0) ∈
[0, 1] × Y2 with |φ′(x0, y0)| < 1. As φ(·, y0) : [0, 1] → [0, 1] is a homeo-

morphism we infer that |φ(1, y0) − φ(0, y0)| = 1. As φ(·, y0) is contin-

uously differentiable we have

1 = |φ(1, y0) − φ(0, y0)| = |
∫ 1

0

φ′(x, y0)dx| ≤
∫ 1

0

|φ′(x, y0)|dx.

Since |φ(x, y)| ≤ 1 and |φ′(x0, y0)| < 1 we have∫ 1

0

|φ′(x, y0)|dx < 1,

which is a contradiction. Hence we have that |φ′(x, y)| = 1 for every

(x, y) ∈ [0, 1] × Y2. Let y1 ∈ Y2 be arbitrary. As φ′(·, y1) is continuous

on [0, 1] and |φ′(·, y1)| = 1 on [0, 1] we have that φ′(·, y1) = 1 on

[0, 1] or φ′(·, y1) = −1 on [0, 1] since φ′ is real-valued with |φ′| = 1

on a connected space [0, 1]. It follows by a simple calculation that

φ(x, y1) = x for every x ∈ [0, 1] or φ(x, y1) = 1 − x for every x ∈ [0, 1]

since φ(·, y1) is a bijection between [0, 1].

Suppose conversely that there exists h ∈ C(Y2) such that |h| = 1 on

Y2, a continuous map φ : [0, 1] × Y2 → [0, 1] such that for each y ∈ Y2
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φ(x, y) = x for every x ∈ [0, 1] or φ(x, y) = 1 − x for every x ∈ [0, 1],

and a homeomorphism τ : Y2 → Y1 which satisfy that

U(F )(x, y) = h(y)F (φ(x, y), τ(y)), (x, y) ∈ [0, 1] × Y2

for every F ∈ C1([0, 1], C(Y1)). It is straight forward to check that

‖U(F )‖∞ = ‖F‖∞. Let y ∈ Y2 be arbitrary. By a simple calcula-

tion we infer that |U(F )′(x, y)| = |F ′(x, τ(y))| for every x ∈ [0, 1] or

|U(F )′(x, y)| = |F ′(1 − x, τ(y))| for every x ∈ [0, 1] for each y ∈ Y2

and F ∈ C1([0, 1], C(Y1)). As τ is a surjection, we have ‖U(F )′‖∞ =

‖F ′‖∞ for every F ∈ C1([0, 1], C(Y1)). To prove that U is surjec-

tive, let F ∈ C1([0, 1], C(Y2)) be an arbitrary map. Put G(x′, y′) =

h(τ−1(y′))F (φ(x′, τ−1(y′)), τ−1(y′)), (x′, y′) ∈ [0, 1] × Y1. It is easy to

see that G ∈ C1([0, 1], C(Y1)). As φ(x, y) = x or 1 − x depending on

y ∈ Y2 we see by a simple calculation that φ(φ(x, y), y) = x for every

(x, y) ∈ [0, 1] × Y2. Then we have

(U(G))(x, y) = h(y)G(φ(x, y), τ(y))

= h(y)h(τ−1(τ(y)))F (φ(φ(x, y), τ−1(τ(y)), τ−1(τ(y)))

= F (φ(φ(x, y), y) = F (x, y), (x, y) ∈ [0, 1] × Y2

It follows that U is a surjective isometry from C1([0, 1], C(Y1)) onto

C1([0, 1], C(Y2)). □

Note that if Yj is a singleton in Corollary 4.18, then C1([0, 1], C(Yj))

is C1([0, 1],C). The corresponding result on isometries was given by

Rao and Roy [104].

Corollary 4.19. Let Yj be a compact Hausdorff space for j = 1, 2.

The norm ‖F‖ of F ∈ C1(T, C(Yj)) is defined by ‖F‖ = ‖F‖∞+‖F ′‖∞.

Suppose that U : C1(T, C(Y1)) → C1(T, C(Y2)) is a map. Then U is

a surjective isometry if and only if there exists h ∈ C(Y2) such that

|h| = 1 on Y2, a continuous map φ : T×Y2 → T and a continuous map

u : Y2 → T such that for every y ∈ Y2 φ(z, y) = u(y)z for every z ∈ T
or φ(z, y) = u(y)z̄ for every z ∈ T, and a homeomorphism τ : Y2 → Y1

which satisfy that

U(F )(z, y) = h(y)F (φ(z, y), τ(y)), (z, y) ∈ T× Y2
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for every F ∈ C1(T, C(Y1)).

Proof. Suppose that U : C1(T, C(Y1)) → C1(T, C(Y2)) is a sur-

jective isometry. Then by Theorem 4.5 there exists h ∈ C(Y2) such

that |h| = 1 on Y2, a continuous map φ : T × Y1 → T such that

φ(·, y) : T → T is a homeomorphism for each y ∈ Y2, and a homeomor-

phism τ : Y2 → Y1 which satisfy

(5.7) U(F )(z, y) = h(y)F (φ(z, y), τ(y)), (z, y) ∈ T× Y2

for every F ∈ C1(T, C(Y1)). We prove that for every y ∈ Y2 there

corresponds u(y) ∈ T such that φ(z, y) = u(y)z for every z ∈ T or

φ(z, y) = u(y)z̄ for every z ∈ T. Let F0 ∈ C1(T, C(Y1)) be defined

as F0(z, y) = z for every (z, y) ∈ T × Y1. Then by (5.7) we have

U(F0)(z, y) = h(y)φ(z, y). As |h| = 1 on Y2 we have that φ = h̄U(F0) ∈
C1(T, C(Y2)). We also have ‖F0‖∞ = 1 and ‖F ′

0‖∞ = 1, hence ‖F0‖ =

2. By (5.7) we have ‖U(F0)‖∞ = 1. Since ‖U(F0)‖ = ‖F0‖, we infer

that ‖U(F0)
′‖∞ = ‖F ′

0‖∞, where

U(F0)
′(z, y) = h(y)φ′(z, y), (z, y) ∈ T× Y2

as U(F0) = hφ. Thus

‖φ′‖∞ = ‖U(F0)
′‖∞ = ‖F ′

0‖∞ = 1.

It follows that |φ′(z, y)| ≤ 1 for every (z, y) ∈ T×Y2. Define u : Y2 → T
by u(y) = φ(1, y). Then u is continuous since φ is continuous on T×Y2.
We also have that |u(y)| = |φ(1, y)| = 1. As φ(·, y) is a bijection from

T onto itself, we have φ(T \ {1}, y) = T \ {u(y)}. Hence the map

t 7→ −iLog u(y)φ(eit, y)

is well defined from (0, 2π) onto (0, 2π), where Log denotes the prin-

cipal value of the logarithm. As φ(·, y) is continuously differentiable,

the above map has a natural extension L : [0, 2π] → [0, 2π] (defin-

ing by L(0) = 0 and L(2π) = 2π, or L(0) = 2π and L(2π) = 0,

L(t) = −iLog u(y)φ(eit, y) for 0 < t < 2π), which is continuously

differentiable. By a simple calculation we have

L′(t) =
φ′(eit, y)eit

φ(eit, y)
, t ∈ [0, 2π].
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Hence |L′(t)| ≤ 1 for every t ∈ [0, 2π] since |φ′(z, y)| ≤ 1 for every

(z, y) ∈ T × Y2. As in the same way as in the proof of Corollary 4.18

we have that L′ = 1 on [0, 2π] or L′ = −1 on [0, 2π]. It follows that

u(y)φ(eit, y) = eit for every t ∈ [0, 2π] or u(y)φ(eit, y) = e−it for every

t ∈ [0, 2π]. Hence φ(z, y) = u(y)z for every z ∈ T or φ(z, y) = u(y)z̄

for every z ∈ T.

Suppose conversely that there exists h ∈ C(Y2) such that |h| = 1 on

Y2, a continuous map φ : T×Y2 → T and a continuous map u : Y2 → T
such that φ(z, y) = u(y)z for every z ∈ T or φ(z, y) = u(y)z̄ for every

z ∈ T, and a homeomorphism τ : Y2 → Y1 which satisfy that

(5.8) U(F )(z, y) = h(y)F (φ(z, y), τ(y)), (z, y) ∈ T× Y2

for every F ∈ C1(T, C(Y1)). By the hypotheses on φ and τ we infer

that (z, y) 7→ (φ(z, y), τ(y)) gives a homeomorphism from T× Y2 onto

T × Y1. As |h| = 1 on Y2 we infer that ‖F‖∞ = ‖U(F )‖∞ for every

F ∈ C1(T, C(Y1)). By (5.8) we have

U(F )′(z, y) = h(y)F ′(φ(z, y), τ(y))φ′(z, y), (z, y) ∈ T× Y2

for every F ∈ C1(T, C(Y1)). As φ′(z, y) = u(y) on T× Y2 or φ′(z, y) =

−u(y)z̄2 on T× Y2 we infer that

‖U(F )′‖∞ = ‖hF ′(φ, τ)φ′‖∞ = ‖F ′‖∞.

It follows that U is an isometry. It is not difficult to prove that U is a

surjection. We conclude that U is a surjective isometry. □



CHAPTER 5

Hermitian operators on commutative Banach
algebras

1. Introduction to Hermitian operators

Let E be a Banach space. Recall that T is a Hermitian operator

if [Tx, x] ∈ R for any x ∈ E, where [·, ·] is a semi-inner product on

E, compatible with the norm. Detailed definition and facts about

Hermitian operators are in Section 2. It is well known that T ∈ B(E)

is a Hermitian operator if and only if ‖ exp(itT )‖ = 1 for every t ∈ R if

and only if exp(itT ) is an isometry for every t ∈ R (see Theorem 1.10

([30, Theorem 5.2.6])). Hence T ∈ B(E) is a Hermitian operator on E

if and only if T is Hermitian as an element in B(E).

Recall that a uniform algebra A on a compact Hausdorff space Y is

a closed subalgebra of C(Y ) which contains the constants and separates

the points of Y . The supremum norm on a set K is denoted by ‖·‖∞(K).

Let (X, d) be a compact metric space. For a uniform algebra A, the

Banach algebra Lip(X,A) is called a Lipschitz algebra with values in

a uniform algebra A. Recall that for F ∈ Lip(X,A)

L(F ) = sup

{
‖F (x) − F (y)‖∞(Y )

d(x, y)
: x, y ∈ X, x 6= y

}
= sup

{
|(F (x))(z) − (F (y))(z)|

d(x, y)
: x, y ∈ X, x 6= y, z ∈ Y

}
.

As usual we may suppose that F ∈ Lip(X,A) is a complex valued

function on X × Y in the way that F (x, y) = (F (x))(y); Lip(X,A) ⊂
C(X × Y ). For a Lipschitz function h ∈ Lip(X) and an f ∈ A we

define the tensor product (h ⊗ f) ∈ Lip(X,A) of h and f in the way

that (h⊗ f)(x, y) = h(x)f(y) for every pair x ∈ X and y ∈ Y .

Fleming and Jamison [29] investigated Hermitian operators on the

algebras of vector-valued continuous maps [29]. Botelho, Jamison,

97
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Jiménez-Vargas and Villegas-Vallecillos [16] studied Hermitian oper-

ators on scalar valued Lipschitz algebras. Hermitian operators on a

Banach space Lip(X,E) with the norm ‖ · ‖max of Lipschitz maps with

values in a Banach space E are studied by the same authors in [15].

In particular, in [15] a characterization of a Hermitian operators on

Lip(X,E) with the norm ‖·‖max is given for an arbitrary Banach space

E where X is a compact 2-connected metric space (cf. [15, Theorem

2.4]).

In this chapter we characterize Hermitian operators on a Banach

algebra of Lipschitz maps with values in a uniform algebra. We do not

need to assume that X is 2-connected. Applying this characterization

we give a form of a surjective unital isometry on Lip(X,C(Y )). As

is expected an isometry is an algebra isomorphism and is represented

by a composition operator by a self-homeomorphism on X × Y . It

is interesting to note that this self-homeomorphism H has a peculiar

form in the sense that H(x, y) = (φ(x, y), τ(y)) for (x, y) ∈ X×Y with

continuous functions φ : X × Y and τ : Y → Y . This kind of peculiar

homomorphisms are recently investigated in Chapters 2, 3 and 4 and

we call it BJ type (see Definition 2.20). Note that isometries between

Lip(X,E) with the norm ‖ · ‖max are investigated in [8, 103].

2. Results and Proofs

Let B be a unital Banach algebra and a ∈ B. The corresponding

multiplication operator Ma : B → B is defined by the left multiplica-

tion; i.e., b 7→ ab, b ∈ B. It is clear that Ma is a bounded operator on

B for every a ∈ B.

Proposition 5.1. Let B be a unital Banach algebra. The element

a ∈ B is Hermitian if and only if the corresponding multiplication

operator Ma is a Hermitian operator on B.

Proof. Suppose that a ∈ B is Hermitian. Then we have

‖ exp(ita)‖B = 1 for any t ∈ R. Let t ∈ R be arbitrary. For every

b ∈ B we obtain

‖(exp(itMa))(b)‖B = ‖(exp(ita))b‖B ≤ ‖ exp(ita)‖B‖b‖B = ‖b‖B.
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It follows that

(2.1) ‖ exp(itMa)‖ ≤ 1.

On the other hand, we get

(2.2) ‖(exp(itMa))(1)‖B = ‖ exp ita‖B = 1.

In view of the inequality (2.1) and (5.10), we have

‖ exp(itMa)‖ = 1

for any t ∈ R. Therefore the bounded linear operator Ma on B is a

Hermitian operator.

We now prove the converse. Suppose that the map Ma is a Her-

mitian operator. Then exp(itMa) is a linear isometry on B for every

t ∈ R. It follows that

1 = ‖1‖B = ‖(exp(itMa))(1)‖B = ‖ exp(ita)‖B
for any t ∈ R. This implies that a ∈ Her(B). □

Lemma 5.2. Let B be a unital Banach algebra and T a Hermitian

operator on B. Then T (1) ∈ Her(B).

Proof. For any f ∈ B∗ with ‖f‖ = f(1) = 1, we define Φf :

B(B) → C by

Φf (S) = f(S(1)), S ∈ B(B),

where B(B) denotes the algebra of all bounded linear operators on B.

We infer by a simple calculation that Φf is a bounded linear functional

on B(B) and satisfies ‖Φf‖ = Φf (I) = 1. Since T is a Hermitian

operator on B, T ∈ Her(B(B)). This implies

f(T (1)) = Φf (T ) ∈ R

for any f ∈ B∗ with ‖f‖ = f(1) = 1. We conclude that T (1) is a

Hermitian element of B. □

Proposition 5.3. Let B be a unital semi-simple commutative Ba-

nach algebra. Suppose that T : B → B is a bounded linear operator.

Then the following are equivalent.

(1) T = MT (1),

(2) exp(it(T −MT (1))) is multiplicative for every t ∈ R.
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Proof. Suppose that T = MT (1). Then exp(it(T −MT (1))) = I,

the identity operator for every t ∈ R. Thus (2) holds.

Suppose that (2) holds. Set T −MT (1) = H and Ut = exp(itH), t ∈
R. Then Ut is multiplicative for every t ∈ R; i.e., Ut(ab) = Ut(a)Ut(b)

for every pair a, b ∈ B. We have

(Ut − I)/t = iH +
∞∑
n=2

tn−1(iH)n

n!
,

hence for any |t| ≤ 1∥∥∥∥Ut − I

t
− iH

∥∥∥∥ ≤
∞∑
n=2

|t|n−1‖H‖n

n!
≤ |t|

∞∑
n=2

‖H‖n

n!
≤ |t|e∥H∥ → 0

as t→ 0. We conclude that

iH = lim
t→0

Ut − I

t
,

where the limit is taken with the metric induced by the operator norm.

We prove that H is a derivation. For every pair a, b ∈ B we have(
Ut − I

t

)
(ab) → iH(ab)

as t→ 0 and(
Ut − I

t

)
(ab) =

Ut(a)Ut(b) − ab

t

=
Ut(a)(Ut(b) − b) + (Ut(a) − a)b

t
→ a(iH(b)) + iH(a)b

as Ut is multiplicative. We have that

H(ab) = aH(b) +H(a)b, a, b ∈ B,

that is, H is a derivation on B, which is also bounded by the definition

of H. As B is a unital semi-simple commutative Banach algebra, a

theorem of Singer and Wermer [114] asserts that H = 0. Thus (1)

holds. □

Theorem 5.4. Let B be a unital semi-simple commutative Banach

algebra and T ∈ B(B). Suppose that every surjective unital linear

isometry is multiplicative. Then the following are equivalent.

(1) T is a Hermitian operator.

(2) T (1) is a Hermitian element of B and T = MT (1).
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Proof. Suppose that T is a Hermitian operator. Then T (1) ∈
Her(B) by Lemma 5.2. Thus ‖ exp(itT (1))‖B = 1 for every t ∈ R.

Then

‖ exp(itMT (1))‖ = ‖ exp(itT (1))‖B = 1

since exp(itMT (1)) = Mexp(itT (1)) by a simple calculation and the op-

erator norm of Ma coincides with the norm of a for every a ∈ B.

It follows that MT (1) is a Hermitian operator. Hence T − MT (1) is

Hermitian. Thus exp(it(T −MT (1))) is an isometry for every t ∈ R
by a characterization of Hermitian operators. For every t ∈ R the

operator (exp(it(T − MT (1))) is surjective. As (T − MT (1))(1) =

0, exp(it(T − MT (1))) is unital. By the assumption we have that

exp(it(T − MT (1))) is multiplicative . Hence by Proposition 5.3 we

infer that T = MT (1).

Suppose that (2) holds. Then by Proposition 5.1 T is a Hermitian

operator. □

3. An application of Theorem 5.4

Now, we characterize the Hermitian elements in a uniform algebra.

Proposition 5.5. Let A be a uniform algebra on a compact Haus-

dorff space Y . Then f ∈ A is Hermitian in A if and only if f ∈
A ∩ CR(Y ).

Proof. Let f ∈ A be Hermitian in A. Then ‖ exp(itf)‖∞(Y ) = 1

for every t ∈ R. We prove that f is a real-valued function on Y .

Suppose that there exists y ∈ Y with the imaginary part Im f(y) 6= 0.

If Im f(y) > 0 (resp. Im f(y) < 0), then | exp(−if(y))| > 1 (resp.

| exp(if(y))| > 1) which is contradictory to the fact that ‖ exp(itf)‖∞(Y ) =

1 for every t ∈ R. Thus we have f is a real-valued function.

We now prove the converse. Let f ∈ A ∩ CR(Y ). It follows imme-

diately that for every t ∈ R, ‖ exp itf‖∞(Y ) = 1. This implies that f is

Hermitian in A. □

3.1. Hermitian operators on Lip(X,A). We exhibit a charac-

terization of Hermitian elements of Lipschitz algebra with values in a

uniform algebra.
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Proposition 5.6. Let X be a compact metric space and A a uni-

form algebra on a compact Hausdorff space Y . Then F ∈ Lip(X,A) is

Hermitian if and only if F = 1 ⊗ f for f ∈ A ∩ CR(Y ).

Proof. Let F be a Hermitian element in Lip(X,A). We have

(3.1) ‖ exp(itF )‖∞(X×Y ) + L(exp(itF )) = ‖ exp(itF )‖Σ = 1, t ∈ R.

Hence ‖ exp(itF )‖∞(X×Y ) ≤ 1 for every t ∈ R. Then, in a similar way

as in the proof of Proposition 5.5 we have that F is real-valued and

‖ exp(itF )‖∞(X×Y ) = 1. Hence L(exp(itF )) = 0 which means that

F = 1 ⊗ f for an f ∈ A. As F is real-valued, we have at once that

f ∈ A ∩ CR(Y ), that is, f is a Hermitian element in A.

A Hermitian element f in A is a real-valued function by Propo-

sition 5.5, hence F = 1 ⊗ f ∈ Lip(X,A) is a real-valued function,

‖ exp(itF )‖∞(X×Y ) = 1 for every t ∈ R. As F = 1⊗f , L(exp(itF )) = 0.

Thus ‖ exp(itF )‖L = 1, which forces that F is a Hermitian element in

Lip(X,A). □

As a corollary of Theorem in [47] we have the following.

Corollary 5.7. Let Xj be a compact metric space and Aj a uni-

form algebra for j = 1, 2. If U is a linear isometry from Lip(X1, A1)

onto Lip(X2, A2) with U(1) = 1, then U is also an isometry with re-

spect to the supremum norm.

We point out that the term −π/2 and π/2 which appear in the

formulae (7) and (8) in the proof of [47, Theorem] read as 3π/4 and

π/4, respectively. Hatori, Jiménez-Vargas and Villegas-Vallecillos has

essentially given a revision of the proof of [47, Theorem] in the proof

of Proposition 7 in [36].

Theorem 5.8. Let X be a compact metric space and A a uniform

algebra on a compact Hausdorff space Y . Then T is a Hermitian op-

erator on Lip(X,A) if and only if there exists a real-valued function

f ∈ A such that

T = M1⊗f .
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Proof. Suppose that f ∈ A ∩ CR(Y ). Due to Proposition 5.6 we

infer that 1 ⊗ f is a Hermitian element in Lip(X,A). Then by Propo-

sition 5.1, we have that M1⊗f is a Hermitian operator on Lip(X,A).

Suppose that T is a Hermitian operator on Lip(X,A). Then by

Lemma 5.2, T (1) is a Hermitian element in Lip(X,A). Then by Propo-

sition 5.6, there will be an f ∈ A ∩ CR(Y ), a Hermitian element in A,

such that T (1) = 1 ⊗ f . We show that every surjective unital linear

isometry from Lip(X,A) onto itself is multiplicative. It will follow that

T = MT (1) by Theorem 5.4. Now we prove that every surjective unital

linear isometry from Lip(X,A) onto itself is multiplicative. To do so,

let U : Lip(X,A) → Lip(X,A) be a surjective unital linear isometry.

Then by Corollary 5.7 U is extended to a unique surjective unital lin-

ear isometry U∞ from the uniform closure Lip(X,A) of Lip(X,A) in

C(X × Y ) onto itself. As Lip(X,A) is a uniform algebra on X × Y we

have by a theorem of Nagasawa [94] that U∞ is a composition operator

defined by a self-homeomorphism between the maximal ideal space of

Lip(X,A). Hence U∞ is multiplicative, and so is U . □

3.2. Hermitian operators on C1([0, 1], A). We exhibit a char-

acterization of Hermitian elements of continuously differential maps on

[0, 1] with values in a uniform algebra. A proof is similar to the case

of the Lipschitz algebras.

Proposition 5.9. Let A be a uniform algebra on a compact Haus-

dorff space Y . Then F ∈ C1([0, 1], A) is Hermitian if and only if

F = 1 ⊗ f for f ∈ A ∩ CR(Y ).

Proof. Let F be a Hermitian element in C1([0, 1], A). We have

(3.2)

‖ exp(itF )‖∞([0,1]×Y ) + ‖ exp(itF ))′‖∞ = ‖ exp(itF )‖Σ = 1, t ∈ R.

Hence ‖ exp(itF )‖∞([0,1]×Y ) ≤ 1 for every t ∈ R. Then we have that F

is real-valued and ‖ exp(itF )‖∞([0,1]×Y ) = 1. Hence ‖ exp(itF )′‖∞ = 0

which means that F = 1 ⊗ f for an f ∈ A. We get f is a real-valued

continuous function of A since F is real-valued map. We have f is

a Hermitian element in A. Let f ∈ A ∩ CR(Y ), then F = 1 ⊗ f ∈
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C1([0, 1], A) is a real-valued function such that

‖ exp(itF )‖∞([0,1]×Y ) = 1

for every t ∈ R and

‖ exp(itF )′‖∞ = 0.

We obtain ‖ exp(itF )‖Σ = 1, which implies F is a Hermitian element

in C1([0, 1], A). □

For the case of C1([0, 1], A), we get the following corollary by the-

orem in [47].

Corollary 5.10. Let Aj be a uniform algebra for j = 1, 2. If U is

a linear isometry from C1([0, 1], A1) onto C1([0, 1], A2) with U(1) = 1,

then U is also an isometry with respect to the supremum norm.

The following is a characterization of a Hermitian operator on

C1([0, 1], A) for a uniform algebra A.

Theorem 5.11. Let X be a compact metric space and A a uniform

algebra on a compact Hausdorff space Y . Then T is a Hermitian op-

erator on Lip(X,A) if and only if there exists a real-valued function

f ∈ A such that

T = M1⊗f .

The proof is similar to the case of Lip(X,A). Thus we omit the

detail of proof.

Proof. Suppose that f ∈ A ∩ CR(Y ). Then 1 ⊗ f is a Hermitian

element in C1([0, 1], A) by Proposition 5.9. This implies that M1⊗f is

a Hermitian operator on C1([0, 1], A).

Suppose that T is a Hermitian operator on C1([0, 1], A). Then by

Lemma 5.2, T (1) is a Hermitian element in C1([0, 1], A). Then by

Proposition 5.9, there will be an f ∈ A ∩ CR(Y ), a Hermitian element

in A, such that T (1) = 1 ⊗ f . We see that C1([0, 1], A),which is

uniform closure of C1([0, 1], A) is uniform algebra on [0, 1] × Y . This

means that every surjective unital linear isometry from C1([0, 1], A)

onto itself is multiplicative by applying a theorem of Nagasawa [94].

Thus by Theorem 5.4, we have that T = M1⊗f . □
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4. Surjective linear isometries

In the Chapter 4, We have already characterized a surjective unital

linear isometry from Lip(X,C(Y )) onto itself (see Corollary 4.14). The

purpose in this Section is to prove the characterization of surjective

unital linear isometry from Lip(X,C(Y )) onto itself by applying theory

of Lumer’s method. Lumer initiated the study of isometries on function

spaces in terms of Hermitian operators [76, 78]. Hermitian operators

are intrinsically related to surjective isometries. Let T be a Hermitian

operator and U a surjective isometry on normed spaces. Then UTU−1

is a Hermitian operator by Theorem 5.12. It is essentially described in

the proof of [78, Theorem 10].

Theorem 5.12. Let N be a normed linear space and let U be a

linear operator from N into itself. Then U is an isometry if and only

if there is a semi-inner product [·, ·] compatible with the norm, satisfying

[x, αy] = ᾱ[x, y] for every x, y ∈ N and α ∈ C, such that [Uv1, Uv2] =

[v1, v2].

This argument has been used extensively by many authors in a

variety of settings. For example, Fleming and Jamison proved that a

unital surjective linear isometry is a composition operator on the space

of continuous maps with values in certain Banach spaces in [29]. The

method is called Lumer’s method (see [30]).

4.1. Surjective linear isometries on Lip(X,C(Y )). Suppose

that U is a surjective linear isometry from Lip(X,C(Y )) onto itself such

that U(1) = 1. Applying Corollary 5.7, U is extended to a surjective

isometry (with respect to the supremum norm) Ũ from C(X×Y ) onto

itself. Then the Banach-Stone theorem asserts that there exists a self-

homeomorphism H : X×Y → X×Y such that Ũ(F ) = F ◦H for every

F ∈ C(X × Y ). As H is represented as H(x, y) = (φ1(x, y), φ2(x, y))

for (x, y) ∈ X × Y , where φ1 : X × Y → X and φ2 : X × Y → Y are

continuous maps. It follows that U(F )(x, y) = U(φ1(x, y), φ2(x, y))

for every F ∈ Lip(X,C(Y )) and (x, y) ∈ X × Y . In particular, we

see that U is an isomorphism from Lip(X,C(Y )) onto itself. Then by

Theorem 2.3, the map φ2 depends only on the second valuable y if X
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is connected. In this section we prove that it is the case without the

hypothesis that X is connected.

Suppose that U : Lip(X,C(Y )) → Lip(X,C(Y )) is a surjective

isometry. Let [·, ·] be a semi-inner product compatible with the norm

such that [U(F1), U(F2)] = [F1, F2] for every Fj ∈ Lip(X,C(Y )). Such

a semi-inner product exists by Theorem 5.12. For any h ∈ Her(C(Y )) =

CR(Y ) we have

[UM1⊗hU
−1G,G] = [UM1⊗hU

−1G,UU−1G] = [M1⊗hU
−1G,U−1G] ∈ R

for every G ∈ Lip(X,C(Y )). Hence UM1⊗hU
−1 is a Hermitian opera-

tor on Lip(X,C(Y )). Then by Theorem 5.8 there exists h′ ∈ Her(C(Y ))

such that UM1⊗hU
−1 = M1⊗h′ . It follows that we can define a map

ψ : Her(C(Y )) → Her(C(Y )) by

UM1⊗hU
−1 = M1⊗ψ(h).

Lemma 5.13. The map ψ : Her(C(Y )) → Her(C(Y )) is a real

algebra isomorphism.

Proof. For any h′ ∈ Her(C(Y )) we have that U−1M1⊗h′U is also

a Hermitian operator on Lip(X,C(Y )) by a similar argument as above.

Therefore, there exists h ∈ Her(C(Y )) such that U−1M1⊗h′U = M1⊗h.

This implies that

UM1⊗hU
−1 = U(U−1M1⊗h′U)U−1 = M1⊗h′ ,

hence we conclude that ψ(h) = h′. As h′ is arbitrary, we have that ψ

is surjective.

Let h1 and h2 be Hermitian elements with h1 6= h2. Due to the

definition of ψ, we have

M1⊗ψ(h1) = UM1⊗h1U
−1 6= UM1⊗h2U

−1 = M1⊗ψ(h2).

Thus, this implies that ψ(h1) 6= ψ(h2). Thus ψ is injective.

We prove that ψ is multiplicative. Let h1, h2 ∈ Her(C(Y )) be ar-

bitrary. Then UM1⊗(h1h2)
U−1 = M1⊗ψ(h1h2). On the other hand we
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have

UM1⊗(h1h2)
U−1 = UM1⊗h1M1⊗h2U

−1

= (UM1⊗h1U
−1)(UM1⊗h2U

−1) = M1⊗ψ(h1)M1⊗ψ(h2)

= M1⊗(ψ(h1)ϕ(h2))

Thus we have ψ(h1h2) = ψ(h1)ψ(h2) for an arbitrary pair of h1, h2 ∈
Her(C(Y )); that is, ψ is multiplicative. We see in a similar way that ψ

is real-linear. □

We define the map ψ̃ from C(Y ) onto C(Y ) by

ψ̃(h1 + ih2) = ψ(h1) + iψ(h2)

for h1, h2 ∈ Her(C(Y )) = CR(Y ). It is easy to see that ψ̃ is a complex

algebra isomorphism from C(Y ) onto itself. As ψ̃ : C(Y ) → C(Y ) is an

algebra isomorphism there exists a homeomorphism τ : Y → Y such

that

ψ̃(h)(y) = h(τ(y))

for any h ∈ C(Y ) and y ∈ Y . Applying the isomorphism ψ̃ and

a homeomorphism τ we have the following. Note that by a simple

calculation we have UM1⊗hU
−1 = M1⊗ψ̃(h) for every h ∈ C(Y ).

Theorem 5.14. Let X be a compact metric space and Y a compact

Hausdorff space. Then U is a linear isometry from Lip(X,C(Y )) onto

itself such that U(1) = 1 if and only if there exist a continuous map

φ : X × Y → X such that φ(·, y) : X → X is a surjective isometry for

each y ∈ Y , and a homeomorphism τ : Y → Y which satisfy that

(4.1) UF (x, y) = F (φ(x, y), τ(y)) x ∈ X, y ∈ Y

for every F ∈ Lip(X,C(Y )).

Proof. Suppose that φ : X × Y → X is a continuous map such

that φ(·, y) : X → X is a surjective isometry for each y ∈ Y and

τ : Y → Y is a homeomorphism. Then the map H ′ from X × Y into

itself defined by H ′(x, y) = (φ(x, y), τ(y)), x ∈ X, y ∈ Y is continuous.

As τ is a bijection on Y and φ(·, y) is a bijection on X for every y ∈ Y ,

we infer that H ′ is a bijection. As X × Y is a compact Hausdorff

space, we have that the continuous bijection H ′ is a homeomorphism.
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Let F ∈ Lip(X,C(Y )) be arbitrary. We suppose in a usual way that

Lip(X,C(Y )) ⊂ C(X×Y ); [F (x)](y) = F (x, y), (x, y) ∈ X×Y . Define

UF : X × Y → C by UF (x, y) = F ◦ H ′(x, y) = F (φ(x, y), τ(y)) for

every pair x ∈ X, y ∈ Y . As H ′ is continuous we have UF ∈ C(X×Y ).

We prove that UF ∈ Lip(X,C(Y )). Applying properties of φ and τ

we have by a simple calculation that

L(F ) = sup
x1,x2

‖F (x1) − F (x2)‖∞(Y )

d(x1, x2)
= sup

x1,x2,y

|F (x1, y) − F (x2, y)|
d(x1, x2)

= sup
x1,x2,y

|F (φ(x1, y), τ(y)) − F (φ(x2, y), τ(y))|
d(φ(x1, y), φ(x2, y))

= sup
x1,x2,y

|F (φ(x1, y), τ(y)) − F (φ(x2, y), τ(y))|
d(x1, x2)

= L(UF ).

As L(F ) = L(UF ) we infer that UF ∈ Lip(X,C(Y )). Therefore the

map F 7→ UF is well defined from Lip(X,C(Y )) into itself. As H ′

is a surjection, we have that ‖F‖∞(X×Y ) = ‖UF‖∞(X×Y ). Thus U

is an isometry with respect to the norm ‖ · ‖L. We prove that U is

surjective. Let (x, y) ∈ X × Y be arbitrary. As τ is a bijection on

Y and φ(·, τ−1(y)) is a bijection on X, there is a unique x′ ∈ X with

φ(x′, τ−1(y)) = x. Define φ′ : X × Y → X by φ′(x, y) = x′. Then φ′ is

continuous on X × Y such that φ′(·, y) is a surjective isometry on X.

Furthermore we infer that H ′−1 = (φ′, τ−1). Let F ∈ Lip(X,C(Y )) be

arbitrary. In a similar way as above, we have F ◦H ′−1 ∈ Lip(X,C(Y )).

On the other hand we infer that U(F ◦H ′−1) = F . As F is arbitrary

we have that U is surjective.

Suppose that U is a surjective isometry from Lip(X,C(Y )) onto

itself such that U1 = 1. Corollary 5.7 implies that U is an isometry

from (Lip(X,C(Y )), ‖·‖∞(X×Y )) onto itself. We note that Lip(X,C(Y ))

is uniformly dense in C(X × Y ) by the Stone-Weierstrass theorem.

This shows that we have U∞ : C(X × Y ) → C(X × Y ) which is a

unique extension of U , and U∞ is a unital linear isometry with the

supremum norm. By the Banach-Stone theorem, we conclude that U∞

is an algebra isomorphism, so is U . Let y ∈ Y arbitrary. We define

a map Ũy : Lip(X) → Lip(X) by Ũy(f) = U(f ⊗ 1)(·, y) for each

f ∈ Lip(X). Then Ũy is a unital homomorphism. By [111, Theorem
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5.1] there exists a Lipschitz map φ(·, y) from X into itself such that

Ũy(f)(x) = f(φ(x, y)) for every f ∈ Lip(X) and x ∈ X. For every

f ∈ Lip(X), h ∈ C(Y ), and (x, y) ∈ X × Y , we have

(U(f⊗h))(x, y) = (U(M1⊗hf⊗1))(x, y) = (UM1⊗hU
−1U(f⊗1))(x, y)

= (M1⊗ψ̃(h)U(f ⊗ 1))(x, y) = ((1 ⊗ ψ̃(h))U(f ⊗ 1))(x, y)

= (1 ⊗ ψ̃(h))(x, y)(U(f ⊗ 1))(x, y) = (1 ⊗ ψ̃(h))(x, y)Ũy(f)(x)

= h(τ(y))f(φ(x, y)) = f ⊗ h(φ(x, y), τ(y)).

Hence

(4.2) (U(
∑
i

fi ⊗ hi))(x, y) =
∑
i

fi ⊗ hi(φ(x, y), τ(y))

for every
∑

i fi ⊗ hi ∈ Lip(X) ⊗ C(Y ), the algebraic tensor product of

Lip(X) and C(Y ). Let F ∈ Lip(X,C(Y )) be arbitrary. Then by the

Stone-Weierstrass theorem there exists a sequence {Fn} ∈ Lip(X) ⊗
C(Y ) such that ‖F − Fn‖∞(X×Y ) → 0 as n → ∞. By Corollary 5.7,

we obtain that U is an isometry with respect to the metric induced by

the supremum norm. Thus we have

‖U(Fn) − U(F )‖∞(X×Y ) = ‖Fn − F‖∞(X×Y ) → 0

as n → ∞. Hence (U(Fn))(x, y) → (U(F ))(x, y) as n → ∞. As

‖Fn − F‖∞(X×Y ) → 0, we obtain by (4.2) that

(U(Fn))(x, y) = Fn(φ(x, y), τ(y)) → F (φ(x, y), τ(y))

as n→ ∞. We conclude that (U(F ))(x, y) = F (φ(x, y), τ(y)).

As in the same way as above, there exists a homeomorphism τ ′ :

Y → Y and a Lipschitz map φ′(·, y) : X → X for each y ∈ Y such

that (U−1(G))(x, y) = G(φ′(x, y), τ ′(y)) for every G ∈ Lip(X,C(Y ))

and every (x, y) ∈ X × Y . As

G(x, y) = (U(U−1(G)))(x, y) = (U−1(G))(φ(x, y), τ(y))

= G(φ′(φ(x, y), τ(y)), τ ′(τ(y))),

G(x, y) = (U−1(U(G)))(x, y) = (U(G))(φ′(x, y), τ ′(y))

= G(φ(φ′(x, y), τ ′(y)), τ(τ ′(y)))
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for every G ∈ Lip(X,C(Y )) and (x, y) ∈ X × Y , we have that τ ′ =

τ−1. We also get x = φ′(φ(x, y), τ(y)) and x = φ(φ′(x, y), τ ′(y)) for

every (x, y) ∈ X × Y . As τ is a bijection and τ ′−1 = τ we have x =

φ(φ′(x, τ(y)), y) for every (x, y) ∈ X × Y . It follows that φ(·, y)−1 =

φ′(·, τ(y)) for every y ∈ Y . In particular, φ(·, y) is a lipeomorphism

from X onto itself.

Let z ∈ X be arbitrary. Set fz : X → C by fz(x) = d(x, z) for

x ∈ X. The Lipschitz constant of fz is 1. Hence L(fz⊗1) = 1 for every

z ∈ X. We infer that fz ∈ Lip(X). As U is an isometry with respect

‖ · ‖L and ‖ · ‖∞(X×Y ) simultaneously, we infer that L(U(F )) = L(F )

for every F ∈ Lip(X,C(Y )). Let y ∈ Y and x1, x2 ∈ X be arbitrary.

Then we have

d(φ(x1, y), φ(x2, y)) = |fφ(x2,y)(φ(x1, y)) − fφ(x2,y)(φ(x2, y))|

= |(fφ(x2,y) ⊗ 1)(φ(x1, y), τ(y)) − (fφ(x2,y) ⊗ 1)(φ(x2, y), τ(y))|

= |(U(fφ(x2,y) ⊗ 1))(x1, y) − (U(fφ(x2,y) ⊗ 1))(x2, y)|

≤ ‖(U(fφ(x2,y) ⊗ 1))(x1) − (U(fφ(x2,y) ⊗ 1))(x2)‖∞(Y )

≤ L(U(fφ(x2,y) ⊗ 1))d(x1, x2) = L(fφ(x2,y) ⊗ 1)d(x1, x2) = d(x1, x2).

We conclude that d(φ(x1, y), φ(x2, y)) ≤ d(x1, x2) for every pair x1, x2 ∈
X and y ∈ Y . In the same way we have d(φ′(x1, y), φ′(x2, y)) ≤
d(x1, x2) for every pair x1, x2 ∈ X and y ∈ Y . Since φ(·, y) = φ(·, τ−1(y))−1

we have that d(φ(x1, τ
−1(y))−1, φ(x2, τ

−1(y))−1) ≤ d(x1, x2) for ev-

ery pair x1, x2 ∈ X and y ∈ Y . As τ−1 is bijective we have that

d(φ(x1, y)−1, φ(x2, y)−1) ≤ d(x1, x2), hence d(x1, x2) ≤ d(φ(x1, y), φ(x2, y))

for every pair x1, x2 ∈ X and y ∈ Y . It follows that d(x1, x2) =

d(φ(x1, y), φ(x2, y)) for every pair x1, x2 ∈ X and y ∈ Y ; φ(·, y) is

an isometry for every y ∈ Y . Finally we prove φ is continuous on

X × Y . By Banach-Stone theorem, there exists a self-homeomorphism

H = (φ1, φ2) : X × Y → X × Y such that

UF (x, y) = F ◦H(x, y) = F (φ1(x, y), φ2(x, y))

for every F ∈ Lip(X,C(Y )), (x, y) ∈ X×Y . Note that φ1 : X×Y → X

is continuous since H is a homeomorphism. We have

F (φ1(x, y), φ2(x, y)) = F (φ(x, y), τ(y))
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for every pair x ∈ X and y ∈ Y , and F ∈ Lip(X,C(Y )). As Lip(X,C(Y ))

separates the points of X × Y we have that φ = φ1. Hence φ is con-

tinuous on X × Y .This completes the proof. □

4.2. Surjective linear isometries on C1([0, 1], C(Y )). Suppose

that U : C1([0, 1], C(Y )) → C1([0, 1], C(Y )) is a surjective linear isom-

etry. By a similar argument of subsection 4.1 and applying Theorem

5.11, we get the following results. (We omit proofs). We can define a

map ψ : Her(C(Y )) → Her(C(Y )) by

UM1⊗hU
−1 = M1⊗ψ(h).

Then the map ψ : Her(C(Y )) → Her(C(Y )) is a real algebra isomor-

phism. We define the map ψ̃ from C(Y ) onto C(Y ) by

ψ̃(h1 + ih2) = ψ(h1) + iψ(h2)

for h1, h2 ∈ Her(C(Y )) = CR(Y ). We have ψ̃ is a complex algebra

isomorphism from C(Y ) onto itself. As ψ̃ : C(Y ) → C(Y ) is an algebra

isomorphism there exists a homeomorphism τ : Y → Y such that

ψ̃(h)(y) = h(τ(y))

for any h ∈ C(Y ) and y ∈ Y . Due to the isomorphism ψ̃ and a

homeomorphism τ , we obtain that

UM1⊗hU
−1 = M1⊗ψ̃(h)

for every h ∈ C(Y ). We now get the following characterization of a sur-

jective linear isometry on C1([0, 1], C(Y )), which is a weaker statement

than Corollary 4.18, but we prove it by Lumer’s method.

Theorem 5.15. Let Y be a compact Hausdorff space. Then U is

a surjective linear isometry from C1([0, 1], C(Y )) onto itself such that

U(1) = 1 if and only if there exist a continuous map φ : [0, 1] × Y →
[0, 1] such that for each y ∈ Y continuous map φ(·, y) : [0, 1] → [0, 1]

with φ(x, y) = x for every x ∈ [0, 1] or φ(x, y) = 1 − x for every

x ∈ [0, 1] and a homeomorphism τ : Y → Y which satisfy that

(4.3) UF (x, y) = F (φ(x, y), τ(y)) x ∈ X, y ∈ Y

for every F ∈ C1([0, 1], C(Y )).



112 5. HERMITIAN OPERATORS ON COMMUTATIVE BANACH ALGEBRAS

Proof. We can easy to see that if U is the form of the equation

(4.3), U is a surjective linear isometry on C1([0, 1], C(Y )) with ‖ · ‖Σ.

Suppose that U is a surjective isometry from Lip(X,C(Y )) onto

itself such that U1 = 1. Corollary 5.10 implies that U is an isom-

etry from (C1([0, 1], C(Y )), ‖ · ‖∞([0,1]×Y )) onto itself. We note that

C1([0, 1], C(Y )) is uniformly dense in C([0, 1]×Y ) by the Stone-Weierstrass

theorem. This shows that we have U∞ : C([0, 1] × Y ) → C([0, 1] × Y )

which is a unique extension of U , and U∞ is a unital linear isometry

with the supremum norm. By the Banach-Stone theorem, we conclude

that U∞ is an algebra isomorphism, so is U . Let y ∈ Y arbitrary. We

define a map Ũy : C1([0, 1]) → C1([0, 1]) by Ũy(f) = U(f ⊗ 1)(·, y) for

each f ∈ C1([0, 1]). Then Ũy is a unital homomorphism. There exists

a continuous φ(·, y) from X into itself such that Ũy(f)(x) = f(φ(x, y))

for every f ∈ C1([0, 1]) and x ∈ [0, 1]. For every f ∈ C1([0, 1]),

h ∈ C(Y ), and (x, y) ∈ [0, 1] × Y , we have

(U(f ⊗ h))(x, y) = (U(M1⊗hf ⊗ 1))(x, y)

= (UM1⊗hU
−1U(f ⊗ 1))(x, y) = (M1⊗ψ̃(h)U(f ⊗ 1))(x, y)

= ((1 ⊗ ψ̃(h))U(f ⊗ 1))(x, y) = (1 ⊗ ψ̃(h))(x, y)(U(f ⊗ 1))(x, y)

= (1 ⊗ ψ̃(h))(x, y)Ũy(f)(x) = h(τ(y))f(φ(x, y))

= f ⊗ h(φ(x, y), τ(y)).

Hence

(4.4) (U(
∑
i

fi ⊗ hi))(x, y) =
∑
i

fi ⊗ hi(φ(x, y), τ(y))

for every
∑

i fi ⊗ hi ∈ C1([0, 1]) ⊗ C(Y ), the algebraic tensor prod-

uct of C1([0, 1]) and C(Y ). Let F ∈ C1([0, 1], C(Y )) be arbitrary.

Then by the Stone-Weierstrass theorem there exists a sequence {Fn} ∈
C1([0, 1])⊗C(Y ) such that ‖F −Fn‖∞(X×Y ) → 0 as n→ ∞. By Corol-

lary 5.10, we obtain that U is an isometry with respect to the metric

induced by the supremum norm. Thus we have

‖U(Fn) − U(F )‖∞([0,1]×Y ) = ‖Fn − F‖∞([0,1]×Y ) → 0
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as n → ∞. Hence (U(Fn))(x, y) → (U(F ))(x, y) as n → ∞. As

‖Fn − F‖∞([0,1]×Y ) → 0, we obtain by (4.4) that

(U(Fn))(x, y) = Fn(φ(x, y), τ(y)) → F (φ(x, y), τ(y))

as n→ ∞. We conclude that (U(F ))(x, y) = F (φ(x, y), τ(y)).

Although it does not complete the proof, we omit the rest of the

proof since it is a routine argument to verify that φ : [0, 1]×Y → [0, 1]

is continuous and for each y ∈ Y continuous map φ(·, y) : [0, 1] → [0, 1]

with φ(x, y) = x for every x ∈ [0, 1] or φ(x, y) = 1 − x for every

x ∈ [0, 1]. □





CHAPTER 6

Hermitian operators on non-commutative Banach
algebras

A surjective linear isometry on Lip(X,E), where E is a unital com-

mutative C∗-algebra is of the canonical form, see Theorem 4.14. But

the general case for a unital C∗-algebra without assuming commuta-

tivity remains open. A main difficulty relies on a lack of the complete

characterization of the extreme points of the unit ball of the dual space

of Lip(X,E) for a unital C∗-algebra E.

On the other hand, Lumer initiated a study of isometries on func-

tion spaces in terms of Hermitian operators [76, 78]. Hermitian oper-

ators are intrinsically related to surjective isometries. The method is

called Lumer’s method (see [30]).

In this chapter, we deal with the case where E is a Banach space of a

finite dimension. We first show that Hermitian operators on Lip(X,E)

are composition operators. Then Lumer’s method as in [29] applies

to characterizing unital surjective complex isometries on algebras of

Lipschitz maps with values in Mn(C) with the sum norm, where the

norm on Mn(C) is the operator norm (spectral norm).

In [13], Botelho and Jamison gave a representation for algebra

homomorphisms between algebras of Lipschitz maps with values in

Mn(C).

1. Hermitian operators between Banach algebras with the

values in a finite dimensional Banach space

1.1. Hermitian operators on Lip(X,E). Let B be a Banach

algebra. Let [·, ·] be a semi-inner product on B, compatible with the

norm. We recall that a bounded operator T is Hermitian if [Tx, x]B ∈ R
for any x ∈ B. Several equivalent conditions for Hermitian operators

115
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are exhibited in [30, Theorem 5.2.6]. In the rest of this chapter E

denotes a finite dimensional Banach space.

For any f ∈ Lip(X) and e ∈ E, we define f ⊗ e : X → E by

(f ⊗ e)(x) = f(x)e.

By a simple calculation, we have f ⊗ e ∈ Lip(X,E) such that

‖f ⊗ e‖∞ = ‖f‖∞‖e‖E

and

L(f ⊗ e) = L(f)‖e‖E.

This implies that ‖f⊗e‖Σ = ‖f‖Σ‖e‖E. This definition for ⊗ is under-

stood to mean that f ⊗ e is an element of the algebraic tensor product

space Lip(X) ⊗ E with the crossnorm. Since E is finite dimensional,

we have the following lemma:

Lemma 6.1. Let X be a compact metric space and (E, ‖·‖E) a finite

dimensional Banach space. Then

Lip(X) ⊗ E = Lip(X,E).

Proof. First we prove that Lip(X,E) ⊂ Lip(X) ⊗ E. Let {ei}ni=1

be a basis for E as a linear space and 1 ≤ j ≤ n.

We define a linear operator Πj : E → C by

Πj(Σ
n
i=1αiei) = αj, Σn

i=1αiei ∈ E.

Then Πj is bounded. In fact, as E is finite dimensional, any norm on E

is equivalent, hence the original norm ‖ · ‖E and the norm ‖ · ‖1 defined

by

‖Σn
i=1αiei‖1 := Σn

i=1|αi|

for Σn
i=1αiei ∈ E is equivalent. Hence there exists K > 0 such that

|Πj(Σ
n
i=1αiei)| = |αj| ≤ Σn

i=1|αi| ≤ K‖Σn
i=1αiei‖E.

Thus the operator Πj : E → C is bounded. For any F ∈ Lip(X,E),

define a function Π̃j(F ) : X → C by

Π̃j(F )(x) := Πj(F (x)), x ∈ X.
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We have

|Π̃j(F )(x) − Π̃j(F )(y)| = |Πj(F (x) − F (y))|

≤ K‖F (x) − F (y)‖E ≤ KL(F )d(x, y).

By the definition of a Lipschitz map we have that Π̃j(F ) ∈ Lip(X).

Furthermore, we have by a simple calculation that

F = Σn
i=1Π̃i(F ) ⊗ ei ∈ Lip(X) ⊗ E.

As F ∈ Lip(X,E) is arbitrary, we see that

Lip(X,E) ⊂ Lip(X) ⊗ E.

The opposite inclusion Lip(X) ⊗ E ⊂ Lip(X,E) is obvious. Thus

we obtain the equality

Lip(X) ⊗ E = Lip(X,E).

□

The following is the main result in this Section.

Theorem 6.2. Let X be a compact metric space and E a Ba-

nach space of a finite dimension. Then T is a Hermitian operator on

Lip(X,E) if and only if there exists a Hermitian operator ϕ : E → E

such that

(1.1) TF (x) = ϕ(F (x)), F ∈ Lip(X,E), x ∈ X.

We make use of Lemma 6.3 to prove Theorem 6.2.

Lemma 6.3. Let T be a Hermitian operator on Lip(X,E). Then

T (1 ⊗ e) ∈ 1 ⊗ E

for any e ∈ E.

Proof. Let X̃ = {(x, y) ∈ X2;x 6= y}. We denote by E1 the unit

ball of E, and by E∗
1 the unit ball of the dual space E∗. Let β(X̃×E∗

1)

be the Stone-Čech compactification of X̃×E∗
1 . For any F ∈ Lip(X,E),

we denote by F̃ : β(X̃ × E∗
1) → C the unique continuous extension of

the bounded continuous function ((x, y), e∗) 7→ e∗(F (x)−F (y)
d(x,y)

) on X̃×E∗
1 .
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Then we have

‖F̃‖∞ = sup
ξ∈β(X̃×E∗

1 )

∣∣∣F̃ (ξ)
∣∣∣

= sup
((x,y),e∗)∈X̃×E∗

1

∣∣∣∣e∗(F (x) − F (y)

d(x, y)

)∣∣∣∣
= sup

(x,y)∈X̃

∥∥∥∥F (x) − F (y)

d(x, y)

∥∥∥∥
E

= L(F )

(1.2)

for all F ∈ Lip(X,E). We define a map

Γ : Lip(X,E) → C(X × β(X̃ × E∗
1) × E1, E)

given by

Γ(F )(x, ξ, e) = F (x) + F̃ (ξ)e

for all F ∈ Lip(X,E) and (x, ξ, e) ∈ X × β(X̃ × E∗
1) × E1. By (1.2),

Γ is a linear isometric embedding. For any G ∈ Lip(X,E), we define a

set PG as follows;

PG = {t ∈ X × β(X̃ × E∗
1) × E1; ‖Γ(G)(t)‖E = ‖Γ(G)‖∞ = ‖G‖Σ}.

As E is a finite dimensional Banach space, E1 is compact with norm

topology on E. This implies X × β(X̃ ×E∗
1)×E1 is also compact. We

conclude that PG 6= ∅. Choose a choice function

Ψ : Lip(X,E) → X × β(X̃ × E∗
1) × E1

such that Ψ(G) ∈ PG for every G ∈ Lip(X,E). Such a function Ψ

exists by the axiom of choice. We now prove that we can define a

semi-inner product on Lip(X,E) by Ψ. Let [·, ·]E on E be a semi-

inner product which is compatible with the norm of E. Define a map

[·, ·]ΨL : Lip(X,E) × Lip(X,E) → C given by

(1.3) [F,G]ΨL = [Γ(F )(Ψ(G)),Γ(G)(Ψ(G))]E, F,G ∈ Lip(X,E).

By a routine argument we deduce that [·, ·]ΨL is a semi-inner prod-

uct on Lip(X,E) compatible with the norm ‖·‖Σ. Let e ∈ E. We prove

T (1 ⊗ e) ∈ 1 ⊗ E. If e = 0, then T (1 ⊗ e) = T (0) = 0 = 1 ⊗ 0, hence

the conclusion holds. Suppose that 0 6= e. Fix x′ ∈ X, (x, y) ∈ X̃ and
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e∗ ∈ E∗
1 . Let θ ∈ [0, 2π), we obtain

Γ(1 ⊗ e)(x′, ((x, y), eiθe∗), e)

= (1 ⊗ e)(x′) + eiθe∗
(

(1 ⊗ e)(x) − (1 ⊗ e)(y)

d(x, y)

)
e

= e+ 0e = e.

(1.4)

This implies that

‖Γ(1 ⊗ e)(x′, ((x, y), eiθe∗), e)‖E = ‖1 ⊗ e‖Σ.

Thus we get (x′, ((x, y), eiθe∗), e) ∈ P1⊗e. Choose a choice function

Ψθ : Lip(X,E) → X × β(X̃ × E∗
1) × E1 such that

Ψθ(1 ⊗ e) = (x′, ((x, y), eiθe∗), e)

and define a semi-inner product [·, ·]ΨθL on Lip(X,E) in the manner as

in (1.3). Since T is a Hermitian operator, we have

[T (1 ⊗ e),1 ⊗ e]ΨθL ∈ R.

By (1.4), it follows that

R 3 [T (1 ⊗ e),1 ⊗ e]ΨθL

= [Γ(T (1 ⊗ e))(Ψθ(1 ⊗ e)),Γ(1 ⊗ e)(Ψθ(1 ⊗ e))]E

= [T (1 ⊗ e)(x′) + eiθe∗
(
T (1 ⊗ e)(x) − T (1 ⊗ e)(y)

d(x, y)

)
e, e]E

= [T (1 ⊗ e)(x′), e]E + eiθe∗
(
T (1 ⊗ e)(x) − T (1 ⊗ e)(y)

d(x, y)

)
[e, e]E

= [T (1 ⊗ e)(x′), e]E + eiθe∗
(
T (1 ⊗ e)(x) − T (1 ⊗ e)(y)

d(x, y)

)
‖e‖2E.

(1.5)

As e 6= 0, we see that ‖e‖2E > 0. Since θ ∈ [0, 2π) is arbitrary, it must

be

(1.6) e∗
(
T (1 ⊗ e)(x) − T (1 ⊗ e)(y)

d(x, y)

)
= 0

for any e∗ ∈ E∗
1 . This implies

T (1 ⊗ e)(x) − T (1 ⊗ e)(y)

d(x, y)
= 0

for any (x, y) ∈ X̃. Thus we deduce

L(T (1 ⊗ e)) = 0.
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Therefore, there exists e0 ∈ E such that T (1 ⊗ e) = 1 ⊗ e0. □

Due to Lemma 6.3 we define the map ϕ : E → E by ϕ(e) = e0,

where e0 is the corresponding element in E for e ∈ E, that is,

(1.7) T (1 ⊗ e) = 1 ⊗ ϕ(e)

for each e ∈ E. Since T is a bounded linear operator, so is ϕ. Equations

(1.5) and (1.6) imply

R 3 [T (1 ⊗ e),1 ⊗ e]ΨθL

= [Γ(T (1 ⊗ e))(Ψθ(1 ⊗ e)),Γ(1 ⊗ e)(Ψθ(1 ⊗ e))]E

= [T (1 ⊗ e)(x′) + eiθe∗
(
T (1 ⊗ e)(x) − T (1 ⊗ e)(y)

d(x, y)

)
e, e]E

= [T (1 ⊗ e)(x′), e]E + 0[e, e]E

= [T (1 ⊗ e)(x′), e]E.

(1.8)

Due to the definition of ϕ, we have

[ϕ(e), e]E ∈ R

for any e ∈ E. Thus, ϕ is a Hermitian operator on E.

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. Suppose that ϕ : E → E is a Hermitian

operator and T is of the form described as (1.1) in the statement of

Theorem 6.2; for any F ∈ Lip(X,E) and x ∈ X,

(TF )(x) = ϕ(F (x)).

To prove that T is a Hermitian, we apply the fact that T is a Hermitian

if and only if eitT is a surjective isometry for every t ∈ R, see [30,

Theorem 5.2.6]. Let t ∈ R. By the definition of T , we have

eitTF (x) = eitϕ(F (x))

for any F ∈ Lip(X,E) and x ∈ X. Since ϕ is Hermitian on E, we have

‖eitTF (x)‖E = ‖eitϕ(F (x))‖E = ‖F (x)‖E

and

‖eitTF (x) − eitTF (y)‖E = ‖eitϕ(F (x)) − eitϕ(F (y))‖E
= ‖eitϕ(F (x) − F (y))‖E = ‖F (x) − F (y)‖E
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for any x, y ∈ X. It follows that

‖eitTF‖∞ = ‖F‖∞

and

L(eitTF ) = L(F ).

Thus we deduce

‖eitTF‖Σ = ‖F‖Σ

for any F ∈ Lip(X,E). This implies that eitT is a surjective isometry

for every t ∈ R. Thus we have T is a Hermitian operator.

We now prove the converse. Suppose that T : Lip(X,E) → Lip(X,E)

is a Hermitian operator. Let ϕ be the operator defined by (1.7). In a

similar way to the first part of the proof, an operator from Lip(X,E)

into itself given by F 7→ ϕ ◦ F for any F ∈ Lip(X,E) is a Hermitian

operator. Hence we can define a Hermitian operator T0 : Lip(X,E) →
Lip(X,E) by

(T0F )(x) = (TF )(x) − ϕ(F (x))

for all F ∈ Lip(X,E) and x ∈ X. Let e ∈ E with ‖e‖E = 1. We define

a map Se : Lip(X) → Lip(X) by

Se(f)(x) = [T0(f ⊗ e)(x), e]E, f ∈ Lip(X), x ∈ X,

where [·, ·]E is a semi-inner product on E compatible with the norm

which satisfies [e1, λe2]E = λ̄[e1, e2]E for any ei ∈ E and λ ∈ C (such a

semi-inner product always exists [30, p. 10]). Then Se is a linear map.

We get

|Se(f)(x)| = |[T0(f ⊗ e)(x), e]E| ≤ ‖T0(f ⊗ e)(x)‖E

and

|Se(f)(x) − Se(f)(y)| = |[T0(f ⊗ e)(x), e]E − [T0(f ⊗ e)(y), e]E|

= |[T0(f ⊗ e)(x)− T0(f ⊗ e)(y), e]E| ≤ ‖T0(f ⊗ e)(x)− T0(f ⊗ e)(y)‖E
≤ L(T0(f ⊗ e))d(x, y)
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for any f ∈ Lip(X) and x, y ∈ X. Thus we deduce

‖Se(f)‖Σ = ‖Se(f)‖∞ + L(Se(f))

≤ ‖T0(f ⊗ e)‖∞ + L(T0(f ⊗ e)) = ‖T0(f ⊗ e)‖Σ
≤ ‖T0‖‖f ⊗ e‖Σ = ‖T0‖‖f‖Σ

for each f ∈ Lip(X). It follows that ‖Se‖ ≤ ‖T0‖, i.e., Se is a bounded

operator on Lip(X). Let t ∈ R. We have

(I + itSe)(1)(x) = 1 + it[T0(1 ⊗ e)(x), e]E

= 1 + it[T (1 ⊗ e)(x) − ϕ((1 ⊗ e)(x)), e]E = 1 + it[0, e]E = 1

for any x ∈ X. This implies that

(1.9) 1 ≤ ‖I + itSe‖.

On the other hand, let f ∈ Lip(X). We obtain for any x, y ∈ X,

|(I + itSe)(f)(x)| = |f(x) + it[T0(f ⊗ e)(x), e]E|

= |f(x)[e, e]E + it[T0(f⊗e)(x), e]E| = |[(f⊗e)(x)+ itT0(f⊗e)(x), e]E|

≤ ‖(f ⊗ e+ itT0(f ⊗ e))(x)‖E ≤ ‖(I + itT0)(f ⊗ e)‖∞
and

|(I + itSe)(f)(x) − (I + itSe)(f)(y)|

= |f(x)[e, e]E + it[T0(f ⊗ e)(x), e]E − f(y)[e, e]E − it[T0(f ⊗ e)(y), e]E|

= |[(f ⊗ e)(x) + itT0(f ⊗ e)(x), e]E − [(f ⊗ e)(y) + itT0(f ⊗ e)(y), e]E|

= |[(I + itT0)(f ⊗ e)(x) − (I + itT0)(f ⊗ e)(y), e]E|

≤ ‖(I + itT0)(f ⊗ e)(x) − (I + itT0)(f ⊗ e)(y)‖E
≤ L((I + itT0)(f ⊗ e))d(x, y).

Therefore, we get

‖(I + itSe)(f)‖Σ = ‖(I + itSe)(f)‖∞ + L((I + itSe)(f))

≤ ‖(I + itT0)(f ⊗ e)‖∞ + L((I + itT0)(f ⊗ e))

= ‖(I + itT0)(f ⊗ e)‖Σ
≤ ‖I + itT0‖‖f ⊗ e‖Σ = ‖I + itT0‖‖f‖Σ

for any f ∈ Lip(X). We conclude that

(1.10) ‖I + itSe‖ ≤ ‖I + itT0‖.
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Since T0 is a Hermitian operator on Lip(X,E), we have

‖I + itT0‖ = 1 + o(t)

by [30, Theorem 5.2.6]. Combining equation (1.9) with equation (1.10),

we see that

1 ≤ ‖I + itSe‖ ≤ ‖I + itT0‖ = 1 + o(t).

This implies that Se : Lip(X) → Lip(X) is a Hermitian operator. By

[16, Theorem 3.1.] we have Se is a real multiple of the identity. Since

Se(1)(x) = [T0(1 ⊗ e)(x), e] = 0, we deduce

Se(f)(x) = 0f(x) = 0 f ∈ Lip(X), x ∈ X.

Therefore, we have

[T0(f ⊗ e)(x), e]E = 0

for all f ∈ Lip(X) and x ∈ X. As e ∈ E with ‖e‖E = 1 is arbitrary,

we obtain

(1.11) [T0(f ⊗ e)(x), e]E = 0, e ∈ E, f ∈ Lip(X,E), x ∈ X.

We now prove that T0 = 0. Let f ∈ Lip(X) and x ∈ X. Then we

define a map Sfx : E → E such that

Sfx(e) = T0(f ⊗ e)(x)

for any e ∈ E. It is easy to check that Sfx is linear because of linearity

of T0. In addition, we have

‖Sfx(e)‖E = ‖T0(f ⊗ e)(x)‖E
≤ ‖T0(f ⊗ e)‖Σ ≤ ‖T0‖‖f ⊗ e‖Σ = ‖T0‖‖f‖Σ‖e‖E

for any e ∈ E. We deduce that Sfx is a bounded operator. Moreover,

by (1.11) we have

[Sfx(e), e]E = [T0(f ⊗ e)(x), e]E = 0

for all e ∈ E. Applying [76, Theorem 5], we have

T0(f ⊗ e)(x) = Sfx(e) = 0, e ∈ E.

As f ∈ Lip(X) and x ∈ X be chosen arbitrary, we conclude

(1.12) T0(f ⊗ e)(x) = 0
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for any f ∈ Lip(X), e ∈ E and x ∈ X. Suppose that dimE = n.

Then, by Lemma 7, for any F ∈ Lip(X,E), F is represented by the

following;

F =
n∑
k=1

fk ⊗ ek

with some fk ∈ Lip(X) and ek ∈ E for k = 1, . . . , n. It follows by

(1.12) that

(1.13) (T0F )(x) = T0(
n∑
k=1

fk ⊗ ek)(x) =
n∑
k=1

T0(fk ⊗ ek)(x) = 0

for any x ∈ X. We recall the definition of the Hermitian operator

T0 : Lip(X,E) → Lip(X,E) is defined by

(T0F )(x) = (TF )(x) − ϕ(F (x)), x ∈ X

for every F ∈ Lip(X,E). Applying (1.13), we have

(TF )(x) − ϕ(F (x)) = 0,

that is,

(TF )(x) = ϕ(F (x))

for any F ∈ Lip(X,E) and x ∈ X. □

1.2. Hermitian operators on C1([0, 1], E). Although the proof

is similar to the case of Lip(X,E), we exhibit it. As we show the

definition of algebraic tensor product space in Section 2, we have

f ⊗ e : [0, 1] → E by

(f ⊗ e)(x) = f(x)e, x ∈ [0, 1],

for any f ∈ C1([0, 1]) and e ∈ E too. We also obtain the following

Lemma since E is of a finite dimension.

Lemma 6.4. Let (E, ‖ · ‖E) be a finite dimensional Banach space.

Then

C1([0, 1]) ⊗ E = C1([0, 1], E).

The proof is similar to that for Lemma 7, we omit it. The following

is the main result in this Section.
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Theorem 6.5. Let E be a Banach space of a finite dimension.

Then T is a Hermitian operator on C1([0, 1], E) if and only if there

exists a Hermitian operator ϕ : E → E such that

(1.14) TF (x) = ϕ(F (x)), F ∈ C1([0, 1], E), x ∈ [0, 1].

We make use of Lemma 6.6 to prove Theorem 6.5.

Lemma 6.6. Let T be a Hermitian operator on C1([0, 1], E). Then

T (1 ⊗ e) ∈ 1 ⊗ E

for any e ∈ E.

Proof. We denote by E1 the unit ball of E, and by E∗
1 the unit

ball of the dual space E∗. For any F ∈ C1([0, 1], E), we define F̃ :

[0, 1] × E∗
1 → C by

F̃ (x, e∗) = e∗(F ′(x))

for any x ∈ [0, 1] and e∗ ∈ E∗
1 .

Then we have ‖F̃‖∞ = ‖F ′‖∞ immediately for any F ∈ C1([0, 1], E).

We define a map

Γ : C1([0, 1], E) → C([0, 1] × [0, 1] × E∗
1 × E1, E)

given by

Γ(F )(x, ξ, e) = F (x) + F̃ (ξ)e

for all F ∈ C1([0, 1], E) and (x, ξ, e) ∈ [0, 1]× ([0, 1]×E∗
1)×E1, where

ξ ∈ [0, 1]×E∗
1 . We see that Γ is a linear isometric embedding. For any

G ∈ C1([0, 1], E), we define a set PG as follows;

PG = {t ∈ [0, 1]× ([0, 1]×E∗
1)×E1; ‖Γ(G)(t)‖E = ‖Γ(G)‖∞ = ‖G‖Σ}.

As E is a finite dimensional Banach space, E1 is compact with norm

topology on E. Applying Banach- Alaoglu Theorem, we get [0, 1] ×
([0, 1] × E∗

1) × E1 is also compact. We conclude that PG 6= ∅. By the

axiom of choice, we can define a choice function

Ψ : C1([0, 1], E) → [0, 1] × ([0, 1] × E∗
1) × E1

such that Ψ(G) ∈ PG for every G ∈ C1([0, 1], E). In addition, a choice

function Ψ enable us to define a semi-inner product on C1([0, 1], E) as
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follows;

(1.15)

[F,G]Ψs = [Γ(F )(Ψ(G)),Γ(G)(Ψ(G))]E, F,G ∈ C1([0, 1], E),

where [·, ·]E is a a semi-inner product which is compatible with the norm

of E. We get [·, ·]Ψs is a semi-inner product on C1([0, 1], E) compatible

with the norm ‖ · ‖Σ.

Let e ∈ E. We prove T (1 ⊗ e) ∈ 1 ⊗ E. If e = 0, then T (1 ⊗ e) =

T (0) = 0 = 1⊗0, hence the conclusion holds. Suppose that 0 6= e. Fix

x′, x ∈ [0, 1] and e∗ ∈ E∗
1 . Let θ ∈ [0, 2π), we obtain

Γ(1 ⊗ e)(x′, x, eiθe∗, e)

= (1 ⊗ e)(x′) + eiθe∗((1 ⊗ e)′(x))

= e+ 0e = e.

(1.16)

This implies that

‖Γ(1 ⊗ e)(x′, x, eiθe∗, e)‖E = ‖1 ⊗ e‖Σ.

Thus we get (x′, x, eiθe∗, e) ∈ P1⊗e. Choose a choice function Ψθ :

C1([0, 1], E) → [0, 1] × ([0, 1] × E∗
1) × E1 such that

Ψθ(1 ⊗ e) = (x′, x, eiθe∗, e)

and define a semi-inner product [·, ·]Ψθs on C1([0, 1], E) in the manner

as in (1.15). Since T is a Hermitian operator, we have

[T (1 ⊗ e),1 ⊗ e]Ψθs ∈ R.

By (1.16), it follows that

R 3 [T (1 ⊗ e),1 ⊗ e]Ψθs

= [Γ(T (1 ⊗ e))(Ψθ(1 ⊗ e)),Γ(1 ⊗ e)(Ψθ(1 ⊗ e))]E

= [T (1 ⊗ e)(x′) + eiθe∗(T (1 ⊗ e)′(x))e, e]E

= [T (1 ⊗ e)(x′), e]E + eiθe∗(T (1 ⊗ e)′(x))[e, e]E

(1.17)

As e 6= 0, we see that ‖e‖2E > 0. Since θ ∈ [0, 2π) is arbitrary, it must

be

(1.18) e∗(T (1 ⊗ e)′(x)) = 0
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for any e∗ ∈ E∗
1 . This implies T (1 ⊗ e)′(x) = 0 for any x ∈ [0, 1].

we obtain T (1 ⊗ e)′ = 0. Therefore, there exists e0 ∈ E such that

T (1 ⊗ e) = 1 ⊗ e0. □

Due to Lemma 6.6 we define the map ϕ : E → E by ϕ(e) = e0,

where e0 is the corresponding element in E for e ∈ E, that is,

(1.19) T (1 ⊗ e) = 1 ⊗ ϕ(e)

for each e ∈ E. Since T is a bounded linear operator, so is ϕ. Equations

(1.17) and (1.18) imply

R 3 [T (1 ⊗ e),1 ⊗ e]Ψθs

= [Γ(T (1 ⊗ e))(Ψθ(1 ⊗ e)),Γ(1 ⊗ e)(Ψθ(1 ⊗ e))]E

= [T (1 ⊗ e)(x′) + eiθe∗(T (1 ⊗ e)′(x))e, e]E

= [T (1 ⊗ e)(x′), e]E + 0[e, e]E

= [T (1 ⊗ e)(x′), e]E.

(1.20)

Due to the definition of ϕ, we have

[ϕ(e), e]E ∈ R

for any e ∈ E. Thus, ϕ is a Hermitian operator on E.

We are now ready to prove Theorem 6.5.

Proof of Theorem 6.5. Suppose that ϕ : E → E is a Hermitian

operator and T is of the form described as (1.14) in the statement of

Theorem 6.5; for any F ∈ C1([0, 1], E) and x ∈ [0, 1],

(TF )(x) = ϕ(F (x)).

To prove that T is a Hermitian, we apply the fact that T is a Hermitian

if and only if eitT is a surjective isometry for every t ∈ R, see [30,

Theorem 5.2.6]. Let t ∈ R. By the definition of T , we have

eitTF (x) = eitϕ(F (x))

for any F ∈ C1([0, 1], E) and x ∈ X. Since ϕ is Hermitian on E, we

have

‖eitTF (x)‖E = ‖eitϕ(F (x))‖E = ‖F (x)‖E
and

‖eitTF ′(x)‖E = ‖eitϕ(F ′(x))‖E = ‖F ′(x)‖E,
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for any x ∈ [0, 1]. It follows that

‖eitTF‖∞ = ‖F‖∞

and

‖eitTF ′‖∞ = ‖F ′‖∞
Thus we deduce

‖eitTF‖Σ = ‖F‖Σ
for any F ∈ C1([0, 1], E). This implies that eitT is a surjective isometry

for every t ∈ R. Thus we have T is a Hermitian operator.

We now prove the converse. Suppose that T : C1([0, 1], E) →
C1([0, 1], E) is a Hermitian operator. Let ϕ be the operator defined

by (1.19). Since above argument, we can define a Hermitian operator

T0 : C1([0, 1], E) → C1([0, 1], E) by

(T0F )(x) = (TF )(x) − ϕ(F (x))

for all F ∈ C1([0, 1], E) and x ∈ [0, 1]. Let e ∈ E with ‖e‖E = 1. We

define a linear map Se : C1([0, 1]) → C1([0, 1]) by

Se(f)(x) = [T0(f ⊗ e)(x), e]E, f ∈ C1([0, 1]), x ∈ [0, 1],

where [·, ·]E is a semi-inner product on E compatible with the norm

which satisfies [e1, λe2]E = λ̄[e1, e2]E for any ei ∈ E and λ ∈ CWe get

|Se(f)(x)| = |[T0(f ⊗ e)(x), e]E| ≤ ‖T0(f ⊗ e)(x)‖E

and

|(Se(f))′(x)| = |[T0((f⊗e)′)(x), e]E| ≤ ‖T0(f⊗e)′(x)‖E ≤ ‖(Tb(f⊗e))′‖∞

for any f ∈ C1([0, 1]) and x ∈ [0, 1]. Thus we deduce

‖Se(f)‖Σ = ‖Se(f)‖∞ + ‖(Se(f))′‖∞
≤ ‖T0(f ⊗ e)‖∞ + ‖T0(f ⊗ e)′‖∞ = ‖T0(f ⊗ e)‖Σ

≤ ‖T0‖‖f ⊗ e‖Σ = ‖T0‖‖f‖Σ

for each f ∈ C1([0, 1]). It follows that ‖Se‖ ≤ ‖T0‖, i.e., Se is a bounded

operator on C1([0, 1]). Let t ∈ R. We have

(I + itSe)(1)(x) = 1 + it[T0(1 ⊗ e)(x), e]E

= 1 + it[T (1 ⊗ e)(x) − ϕ((1 ⊗ e)(x)), e]E = 1 + it[0, e]E = 1
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for any x ∈ X. This implies that

(1.21) 1 ≤ ‖I + itSe‖.

On the other hand, let f ∈ C1([0, 1]). We obtain for any x, y ∈ X,

|(I + itSe)(f)(x)| = |f(x) + it[T0(f ⊗ e)(x), e]E|

= |f(x)[e, e]E + it[T0(f⊗e)(x), e]E| = |[(f⊗e)(x)+ itT0(f⊗e)(x), e]E|

≤ ‖(f ⊗ e+ itT0(f ⊗ e))(x)‖E ≤ ‖(I + itT0)(f ⊗ e)‖∞,

for any x ∈ [0, 1]. In addition, we have for any x, y ∈ [0, 1]

|(I + itSe)(f)(x) − (I + itSe)(f)(y)|

= |f(x)[e, e]E + it[T0(f ⊗ e)(x), e]E − f(y)[e, e]E − it[T0(f ⊗ e)(y), e]E|

= |[(f ⊗ e)(x) + itT0(f ⊗ e)(x), e]E − [(f ⊗ e)(y) + itT0(f ⊗ e)(y), e]E|

= |[(I + itT0)(f ⊗ e)(x) − (I + itT0)(f ⊗ e)(y), e]E|

≤ ‖(I + itT0)(f ⊗ e)(x) − (I + itT0)(f ⊗ e)(y)‖E.

Thus we obtain

‖(I + itSe)(f)′‖∞ ≤ ‖(I + itT0)(f ⊗ e)′‖∞.

Therefore, we get

‖(I + itSe)(f)‖Σ = ‖(I + itSe)(f)‖∞ + ‖(I + itSe)(f)′‖∞
≤ ‖(I + itT0)(f ⊗ e)‖∞ + ‖(I + itT0)(f ⊗ e)′‖∞
= ‖(I + itT0)(f ⊗ e)‖Σ
≤ ‖I + itT0‖‖f ⊗ e‖Σ = ‖I + itT0‖‖f‖Σ

for any f ∈ C1([0, 1]). We conclude that

(1.22) ‖I + itSe‖ ≤ ‖I + itT0‖.

Since T0 is a Hermitian operator on C1([0, 1], E), we have

‖I + itT0‖ = 1 + o(t)

by [30, Theorem 5.2.6]. Combining equation (1.21) with equation

(1.22), we see that

1 ≤ ‖I + itSe‖ ≤ ‖I + itT0‖ = 1 + o(t).
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This implies that Se : C1([0, 1]) → C1([0, 1]) is a Hermitian operator. It

is easy to see that Se is a real multiple of the identity. Since Se(1)(x) =

[T0(1 ⊗ e)(x), e] = 0, we deduce

Se(f)(x) = 0f(x) = 0 f ∈ C1([0, 1]), x ∈ [0, 1].

Therefore, we have

[T0(f ⊗ e)(x), e]E = 0

for all f ∈ C1([0, 1]) and x ∈ [0, 1]. As e ∈ E with ‖e‖E = 1 is

arbitrary, we obtain

(1.23) [T0(f ⊗ e)(x), e]E = 0, e ∈ E, f ∈ C1([0, 1]), x ∈ [0, 1].

We now prove that T0 = 0. Let f ∈ C1([0, 1]) and x ∈ [0, 1]. Then we

define a map Sfx : E → E such that

Sfx(e) = T0(f ⊗ e)(x)

for any e ∈ E. It is easy to check that Sfx is linear because of linearity

of T0. In addition, we have

‖Sfx(e)‖E = ‖T0(f ⊗ e)(x)‖E
≤ ‖T0(f ⊗ e)‖Σ ≤ ‖T0‖‖f ⊗ e‖Σ = ‖T0‖‖f‖Σ‖e‖E

for any e ∈ E. We deduce that Sfx is a bounded operator. Moreover,

by (1.23) we have

[Sfx(e), e]E = [T0(f ⊗ e)(x), e]E = 0

for all e ∈ E. Applying [76, Theorem 5], we have

T0(f ⊗ e)(x) = Sfx(e) = 0, e ∈ E.

As f ∈ C1([0, 1]) and x ∈ [0, 1] be chosen arbitrary, we conclude

(1.24) T0(f ⊗ e)(x) = 0

for any f ∈ C1([0, 1]), e ∈ E and x ∈ [0, 1]. Suppose that dimE = n.

Then, by Lemma 7, for any F ∈ C1([0, 1], E), F is represented by the

following;

F =
n∑
k=1

fk ⊗ ek
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with some fk ∈ C1([0, 1]) and ek ∈ E for k = 1, . . . , n. It follows by

(1.24) that

(1.25) (T0F )(x) = T0(
n∑
k=1

fk ⊗ ek)(x) =
n∑
k=1

T0(fk ⊗ ek)(x) = 0

for any x ∈ [0, 1]. We recall the definition of the Hermitian operator

T0 : C1([0, 1], E) → C1([0, 1], E) is defined by

(T0F )(x) = (TF )(x) − ϕ(F (x)), x ∈ X

for every F ∈ C1([0, 1], E). Applying (1.25), we have

(TF )(x) − ϕ(F (x)) = 0,

that is,

(TF )(x) = ϕ(F (x))

for any F ∈ C1([0, 1], E) and x ∈ [0, 1]. □

2. Surjective linear isometries between Banach algebras with

the values in Mn(C)

We denote the Banach algebra of complex matrices of order n by

Mn(C). The metric we consider on Mn(C) is the metric inherited from

the operator norm (spectral norm). In this section we study surjective

isometries with respect to the norm ‖ · ‖L between Banach algebras of

Lipschitz maps that take values in Mn(C).

We employ Lumer’s method involving the notion of Hermitian oper-

ators. Theorem 6.2 implies that Hermitian operators on Lip(X,Mn(C))

are characterized via Hermitian operators on Mn(C). We say that a

bounded operator D on a unital C∗-algebra A is a ∗-derivation if

D(ab) = D(a)b+ aD(b),

D(a∗) = D(a)∗
(2.1)

for every pair a, b ∈ A. Note that the definition of ∗-derivation on a

unital C∗-algebra in [113] differs from the above definition (2.1). In

fact, due to the definition of Sinclair in [113] a bounded operator δ on

A is a ∗-derivation if δ(ab) = δ(a)b+aδ(b) and δ(a∗) = −δ(a)∗ hold for

every pair a, b ∈ A. Hence a bounded operator D on A is ∗-derivation
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in this dissertation if and only if iD is a ∗-derivation in the sense of

Sinclair.

For each a ∈ A, a left multiplication operator Ma : A → A is

defined by Mab = ab for every b ∈ A.

Theorem 6.7 (Sinclair [113]). Let A be a unital C∗-algebra. A

bounded operator T on A is a Hermitian operator if and only if there

exist a Hermitian element h ∈ A and a ∗-derivation D on A such that

T = Mh + iD.

It is well known that an operator D : Mn(C) → Mn(C) is a ∗-

derivation if and only if there exists B ∈ Mn(C) with B∗ = −B such

that

D(A) = BA− AB, A ∈Mn(C).

Hence we deduce the following characterization of Hermitian operators

on Mn(C). We denote the set of all Hermitian matrices of Mn(C) by

Her(Mn(C)).

Theorem 6.8. A linear operator T on Mn(C) is a Hermitian op-

erator if and only if there exist H ∈ Her(Mn(C)) and a ∗-derivation
D : Mn(C) →Mn(C) such that

T (A) = MH(A) + iD(A), A ∈Mn(C).

In particular, there exists B ∈Mn(C) with B∗ = −B such that

D(A) = BA− AB, A ∈Mn(C).

2.1. Surjective linear isometries on Lip(X,Mn(C)). The fol-

lowing is the main result in this subsection.

Theorem 6.9. Let Xj be a compact metric space for j = 1, 2.

Then U : Lip(X1,Mn(C)) → Lip(X2,Mn(C)) is a surjective linear

isometry such that U(1) = 1 if and only if there exists a unitary matrix

V ∈Mn(C), and a surjective isometry φ : X2 → X1, such that

(UF )(x) = V F (φ(x))V −1, F ∈ Lip(X1,Mn(C)), x ∈ X2

or

(UF )(x) = V F t(φ(x))V −1, F ∈ Lip(X1,Mn(C)), x ∈ X2,
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where F t(y) denote transpose of F (y) for y ∈ X1.

One of Schur’s theorem asserts that a map U : Mn(C) →Mn(C) is

a surjective isometry if and only if there exist unitary matrices V1 and

V2 such that either U(A) = V1AV2 for every A ∈ Mn(C), or U(A) =

V1A
tV2, for every A ∈ Mn(C) holds (see[109]). In order to prove

Theorem 6.9 we apply Schur’s theorem and several lemmas, we assume

that X denotes a compact metric space.

Definition 6.10. For any H ∈ Her(Mn(C)), we define a multipli-

cation operator M1⊗H : Lip(X,Mn(C)) → Lip(X,Mn(C)) by

M1⊗H(F ) = (1 ⊗H)F, F ∈ Lip(X,Mn(C)).

For any ∗-derivation D : Mn(C) → Mn(C), we define a map D̂ :

Lip(X,Mn(C)) → Lip(X,Mn(C)) by

D̂(F )(x) = D(F (x)), F ∈ Lip(X,Mn(C)), x ∈ X.

Using Theorem 6.2 and Theorem 6.8, we prove the following char-

acterization of Hermitian operators on Lip(X,Mn(C)).

Lemma 6.11. Suppose that T : Lip(X,Mn(C)) → Lip(X,Mn(C))

is a map. Then T is a Hermitian operator if and only if there exists

H ∈ Her(Mn(C)) and a ∗-derivation D on Mn(C) such that

(2.2) T = M1⊗H + iD̂.

Proof. Suppose that T is a Hermitian operator on Lip(X,Mn(C)).

Theorem 6.2 implies the existence of a Hermitian operator ϕ : Mn(C) →
Mn(C) such that

TF (x) = ϕ(F (x)), F ∈ Lip(X,Mn(C)), x ∈ X.

In addition, by Theorem 6.8, there exist H ∈ Her(Mn(C)) and ∗-

derivation D on Mn(C) such that

ϕ(A) = MH(A) + iD(A), A ∈Mn(C).

By Definition 6.10, this implies for any F ∈ Lip(X,Mn(C)), we have

(TF )(x) = ϕ(F (x)) = (MH + iD)(F (x))

= MH(F (x)) + iD(F (x))

= H(F (x)) + iD̂(F )(x) = (M1⊗H + iD̂)(F )(x).
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Thus we conclude that

T = M1⊗H + iD̂.

We prove that the converse holds. Suppose that an operator T

satisfies the condition (2.7). Then, we get

TF (x) = (M1⊗H + iD̂)(F )(x) = (MH + iD)(F (x))

for all F ∈ Lip(X,Mn(C)) and x ∈ X. Applying Theorem 6.8, MH+iD

is a Hermitian operator on Mn(C). By Theorem 6.2, we conclude that

T is a Hermitian operator on Lip(X,Mn(C)). □

By the definition of a Hermitian operator we immediately get the

following proposition. A proof is omitted.

Proposition 6.12. Let Bj be a Banach algebra for j = 1, 2. Sup-

pose that U is a surjective linear isometry from B1 onto B2 and T is

a Hermitian operator on B1. Then the map UTU−1 is a Hermitian

operator on B2.

Lemma 6.13. For any H ∈ Her(Mn(C)), there exists H0 ∈ Her(Mn(C))

such that

U(1 ⊗H) = 1 ⊗H0.

In particular, if H = 1, the identity matrix, then H0 = 1.

Proof. Let H ∈ Her(Mn(C)). Lemma 6.11 shows that M1⊗H is a

Hermitian operator on Lip(X1,Mn(C)). By Proposition 6.12, we have

that UM1⊗HU
−1 is a Hermitian operator on Lip(X2,Mn(C)). Lemma

6.11 implies the existence of H0 ∈ Her(Mn(C)) and a ∗-derivation D

on Mn(C) such that

(UM1⊗HU
−1)(F )(x) = (M1⊗H0

+ iD̂)(F )(x) = H0(F (x)) + iD(F (x))

for all F ∈ Lip(X2,Mn(C)) and x ∈ X2. In particular, when F = 1,

we get

(UM1⊗HU
−1)(1)(x) = (UM1⊗H1)(x) = U(1 ⊗H)(x)

and

H0(1(x)) + iD(1(x)) = H0 + i0 = H0.
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Thus, we have

U(1 ⊗H)(x) = H0, x ∈ X2.

Hence U(1 ⊗ H) = 1 ⊗ H0. In particular, if H = 1, then we have

H0 = 1 by the hypothesis U(1) = 1. This completes the proof. □

By Lemma 6.13, we define a map ψ0 : Her(Mn(C)) → Her(Mn(C))

by

U(1 ⊗H) = 1 ⊗ ψ0(H).

Lemma 6.14. The map ψ0 is a real linear isometry from Her(Mn(C))

onto itself such that ψ0(1) = 1.

Proof. For any H1 ∈ Her(Mn(C)), we have that U−1M1⊗H1
U

is a Hermitian operator on Lip(X1,Mn(C)). Lemma 6.11 implies the

existence of H2 ∈ Her(Mn(C)) and a ∗-derivation D0 on Mn(C) such

that

U−1M1⊗H1
U = M1⊗H2

+ iD̂0.

Hence we get M1⊗H2
= U−1M1⊗H1

U − iD̂0. Then we obtain

UM1⊗H2
U−1(1) = U(U−1M1⊗H1

U − iD̂0)U
−1(1)

= M1⊗H1
(1) − U(iD̂0(1))

= 1 ⊗H1 − iU(0)

= 1 ⊗H1.

It follows that U(1 ⊗ H2) = 1 ⊗ H1, and we have ψ0(H2) = H1. As

H1 ∈ Her(Mn(C)) is arbitrary, we get that ψ0 is surjective.

We prove that ψ0 is an isometry. For any H ∈ Her(Mn(C)), we get

‖ψ0(H)‖Mn(C) = ‖1 ⊗ ψ0(H)‖Σ = ‖U(1 ⊗H)‖Σ
= ‖1 ⊗H‖Σ = ‖H‖Mn(C).

Thus, we have ψ0 is an isometry. By the definition of ψ0, we infer that

ψ0(1) = 1. By a simple calculation, we see that ψ0 is real linear. □

For any A ∈ Mn(C), there exists H1, H2 ∈ Her(Mn(C)) such that

A = H1 + iH2. Applying this decomposition, we define a map ψ :

Mn(C) →Mn(C) as follows;

ψ(A) = ψ(H1 + iH2) = ψ0(H1) + iψ0(H2).
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Due to the definition for ψ, we have

U(1 ⊗ A) = U(1 ⊗ (H1 + iH2))

= U(1 ⊗H1) + iU(1 ⊗H2)

= 1 ⊗ ψ0(H1) + i1 ⊗ ψ0(H2)

= 1 ⊗ (ψ0(H1) + iψ0(H2))

= 1 ⊗ ψ(A),

(2.3)

for any A ∈Mn(C).

Lemma 6.15. The map ψ is a complex linear isometry from Mn(C)

onto itself such that ψ(1) = 1. There exists a unitary matrix V ∈
Mn(C) such that

ψ(A) = V AV −1, A ∈Mn(C)

or

ψ(A) = V AtV −1, A ∈Mn(C).

Proof. The equation (2.3) and Lemma 6.14 imply that ψ is a

complex linear isometry with ψ(1) = 1. We show that ψ is surjective.

For any A ∈ Mn(C), there exists H1, H2 ∈ Her(Mn(C)) such that

A = H1 + iH2. By Lemma 6.14, ψ0 : Her(Mn(C)) → Her(Mn(C)) is

surjective, there exist H
′
1, H

′
2 ∈ Her(Mn(C)) such that ψ0(H

′
1) = H1

and ψ0(H
′
2) = H2. We define A′ = H

′
1 + iH

′
2 ∈ Mn(C). This implies

that

ψ(A′) = ψ0(H
′

1) + iψ0(H
′

2) = H1 + iH2 = A.

As A ∈ Mn(C) is arbitrary, we have that ψ is surjective. Applying

Schur’s theorem in [109], there exist unitary matrices V and W such

that

ψ(A) = V AW, A ∈Mn(C)

or

ψ(A) = V AtW, A ∈Mn(C).

As ψ(1) = 1 we have that W = V −1, hence we get the desired formulae.

□
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Lemma 6.16. For any f ∈ Lip(X1), there exists g ∈ Lip(X2) such

that

U(f ⊗ 1) = g ⊗ 1

Proof. For any B ∈ Mn(C) with B∗ = −B, we define a ∗-

derivation D on Mn(C) by

D(A) = BA− AB, A ∈Mn(C).

Note that Lemma 6.11 shows that the map iD̂ : Lip(X2,Mn(C)) →
Lip(X2,Mn(C)) defined by

(iD̂)(F )(x) = iD(F (x)) F ∈ Lip(X2,Mn(C)), x ∈ X2,

is a Hermitian operator on Lip(X2,Mn(C)). Since the map U is an

isometry, U−1iD̂U is a Hermitian operator. Lemma 6.11 implies the

existence of H ∈ Her(Mn(C)) and ∗-derivation D′ on Mn(C) such that

U−1iD̂U = M1⊗H + iD̂′.

In addition, there exists C ∈Mn(C) with C∗ = −C such that D′(A) =

CA − AC for every A ∈ Mn(C). On the other hand, since we assume

that U(1) = 1, we have

(U−1iD̂U)(1) = i(U−1D̂U)(1) = iU−1D̂(1) = iU−1(0) = 0.

Thus we deduce that

0 = (U−1iD̂U)(1) = (M1⊗H + iD̂′)(1)

= 1 ⊗H + iD̂′(1) = 1 ⊗H + i0 = 1 ⊗H.

We conclude that U−1iD̂U = iD̂′. Let f ∈ Lip(X1). We have

(U−1iD̂U)(f ⊗ 1)(x) = iD̂′(f ⊗ 1)(x)

= iD′(f(x)1) = i(Cf(x)1 − f(x)1C)

= i(f(x)C − f(x)C)1 = 0

for any x ∈ X1. This implies that

(2.4) (U−1iD̂U)(f ⊗ 1) = 0.

Note that for any x ∈ X2,

D̂(U(f ⊗ 1))(x) = D(U(f ⊗ 1)(x)) = BU(f ⊗ 1)(x) − U(f ⊗ 1)(x)B.
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Thus, we have

D̂(U(f ⊗ 1)) = 1 ⊗BU(f ⊗ 1) − U(f ⊗ 1)1 ⊗B.

Therefore, we get

(U−1iD̂U)(f ⊗ 1) = U−1(iD̂U(f ⊗ 1))

= iU−1(1 ⊗BU(f ⊗ 1) − U(f ⊗ 1)1 ⊗B).
(2.5)

Combining equation (2.4) with equation (2.5), we infer that

U−1(1 ⊗BU(f ⊗ 1) − U(f ⊗ 1)1 ⊗B) = 0.

As U−1 is injective, we deduce that

(2.6) 1 ⊗BU(f ⊗ 1) = U(f ⊗ 1)1 ⊗B.

Notice that B ∈ Mn(C) with B∗ = −B is arbitrary. For any A ∈
Mn(C), there exist B1, B2 ∈ Mn(C) which satisfy B∗

k = −Bk for k =

1, 2 and A = −iB1 +B2. Then we have by the equation (2.6) that

1 ⊗ AU(f ⊗ 1) = 1 ⊗ (−iB1 +B2)U(f ⊗ 1)

= −i1 ⊗B1U(f ⊗ 1) + 1 ⊗B2U(f ⊗ 1)

= −iU(f ⊗ 1)1 ⊗B1 + U(f ⊗ 1)1 ⊗B2

= U(f ⊗ 1)1 ⊗ (−iB1 +B2) = U(f ⊗ 1)1 ⊗ A.

We infer that for every x ∈ X2, we have

AU(f ⊗ 1)(x) = U(f ⊗ 1)(x)A

for any A ∈ Mn(C). Since U(f ⊗ 1)(x) is commutative with any

matrices, we have U(f⊗1)(x) is a scalar multiple of the identity matrix.

It follows that there exists g(x) ∈ C such that

U(f ⊗ 1)(x) = g(x)1.

Since U(f ⊗ 1) ∈ Lip(X2,Mn(C)), we get g ∈ Lip(X2) and

U(f ⊗ 1) = g ⊗ 1.

This completes the proof. □

Lemma 6.17. There exists a surjective isometry φ : X2 → X1 such

that

U(f ⊗ 1)(x) = f(φ(x)) ⊗ 1

for all f ∈ Lip(X1) and x ∈ X2.
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Proof. By Lemma 6.16, we define a map PU : Lip(X1) → Lip(X2)

by

U(f ⊗ 1) = PU(f) ⊗ 1, f ∈ Lip(X1).

Let g ∈ Lip(X2). Applying a similar argument to Lemma 6.16 for U−1

instead of U , there exists f ∈ Lip(X1) such that U−1(g ⊗ 1) = f ⊗ 1.

Since

PU(f) ⊗ 1 = U(f ⊗ 1) = U(U−1(g ⊗ 1)) = g ⊗ 1,

we have PU(f) = g. Thus we have PU is surjective. In addition, we get

‖PU(f)‖Σ = ‖U(f ⊗ 1)‖Σ = ‖f ⊗ 1‖Σ = ‖f‖Σ,

for all f ∈ Lip(X1). It is easy to see that PU is complex linear. Hence we

conclude that PU is a linear isometry from Lip(X1) onto Lip(X2). When

X1 = X2, Theorem 2.1 in [16] asserts that there exists a surjective

isometry φ : X2 → X1 such that PU(f) = f ◦ φ for every f ∈ Lip(X1).

For the convenience of the readers, we exhibit a proof for the general

case which is a little bit different from the case of X1 = X2. As is

pointed out in [16], the algebra Lip(Xj) is a regular subspace of C(Xj),

and the norm ‖ · ‖L is a natural norm in the sense of Jarosz [47].

Then by Theorem in [47], PU is a surjective isometry from (Lip(X1), ‖·
‖∞) onto (Lip(X2), ‖ · ‖∞). The Stone-Weierstrass theorem asserts

that Lip(Xj) is uniformly dense in C(Xj). Then PU is extended to a

surjective isometry PU from C(X1) onto C(X2). Then by the Banach-

Stone theorem, there exists a homeomorphism φ : X2 → X1 such that

PU(f) = f ◦ φ, f ∈ C(X1). Hence we have that PU(f) = f ◦ φ for

every f ∈ Lip(X1). The rest is a routine argument to prove that φ is an

isometry since PU preserves two norms ‖·‖L and ‖·‖∞ respectively (see

the proof of [16, Theorem 2.1]). A proof is rather simple by applying

[48, Example 8], while the statement is just confirmed by Corollary

4.15. Thus we obtain that

U(f ⊗ 1)(x) = PU(f)(x) ⊗ 1 = f(φ(x)) ⊗ 1, f ∈ Lip(X1), x ∈ X2.

□

We now give a proof of Theorem 6.9.
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Proof of Theorem 6.9. A proof of the sufficient part of Theo-

rem 6.9 is rather simple and is omitted. We prove the converse impli-

cation. For any H ∈ Her(Mn(C)), there exists ψ0(H) ∈ Her(Mn(C))

and ∗-derivation D on Mn(C) such that

UM1⊗HU
−1 = M1⊗ψ0(H) + iD̂.

Let f ∈ Lip(X1). By Lemma 6.17, we see that U(f ⊗ 1)(x) ∈ C1 for

every x ∈ X2. Thus we have that

U(f ⊗H)(x) = U(M1⊗H(f ⊗ 1))(x) = UM1⊗HU
−1U(f ⊗ 1)(x)

= (M1⊗ψ0(H) + iD̂)(U(f ⊗ 1))(x)

= M1⊗ψ0(H)(U(f ⊗ 1))(x) + iD̂(U(f ⊗ 1))(x)

= ψ0(H)(U(f ⊗ 1)(x)) = f(φ(x))ψ0(H)

for any x ∈ X2. For any A ∈Mn(C), there exist H1, H2 ∈ Her(Mn(C))

such that A = H1 + iH2 and we get

U(f ⊗ A)(x) = U(f ⊗ (H1 + iH2))(x)

= U(f ⊗H1)(x) + iU(f ⊗H2)(x)

= f(φ(x))ψ0(H1) + if(φ(x))ψ0(H2)

= f(φ(x))ψ(A)

= ψ((f ⊗ A)(φ(x)))

for any f ∈ Lip(X1) and any x ∈ X2. By Lemma 7, for every F ∈
Lip(X1,Mn(C)), F is represented by F =

∑m
k=1 fk ⊗ Ak with some

fk ∈ Lip(X1) and Ak ∈Mn(C) for k = 1, . . . ,m. Thus we deduce that

U(F )(x) = U(
m∑
k=1

fk ⊗ Ak)(x)

=
m∑
k=1

U(fk ⊗ Ak)(x) =
m∑
k=1

ψ((fk ⊗ Ak)(φ(x)))

= ψ(
m∑
k=1

(fk ⊗ Ak)(φ(x))) = ψ(F (φ(x)))

for any x ∈ X2. By Lemma 6.15, this would yield the desired conclu-

sion. □
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2.2. Surjective linear isometries on C1([0, 1],Mn(C)). The fol-

lowing is the main result in this subsection.

Theorem 6.18. We have U : C1([0, 1],Mn(C)) → C1([0, 1],Mn(C))

is a surjective linear isometry such that U(1) = 1 if and only if there

exists a unitary matrix V ∈ Mn(C), and a continuous function φ :

[0, 1] → [0, 1], where φ(x) = x for any x ∈ [0, 1] or φ(x) = 1 − x for

any x ∈ [0, 1], such that

(UF )(x) = V F (φ(x))V −1, F ∈ C1([0, 1],Mn(C)), x ∈ [0, 1]

or

(UF )(x) = V F t(φ(x))V −1, F ∈ C1([0, 1],Mn(C)), x ∈ [0, 1],

where F t(y) denote transpose of F (y) for y ∈ [0, 1].

We need some lemmas and Schur’s theorem to prove Theorem 6.18.

We define the multiplication operator and D̂ on C1([0, 1],Mn(C)).

Definition 6.19. For any H ∈ Her(Mn(C)), we define a multipli-

cation operator M1⊗H : C1([0, 1],Mn(C)) → C1([0, 1],Mn(C)) by

M1⊗H(F ) = (1 ⊗H)F, F ∈ C1([0, 1],Mn(C)).

For any ∗-derivation D : Mn(C) → Mn(C), we define a map D̂ :

C1([0, 1],Mn(C)) → C1([0, 1],Mn(C)) by

D̂(F )(x) = D(F (x)), F ∈ C1([0, 1],Mn(C)), x ∈ X.

Using Theorem 6.5 and Theorem 6.8, we also prove the following

characterization of Hermitian operators on C1([0, 1],Mn(C)) too.

Lemma 6.20. Suppose that T : C1([0, 1],Mn(C)) → C1([0, 1],Mn(C))

is a map. Then T is a Hermitian operator if and only if there exists

H ∈ Her(Mn(C)) and a ∗-derivation D on Mn(C) such that

(2.7) T = M1⊗H + iD̂.

Now the reader will have no trouble verifying Lemma 6.20, we

omit the proof. Recall that by Lemma 6.13, we define a map ψ0 :

Her(Mn(C)) → Her(Mn(C)) by

U(1 ⊗H) = 1 ⊗ ψ0(H).
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It is easy to see that the map ψ0 is a real linear isometry from Her(Mn(C))

onto itself such that ψ0(1) = 1 (see Lemma 6.14). In addition, every

A ∈Mn(C) is represented by A = H1+iH2 with H1, H2 ∈ Her(Mn(C)).

Applying this decomposition, we define a map ψ : Mn(C) →Mn(C) as

follows;

ψ(A) = ψ(H1 + iH2) = ψ0(H1) + iψ0(H2).

Due to the definition for ψ, we have U(1 ⊗ A) = 1 ⊗ ψ(A) for any

A ∈Mn(C). By Lemma 6.15, we see the form of ψ.

Lemma 6.21. For any f ∈ C1([0, 1]), there exists g ∈ C1([0, 1])

such that

U(f ⊗ 1) = g ⊗ 1

Proof. For any B ∈ Mn(C) with B∗ = −B, we define a ∗-

derivation D on Mn(C) by

D(A) = BA− AB, A ∈Mn(C).

Note that Lemma 6.20 shows that the map iD̂ : C1([0, 1],Mn(C)) →
C1([0, 1],Mn(C)) defined by

(iD̂)(F )(x) = iD(F (x)) F ∈ C1([0, 1],Mn(C)), x ∈ [0, 1],

is a Hermitian operator on C1([0, 1],Mn(C)). Since the map U is an

isometry, U−1iD̂U is a Hermitian operator. Lemma 6.20 implies the

existence of H ∈ Her(Mn(C)) and ∗-derivation D′ on Mn(C) such that

U−1iD̂U = M1⊗H + iD̂′.

By a similar way with Lemma 6.16, we can prove that for any f ∈
C1([0, 1]) and x ∈ [0, 1],

(2.8) (U−1iD̂U)(f ⊗ 1) = 0.

We have

D̂(U(f ⊗ 1)) = 1 ⊗BU(f ⊗ 1) − U(f ⊗ 1)1 ⊗B.

Therefore, we get

(U−1iD̂U)(f ⊗ 1) = U−1(iD̂U(f ⊗ 1))

= iU−1(1 ⊗BU(f ⊗ 1) − U(f ⊗ 1)1 ⊗B).
(2.9)
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Combining equation (2.8) with equation (2.9), we infer that

U−1(1 ⊗BU(f ⊗ 1) − U(f ⊗ 1)1 ⊗B) = 0.

As U−1 is injective, we deduce that

(2.10) 1 ⊗BU(f ⊗ 1) = U(f ⊗ 1)1 ⊗B.

Notice that B ∈ Mn(C) with B∗ = −B is arbitrary. This implies that

for every x ∈ [0, 1], we have

AU(f ⊗ 1)(x) = U(f ⊗ 1)(x)A

for any A ∈Mn(C). It follows that there exists g(x) ∈ C such that

U(f ⊗ 1)(x) = g(x)1.

Since U(f ⊗ 1) ∈ C1([0, 1],Mn(C)), we get g ∈ C1([0, 1]) and

U(f ⊗ 1) = g ⊗ 1.

This completes the proof. □

Lemma 6.22. There exists a surjective isometry φ : [0, 1] → [0, 1],

which is φ(x) = x for any x ∈ [0, 1] or φ(x) = 1 − x for any x ∈ [0, 1],

such that

U(f ⊗ 1)(x) = f(φ(x)) ⊗ 1

for all f ∈ C1([0, 1]) and x ∈ [0, 1].

Proof. By Lemma 6.21, we define a map PU : C1([0, 1]) → C1([0, 1])

by

U(f ⊗ 1) = PU(f) ⊗ 1, f ∈ C1([0, 1]).

Let g ∈ C1([0, 1]). Applying a similar argument to Lemma 6.21 for U−1

instead of U , there exists f ∈ C1([0, 1]) such that U−1(g ⊗ 1) = f ⊗ 1.

Since

PU(f) ⊗ 1 = U(f ⊗ 1) = U(U−1(g ⊗ 1)) = g ⊗ 1,

we have PU(f) = g. Thus we have PU is surjective. In addition, we get

‖PU(f)‖Σ = ‖U(f ⊗ 1)‖Σ = ‖f ⊗ 1‖Σ = ‖f‖Σ,

for all f ∈ C1([0, 1]). It is easy to see that PU is complex linear. Hence

we conclude that PU is a linear isometry from C1([0, 1]) onto C1([0, 1]).
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Applying [104, Theorem 4.1], we get there exists φ : [0, 1] → [0, 1] with

φ(x) = x or φ(x) = 1 − x such that

PU(f)(x) = f(φ(x)), f ∈ C1([0, 1])

Thus we obtain that

U(f ⊗1)(x) = PU(f)(x)⊗1 = f(φ(x))⊗1, f ∈ C1([0, 1]), x ∈ [0, 1].

□

We now give a proof of Theorem 6.18.

Proof of Theorem 6.18. We omit a proof of the sufficiency of

Theorem 6.18. We prove the converse implication. For any H ∈
Her(Mn(C)), there exists ψ0(H) ∈ Her(Mn(C)) and ∗-derivation D

on Mn(C) such that

UM1⊗HU
−1 = M1⊗ψ0(H) + iD̂.

Let f ∈ C1([0, 1]). By Lemma 6.22, we see that U(f ⊗ 1)(x) ∈ C1 for

every x ∈ [0, 1]. Thus we have that

U(f ⊗H)(x) = U(M1⊗H(f ⊗ 1))(x) = UM1⊗HU
−1U(f ⊗ 1)(x)

= (M1⊗ψ0(H) + iD̂)(U(f ⊗ 1))(x)

= M1⊗ψ0(H)(U(f ⊗ 1))(x) + iD̂(U(f ⊗ 1))(x)

= ψ0(H)(U(f ⊗ 1)(x)) = f(φ(x))ψ0(H)

for any x ∈ [0, 1]. For anyA ∈Mn(C), there existH1, H2 ∈ Her(Mn(C))

such that A = H1 + iH2 and we get

U(f ⊗ A)(x) = U(f ⊗ (H1 + iH2))(x)

= U(f ⊗H1)(x) + iU(f ⊗H2)(x)

= f(φ(x))ψ0(H1) + if(φ(x))ψ0(H2)

= f(φ(x))ψ(A)

= ψ((f ⊗ A)(φ(x)))

for any f ∈ C1([0, 1]) and any x ∈ [0, 1]. By Lemma 6.4, for every

F ∈ C1([0, 1],Mn(C)), F is represented by F =
∑m

k=1 fk ⊗ Ak with

some fk ∈ C1([0, 1]) and Ak ∈ Mn(C) for k = 1, . . . ,m. Thus we

deduce that
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U(F )(x) = U(
m∑
k=1

fk ⊗ Ak)(x)

=
m∑
k=1

U(fk ⊗ Ak)(x) =
m∑
k=1

ψ((fk ⊗ Ak)(φ(x)))

= ψ(
m∑
k=1

(fk ⊗ Ak)(φ(x))) = ψ(F (φ(x)))

for any x ∈ [0, 1]. By Lemma 6.15, this would yield the desired conclu-

sion. □





CHAPTER 7

Tensor products of uniform algebras and
C∗-algebras

1. Preliminary

In this chapter, X is a compact Hausdorff space and E is a complex

Banach space. The space of all E-valued continuous maps on X, with

the supremum norm, is denoted by C(X,E). Recall that A is a uniform

algebra on X if A is a uniformly closed subalgebra of C(X) which

separates the points of X and contains constant functions. A uniform

algebra A on X is called natural if the canonical embedding x 7→ δx

from X into the maximal ideal space M(A) of A is surjective, where

δx denotes the point evaluation at x. Hence the maximal ideal space

of a natural uniform algebra on X is identified with X itself. For

a uniform algebra A, the Gelfand transform A → Â ⊂ C(M) is an

isometric algebra isomorphism into Â. Identifying A with its Gelfand

transform Â we may suppose that a uniform algebra is defined on

the maximal ideal space. Under this identification, the statement “ a

uniform algebra on the maximal ideal space is natural” makes sense.

The algebraic tensor product of A and E over C is denoted by A⊗E.

The injective tensor product of A and E is denoted by A⊗ E. The

canonical embedding A⊗E ⊂ C(X,E) allows us to identify A⊗ E with

the uniform closure of A⊗E in C(X,E) in the way that an element F ∈
A⊗ E is regarded as a continuous map F : X → E. By the standard

argument using the partition of unity we have C(X) ⊗ E = C(X,E).

Throughout the dissertation, the operator norm of a bounded linear

operator from a Banach space into a Banach space is denoted by ‖·‖op.
For a complex Banach space E with the norm ‖ · ‖E, a complex-

valued function [·, ·]E : E ×E → C is a semi-inner product compatible

with the norm of E, see Definition 1.8.There may be several (actually

147
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infinitely many) semi-inner products compatible with the norm as is

observed below. For a vector e ∈ E, let

Πe = {e∗ ∈ E∗ : ‖e∗‖op = ‖e‖E, e∗(e) = ‖e‖2E},

the set of all dual maps of e. Proposition 1.9 shows it is not empty

by the Hahn-Banach theorem. Suppose that a map I : E → ∪e∈EΠe

satisfies that I(e) ∈ Πe for every e ∈ E. Then the function [·, ·] :

E × E → C defined by [a, e] = [I(e)](a) for a ∈ E is a semi-inner

product on E compatible with the norm. Such a map I exists by

the axiom of choice. Conversely, for a semi-inner product [·, ·]E on

E compatible with the norm, the functional e∗ : E → C defined by

e∗(a) = [a, e]E (a ∈ E) is an element in Πe.

Recall that B(E) is the Banach algebra of all bounded linear oper-

ators on E with the operator norm and let [·, ·] be a semi-inner product

on E compatible with the norm. An operator T ∈ B(E) is called a

Hermitian operator if [T (x), x] is real for all x in E. It is important

to note that the definition does not depend on the choice of semi-inner

product; in fact it is known that, for an operator T ∈ B(E), [T (x), x]E

is real for every x in E for a semi-inner product [·, ·]E if and only if

[T (x), x] is real for every x in E for any semi-inner product [·, ·] on E

(see [6, pp. 5,6]). Since a semi-inner product is a linear functional, we

see that an operator T : E → E is Hermitian if and only if e∗(T (e)) is

real for every pair e ∈ E and e∗ ∈ Πe.

These notions of semi-inner products and Hermitian operators were

introduced by Lumer in [76] in the study of isometries on certain Orlicz

space [76, 77, 78]. The method he applied in [77, 78] to describe

isometries is now called Lumer’s method.

Vidav [115] called an element a in a unital Banach algebra B Her-

mitian if ‖1 + ita‖B = 1 + o(t) for t real, where 1 is the unit of B.

It is known [30, Theorem 6.2.1] that a ∈ B is Hermitian if and only

if ‖ exp(ita)‖B = 1 for every real number t. The set of all Hermitian

elements in B is a real Banach space and is denoted by Her(B). This

implies that T ∈ B(E) is a Hermitian operator if and only if T is

a Hermitian element in the Banach algebra B(E) applying Theorem

1.10. Hence the set Her(B(E)) is precisely the set of all Hermitian
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operators on E, and an operator T ∈ B(E) is Hermitian if and only

if ‖I + itT‖op = 1 + o(t), t ∈ R. If B is a unital C∗-algebra, then

Her(B) is the self-adjoint part of B. In this chapter, we study Hermit-

ian operators on A⊗ E and surjective isometries between these spaces

by applying Lumer’s method. Fleming and Jamison [29, Theorem 4]

proved that a Hermitian operator on C(X,E) has a specific form (see

Corollary 7.2), the proof of which heavily depends on a property of

C(X) that a general uniform algebra does not have. We prove that a

Hermitian operator on A⊗ E has the same form as the one demon-

strated by Fleming and Jamison, while our proof is rather different

from theirs. An application is a demonstration of the Banach-Stone

property of unital factor C∗-algebras. Following Cambern [27] we say

that a Banach space E has the Banach-Stone property if every sur-

jective isometry U : C(X1, E) → C(X2, E) admits a homeomorphism

φ : X2 → X1 and a strongly continuous family {Vy}y∈X2 of surjective

isometries from E onto itself such that

[U(F )](y) = Vy(F (φ(y))), F ∈ C(X1, E), y ∈ X2.

Here we say that a map ϕ : X2 → S ⊂ B(E) is strongly continuous, or

the famliy {ϕ(x)}x∈X2 is strongly continuous, if ϕ is continuous with

respect to the relative topology on S induced by the strong operator

topology on B(E), that is, the coarsest topology such that the map

the map X2 → E, x 7→ [ϕ(x)](e), is continuous for each e ∈ E. Flem-

ing and Jamison applied [29, Theorem 4] to prove in [29, Theorem 9]

that E has the Banach-Stone property if E has the one-dimensional

centralizer, a result by Behrends [4, 5]. As an application of Theo-

rem 7.1, we characterize unital surjective isometries A⊗ E1 → A⊗ E2

and establish in Corollary 7.4 that a unital factor C∗-algebra has the

Banach-Stone property. Since a unital factor C∗-algebra has the one-

dimensional centralizer, Corollary 7.4 follows from [29, Theorem 9], yet

we believe that our proof is simpler than the previous proofs.

2. Results of Hermitian operators on A⊗ E

Let X be a compact Hausdorff space and E a complex Banach

space. Let ϕ : X → B(E) be a strongly continuous map and F ∈
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C(X,E). We prove that the map [x 7→ [ϕ(x)](F (x))] is a continuous

map from X into E. First, for each e ∈ E the map from X into E

defined by [x 7→ [ϕ(x)](e)] is continuous since ϕ is strongly continu-

ous. Then the map ‖ϕ(·)e‖E : X → R defined by [x 7→ ‖[ϕ(x)](e)‖E]

is continuous, hence it is bounded since X is compact. Applying

the uniform boundedness principle for the family {ϕ(x)}x∈X , we have

supx∈X ‖ϕ(x)‖op = M <∞. Let x0 ∈ X and {xα} is a net in X which

converges to x0. Then

‖[ϕ(x0)](F (x0)) − [ϕ(xα)](F (xα))‖E
≤ ‖[ϕ(x0) − ϕ(xα)](F (x0))‖E + ‖[ϕ(xα)](F (x0) − F (xα))‖E

≤ ‖[ϕ(x0) − ϕ(xα)](F (x0))‖E +M‖F (x0) − F (xα)‖E → 0

as xα → x0. It follows that the map [x → [ϕ(x)](F (x))] is continuous.

We define an operator Cϕ : C(X,E) → C(X,E) by

[Cϕ(F )](x) = [ϕ(x)](F (x)), F ∈ C(X,E), x ∈ X.

Note that Cϕ is a bounded operator since

‖Cϕ(F )‖∞ = sup
x∈X

‖[Cϕ(F )](x)‖E = sup
x∈X

‖[ϕ(x)](F (x))‖E ≤M‖F‖∞.

The following is a generalization of Theorem 4 in [29] for C(X) to

a uniform algebra A.

Theorem 7.1. Let A be a natural uniform algebra on a compact

Hausdorff space X and E a complex Banach space. For a bounded lin-

ear operator T : A⊗ E → A⊗ E, the following conditions are equiva-

lent.

(i) The operator T is a Hermitian operator.

(ii) There exists a strongly continuous map ϕ : X → Her(B(E))

such that Cϕ(A⊗ E) ⊂ A⊗ E and Cϕ|A⊗E = T .

In this case ‖T‖op = supx∈X ‖ϕ(x)‖op.

As a consequence of Theorem 7.1 we have a slightly stronger ver-

sion of [29, Theorem 4]. It gives us a characterization of Hermitian

operators on C(X,E).
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Corollary 7.2. Let X be a compact Hausdorff space and E a

complex Banach space. Then a bounded linear operator T : C(X,E) →
C(X,E) is a Hermitian operator if and only if there exists a strongly

continuous map ϕ : X → B(E) such that ϕ(x) : E → E is a Hermitian

operator for every x ∈ X which satisfies

[T (F )](x) = [ϕ(x)](F (x)), x ∈ X

for every F ∈ C(X,E). In this case ‖T‖op = supx∈X ‖ϕ(x)‖op.

Proof. Suppose that T : C(X,E) → C(X,E) is a Hermitian op-

erator. Then by Theorem 7.1 there exists a map ϕ : X → B(E), con-

tinuous with respect to the strong operator topology on B(E), with

ϕ(x) : E → E being a Hermitian operator for every x ∈ X, which

satisfies

[T (F )](x) = [ϕ(x)](F (x)), x ∈ X

for every F ∈ C(X,E).

Conversely each operator of the above form is Hermitian by Theo-

rem 7.1 The equality ‖T‖op = supx∈X ‖ϕ(x)‖op also follows from The-

orem 7.1. □

3. Proofs of results of Hermitian operators

Proof of Theorem 7.1. Suppose that T is a Hermitian operator. Let

x ∈ X. Define ϕ(x) : E → E by

[ϕ(x)](e) = [T (1 ⊗ e)](x), e ∈ E.

Then ϕ(x) is a bounded operator. We have

(3.1) ‖ϕ(x)‖op ≤ ‖T‖op

since

‖[ϕ(x)](e)‖E = ‖[T (1 ⊗ e)](x)‖E
≤ ‖T (1 ⊗ e)‖∞ ≤ ‖T‖op‖1 ⊗ e‖∞ = ‖T‖op‖e‖E

for every e ∈ E. We prove that ϕ(x) is Hermitian. Let e ∈ E be an

arbitrary element and e∗ ∈ Πe. Let δEx : A⊗ E → E be the point
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evaluation defined by δEx (F ) = F (x), F ∈ A⊗ E. Put θ : A⊗ E → C
by θ = e∗ ◦ δEx . For F ∈ A⊗ E, we have

|θ(F )| = |e∗ ◦ δEx (F )| ≤ ‖e∗‖op‖F (x)‖E ≤ ‖e∗‖op‖F‖∞ = ‖e‖E‖F‖∞

since e∗ ∈ Πe. Hence ‖θ‖op ≤ ‖e‖E. On the other hand we have

|θ(1 ⊗ e)| = |e∗(e)| = ‖e‖2E = ‖e‖E‖1 ⊗ e‖∞,

since ‖e‖E = ‖1 ⊗ e‖∞. We infer that

‖θ‖op = ‖1 ⊗ e‖∞, |θ(1 ⊗ e)| = ‖1 ⊗ e‖2∞,

hence θ ∈ Π1⊗e. Since T is Hermitian, we have θ(T (1 ⊗ e)) ∈ R for

every e ∈ E. Hence we have

e∗([ϕ(x)](e)) = e∗([T (1 ⊗ e)](x)) = θ(T (1 ⊗ e)) ∈ R.

Thus we have that ϕ(x) is Hermitian.

We prove that the map ϕ : X → B(E) is strongly continuous. Let

e ∈ E be an arbitrary element. By the definition of ϕ, [ϕ(x)](e) =

[T (1 ⊗ e)](x) for every x ∈ X. As T (1 ⊗ e) : X → E is continuous

we have that x 7→ [ϕ(x)](e) is a continuous map from X into E, which

means the strong continuity of ϕ.

By a simple calculation Cϕ is complex-linear and

‖[Cϕ(F )](x)‖E = ‖[ϕ(x)](F (x))‖E
≤ ‖ϕ(x)‖op‖F (x)‖E ≤ ‖T‖op‖F‖∞, F ∈ C(X,E).

Hence Cϕ is a bounded complex-linear operator. We prove that Cϕ(A⊗ E) ⊂
A⊗ E. To prove it, we observe that A⊗ E is an A-module. Indeed,

let f ∈ A and F ∈ A⊗ E. Define f · F by (f · F )(x) = f(x)F (x),

x ∈ X. If F =
∑
fi ⊗ ei ∈ A⊗ E, then

(f · F )(x) = f(x)
∑

fi(x)ei =
∑

(f(x)fi(x))ei, x ∈ X.

Thus we have that f ·F ∈ A⊗E. Suppose that F ∈ A⊗ E. Then there

exists a sequence {Fn} in A⊗E such that ‖Fn−F‖∞ → 0 as n→ ∞.

Then ‖f · Fn− f · F‖∞ ≤ ‖f‖∞‖Fn− F‖∞ assures that f · F ∈ A⊗ E

since f · Fn ∈ A ⊗ E for every positive integer n. Thus A⊗ E is an

A-module.
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We prove Cϕ(1 ⊗ e) ∈ A⊗ E for every e ∈ E. Let e ∈ E. By the

definition of Cϕ we have

[Cϕ(1 ⊗ e)](x) = [ϕ(x)]((1 ⊗ e)(x)) = [ϕ(x)](e) = [T (1 ⊗ e)](x)

for every x ∈ X. Hence Cϕ(1 ⊗ e) = T (1 ⊗ e) ∈ A⊗ E. By the

definition of Cϕ, we have for f ∈ A,

[Cϕ(f · F )](x) = [ϕ(x)]((f · F )(x)) = [ϕ(x)](f(x)F (x))

= f(x)[ϕ(x)](F (x)) = f(x)[Cϕ(F )](x), x ∈ X

since f(x) is a complex number and ϕ(x) is a complex-linear map for

every x ∈ X. Thus we have

Cϕ(f · F ) = f · Cϕ(F )

for every f ∈ A and F ∈ A⊗ E. Therefore

Cϕ(f ⊗ e) = Cϕ(f · (1 ⊗ e)) = f · Cϕ(1 ⊗ e) ∈ A⊗ E

for every pair f ∈ A and e ∈ E. As Cϕ is a bounded complex-linear

map, we have that

Cϕ(A⊗ E) ⊂ A⊗ E.

Let Φ be the restriction of Cϕ to A⊗ E: Φ = Cϕ|A⊗E : A⊗ E →
A⊗ E. We prove that Φ is a Hermitian operator. Let F ∈ A⊗ E.

Since X is compact, there exists xF ∈ X such that ‖F (xF )‖E = ‖F‖∞.

Choose any βF ∈ ΠF (xF ). Define F ∗ : A⊗ E → C by F ∗ = βF ◦ δA⊗ExF
.

It is a routine argument to prove that F ∗ ∈ ΠF . Then we have that

F ∗(Φ(F )) = βF ([Φ(F )] (xF )) = βF ([ϕ(xF )](F (xF ))) ∈ R

since βF ∈ ΠF (xF ) and ϕ(xF ) is a Hermitian operator. This holds for

every F ∈ A⊗ E, hence Φ is Hermitian.

Define a bounded linear Hermitian operator J by J = T − Φ and

we are to prove J = 0 which implies

[T (F )](x) = [ϕ(x)](F (x)), x ∈ X

for every F ∈ A⊗ E, the desired conclusion in (ii). To prove J = 0,

it is enough to show that J(f ⊗ e) = 0 for every f ∈ A and every
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e ∈ E, because A⊗E is dense in A⊗ E. For e ∈ E and e∗ ∈ Πe, define

Se : A→ C(X) by

(3.2) [Se(f)](x) = e∗ ([J(f ⊗ e)](x)) , f ∈ A, x ∈ X.

As J is complex-linear, so is Se. We prove that Se is a Hermitian

operator, and Se(A) ⊂ A, and then conclude Se = 0 by appealing to

[7, Theorem 4]. It is enough to prove these for e ∈ E with ‖e‖E = 1.

Suppose that e ∈ E with ‖e‖E = 1 and e∗ ∈ Πe. First we prove that

Se is a bounded operator. Since ‖e∗‖op = ‖e‖E = 1, we have

|[Se(f)](x)| ≤ ‖e∗‖op ‖[J(f ⊗ e)](x)‖E
≤ ‖J(f ⊗ e)‖∞ ≤ ‖J‖op‖f ⊗ e‖∞ = ‖J‖op‖f‖∞

for every pair f ∈ A and x ∈ X. Hence

‖Se(f)‖∞ ≤ ‖J‖op‖f‖∞, f ∈ A,

so that Se is bounded. To prove that Se(A) ⊂ A, we show that, for

each F ∈ A⊗ E, the function

X 3 x 7→ e∗(F (x))

belongs to A. Suppose that F =
∑
fi ⊗ ei ∈ A ⊗ E. Then for every

x ∈ X we have

e∗(F (x)) =
∑

e∗(ei)fi(x) =
(∑

e∗(ei)fi

)
(x)

Hence the function

(3.3) X 3 x 7→ e∗(F (x))

belongs to A for F =
∑
fi ⊗ ei. Suppose that F ∈ A⊗ E, in general.

Then there exists a sequence {Fn} in A⊗E such that ‖Fn−F‖∞ → 0

as n→ ∞. Then

sup
x∈X

|e∗(F (x)) − e∗(Fn(x))| = sup
x∈X

|e∗(F (x) − Fn(x))|

≤ sup
x∈X

‖F (x) − Fn(x)‖E = ‖F − Fn‖∞.

Since the function [[x 7→ e∗(Fn(x))] belongs to A by (3.3) and A is

uniformly closed , we infer that the function

X 3 x 7→ e∗(F (x))
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belongs to A. Applying this to J(f⊗e) ∈ A⊗ E for an arbitrary f ∈ A

we have

[Se(f)] =
[
X 3 x 7→ e∗

(
[J(f ⊗ e)](x)

)]
∈ A

for every f ∈ A. Thus Se(A) ⊂ A.

To prove that Se is a Hermitian operator, we show that

‖I + itSe‖op = 1 + o(t), t ∈ R,

where I : A → A is the identity operator (see Section 1). Let f ∈ A

and x ∈ X. Then using e∗(e) = ‖e‖ = 1 we have

|[(I + itSe)(f)](x)| = |f(x) + it[Se(f)](x)|

= |f(x)e∗(e) + ite∗ ([J(f ⊗ e)](x)) |

= |e∗ (f(x)e+ it[J(f ⊗ e)](x)) |

= |e∗ ((f ⊗ e+ it[J(f ⊗ e)])(x)) |

≤ ‖[(I + itJ)(f ⊗ e)](x)‖E‖e∗‖op
≤ ‖(I + itJ)(f ⊗ e)‖∞
≤ ‖I + itJ‖op‖f ⊗ e‖∞
= ‖I + itJ‖op‖f‖∞.

It follows from this that

(3.4) ‖I + itSe‖op ≤ ‖I + itJ‖op, t ∈ R.

Since J is Hermitian, ‖I + itJ‖op = 1 + o(t) for every t ∈ R. As

(I + itSe)(1) = 1, we infer that 1 ≤ ‖I + itSe‖op. Thus by (3.4) we

have that

‖I + itSe‖op = 1 + o(t), t ∈ R

hence Se is Hermitian. hence Se is a Hermitian operator on the uniform

algebra A. Therefore we obtain by Theorem 5.8 that

(3.5) Se = MSe(1),
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where MSe(1) is the left multiplication operator by the element Se(1).

Note that J(1 ⊗ e) = 0 since

[J(1 ⊗ e)](x) = [T (1 ⊗ e)](x) − [Φ(1 ⊗ e)](x)

= [T (1 ⊗ e)](x) − [ϕ(x)]((1 ⊗ e)(x))

= [T (1 ⊗ e)](x) − [ϕ(x)](e) = 0, x ∈ X.

Hence we have that [Se(1)](x) = e∗([J(1⊗e)](x)) = 0 for every x ∈ X,

that is, Se(1) = 0. By (3.5) we have that Se = 0. It follows by a simple

calculation due to the definition (3.2) of Se that Se = 0 for any e ∈ E

and e∗ ∈ Πe.

Let f ∈ A and x ∈ X be an arbitrary pair. Consider the map

[J(f ⊗ ·)](x) : E → E. Then the inequality

‖[J(f ⊗ e)](x)‖E ≤ ‖J(f ⊗ e)‖∞
≤ ‖J‖op‖f ⊗ e‖∞ = ‖J‖op‖f‖∞‖e‖E, e ∈ E

assures that [J(f ⊗ ·)](x) is bounded. Then Since

e∗ ([J(f ⊗ e)](x)) = e∗ ([Se(f)](x)) = 0

for every e ∈ E and every e∗ ∈ Πe, we conclude [J(f ⊗ ·)](x) = 0 on E

by a theorem of Lumer [76, Theorem 5].Thus we have [J(f⊗e)](x) = 0

for every f ∈ A, x ∈ X and e ∈ E, which implies J(f ⊗ e) = 0 and

thus J = 0 on A ⊗ E by the complex-linearity of J . Since A ⊗ E is

dense in A⊗ E, the continuity of J yields J = 0 on A⊗ E. It follows

that T = Φ and

[T (F )](x) = [ϕ(x)](F (x)), x ∈ X

for every F ∈ A⊗ E. We have that (ii) holds.

Suppose conversely that (ii) holds. By the hypothesis T = Cϕ|A⊗E
is a bounded linear operator. We prove that T is a Hermitian operator.

For F ∈ A⊗ E, let PF = {x ∈ X : ‖F (x)‖E = ‖F‖∞}. Then the

family {PF}F∈A⊗E consists of non-empty compact sets. By the axiom

of choice we get a subset {xF}F∈A⊗E of X such that xF ∈ PF for every

F ∈ A⊗ E. Let [·, ·]E be a semi-inner product on E compatible with

the norm ‖ · ‖E. Put [·, ·]∞ as

[G,F ]∞ = [G(xF ), F (xF )]E, F,G ∈ A⊗ E.
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It is easy to see that [·, ·]∞ is a semi-inner product on A⊗ E compatible

with the norm ‖ · ‖∞. Since ϕ(xF ) is a Hermitian operator, we have

(3.6)

[T (F ), F ]∞ = [[T (F )](xF ), F (xF )]E = [[ϕ(xF )](F (xF )), F (xF )]E ∈ R

for every F ∈ A⊗ E. Since [·, ·]∞ is a semi-inner product on A⊗ E,

we see that T is a Hermitian operator on A⊗ E by (3.6). We finish

the proof of Theorem 7.1.

2

Remark. For a map ϕ : X → Her(B(E)), the operator Cϕ :

C(X,E) → C(X,E) may not preserve the subspace A⊗ E. In fact, let

A be the disc algebra on the closed unit disk ∆ in the complex plane

C and E = C. Then A⊗ E is identified with A. Let r : ∆ → R be a

continuous map. Let ϕ(x) be the multiplication operator on C defined

by [ϕ(x)](z) = r(x)z, z ∈ C for x ∈ ∆. Then ϕ : ∆ → B(C) is a

strongly continuous map and ϕ(x) is a Hermitian operator for every

x ∈ ∆. On the other hand [T (f)](x) = [ϕ(x)](f(x)) is well defined

operator on A only if ϕ is a constant function; if ϕ is not a constant

function, then the operator T given by T (f)(x) = [ϕ(x)] = r(x)f(x)

fails to satisfy T (A) ⊂ A since r is not an analytic function.

4. Results of Isometries on A⊗ E

In the rest of this chapter, we study surjective unital isometries from

A1 ⊗ E1 onto A2 ⊗ E2 for a uniform algebra Aj and a unital factor C∗-

algebra Ej for j = 1, 2. As a corollary of Theorem 7.3 we describe

in Corollary 7.4 the form of a surjective isometries from C(X1, E1)

onto C(X2, E2). This gives an alternative and simple proof that a uni-

tal factor C∗-algebra has the Banach-Stone property (cf. [4, 5, 29]).

Let B(E1, E2) denote the Banach algebra of all bounded linear op-

erators from E1 into E2. We say that a map ϕ : X2 → B(E1, E2)

is strongly continuous, or the famliy {ϕ(x)}x∈X is strongly contin-

uous, if ϕ is continuous with respect to the strong operator topol-

ogy on B(E1, E2), that is, for every e ∈ E1 the map X2 → E2 de-

fined by x 7→ [ϕ(x)](e) is continuous. For a strongly continuous map
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V : X2 → B(E1, E2) and a continuous map φ : X2 → X1, we define an

operator CV,φ : C(X1, E1) → C(X2, E2) by

[CV,φ(F )](y) = Vy(F (φ(y))), F ∈ C(X1, E1), y ∈ X2,

where we denote Vy = V (y). Since V is strongly continuous, applying

the uniform boundedness principle in a similar way to the one indicated

at the beginning of Section 2 we see that CV,φ : C(X1, E1) → C(X2, E2)

is indeed a bounded linear operator.

Theorem 7.3. For j = 1, 2, let Aj be a natural uniform algebra on

Xj, and Ej a unital factor C∗-algebra. For a bounded linear operator

U : A1 ⊗ E1 → A2 ⊗ E2 the following conditions are equivalent.

(i) The operator U is a surjective isometry such that U(1) = 1.

(ii) There exists a homeomorphism φ : X2 → X1 and a strongly

continuous map V : X2 → B(E1, E2) such that

(ii.1) each Vy is a Jordan ∗-isomorphism,

(ii.2) CV,φ(A1 ⊗ E1) = A2 ⊗ E2, and

(ii.3) U = CV,φ|A1⊗E1
.

A well known theorem of Kadison [62] states that the class of Jor-

dan ∗-isomorphisms between unital C∗-algebra is precisely the class of

unital surjective isometries. Recall that a unital C∗-algebra E is called

a factor provided that the center of E coincides with C1.

Corollary 7.4. Let Xj be a compact Hausdorff space, and Ej a

unital factor C∗-algebra for j = 1, 2. Then a bounded linear operator

U : C(X1, E1) → C(X2, E2) is a surjective isometry if and only if there

exist

(i) a homeomorphism φ : X2 → X1,

(ii) a strongly continuous family {Vy}y∈X2 of Jordan ∗-isomorphisms

from E1 onto E2, and

(iii) a unitary element u ∈ C(X2, E2)

such that

(4.1) [U(F )](y) = uVy(F (φ(y))), F ∈ C(X1, E1), y ∈ X2.
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Note that the hypothesis that Ej is a factor is essential. There

exists compact Hausdorff spaces Y1 and Y2 which are not homeomor-

phic, while Y1× [0, 1] and Y2× [0, 1] are homeomorphic (see [5, fig.16]).

Since C(Yj, C([0, 1])) = C(Yj × [0, 1]), the spaces C(Y1, C([0, 1]) and

C(Y2, C([0, 1])) are isometric, but Y1 is not homeomorphic to Y2. Here

the unital commutative C∗-algebra C([0, 1]) is not a factor. As is previ-

ously mentioned, Corollary 7.4 implies that a unital factor C∗-algebra

has the Banach-Stone property.

Proof of Corollary 7.4. Suppose that U : C(X1, E1) → C(X2, E2)

is a surjective isometry. Note that C(Xj, Ej) is a unital C∗-algebra.

By a theorem of Kadison [62] on isometries on C∗-algebras, U(1) is a

unitary element in C(X2, E2). Hence U0 = U(1)∗U is a unital surjec-

tive isometry from C(X1, E1) onto C(X2, E2). Applying Theorem 7.3

to U0, we have

[U0(F )](y) = Vy(F (φ(y))), F ∈ C(X1, E1), y ∈ X2,

for a homeomorphism φ : X2 → X1 and a strongly continuous family

{Vy}y∈X2 of Jordan ∗-isomorphisms from E1 onto E2. It follows that

U has the form as is described in (4.1) with u = U(1).

Conversely Theorem 7.3 asserts that every operator U of the form

(4.1) is a surjective isometry. □

5. Proofs of results of isometries

Throughout this section Aj is a natural uniform algebra on a com-

pact Hausdorff space Xj, hence the maximal ideal space of Aj is canon-

ically identified with Xj, Ej is a unital factor C∗-algebra for j = 1, 2,

and U : A1 ⊗ E1 → A2 ⊗ E2 is a surjective linear isometry such that

U(1) = 1. Note that e ∈ Ej is a self-adjoint if and only if e is a Her-

mitian element, that is ‖ exp(ite)‖E = 1. Thus the real space of all

Hermitian element in Ej coincides with the self-adjoint part of Ej and

is denoted by Her(Ej).

Lemma 7.5. For every e ∈ Her(E1) and y ∈ X2, we have that

[U(1 ⊗ e)](y) ∈ Her(E2).
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Proof. Let e ∈ Her(E1). For the

(5.1) [M1⊗e(F )](x) = [(1 ⊗ e)F ](x) = eF (x) = Me(F (x)), x ∈ X1.

As e is a Hermitian element, the multiplication operator Me : E1 → E1

is a Hermitian operator [40, Proposition 1]. Define the constant map

ϕ : X1 → B(E1) by ϕ(x) = Me for every x ∈ X1 which is strongly

continuous. By (5.1) we infer that

[ϕ(·)](F (·)) = M1⊗e(F ) ∈ A1 ⊗ E1

for every F ∈ A1 ⊗ E1. Then by Theorem 7.1 the map M1⊗e :

A1 ⊗ E1 → A1 ⊗ E1 is Hermitian. By Theorem 5.2.6 in [30], ‖ exp(itM1⊗e)‖op =

1 for every t ∈ R. Since U : A1 ⊗ E1 → A2 ⊗ E2 is a surjective isometry

we infer that

‖ exp(itUM1⊗eU
−1)‖op = ‖U(exp(itM1⊗e))U

−1‖op
= ‖ exp(itM1⊗e)‖op = 1

for every t ∈ R. Then by [30, Theorem 6.2.1] we have that UM1⊗eU
−1 :

A2 ⊗ E2 → A2 ⊗ E2 is a Hermitian operator. Then by Theorem 7.1,

there exists a family {ϕ̃(y) : E2 → E2}y∈X2 of Hermitian operators such

that [(
UM1⊗eU

−1
)

(1)
]

(y) = [ϕ̃(y)](1(y)).

Note that 1(y) is the identity element in E2 for every y ∈ X2 since 1

is the identity element in A2 ⊗ E2, which allows us to write 1 as 1(y).

By a theorem of Sinclair [113, Remark 3.5] about the representation

of a Hermitian operator on a unital C∗-algebra, there exists an hey ∈
Her(E2) and a ∗-derivation1 Dy : E2 → E2 such that

[ϕ̃(y)](e) = heye+ iDy(e), e ∈ E2.

As Dy(1) = 0 we have[(
UM1⊗eU

−1
)

(1)
]

(y) = hey, y ∈ X2.

On the other hand, since U(1) = 1 we have[(
UM1⊗eU

−1
)

(1)
]

(y) =
[(
UM1⊗e

)
(1)
]

(y) = [U(1 ⊗ e)](y).

1Note that a ∗-derivation in [113] is a derivation D such that D(a∗) = −D(a)∗

for every a. Our ∗-derivation is a derivation D such that D(a∗) = D(a)∗ for every
a.
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Hence we conclude that

[U(1 ⊗ e)](y) = hey ∈ Her(E2)

for every y ∈ X2. □

Lemma 7.6. We have U(A1 ⊗ 1) = A2 ⊗ 1.

Proof. We prove U(A1⊗1) ⊂ A2⊗1. Repeating the argument by

replacing U with U−1, we will have the inclusion U−1(A2⊗1) ⊂ A1⊗1.

With both inclusions it will follow that U(A1 ⊗ 1) = A2 ⊗ 1.

Let f ∈ A1. We prove that U(f⊗1) ∈ A2⊗1. Let b ∈ E2 such that

b∗ = −b. Define a bounded operator Db : E2 → E2 by Db(a) = ba−ab,

for a ∈ E2. As b∗ = −b, the operator Db is a ∗-derivation. Define

D̃b : A2 ⊗ E2 → A2 ⊗ E2 by

D̃b(F ) = (1 ⊗ b)F − F (1 ⊗ b), F ∈ A2 ⊗ E2.

By some calculation we have that

(5.2)
[(
iD̃b(F )

)]
(y) = [i ((1 ⊗ b)F − F (1 ⊗ b))] (y)

= i(bF (y) − F (y)b) = (iDb(F (y))), F ∈ A2 ⊗ E2, y ∈ X2.

SinceDb is a ∗-derivation, we infer that iDb is a Hermitian operator by a

theorem of Sinclair [113, Remark 3.5]. We use an argument in the proof

of Lemma 7.5 to see that iD̃b is a Hermitian operator. In fact, define

the constant, and thus a strongly continuous map ϕ : X2 → B(E2) by

ϕ(y) = iDb, a Hermitian operator, for every y ∈ X2. Then the operator

Cϕ : A2 ⊗ E2 → A2 ⊗ E2 defined by [Cϕ(F )](x) = [ϕ(x)](F (x)) =

iDb(F (x)) is well defined and is a Hermitian operator by Theorem 7.1.

On the other hand, the equality iDb(F (x)) = [iD̃b(F )](x) holds by

(5.2), hence we have that Cϕ = iD̃b. Thus the map iD̃b : A2 ⊗ E2 →
A2 ⊗ E2 is a Hermitian operator.

Since U : A1 ⊗ E1 → A2 ⊗ E2 is a surjective isometry, we have

that U−1iD̃bU : A1 ⊗ E1 → A1 ⊗ E1 is a Hermitian operator. Then by

Theorem 7.1, for every x ∈ X1, there is a Hermitian operator ϕ′(x) :

E1 → E1 such that[(
U−1iD̃bU

)
(F )
]

(x) = [ϕ′(x)](F (x)), F ∈ A1 ⊗ E1.
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By a theorem of Sinclair [113, Remark 3.5], there exists an h′x ∈
Her(E1) and a ∗-derivation D′

x : E1 → E1 such that

[ϕ′(x)](e) = h′xe+ iD′
x(e), e ∈ E1.

It follows that

(5.3)[(
U−1iD̃bU

)
(F )
]

(x) = h′xF (x)+iD′
x(F (x)), F ∈ A1 ⊗ E1, x ∈ X1.

In particular, we have[(
U−1iD̃bU

)
(1)
]

(x) = h′x + iD′
x(1) = h′x, x ∈ X1.

Since U(1) = 1 we infer that[(
U−1iD̃bU

)
(1)
]

(x) =[
U−1 (i((1 ⊗ b)1 − 1(1 ⊗ b)))

]
(x) = 0, x ∈ X1.

Hence we have that h′x = 0 for every x ∈ X1. Thus we have by (5.3)

that

(5.4)
[(
U−1iD̃bU

)
(F )
]

(x) = (iD′
x)(F (x)), F ∈ A1 ⊗ E1, x ∈ X1.

Applying (5.4) to F = f ⊗ 1 we get[(
U−1iD̃bU

)
(f ⊗ 1)

]
(x) = (iD′

x)((f ⊗ 1)(x))

= iD′
x(f(x)1) = if(x)D′

x(1) = 0

for every x ∈ X1. Hence we have (U−1iD̃bU)(f ⊗ 1) = 0, so that

iD̃b(U(f ⊗ 1)) = 0. Hence

(1 ⊗ b)(U(f ⊗ 1) − (U(f ⊗ 1))(1 ⊗ b) = 0.

Thus

(5.5) b[U(f ⊗ 1)](y) = [U(f ⊗ 1)](y)b

for every y ∈ X2, where b is an arbitrary element in E2 with b∗ = −b.
We show that (5.5) holds for any a ∈ E2. In fact, let a ∈ E2 be an

arbitrary element and put b1 = a−a∗
2

and b2 = a+a∗

2i
. Then b∗j = −bj for

j = 1, 2 and a = b1 + ib2. By (5.5) we have

bj[U(f ⊗ 1)](y) = [U(f ⊗ 1)](y)bj, y ∈ X2,
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for j = 1, 2, which, together with a = b1 + ib2, implies

a[U(f ⊗ 1)](y) = [U(f ⊗ 1)](y)a, y ∈ X2.

As a ∈ E2 is arbitrary, we have that (U(f⊗1))(y) is in the center of E2

for each y ∈ X2. Since E2 is a factor, we infer that (U(f⊗1))(y) ∈ C1.

Thus a function g : X2 → C is defined in the way

(5.6) (U(f ⊗ 1))(y) = g(y)1.

We prove that g ∈ A2. As U(f ⊗1) ∈ A2 ⊗ E2, there exists a sequence

{Fn =
∑
fn,jen,j ∈ A2 ⊗ E2} such that ‖Fn − U(f ⊗ 1)‖∞ → 0 as

n→ ∞. For every y ∈ X2 we have

‖Fn−U(f ⊗ 1)‖∞ ≥ ‖Fn(y)− g(y)1‖E2 =
∥∥∥∑ fn,j(y)en,j − g(y)1

∥∥∥
E2

.

Choose a linear functional ψ ∈ Π1 ⊂ E∗
2 . By the definition of Π1 we

infer that ‖ψ‖op = ψ(1) = 1. Then∣∣∣∑ fn,j(y)ψ(en,j) − g(y)
∣∣∣ =

∣∣∣∑ fn,j(y)ψ(en,j) − g(y)ψ(1)
∣∣∣

=
∣∣∣ψ (∑ fn,j(y)en,j − g(y)1

)∣∣∣ ≤ ∥∥∥∑ fn,j(y)en,j − g(y)1
∥∥∥
E2

≤ ‖Fn − U(f ⊗ 1)‖∞.

It follows that∥∥∥∑ψ(en,j)fn,j − g
∥∥∥
∞(X2)

= sup
y∈X2

∣∣∣∑ fn,j(y)ψ(en,j) − g(y)
∣∣∣

≤ ‖Fn − U(f ⊗ 1)‖∞ → 0

as n → ∞. Since
∑
ψ(en,j)fn,j ∈ A2, we conclude that g ∈ A2. By

(5.6) we have that U(f ⊗ 1) = g ⊗ 1 ∈ A2 ⊗ 1. □

We prove now that (i) implies (ii). Suppose that (i) holds. Let

c : A2⊗1 → A2 be the isomorphism defined by c(g⊗1) = g for g ∈ A2.

Define a map N : A1 → A2 by f 7→ c([U(f ⊗ 1)]) for f ∈ A1. Then

by Lemma 7.6 N is well defined surjection. As U is a linear map such

that U(1) = 1, N is a surjective linear isometry such that N(1) = 1.

By the representation theorem of isometries between uniform algebras

by Nagasawa [94], N is an algebra isomorphism. Hence by Gelfand
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theory there exists a homeomorphism φ : X2 → X1 between maximal

ideal spaces such that

N(f) = f ◦ φ, f ∈ A1.

Therefore we have

[U(f ⊗ 1)](y) = [N(f)] (y)1 = f(φ(y))1, y ∈ X2.

Let e ∈ Her(E1). We see that UM1⊗eU
−1, unitarily conjugate to the

Hermitian operator M1⊗e, is a Hermitian operator (see the proof of

Lemma 7.5)

Then we see by Theorem 7.1 that there is a strongly continuous

map ϕ : X2 → B(E2) such that ϕ(y) : E2 → E2 is Hermitian for every

y ∈ X2 which satisfies

[UM1⊗eU
−1(F )](y) = [ϕ(y)](F (y)).

By a theorem of Sinclair [113, Remark 3.5] there exists hey ∈ Her(E2)

and a ∗-derivation Dy such that ϕ(y) = Mhey + iDy. For each y ∈ X2,

we define a map

ψy : Her(E1) → Her(E2)

by ψy(e) = hey. As we assume U(1) = 1,

[U(1 ⊗ e)](y) = [UM1⊗eU
−1(1)](y)

= [ϕ(y)](1) = Mhey(1) + iDy(1) = hey,

hence ψy(e) = [U(1 ⊗ e)](y). For every f ∈ A1 and y ∈ X2 we have(
U(f ⊗ e)

)
(y) =

(
UM1⊗eU

−1
)

(U(f ⊗ 1)) (y)

=
(
ϕ(y)

)((
U(f ⊗ 1)

)
(y)
)

= hey
(
U(f ⊗ 1)

)
(y) + iDy

((
U(f ⊗ 1)

)
(y)
)

= hey

((
f(φ(y))

)
1
)

+ iDy

((
f(φ(y))

)
1
)

= hey

((
f(φ(y))

)
1
)

+ if(φ(y))Dy(1)

= hey

((
f(φ(y))

)
1
)

= ψy(e)
((
f(φ(y))

)
1
)

Let Vy : E1 → E2 be defined by

Vy(e) = ψy(Re e) + iψy(Im e), e ∈ E1,
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where Re e = (e+ e∗)/2 and Im e = (e− e∗)/2i. Then Vy is a complex-

linear map. As U(1) = 1, we have for every y ∈ X2 that

Vy(1) = ψy(1) = U(1 ⊗ 1)(y) = 1,

hence Vy(1) = 1. We have for f ∈ A1, e ∈ E1 and y ∈ X2 that(
U(f ⊗ e)

)
(y) =

(
U(f ⊗ Re e)

)
(y) + i

(
U(f ⊗ Im e)

)
(y)

= ψy(Re e)
((
f(φ(y))

)
1
)

+ iψy(Im e)
((
f(φ(y))

)
1
)

= Vy(e)
((
f(φ(y))

)
1
)

= Vy

((
f(φ(y))

)
e
)
1

= Vy

((
f(φ(y))

)
e
)

= Vy

((
f ⊗ e

)
(φ(y))

)
.

Hence we infer that

(5.7) (U(F ))(y) =
(
U
(∑

fj ⊗ ej

))
(y)

= Vy

((∑
fj ⊗ ej

)
(φ(y))

)
= Vy(F (φ(y)))

for F =
∑
fj ⊗ ej ∈ A1 ⊗ E1. Then

‖Vy(e)‖E2
=
∥∥Vy((1 ⊗ e)(φ(y)

)∥∥
E2

= ‖
(
U(1 ⊗ e)

)
(y)‖E2

≤ ‖U(1 ⊗ e)‖∞ = ‖1 ⊗ e‖∞ = ‖e‖E1

holds for every e ∈ E1, so that,

(5.8) ‖Vy(e)‖E2
≤ ‖e‖E1 , e ∈ E1.

Since Vy(1) = 1, ‖Vy‖op = 1 by (5.8). Let F ∈ A1 ⊗ E1. Then there

exists an Fn ∈ A1 ⊗E1 such that ‖F − Fn‖∞ → 0, (n→ ∞). By (5.7)

we have for every y ∈ X2 that

(5.9) (U(F ))(y) = lim
n→∞

(U(Fn))(y)

= lim
n→∞

(
Vy
(
Fn(φ(y))

))
= Vy

(
F (φ(y))

)
.

The strong continuity of the family {Vy}y∈X2 is proved as follows.

Letting F = 1 ⊗ e for any e ∈ E1, we have by (5.7) that

[U(1 ⊗ e)](y) = Vy(e)

for every y ∈ X2. Since U(1 ⊗ e) ∈ C(X2, E2), the map X2 → E2

defined by

X2 3 y 7→ [U(1 ⊗ e)](y) = Vy(e)
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is continuous. As e ∈ E1 is arbitrary, the family {Vy}y∈X2 is strongly

continuous.

We prove that Vy : E1 → E2 is surjective for every y ∈ X2. Let

e ∈ E2. Since U is a surjection there is an F ∈ A1 ⊗ E1 such that

U(F ) = 1 ⊗ e. Thus we have that

e = (1 ⊗ e)(y) =
(
U(F )

)
(y) = Vy

(
F (φ(y))

)
, y ∈ X2,

which proves that Vy is surjective.

We prove that Vy is an isometry for every y ∈ X2. Repeating

the same argument by replacing U with the inverse U−1 : A2 ⊗ E2 →
A1 ⊗ E1, we see that there exist a homeomorphism φ′ : X1 → X2 and

a strong continuous family {V ′
x}x∈X1 of surjective bounded operators

from E2 onto E1 with the operator norm 1 such that

(5.10)
(
U−1(G)

)
(x) = V ′

x

(
G(φ′(x))

)
, G ∈ A2 ⊗ E2, x ∈ X1.

Let e ∈ E1. Applying (5.10) to G = U(1⊗ e) ∈ A2 ⊗ E2, and applying

(5.9) we have

e = (1 ⊗ e)(x) =
(
U−1

(
U(1 ⊗ e)

))
(x)

= V ′
x

((
U(1 ⊗ e)

)
(φ′(x))

)
= V ′

x

(
Vφ′(x)

(
(1 ⊗ e)(φ(φ′(x)))

))
=
(
V ′
x ◦ Vφ′(x)

)
(e), x ∈ X1.

As φ′ is bijective we see that

e = V ′
φ′−1(y) ◦ Vy(e)

for every y ∈ X2. Therefore

‖e‖E1 = ‖V ′
φ′−1(y) ◦ Vy(e)‖E1 ≤ ‖V ′

φ′−1(y)‖op‖Vy(e)‖E2 .

As ‖V ′
φ′−1(y)‖op ≤ 1, we have

‖e‖E1 ≤ ‖Vy(e)‖E2

holds for every e ∈ E1. Together with (5.8) we have

‖e‖E1 = ‖Vy(e)‖E2

for every e ∈ E1. As Vy is complex-linear we conclude that Vy is an

isometry.
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We prove the converse implication. Suppose that the hypotheses of

(ii) are satisfied. Since Vy : E1 → E2 is a Jordan ∗-isomorphism, it is

a surjective isometry by a theorem of Kadison [62] for every y ∈ X2.

Hence we have

‖[U(F1)](y) − [U(F2)](y)‖E2 = ‖[CV,φ(F1)](y) − [CV,φ(F2)](y)‖E2

= ‖Vy
(
F1(φ(y)) − F2(φ(y))

)
‖E2 = ‖F1(φ(y)) − F2(φ(y))‖E1

for every y ∈ X2 and every pair F1 and F2 in A1 ⊗ E1. Since φ : X2 →
X1 is a surjection we infer that

‖U(F1) − U(F2)‖∞ = ‖F1 − F2‖∞
for every pair F1 and F2 in A1 ⊗ E1, U : A1 ⊗ E1 → A2 ⊗ E2 is an

isometry.





CHAPTER 8

Local maps

1. Introduction to local maps in isometry groups

This chapter is a contribution to the study of the algebraic reflexiv-

ity of the surjective linear isometry group of algebras of Lipschitz maps.

In addition, there are other important classes of maps which deserve

attention by following a similar approach, as for example, groups of

surjective linear isometries on spaces of vector-valued Lipschitz maps.

Botelho and Jamison [10] investigate algebraic reflexivity of surjec-

tive linear isometry groups on (Lip(X,E), ‖·‖max) under some hypothe-

ses on X and E by applying a characterization due to Jiménez-Vargas

and Villegas-Vallecillos [54] of linear isometries between Lip(X,E) with

the max norm ‖ · ‖max.

In the case of E = C, in [51] Jiménez-Vargas, Morales Campoy

and Villegas-Vallecillos proved that isometry groups on complex-valued

Lipschitz functions are algebraically reflexive (they apply [48, Example

8], which is established in Corollary 4.15). We also characterized unital

surjective linear isometries on Lip(X,Mn(C)) with respect to the sum

norm, where Mn(C) is a Banach algebra of complex matrices of degree

n with operator norm ‖·‖ in Theorem 6.2. The purpose of this chapter

is to investigate the algebraic reflexivity of the groups of surjective

linear isometries on spaces of vector-valued Lipschitz maps Lip(X,E)

for E = C(Y ), Mn(C) for details see sections 2 and 3, respectively.

Let Ai be a complex Banach space for i = 1, 2. Denote by B(A1, A2)

the set of all bounded linear operators from A1 into A2. The subset

S ⊂ B(A1, A2) is called algebraically reflexive if the implication

T ∈ B(A1, A2), T f ∈ Sf (∀f ∈ A1) =⇒ T ∈ S
169
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holds. We review the definition of locally surjective linear isometry

(resp. locally unital surjective linear isometry). A bounded linear

operator T : A1 → A2 a locally surjective linear isometry (resp. locally

unital surjective linear isometry) if for every f ∈ A1, there exists a

surjective linear isometry (resp. unital surjective linear isometry) Tf :

A1 → A2 such that Tf = Tff . Thus if every locally surjective linear

isometry (resp. locally unital surjective linear isometry) is surjective

then the group of surjective linear isometries (resp. unital surjective

linear isometry) is algebraically reflexive.

Let K be a compact Hausdorff space. We consider a linear subspace

B of C(K), which separates the points of K and contains the constants.

We denote the Choquet boundary for B by Ch(B).

2. The group of surjective isometries on a Banach algebra of

Lipschitz maps whose values are in a unital commutative

C∗- algebra

Li, Peralta, Wang and Wang has proved Theorem 8.1 by applying a

generalization of Gleason-Kahane-Żelazko theorem in [75, Theorem 2.5

(b)] under the additional hypothesis that a surjective linear isometry

from Lip(X1) onto Lip(X2) is canonical. By Corollary 4.15 we do not

need to assume the hypothesis. We exhibit a simple proof of Theorem

8.1 by applying the original Gleason-Kahane-Żelazko theorem.

Theorem 8.1. Let Xi be a compact metric space for i = 1, 2. The

group of all surjective linear isometries from Lip(X1) onto Lip(X2) is

algebraically reflexive.

Proof. Let Ψ be a locally surjective linear isometry from Lip(X1)

onto Lip(X2). By applying Corollary 4.15, there exists α1 ∈ C with

|α1| = 1 and surjective isometry φ1 : X2 → X1 such that

Ψ(1)(x) = Ψ1(1)(x) = α11(φ1(x)) = α1

for every x ∈ X2. Considering α1Ψ instead of Ψ, without loss of gen-

erality, we may assume Ψ(1) = 1. For any g 6= 0 ∈ Lip(X1), we have

Ψ(g) = Ψg(g) = αgg ◦ φg,
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where αg ∈ C with |αg| = 1 and φg is a surjective isometry fromX2 onto

X1. There exists x0 ∈ X1 such that |g(x0)| = ‖g‖∞. Put g(x0) = λ.

Since g 6= 0, we have λ 6= 0. We define g′ ∈ Lip(X1) by g′ = g + λ1.

There exists αg′ ∈ C with |αg′| = 1 and a surjective isometry φg′ from

X2 onto X1 such that

Ψ(g′) = αg′g
′ ◦ φg′ = αg′(g + λ1) ◦ φg′

= αg′g ◦ φg′ + αg′λ1.

In addition, we have

Ψ(g′) = Ψ(g + λ1)

= Ψ(g) + Ψ(λ1) = αgg ◦ φg + λ1.

Thus we have

(2.1) αg′g ◦ φg′ + αg′λ1 = αgg ◦ φg + λ1.

As φg′ is surjective, there exists x1 ∈ X2 such that φg′(x1) = x0. By

(2.1) and λ = g(x0), we have

(2.2) αg′λ+ αg′λ = αgg(φg(x1)) + λ.

Since ‖g ◦ φg‖∞ = ‖g‖∞ = |λ|, |αg′ | = 1 and |αg| = 1, we get

|g(φg(x1))| = |λ|. Since we have

(2αg′ − 1)λ = αgg(φg(x1))

by (2.2) we obtain

|2αg′ − 1||λ| = |αgg(φg(x1))| = |λ|.

As λ 6= 0, we get |2αg′ −1| = 1, hence αg′ = 1. Thus the equation (2.1)

shows that

g ◦ φg′ = αgg ◦ φg = Φ(g).

For any x ∈ X2, Ψ(g)(x) = g(φg′(x)) ∈ σ(g), where σ(g) denote the

spectrum of g. By the Gleason-Kahane-Żelazko theorem, we have Ψ is

multiplicative. This implies that Ψ : Lip(X1) → Lip(X2) is an algebra

homomorphism with Ψ(1) = 1. By [111, Theorem 5.1], there is a

Lipschitz map φ : X1 → X2 such that

(2.3) Ψ(g)(x) = g(φ(x)), x ∈ X2

for every g ∈ Lip(X1).
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We show that φ is surjective. Suppose that φ is not surjective.

Then there exists x0 ∈ X1 \ φ(X2). Let

δ = d(x0, φ(X2)) = inf
x∈φ(X2)

d(x0, x).

We define a function gx0,δ on X1 by

gx0,δ(x) = max{1 − d(x0, x)

δ
, 0}

for x ∈ X1. By a simple calculation, we have gx0,δ ∈ Lip(X1). In

addition, for every x ∈ φ(X2), we obtain d(x0, x) ≥ δ. This implies
d(x0,x)

δ
≥ 1. Thus we have

gx0,δ(x) = 0, x ∈ φ(X2).

This shows that

(2.4) Ψ(gx0,δ) = gx0,δ ◦ φ = 0.

On the other hand, since Ψ is a locally surjective linear isometry, we

have

Ψ(gx0,δ) = Ψgx0,δ
(gx0,δ)

= αgx0,δgx0,δ ◦ φgx0,δ ,
(2.5)

where αgx0,δ ∈ C with |αgx0,δ | = 1 and a surjective isometry φgx0,δ :

X2 → X1. Thus, there exists x′0 ∈ X2 such that φgx0,δ(x
′
0) = x0.

Taking x′0 ∈ X2 in (2.5), we obtain

Ψ(gx0,δ)(x
′
0) = αgx0,δgx0,δ(φgx0,δ(x

′
0))

= αgx0,δgx0,δ(x0) = αgx0,δ .

This contradicts the equation (2.4). Hence, φ is surjective.

We show that φ is an isometry from X2 onto X1. Let x0 ∈ X2. We

define a Lipschitz function g′ on X1 by

g′(x) = d(x, φ(x0))

for all x ∈ X1. As Ψ is a locally surjective isometry, for every z ∈ X2,

we have

(2.6) d(φ(z), φ(x0)) = g′(φ(z))

= (Ψg′)(z) = Ψg′(g
′)(z) = αg′g

′(φg′(z)) = αg′d(φg′(z), φ(x0)),
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where αg′ ∈ C with |αg′ | = 1 and φg′ : X2 → X1 is a surjective isometry.

As d(·, ·) ≥ 0, we get αg = 1. Taking z = x0 in (2.6), we have

(2.7) 0 = d(φ(x0), φ(x0)) = g′(φ(x0))

= αg′d(φg′(x0), φ(x0)) = d(φg′(x0), φ(x0)).

As z and x0 are arbitrary, we conclude that φ is an isometry by (2.6)

and (2.7). It follows that Ψ as defined by (2.3) is a surjective linear

isometry. This completes the proof. □

Theorem 8.2. Let Xi be a compact metric space and Yi a com-

pact Hausdorff space for i = 1, 2. If the group of all surjective lin-

ear isometries from C(Y1) onto C(Y2) is algebraically reflexive, then

the group of all surjective linear isometries from Lip(X1, C(Y1)) onto

Lip(X2, C(Y2)) is algebraically reflexive.

Proof. Let T be a locally surjective linear isometry from Lip(X1, C(Y1))

onto Lip(X2, C(Y2)). By Corollary 4.14, for every F ∈ Lip(X1, C(Y1)),

there exists hF ∈ C(Y2) with |hF | = 1 on Y2, a continuous map

φF : X2 × Y2 → X1 such that φF (·, y) : X2 → X1 is a surjective

isometry for every y ∈ Y2 and a homeomorphism τF : Y2 → Y1 which

satisfy that

(2.8) T (F )(x, y) = hF (y)F (φF (x, y), τF (y)), (x, y) ∈ X2 × Y2

for every F ∈ Lip(X1, C(Y1)). Taking F = 1 in (2.8), we get

T (1)(x, y) = h1(y)1(φ1(x, y), τ1(y)) = h1(y).

Considering h1T instead of T we may assume without loss of generality

that T (1) = 1. In addition, for every f ∈ C(Y1), we have

T (1 ⊗ f)(x, y) = h1⊗f (y)1 ⊗ f(φ1⊗f (x, y), τ1⊗f (y))

= h1⊗f (y)f(τ1⊗f (y)), (x, y) ∈ X2 × Y2

We emphasize that the value T (1⊗f)(x, y) does not depend on x ∈ X2.

Thus, we define Φ : C(Y1) → C(Y2) by

Φ(f)(y) = T (1 ⊗ f)(x, y) = h1⊗f (y)f(τ1⊗f (y))
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for every f ∈ C(Y1) and y ∈ Y2. We prove that Φ is linear. Since T is

linear, we have

Φ(f + g)(y) = T (1 ⊗ (f + g))(x, y) = T (1 ⊗ f + 1 ⊗ g)(x, y)

= T (1 ⊗ f)(x, y) + T (1 ⊗ g)(x, y) = Φ(f)(y) + Φ(g)(y),

and

Φ(λf)(y) = T (1 ⊗ λf)(x, y) = T (λ(1 ⊗ f))(x, y)

= λT (1 ⊗ f)(x, y) = λΦ(f)(y)

for every f, g ∈ C(Y1), λ ∈ C, x ∈ X2 and y ∈ Y2. Thus Φ is linear.

Let f ∈ C(Y1). We define Φf : C(Y1) → C(Y2) by

Φf (g)(y) = h1⊗f (y)g(τ1⊗f (y)), y ∈ Y2

for every g ∈ C(Y1). We get Φf is a surjective linear isometry by the

Banach-Stone theorem. Thus Φ is a linear map and for every f ∈ C(Y1)

there exists a surjective linear isometry Φf such that Φ(f) = Φf (f),

that is, Φ is a locally surjective linear isometry from C(Y1) onto C(Y2).

The assumption that the group of all surjective linear isometries from

C(Y1) onto C(Y2) is algebraically reflexive ensures that Φ is a surjective

linear isometry from C(Y1) onto C(Y2). The Banach-Stone theorem

asserts that there exists a homeomorphism τ : Y2 → Y1 and h ∈ C(Y2)

with |h| = 1 on Y2 such that

T (1 ⊗ f)(x, y) = Φ(f)(y) = h(y)f(τ(y))

for all f ∈ C(Y1) and (x, y) ∈ X2 × Y2. Moreover by the assumption

that T (1) = 1, we have h(y) = 1 for every y ∈ Y2. This implies

(2.9) T (1 ⊗ f)(x, y) = f(τ(y))

for every f ∈ C(Y1) and (x, y) ∈ X2 × Y2.

Let g ∈ Lip(X1). Substituting F = g ⊗ 1 in (2.8), we get

T (g ⊗ 1)(x, y) = hg⊗1(y)g ⊗ 1(φg⊗1(x, y), τg⊗1(y))

= hg⊗1(y)g(φg⊗1(x, y)), (x, y) ∈ X2 × Y2

for every g ∈ Lip(X1). Fix y ∈ Y2. We define Ψ : Lip(X1) → Lip(X2)

by

Ψ(g)(x) = T (g ⊗ 1)(x, y) = hg⊗1(y)g(φg⊗1(x, y))
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for every g ∈ Lip(X1) and x ∈ X2. Since φg⊗1(·, y) : X2 → X1 is a

surjective linear isometry and |hg⊗1(y)| = 1, the map Ψ is a locally

surjective linear isometry. By Theorem 8.1, Ψ is a surjective linear

isometry from Lip(Xf ) onto Lip(X2). By Corollary 15 in [42] there

exist a surjective isometry φ(·, y) : X2 → X1 and a complex number

α(y) with unit modulus such that

T (g ⊗ 1)(x, y) = Ψ(g)(x) = α(y)g(φ(x, y))

for every g ∈ Lip(X1) and x ∈ X2. In addition by the assumption that

T (1) = 1, we deduce

α(y) = α(y)1(φ(x, y)) = T (1)(x, y) = 1

for every y ∈ Y2. This shows that

(2.10) T (g ⊗ 1)(x, y) = g(φ(x, y))

for every (x, y) ∈ X2 × Y2. By (2.8), we have

‖T (F )‖∞ = ‖F‖∞

for all F ∈ Lip(X1, C(Y1)). For any i = 1, 2, Lip(Xi, C(Yi)) is a linear

subspace of C(Xi×Yi) which separates the points ofXi×Yi and contains

the constant functions. Applying Theorem 1 in Novinger [97], since

T (1) = 1, there exists a surjective continuous map

ϕ : Ch(T (Lip(X1, C(Y1)))) → Ch(Lip(X1, C(Y1))) such that

(2.11) T (F ) = F ◦ ϕ

for every F ∈ Lip(X1, C(Y1)), where Ch(·) denotes the Choquet bound-

ary (cf. [97, 102]). We show that Ch(T (Lip(X1, C(Y1)))) = X2 × Y2.

Let (x0, y0) ∈ X2 × Y2. Suppose that µ is a probability regular Borel

measure on X2 × Y2 such that F (x0, y0) =
∫
X2×Y2 Fdµ for each F ∈

T (Lip(X1, C(Y1))). We prove µ(S) = 1 for every Borel set S in X2×Y2
which contains (x0, y0). It will follow that µ is the Dirac measure

at (x0, y0), and (x0, y0) ∈ Ch(T (Lip(X1, C(Y1)))) by [102, Proposi-

tion 6.2]. Let S be an arbitrary Borel set of X2 × Y2 which con-

tains (x0, y0). As µ is a regular measure on a compact set, we may

suppose that S is an open set. Under the natural projection π of

X2 × Y2 onto Y2, we have π(S) is an open set of Y2. Since y0 ∈ π(S),



176 8. LOCAL MAPS

there exists f ∈ C(Y2) such that |f(y0)| = ‖f‖∞ and |f | < ‖f‖∞
in Y2 \ π(S). We denote θ ∈ [0, 2π) by f(y0) = eiθ|f(y0)|. More-

over we define g ∈ Lip(X2) by g(x) = max{1 − d(x, x0), 0}. We define

F ∈ Lip(X2, C(Y2)) by F = eiθg⊗1+1⊗f . By (2.9) and (2.10), since

T (eiθg ◦ φ−1 ⊗ 1 + 1 ⊗ f ◦ τ−1) = F , we get F ∈ T (Lip(X1, C(Y1))).

We have

‖F‖∞ = ‖eiθg ⊗ 1 + 1 ⊗ f‖∞ ≤ ‖g‖∞ + ‖f‖∞ = 1 + ‖f‖∞,

and

|F (x0, y0)| = |eiθg(x0) + f(y0)| = |eiθg(x0) + eiθ|f(y0)|| = 1 + ‖f‖∞.

Thus we get

‖F‖∞ = 1 + ‖f‖∞ = |F (x0, y0)|.
In addition, if |eiθg(x) + f(y)| = |F (x, y)| = 1 + ‖f‖∞ then we have

x = x0 and y ∈ π(S), thus (x, y) ∈ {x0} × π(S) ⊂ S. Therefore we get

(x0, y0) ∈ {(x, y) ∈ X2 × Y2; |F (x, y)| = ‖F‖∞} ⊂ S.

Suppose that µ(X2 × Y2 \ S) 6= 0. Then

‖F‖∞ = |F (x0, y0)| =|
∫
X2×Y2

Fdµ| ≤
∫
S

|F |dµ+

∫
X2×Y2\S

|F |dµ

≤ ‖F‖∞µ(S) +

∫
X2×Y2\S

|F |dµ

< ‖F‖∞µ(S) + ‖F‖∞µ(X2 × Y2 \ S) = ‖F‖∞,
since ∫

X2×Y2\S
|F |dµ < ‖F‖∞µ(X2 × Y2 \ S)

by the assumption µ(X2 × Y2 \ S) 6= 0. We arrive at a contradiction.

This shows that µ(X2 × Y2 \ S) = 0 and µ(S) = 1. We obtain that

every Borel set which contains (x0, y0) has measure 1. By Proposition

6.2 in [102], (x0, y0) is in the Choquet boundary of T (Lip(X1, C(Y1))).

Thus we conclude that Ch(T (Lip(X1, C(Y1)))) = X2 × Y2. By (2.11),

T is an algebra homomorphism. By (2.9) and (2.10), we have

T (g ⊗ f)(x, y) = T (g ⊗ 1)(x, y)T (1 ⊗ f)(x, y)

= g(φ(x, y))f(τ(y))

= (g ⊗ f)(φ(x, y), τ(y))
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for every g ∈ Lip(X1) , f ∈ C(Y1) and (x, y) ∈ X2 × Y2. For any

F ∈ Lip(X1) ⊗ C(Y1), F is represented as follows:

F = Σn
i=1gi ⊗ fi

with some gi ∈ Lip(X1) and fi ∈ C(Y1) for n ∈ N. Thus we have

T (F )(x, y) = Σn
i=1T (gi ⊗ fi)(x, y)

= Σn
i=1(gi ⊗ fi)(φ(x, y), τ(y))

= F (φ(x, y), τ(y))

for every (x, y) ∈ X2 × Y2. Since T is isometry with ‖ · ‖∞ and

Lip(Xi, C(Yi)) is a subset of the closure of Lip(Xi)⊗C(Yi) with ‖ · ‖∞,

we conclude

T (F )(x, y) = F (φ(x, y), τ(y))

for F ∈ Lip(X1, C(Y1)) and (x, y) ∈ X2 × Y2 in the same way as in

[98, Theorem 1]. Finally we prove that the map φ : X2 × Y2 → X1 is

continuous. Let (x0, y0) ∈ X2 × Y2. We define g ∈ Lip(X1) by

g(z) = d(z, φ(x0, y0))

for every z ∈ X1. We have

d(φ(x, y), φ(x0, y0)) = g(φ(x, y)) − g(φ(x0, y0))

= T (g ⊗ 1)(x, y) − T (g ⊗ 1)(x0, y0).

Since T (g ⊗ 1) ∈ Lip(X2, C(Y2)) ⊂ C(X2 × Y2), for every ϵ > 0, there

exists G which is a neighborhood of (x0, y0) ∈ X2 × Y2 such that if

(x, y) ∈ G then we have

|T (g ⊗ 1)(x, y) − T (g ⊗ 1)(x0, y0)| < ϵ.

Hence we have

d(φ(x, y), φ(x0, y0)) = |T (g ⊗ 1)(x, y) − T (g ⊗ 1)(x0, y0)| < ϵ.

It follows that φ : X2 × Y2 → X1 is continuous. By Corollary 4.14, we

have T is a surjective linear isometry. □

Molnár and Zalar [92, Theorem 2.2] proved that if Ω is a first

countable compact Hausdorff space, then the group of all surjective

isometries of C(Ω) onto itself is algebraically reflexive.
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3. The group of surjective isometries on a Banach algebra of

Lipschitz maps whose values are in Mn(C)

Let Mn(C) be the C∗-algebra of all n×n matrices with the complex

entries. If Φ is a linear isometry on Mn(C), then Φ is injective. Since

Mn(C) is a finite dimensional vector space, we have Φ is also surjective.

Hence the group of all surjective complex linear isometries on Mn(C)

is reflexive.

Theorem 8.3. Let Xi be a compact metric space for i = 1, 2. The

group of all unital surjective linear isometries from Lip(X1,Mn(C))

onto Lip(X2,Mn(C)) is algebraically reflexive.

Proof. Let T : Lip(X1,Mn(C)) → Lip(X2,Mn(C)) be a locally

unital surjective linear isometry. For any A ∈Mn(C), by Theorem 6.9,

T (1 ⊗ A)(x) = T1⊗A(1 ⊗ A)(x) = Φ1⊗A(A),

where Φ1⊗A is a surjective linear isometry on Mn(C). We define Φ :

Mn(C) →Mn(C) by Φ(A) = Φ1⊗A(A) for every A ∈Mn(C). It follows

that Φ is a locally unital surjective linear isometry on Mn(C). Then

Φ : Mn(C) →Mn(C) is a surjective linear isometry such that

(3.1) T (1 ⊗ A)(x) = Φ1⊗A(A) = Φ(A)

for every x ∈ X2 and A ∈Mn(C). Let Eij ∈Mn(C) denote the matrix

with all 0 except at the position ij where it should be 1 for every

1 ≤ i, j ≤ n. The collection of {Eij}1≤i,j≤n is a basis for Mn(C) as

a linear space. Since Φ is a surjective linear isometry, we have that

{Φ(Eij)}1≤i,j≤n is a basis for Mn(C), too. Let k1, k2 ∈ {1, · · · , n} and

x ∈ X2. For any g ∈ Lip(X1), since T (g ⊗ Ek1k2)(x) ∈ Mn(C), there

exists complex numbers {λijk1k2(x)}1≤i,j≤n such that

(3.2) T (g ⊗ Ek1k2)(x) = Σi,jλ
ij
k1k2

(x)Φ(Eij).

Let i, j ∈ {1, · · · , n}. We define the map δij(k1k2,x) : Lip(X1) → C by

δij(k1k2,x)(g) = λijk1k2(x)

for every g ∈ Lip(X1). By (3.2), it follows that

(3.3) T (g ⊗ Ek1k2)(x) = Σi,jδ
ij
(k1k2,x)

(g)Φ(Eij).
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For any g1, g2 ∈ Lip(X1), we have

T ((g1 + g2) ⊗ Ek1k2)(x) = Σi,jδ
ij
(k1k2,x)

(g1 + g2)Φ(Eij)

and

T ((g1 + g2) ⊗ Ek1k2)(x) = T (g1 ⊗ Ek1k2)(x) + T (g2 ⊗ Ek1k2)(x)

= Σi,jδ
ij
(k1k2,x)

(g1)Φ(Eij) + Σi,jδ
ij
(k1k2,x)

(g2)Φ(Eij)

= Σi,j(δ
ij
(k1k2,x)

(g1) + δij(k1k2,x)(g2))Φ(Eij).

As {Φ(Eij)}1≤i,j≤n is a basis, we obtain

δij(k1k2,x)(g1 + g2) = δij(k1k2,x)(g1) + δij(k1k2,x)(g2)

for every i, j ∈ {1, · · · , n}. For any λ ∈ C and g ∈ Lip(X1), we have

T (λg ⊗ Ek1k2)(x) = Σi,jδ
ij
(k1k2,x)

(λg)Φ(Eij)

and

T (λg ⊗ Ek1k2)(x) = λT (g ⊗ Ek1k2)(x)

= λΣi,jδ
ij
(k1k2,x)

(g)Φ(Eij) = Σi,jλδ
ij
(k1k2,x)

(g)Φ(Eij)

This shows that

δij(k1k2,x)(λg) = λδij(k1k2,x)(g)

for i, j ∈ {1, · · · , n}. Since T is a locally unital surjective linear isome-

try, for every F ∈ Lip(X1,Mn(C)) there exist a surjective linear isom-

etry ΦF on Mn(C) and a surjective isometry φF : X2 → X1 such that

T (F ) = TF (F ) = ΦF (F ◦ φF ).

Therefore we have

‖TF‖∞ = ‖ΦF (F ◦ φF )‖∞ = ‖F ◦ φF‖∞ = ‖F‖∞.

If follows that T is an isometry with ‖ · ‖∞. Moreover since Mn(C) is

of a finite dimension, every norm on Mn(C) is equivalent to each other.

Thus for g ∈ Lip(X1) we have

|δij(k1k2,x)(g)| ≤ Σi,j|δij(k1k2,x)(g)| ≤M‖T (g ⊗ Ek1k2)(x)‖

≤M‖T (g ⊗ Ek1k2)‖∞ = M‖g ⊗ Ek1k2‖∞
≤M‖g ⊗ Ek1k2‖Σ = M‖g‖Σ‖Ek1k2‖,

for some M > 0. Thus δij(k1k2,x) is a bounded linear functional on

Lip(X1). Let g ∈ Lip(X1) be an invertible. Then we have g(x) 6= 0
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for every x ∈ X1. We shall prove that δk1k2(k1k2,x)
(g) 6= 0. Aiming for a

contradiction, suppose that δk1k2(k1k2,x)
(g) = 0. Let 1 ≤ i, j ≤ n with i 6=

k1 and j 6= k2 and complex numbers αij, we define F ∈ Lip(X1,Mn(C))

by

F = g ⊗ Ek1k2 + Σi ̸=k1,j ̸=k2αij1 ⊗ Eij.

Since {Eij}1≤i,j≤n is a basis, we have F (x) 6= 0 for all x ∈ X1. Thus

for every x ∈ X2 we have

T (F )(x) = ΦF (F (φF (x))) 6= 0,

since ΦF is a surjective linear isometry on Mn(C) and φF : X2 → X1 is

a surjective isometry. On the other hand, the hypothesis δk1k2(k1k2,x)
(g) = 0

implies that T (g⊗Ek1k2)(x) is a linear combination of the set {Φ(Eij)}i ̸=k1,j ̸=k2 .
Therefore, there exist complex numbers αij for 1 ≤ i, j ≤ n with i 6= k1

and j 6= k2 such that

T (g ⊗ Ek1k2)(x) = Σi ̸=k1,j ̸=k2αijΦ(Eij) = Σi ̸=k1,j ̸=k2αijT (1 ⊗ Eij)(x).

This implies that

T (g ⊗ Ek1k2 − Σi ̸=k1,j ̸=k2αij ⊗ Eij)(x) = 0.

We arrive at a contradiction. It follows that δk1k2(k1k2,x)
(g) 6= 0. In ad-

dition by (3.2), we have T (1 ⊗ Ek1k2)(x) = Φ(Ek1k2). It follows that

δk1k2(k1k2,x)
(1) = 1. The well known Gleason-Kahane-Żelazko theorem as-

serts that δk1k2(k1k2,x)
is multiplicative. Since the maximal ideal space of

Lip(X1) is homeomorphic to X1, there exists φk1k2(x) ∈ X1 such that

δk1k2(k1k2,x)
(g) = g(φk1k2(x)). We define G1 ∈ Lip(X1,Mn(C)) by

G1 = g ⊗ Ek1k2 − Σi,jδ
ij
(k1k2,x)

(g)1 ⊗ Eij

By (3.2), we obtain

T (G1)(x) = T (g ⊗ Ek1k2 − Σi,jδ
ij
(k1k2,x)

(g)1 ⊗ Eij)(x)

= T (g ⊗ Ek1k2)(x) − Σi,jδ
ij
(k1k2,x)

(g)T (1 ⊗ Eij)(x)

= T (g ⊗ Ek1k2)(x) − Σi,jδ
ij
(k1k2,x)

(g)Φ(Eij)

= 0.

Since T is a locally unital surjective linear isometry, there exist a

surjective linear isometry ΦG1 on Mn(C) and a surjective isometry
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φG1 : X2 → X1 such that

0 = T (G1)(x)

= ΦG1(g ⊗ Ek1k2 − Σi,jδ
ij
(k1k2,x)

(g)1 ⊗ Eij)(φG1(x)).

Since ΦG1 is an isometry, we have

(g ⊗ Ek1k2 − Σi,jδ
ij
(k1k2,x)

(g)1 ⊗ Eij)(φG1(x)) = 0.

As {Eij}i,j is a basis on Mn(C), this implies that

g(φG1(x)) − δk1k2(k1k2,x)
(g) = 0

and

(3.4) δij(k1k2,x)(g) = 0, i 6= k1, j 6= k2.

By (3.3) and (3.4) for every g ∈ Lip(X1), we get

T (g ⊗ Ek1k2)(x) = δk1k2(k1k2,x)
(g)Φ(Ek1k2) = g(φk1k2(x))Φ(Ek1k2).

As k is arbitrary,

T (g ⊗ Ek1k2)(x) = g(φk1k2(x))Φ(Ek1k2)

for every k1, k2 ∈ {1, · · · , n}. We now prove that φk1k2 = φl1l2 even if

k1 6= l1 or k2 6= l2. Suppose, towards a contradiction, that there exist

x ∈ X2 and k1, k2, l1, l2 ∈ {1, · · · , n} such that

φk1k2(x) 6= φl1l2(x).

We define gk1k2 ∈ Lip(X1) and gl1l2 ∈ Lip(X1)by

gk1k2(z) = d(z, φk1k2(x))

and

gl1l2(z) = d(z, φl1l2(x)).

In addition, we define G ∈ Lip(X1,Mn(C)) by

G = gk1k2 ⊗ Ek1k2 + gl1l2 ⊗ El1l2 .

We have

T (G)(x) = T (gk1k2 ⊗ Ek1k2 + gl1l2 ⊗ El1l2)(x)

= gk1k2(φk1k2(x))Φ(Ek1k2) + gl1l2(φl1l2(x))Φ(El1l2)

= 0.
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As T is a locally unital surjective linear isometry, there exist a surjective

linear isometry ΦG on Mn(C) and a surjective isometry φG : X2 → X1

such that

T (G) = ΦG(G ◦ φG).

We define z = φG(x), then

0 = T (G)(x) = ΦG(G(φG(x))) = ΦG(G(z)).

Since ΦG is a surjective linear isometry on Mn(C), we obtain G(z) = 0.

Therefore we have

gk1k2(z)Ek1k2 + gl1l2(z)El1l2 = 0.

Thus we obtain

gk1k2(z) = gl1l2(z) = 0,

in contradiction with the definition of gk1k2 and gl1l2 and the hypotheses

of φk1k2(x) 6= φl1l2(x). This implies that

φk1k2 = φl1l2

for k1, k2, l1, l2 ∈ {1, · · · , n}. Thus we define φ : X2 → X1 by

φ(x) = φk1k2(x)

for every k1, k2 ∈ {1 · · · , n}. Therefore we have

T (g ⊗ Ek1k2)(x) = g(φ(x))Φ(Ek1k2)

for every k1, k2 ∈ {1 · · · , n} and x ∈ X2. By Lemma 7, for every

F ∈ Lip(X1,Mn(C)), F is represented as follows:

F = Σi,jgij ⊗ Eij

with some gij ∈ Lip(X1). Thus we have

(TF )(x) = T (Σi,jgij ⊗ Eij)(x) = Σi,jT (gij ⊗ Eij)(x)

= Σi,jgij(φ(x))Φ(Eij) = Φ(Σi,jgij ⊗ Eij(φ(x)))

= Φ(F (φ(x)))

for every x ∈ X2. Since T (1) = 1, we conclude that φ : X2 → X1 is a

surjective isometry in the same way as in proof for Theorem 8.1. By

Theorem 6.9, we have that T is a unital surjective linear isometry from

Lip(X1,Mn(C)) onto Lip(X2,Mn(C)). □



CHAPTER 9

2-local isometry with Wj

1. Introduction to 2-local isometries

Motivated by the paper by Kowalski and S lodkowski [69], the con-

cept of 2-locality was introduced by Šemrl,who obtained the first re-

sults on 2-local automorphisms and 2-local derivations [110]. Molnár

[87] studied 2-local isometries on operator algebras. Given a metric

space Mj for j = 1, 1 an isometry from M1 into M2 is a distance pre-

serving map. The set of all surjective isometries from M1 onto M2

is denoted by Iso(M1,M2). We say a map T : M1 → M2 is 2-local

in Iso(M1,M2) if for every pair x, y ∈ M1 there exists a surjective

isometry Tx,y ∈ Iso(M1,M2) such that

T (x) = Tx,y(x) and T (y) = Tx,y(y).

In this case we say that T is a 2-local isometry. It is obvious by the

definition that a 2-local isometry is in fact an isometry, which needs

not be surjective. Hence a 2-local isometry T belongs to Iso(M1,M2)

if T is surjective. We say that Iso(M1,M2) is 2-locally reflexive if every

2-local isometry belongs to Iso(M1,M2).

If Mj is a Banach space, linearity of the maps are subjects of con-

sideration. Let IsoC(M1,M2) denote the set of all surjective complex-

linear isometries. There exists a extensive literature on 2-local isome-

tries in IsoC(M1,M2) and 2-locally reflexivity of IsoC(M1,M2) (see, for

example, [1, 17, 34, 38, 53, 50, 75, 87]). Note that Hosseini [46]

proved that a 2-local real-linear isometries is in fact a surjective real-

linear isometry on the algebra of n-times continuously differentiable

functions on the interval [0, 1] with a certain norm. She also proved

[46, Proposition 3.2] that a 2-local real-linear isometry defined on the

Banach algebra C(X) of all complex-valued continuous functions on a

183
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compact Hausdorff space X with additional hypotheses that it is sep-

arable and first countable is in fact a surjective real-linear isometry on

C(X). We note that the situation is very different for the problem of

2-local isometry.

In this dissertation we study 2-local reflexivity for Iso(M1,M2) and

we consider the question whether every 2-local isometry necessarily

belongs to Iso(M1,M2) where Mj is a certain spaces of continuous

functions.

In the remaining of this chapter Ej is a subspace of C(Xj) which

contains the constant functions and separates the points of Xj. For

c ∈ C we write the constant function which takes the value c by c. We

assume that the norm ‖ · ‖j is defined on Ej (not necessary complete)

and it satisfies that ‖c‖j = |c| for every c ∈ C. We assume that Ej

is conjugate closed in the sense that f ∈ Ej implies f̄ ∈ Ej, and that

‖f‖j = ‖f̄‖j for every f ∈ Ej. For an ϵ ∈ {±1} and f ∈ Ej, [f ]ϵ = f

if ϵ = 1 and [f ]ϵ = f̄ if ϵ = −1. Let M(E1, E2) be the set of all maps

from E1 into E2. Note that we say a map is a surjective isometry if it

is just a distance preserving map, we do not assume complex nor real

linearity on it. We abbreviate Iso(Ej, Ej) by Iso(Ej). Let Π denotes a

non-empty set of (not always all) homeomorphisms from E2 onto E1.

Let

GΠ(E1, E2) = {T ∈M(E1, E2) : there exists λ ∈ E2,

α ∈ C of unit modulus, π ∈ Π, and ϵ ∈ {±1}

such that T (f) = λ+ α[f ◦ π]ϵ for every f ∈ E1}.

We abbreviateGΠ(Ej, Ej) byGΠ(Ej). We usually abbreviateGΠ(E1, E2)

by GΠ if E1 and E2 are clear from the context. Let Id[0,1] = π0 :

[0, 1] → [0, 1] be the identity function and π1 = 1 − Id[0,1]. Put

Π0 = {π0, π1}. Kawamura, Koshimizu and Miura [60] (cf. [84])

proved that GΠ0(C
1[0, 1]) = Iso(C1[0, 1], ‖ · ‖) with respect to sev-

eral norms including ‖ · ‖Σ, we will show later that GΠ0(Lip[0, 1]) =

Iso(Lip[0, 1]), ‖ ·‖∑), where ‖f‖Σ = ‖f‖∞ +L(f) for the Lipschitz con-

stant L(f) = supx,y
|f(x)−f(y)|

|x−y| , f ∈ Lip[0, 1]. Note that f ′ exists and
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f ′ ∈ L∞[0, 1] and ‖f ′‖∞ = L(f) for f ∈ Lip[0, 1] (cf. [35]). Let

Wj = {f ∈ Ej : if S : C → C is an isometry

and S(f(Xj)) = f(Xj), then S is the identity function}.

Suppose that S : C → C is an isometry. It is well known that there

exists a, b ∈ C with |a| = 1 such that S(z) = b + az, (z ∈ C) or

S(z) = b + az̄, (z ∈ C). The first case of S is a parallel translation

by b if a = 1 and S is a rotation around b/(1 − a). Hence there is no

fixed point if a = 1 and b 6= 0, and b/(1−a) is the unique fixed point if

a 6= 1 for the first case. For the second case, denoting one of the square

root of a by a
1
2 , S is a symmetric translation with respect to the line

t 7→ a
1
2 t + i(Im(a

1
2 b)/2) (t ∈ R) followed by the parallel translation

by Re(a
1
2 b)/2) to the direction of a

1
2 . Hence the fixed points exist and

they are all the points on line t 7→ a
1
2 t + i(Im(a

1
2 b)/2) if and only if

Re(a
1
2 b)/2) = 0. We will prove that Wj for Ej = C1[0, 1] is uniformly

dense in C[0, 1] (see Proposition 9.3).

Lemma 9.1. If T ∈ M is 2-local in GΠ ∩ Iso(E1, E2), then T is an

isometry with respect to the metric induced by the norm ‖ · ‖j; ‖T (f)−
T (g)‖2 = ‖f − g‖1 for every pair f, g ∈ E1. The map T is also an

isometry with respect to the supremum norm ‖ · ‖∞.

Proof. Let f, g ∈ E1. Then there exists Tf,g ∈ GΠ ∩ Iso(E1, E2)

such that

(1.1) T (f) = Tf,g(f), T (g) = Tf,g(g).

As Tf,g is an isometry we have

‖T (f) − T (g)‖2 = ‖Tf,g(f) − Tf,g(g)‖2 = ‖f − g‖1.

Thus T is an isometry. As Tf,g ∈ GΠ∩Iso(E1, E2) there exists λf,g ∈ E2,

αf,g ∈ C of unit modulus, π ∈ Π and ϵf,g ∈ {±1} such that

(1.2) Tf,g(h) = λf,g + αf,g[h ◦ π]ϵ, h ∈ E1.
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Then by (1.1) and (1.2) we observe that

‖T (f) − T (g)‖∞ = ‖Tf,g(f) − Tf,g(g)‖∞
= ‖αf,g[f ◦ π]ϵ − αf,g[g ◦ π]ϵ‖∞

= ‖[f ◦ π]ϵ − [g ◦ π]ϵ‖∞ = ‖f − g‖∞

since π is a surjection. Thus T is an isometry with respect to the

supremum norm. □

Proposition 9.2. Suppose that T ∈ M is 2-local in GΠ∩Iso(E1, E2).

Then there exists ϵ ∈ {±1} and α ∈ C of unit modulus such that for

every f ∈ W1 there exists a homeomorphism πf ∈ Π such that

T (f) = T (0) + α[f ◦ πf ]ϵ.

Note that if we proved that πf did not depend on f , then the map

T were surjective, hence T ∈ Iso(E1, E2) by the Mazur-Ulam theorem.

But it is not the case in general (cf. [38, Theorem 2.3]); GΠ∩Iso(E1, E2)

needs not be 2-locally reflexive in M.

Proof of Proposition 9.2. Put T0 = T − T (0). We infer by

a simple calculation that T0 is 2-local in GΠ ∩ Iso(E1, E2). Let h ∈
E1. Since T0 is 2-local in GΠ ∩ Iso(E1, E2), there exist Th,0 ∈ GΠ ∩
Iso(E1, E2), λh,0 ∈ E2, αh,0 ∈ C with |αh,0| = 1, a homeomorphism

πh,0 : X2 → X2 and ϵh,0 ∈ {±1} such that

T0(h) = Th,0(h) = λh,0 + αh,0[h ◦ πh,0]ϵh,0 ,(1.3)

0 = T0(0) = Th,0(0) = λh,0.

Note that Th,0 is represented by Th,0(·) = αh,0[· ◦ πh,0]ϵh,0 on E1. Hence

λh,0 = 0 and

(1.4) T0(h) = αh,0[h ◦ πh,0]ϵh,0 .

In particular, if h = c ∈ C, then

T0(c) = αc,0[c]
ϵh,0 .

Thus we obtain T0(C) ⊂ C. For every pair c, d ∈ C, here exists Tc,d ∈
GΠ ∩ Iso(E1, E2) such that

T0(c) = Tc,d(c), T0(d) = Tc,d(d).
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As Tc,d ∈ Iso(E1, E2) we infer that

|T0(c) − T0(d)| = ‖T0(c) − T0(d)‖2
= ‖Tc,d(c) − Tc,d(d)‖2 = ‖c− d‖1 = |c− d|.

As c, d are arbitrary, we have that T0|C : C → C is an isometry. Ap-

plying a well known result about the form of an isometry on C, there

exists an α ∈ C such that

(1.5) T0(z) = αz, z ∈ C,

or

(1.6) T0(z) = αz̄, z ∈ C.

Put T1 = ᾱ[T0]
ϵ, where ϵ = 1 if (1.5) holds and ϵ = −1 if (1.6) holds.

Since E2 is conjugate closed, T1 is well defined in the second case.

Since ‖f‖2 = ‖f̄‖2 for every f ∈ E2, it is a routine work to see that

T1 is 2-local in GΠ ∩ Iso(E1, E2). By the definition of T1 we infer that

T1(z) = z for every z ∈ C. We will prove that for every f ∈ W1 there

exists a homeomorphism πf : X2 → X1 such that

T1(f) = f ◦ πf .

If it is proved, then we have

T (f) = T (0) + α[f ◦ πf ]ϵ,

the desired form.

Let f ∈ W1 and c ∈ C. As T1 is 2-local in GΠ ∩ Iso(E1, E2),

there exists λf,c ∈ E2 and αf,c ∈ C of modulus 1, a homeomorphism

πf,c : X2 → X1, and ϵf,c ∈ {±1} such that

(1.7) T0(f) = Tf,c(f) = λf,c + αf,c[f ◦ πf,c]ϵf,c ,

(1.8) c = T0(c) = λf,c + αf,c[c]
ϵf,c .

By (1.8) we infer that λf,c is a constant. By comparing (1.4) for f with

(1.7) we get

αf,0[f ◦ πf,0]ϵf,0 = λf,c + αf,c[f ◦ πf,c]ϵf,c ,

hence

(1.9) f ◦ πf,0 = [αf,0λf,c + αf,0αf,c[f ◦ πf,c]ϵf,c ]ϵf,0 .



188 9. 2-LOCAL ISOMETRY WITH Wj

Considering the range of the both side of (1.9) we get

(1.10) f(X1) = [αf,0λf,c + αf,0αf,c[f(X1)]
ϵf,c ]ϵf,0 .

We have four possibility depending on (i)ϵf,0 = 1 and ϵf,c = 1; (ii)ϵf,0 =

1 and ϵf,c = −1; (iii)ϵf,0 = −1 and ϵf,c = −1; (iv)ϵf,0 = −1 and ϵf,c = 1.

Then we have that at least one of the following (i) through (iv) holds.

(i) f(X1) = αf,0λf,c + αf,0αf,cf(X1);

(ii) f(X1) = αf,0λf,c + αf,0αf,cf(X1);

(iii) f(X1) = αf,0λf,c + αf,0αf,cf(X1);

(iv) f(X1) = αf,0λf,c + αf,0αf,cf(X1).

corresponding to the cases (i) through (iv) respectively. Let Sj : C → C
be defined by S1(z) = αf,0λf,c + αf,0αf,cz, z ∈ C; S2(z) = αf,0λf,c +

αf,0αf,cz, z ∈ C; S3(z) = αf,0λf,c + αf,0αf,cz, z ∈ C; S4(z) = αf,0λf,c +

αf,0αf,cz, z ∈ C. Then Sj is an isometry on C for j = 1, 2, 3, 4. Using Sj

we rewrite (i) by f(X1) = S1(f(X1)), (ii) by f(X1) = S2(f(X1)), (iii)

by f(X1) = S3(f(X1)) and (iv) by f(X1) = S4(f(X1)). As f ∈ W1

we see that (ii) and (iv) do not occur. We have αf,0λf,c = 0 and

αf,0αf,c = 1 for the case (i). Hence λf,c = 0 and αf,0 = αf,c in this case.

In the same way we have λf,0 = 0 and αf,0 = αf,c for the case (iii). We

conclude that only (i) or (iii) occur, and in any case

λf,c = 0 and αf,0 = αf,c.

To prove αf,0 = 1, put c = 1. Then (i) or (iii) occur. If (i) occurs,

then

1 = T0(1) = Tf,1(1) = αf,11 = αf,01.

If (iii) occurs, then

1 = T0(1) = Tf,1(1) = αf,11̄ = αf,01.

It follows that

(1.11) αf,0 = 1.

Next we prove that (iii) does not occur for any c ∈ C and ϵf,0 = 1.

Suppose that (iii) occurs for some c0 ∈ C. Then we have

c0 = T0(c) = Tf,c0(c0) = αf,c0c0 = αf,0c0 = c0.
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Hence c0 is a real number. We also have

(1.12) T0(f) = Tf,c0(f) = f ◦ πf,c0

since αf,c0 = αf,0 = 1. On the other hand, (iii) does not occur for c0 + i

since c0 + i is not a real number. Thus (i) occurs and

(1.13) T0(f) = Tf,c0+i(f) = f ◦ πf,c0+i.

It follows by (1.12) and (1.13) that

f(X1) = f(X1),

which is a contradiction since f ∈ W1. We conclude that (iii) does not

occur for any c ∈ C. It follows that only (i) occurs, hence we have

(1.14) ϵf,0 = 1.

Then by (1.4) for h = f we have

T0(f) = Tf,0(f) = f ◦ πf,0.

Letting πf = πf,0 we have the conclusion. □

2. Spaces of continuous functions on [0, 1]

In this chapter Aj (j = 1, 2) is a subspace of C[0, 1] and a superspace

of C1[0, 1], the space of all complex-valued continuously differentiable

functions on the interval [0, 1]. We assume that Aj is conjugate-closed

in the sense that f ∈ Aj implies f̄ ∈ Aj. Suppose that a norm ‖ · ‖j
such that |c| = ‖c‖j for every c ∈ C is defined on Aj. We assume that

‖f‖j = ‖f̄‖j for every f ∈ Aj. We do not assume the completeness

of ‖ · ‖j. The space Aj satisfies the conditions for Ej in the previous

section. The difference between Aj and Ej is that Aj is defined on

[0, 1] and we assume that C1[0, 1] ⊂ Aj. The spaces (C1[0, 1], ‖ · ‖Σ),

(C1[0, 1], ‖ · ‖M), (Lip[0, 1], ‖ · ‖Σ), (Lip[0, 1], ‖ · ‖M) and (C[0, 1], ‖ · ‖∞)

are typical examples of Aj. Recall that π0 is the identity function on

[0, 1] and π1 = 1−π0, Π0 = {π0, π1}. Kawamura, Koshimizu and Miura

[60] studies the space C1[0, 1] with a variety of norms including ‖ · ‖Σ
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and ‖ · ‖M . Recall that

Wj = {f ∈ Aj : if S : C → C is an isometry

and S(f(Xj)) = f(Xj), then S is the identity function}.

Put P = {p + iq :p and q are polynomials of real-coefficients}. Many

polynomials are in W1, but some are not. For example (t− 1
2
)4 + i(t−

1
2
)3 6∈ W1. We do no know if P ∩W1 is uniformly closed in P or not.

We have that following. Let cl(·) denote the uniform closure on [0, 1].

Proposition 9.3. We have P ⊂ cl(W1). Hence cl(W1) = C[0, 1].

Proof. Let f = p + iq ∈ P and ε > 0. If p is not a constant,

then put pε = p. If p is a constant, then put pε = p + επ0, where π0

is the identity function on [0, 1]. Let l be any positive integer greater

than both of the degree of p and q. Put qε = q + επl0. Then pε is not

a constant and there is no pair of complex numbers c and d such that

pε = cqε+d since the degree of the each side of the equation is different.

We prove that pε + iqε ∈ cl(W1). Then p + iq ∈ cl(W1) follows since

pε + iqε uniformly converges on [0, 1] to p+ iq as ε→ 0.

Since pε is a non-constant polynomial, there exists a positive integer

m0 such that p′ε(
1
m

) 6= 0 for every m ≥ m0. Let m ≥ m0. Put

fm(t) =


iw
(

1
m
− t
)

+
(
p′ε
(

1
m

)
+ iq′ε

(
1
m

)) (
t− 1

m

)
+pε

(
1
m

)
+ iqε

(
1
m

)
, 0 ≤ t ≤ 1

m
,

(pε + qε)(t),
1
m

≤ t ≤ 1,

where

w(t) =

{
0, t = 0

t3 sin 1
t
, 0 < t ≤ 1

Then fm ∈ C1[0, 1] for every m ≥ m0. It is a routine work to prove

that fm converges uniformly to p+ iq on [0, 1] and a proof is omitted.

We prove that fm ∈ W1 for every m ≥ m0.

Let K be a real number. We look at the number of the points t

on [0, 1], where fm(t) is a tangent point of a tangent line of fm([0, 1])

whose slope is K. The curve fm([0, 1]) has a tangent line of the slope
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K at the tangent point fm(t) if and only if

K = lim
δ→0

Im fm(t+ δ) − Im fm(t)

Re fm(t+ δ) − Re fm(t)
.

Suppose that 0 ≤ t ≤ 1
m

. Since Re fm(t) = p′ε
(

1
m

) (
t− 1

m

)
+ pε

(
1
m

)
and Im fm(t) = w

(
1
m
− t
)

+ q′ε
(

1
m

)
(t− 1

m
) + qε

(
1
m

)
, we have

lim
δ→0

Im fm(t+ δ) − fm(t)

Re fm(t+ δ) − Re fm(t)
=

−w′ ( 1
m
− t
)

+ q′ε
(

1
m

)
p′ε
(

1
m

) , 0 ≤ t ≤ 1

m
.

Hence the curve fm([0, 1]) has a tangent line of the slope K at the

tangent point fm(t) for 0 ≤ t ≤ 1
m

if and only if

(2.1)
−w′ ( 1

m
− t
)

+ q′ε
(

1
m

)
p′ε
(

1
m

) = K.

If K 6= q′ε( 1
m)

p′ε( 1
m)

, the number of such points 0 ≤ t ≤ 1
m

is at most finite.

(The reason is as follows. Suppose that
q′ε( 1

m)
p′ε( 1

m)
6= K =

−w′( 1
m
−t)+q′ε( 1

m)
p′ε( 1

m)
.

Then

(2.2) w′
(

1

m
− t

)
= p′ε

(
1

m

)(
q′ε
(

1
m

)
p′ε
(

1
m

) −K

)
.

On the other hand, a simple calculation shows that

(2.3)

∣∣∣∣w′
(

1

m
− t

)∣∣∣∣ ≤ 4

(
1

m
− t

)
.

We have p′ε
(

1
m

)( q′ε( 1
m)

p′ε( 1
m)

−K

)
6= 0 sincce

q′ε( 1
m)

p′ε( 1
m)

6= K. By (2.3) there is

no t ≤ 1
m

with

1

m
− t <

1

4

∣∣∣∣∣p′ε
(

1

m

)(
q′ε
(

1
m

)
p′ε
(

1
m

) −K

)∣∣∣∣∣
such that (2.2) holds. It is easy to see that the number of t ≥ 0 with

1

4

∣∣∣∣∣p′ε
(

1

m

)(
q′ε
(

1
m

)
p′ε
(

1
m

) −K

)∣∣∣∣∣ ≤ 1

m
− t

such that (2.2) holds is at most finite.) On the other hand if K =
q′ε( 1

m)
p′ε( 1

m)
,

then by (2.1) we infer that w′ ( 1
m
− t
)

= 0. By a calculation, for every

positive integer k there exists a unique kπ < sk < kπ + π/2 such that
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w′
(

1
sk

)
= 0. Letting tk = 1

m
− 1

sk
we have w′ ( 1

m
− tk

)
= 0. Thus

K =
q′ε( 1

m)
p′ε( 1

m)
for 0 ≤ t < 1

m
if and only if t = tk for some positive integer

k. As w′(0) = 0, we see that w′ ( 1
m
− t
)

=
q′ε( 1

m)
p′ε( 1

m)
if t = 1

m
. We conclude

that the set of the all points in fm([0, 1
m

]) at which fm([0, 1]) has a

tangent line with the slope
q′ε( 1

m)
p′ε( 1

m)
is {fm(tn)}n≥N ∪

{
fm
(

1
m

)}
, where

N = min
{
k : 1

m
> tk

}
.

Suppose that 1
m
< t ≤ 1. We have Re fm(t) = pε(t) and Im fm(t) =

qε(t). Therefore we have

Im fm(t+ δ) − Im fm(t)

Re fm(t+ δ) − Re fm(t)
=
qε(t+ δ) − qε(t)

pε(t+ δ) − pε(t)
.

Hence the curve fm([0, 1]) has a tangent line of the slope K at fm(t)

for 1
m
< t ≤ 1 if and only if

lim
δ→0

qε(t+ δ) − qε(t)

pε(t+ δ) − pε(t)
= K.

If pε(t) 6= 0, then q′ε(t)
p′ε(t)

= K. The number of such points t ∈
(

1
m
, 1
]

is

at most finite. Suppose not. Then q′ε(t) = Kp′ε(t) for infinitely many t,

hence q′ε = Kp′ε on the interval
(

[ 1
m
, 1
]

since p′ε and q′ε are polynomials.

It follows that qε = Kpε + c for some c ∈ C, which contradicts to our

hypothesis on pε and qε. We obtain that the number of t ∈
(

1
m
, 1
]

such that q′ε(t)
p′ε(t)

= K is at most finite. The number of t ∈
(

1
m
, 1
]

such

that p′ε(t) = 0 is at most finite since pε is a polynomial. We conclude

that the number of point t such that fm([0, 1]) has a tangent line of

the slope K at fm(t) is at most finite. In a way similar we see that the

number of t ∈
(

1
m
, 1
]

such that fm([0, 1]) has a tangent line at fm(t)

which is parallel to the imaginary axis is at most finite. If p′ε(t) 6= 0,

then fm([0, 1]) has a tangent line which is not parallel to the imaginal

axis. Hence if fm([0, 1]) has a tangent line with a tangent point at

fm(t) which is parallel to the imaginary axis, then p′ε(t) = 0. Thus the

number of such points is at most finite.

We conclude that for a real number K 6= q′ε( 1
m)

p′ε( 1
m)

the number of

t ∈ [0, 1] such that fm([0, 1]) has a tangent line of the slope K at fm(t)

is at most finite; the number of t ∈ [0, 1] such that fm([0, 1]) has a
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tangent line which is parallel to the imaginal axis at fm(t) is at most

finite; the number of t ∈ [0, 1] such that fm([0, 1]) has a tangent line of

the slope
q′ε( 1

m)
p′ε( 1

m)
at fm(t) is countable, the number of such t ∈

(
1
m
, 1
]

is

at most finite, say {t−n}ln=1, there is a sequence {tk}k≥N in [0, 1
m

) of such

points that converges to 1
m

. Denote them as {tk} = {tk}k≥N ∪ {t∞ =
1
m
} ∪ {t−n}ln=1.

Suppose that S : C → C is an isometry such that S(fm([0, 1]) =

fm([0, 1]). We prove that S is the identity so that fm ∈ W . Since

there are a, b ∈ C with |a| = 1 such that S(z) = b + az, z ∈ C or

S(z) = b + az̄, z ∈ C, S(ℓ1) and S(ℓ2) are parallel for every pair of

parallel lines ℓ1 and ℓ2 in C. Thus the parallel tangent line at {tk} are

translated by S as a parallel tangent line. Hence we get

{S(fm(tk))} = {fm(tk)}.

As S is an isometry the unique cluster points t∞ of {tk} translates to

t∞ by S; S(t∞) = t∞. As {fm(t−k)}lk=1 is discrete, there is a positive

integer M such that {S(fm(tk))}k≥M ⊂ {fm(tk)}k≥N . Hence if n ≥M ,

then there is an n1 ≥ N such that

|fm(t∞) − fm(tn)| = |S(fm(t∞)) − S(fm(tn))| = |fm(t∞) − fm(tn1)|.

If n, n1 ≥ N and n 6= n1, then by the definition of tn and tn1 we have

|fm(t∞) − fm(tn)| 6= |fm(t∞) − fm(tn1)|.

It follows that tn = tn1 . Since S : C → C is an isometry, the set of the

fixed point of S is empty or a singleton or points on a straight line if S

is not the identity. As {fm(tn)}n≥M is a set of fixed points which are

not on the line since w
(

1
m
− tn

)
> 0 when n is an even number and

w
(

1
m
− tn

)
< 0 when n is an odd number. Thus we conclude that S is

an isometry.

By the Weierstrass approximation theorem we see that cl(W1) =

C[0, 1]. □

Theorem 9.4. GΠ0∩Iso(A1, A2) is 2-locally reflexive inM(A1, A2).

Proof. Suppose that T ∈M(A1, A2) is 2-local inGΠ0∩Iso(A1, A2).

Then by Proposition 9.2 there exist an α ∈ C of unit modulus and
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ϵ ∈ {±1} which satisfies that for every f in W1, there exists a πf ∈ Π0

such that

T (f) = T (0) + α[f ◦ πf ]ϵ.

We prove that πf is independent of f ∈ W1. Let T1 ∈ M(A1, A2) be

defined by

T1(h) = [ᾱ(T (h) − T (0))]ϵ, h ∈ A1.

Then T1 is 2-local in GΠ0∩Iso(A1, A2). As in the same way in the proof

of Proposition 9.2 there exists a Tf,0 ∈ GΠ0 ∩ Iso(A1, A2) such that

(2.4) T1(f) = Tf,0(f) = f ◦ πf

for every f ∈ W1. Let ε > 0 is given. Then gε = π0 + iεπ2
0 ∈ W1.

Hence there exists Tgε,0 ∈ GΠ0 ∩ Iso(A1, A2) and πε ∈ Π0 such that

(2.5) T1(gε) = Tgε,0(gε) = gε ◦ πε.

Note that Tgε,0(h) = h◦πε for every h ∈ A1 by the proof of Proposition

9.2. (In fact, due to the note just after (1.3) we have Tgε,0(h) = αgε,0 [h◦
πgε,0 ]

ϵgε,0 for h ∈ A1. As gε ∈ W1, we have by (1.11) and (1.14) and

letting πgε,0 = πε we have Tgε,0(h) = h ◦πε for every h ∈ A1.) We prove

that there exists an ε > 0 such that πε = πε′ for every 0 < ε, ε′ < ε0.

Suppose not. Then there exist sequences {εn} and {ε′n} of positive real

numbers which converge to 0 respectively such that πεn 6= πε′n for every

n. By Lemma 9.1 T1 is a isometry with respect to ‖ · ‖∞, hence we

infer that

‖T1(gεn) − T1(ε
′
n)‖∞ = ‖gεn − gε′n‖∞ = ‖εn − ε′n| → 0

as n→ ∞. On the other hand, as πεn 6= πε′n for every n we have

‖T1(gεn)−T1(ε′n)‖∞ = ‖gεn◦πεn−gε′n◦πε′n‖∞ ≥ ‖πεn−πε′n‖∞−εn−ε′n → 1

as n → ∞, which is a contradiction proving πε = πε′ for every 0 <

ε, ε′ < ε0 for some positive ε0. Put the common πε as π. Letting ε→ 0

in (2.5) we get

T1(π0) = π0 ◦ π.

We prove that

(2.6) T1(f) = f ◦ π
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for every f ∈ W . We show a proof for the case where π = π0. A proof

for the case where π = π1 is similar, and is omitted.

If T1(f) = f for every f ∈ W1 is proved, then it turns out that T1 is

a surjective isometry. The reason is as follows. For a sufficiently small

positive ε, we have proved πε = π0 since we assume π = π0 in (2.6).

Then Tgε,0 = T1 on W1. Proposition 9.3 asserts that W1 is uniformly

dense in C[0, 1], hence in A1. As T1 is continuous with respect to ‖ ·‖∞
by Lemma 9.1, we conclude that T1 = Tgε,0 on A1. Since Tgε is a

surjective isometry we conclude that T1 is a surjective isometry. We

prove that T1(f) = f for every f ∈ W1. To prove it, suppose that there

exists a f0 ∈ W1 such that T1(f0) 6= f0. Then by (2.4) we have

(2.7) T1(f0) = f0 ◦ π1.

As T1 is 2-local in GΠ0 ∩ Iso(A1, A2), there exists a λf0,π0 ∈ A2, αf0,π0 ∈
C of unit modulus and ϵf0,π0 ∈ {±1} such that one of

f0 ◦ π1 = T1(f0) = λf0,π0 + αf0,π0 [f0]
ϵf0,π0 ,(2.8)

π0 = T1(π0) = λf0,π0 + αf0,π0π0

and

f0 ◦ π1 = T1(f0) = λf0,π0 + αf0,π0 [f0 ◦ π1]ϵf0,π0 ,(2.9)

π0 = T1(π0) = λf0,π0 + αf0,π0π1

holds. Thus

(2.10) λf0,π0(t) = (1 − αf0,π0)t, t ∈ [0, 1]

when (2.8) occurs and

(2.11) λf0,π0(t) = (1 + αf0,π0)t− αf0,π0 , t ∈ [0, 1]

when (2.9) occurs.

We will prove that both of (2.8) and (2.9) are impossible. Suppose

that (2.8) occurs. Rewriting the first equation of (2.8) using (2.10) we

get

(2.12)

f0(1 − t) = (T1(f0))(t) = (1 − αf0,π0)t+ αf0,π0 [f0(t)]
ϵf0,π0 , t ∈ [0, 1]
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Suppose that αf0,π0 = 1. Then

(2.13) f0(1 − t) = f0(t), t ∈ [0, 1]

or

(2.14) f0(1 − t) = f0(t), t ∈ [0, 1].

If (2.13) holds, then (T1(f0))(t) = f0(1 − t) = f0(t), t ∈ [0, 1] by (2.7),

which is against to our choice of f0. Thus (2.13) does not hold. Suppose

that (2.14) holds. Then f0([0, 1]) = f0([0, 1]) holds, which means that

f0 6∈ W1. Thus (2.14) does not hold. It follows that αf0,π0 6= 1. Suppose

that εf0,π0 = 1 for (2.12). Then we have

(2.15) f0(1 − t) = (1 − αf0,π0)t+ αf0,π0f0(t), t ∈ [0, 1].

Changing 1 − t by t we have

(2.16) f0(t) = (1 − αf0,π0)(1 − t) + αf0,π0f0(1 − t), t ∈ [0, 1].

Applying (2.15) we have

(2.17)

f0(t) = (1−αf0,π0)(1−t)+αf0,π0 ((1 − αf0,π0)t+ αf0,π0f0(t)) , t ∈ [0, 1].

As αf0,π0 6= 1 we infer that

(2.18) (1 + αf0,π0)f0(t) = 1 − (1 − αf0,π0)t, t ∈ [0, 1].

If αf0,π0 = −1, then we have that 0 = 1 − 2t for every t ∈ [0, 1], which

is a contradiction. Hence αf0,π0 6= −1. Then by (2.18) we have

f0(t) =
1

(1 + αf0,π0)
− (1 − αf0,π0)

(1 + αf0,π0)
t, t ∈ [0, 1].

Hence f0 ∈ W1, which is a contradiction. Suppose that ϵf0,π0 = −1 for

(2.12). Then we have

(2.19) f0(1 − t) = (1 − αf0,π0)t+ αf0,π0f0(t), t ∈ [0, 1].

Substituting 1 − t by t in (2.19), we have

(2.20) f0(t) = (1 − αf0,π0)(1 − t) + αf0,π0f0(1 − t), t ∈ [0, 1].

Substituting (2.19) in (2.20) we get

(2.21)

f0(t) = (1−αf0,π0)(1− t) +αf0,π0(1 − αf0,π0)t+ αf0,π0f0(t), t ∈ [0, 1].
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Hence we get

0 =
(
αf0,π0(1 − αf0,π0) − (1 − αf0,π0)

)
t+ (1 − αf0,π0), t ∈ [0, 1].

We get αf0,π0 = 1, which contradicts to αf0,π0 6= 1. We conclude that

(2.8) does not occur.

Suppose that (2.9) holds. Rewriting (2.9) by applying (2.11) we get

(2.22)

f0(1 − t) = (T1(f0))(t) = (1 + αf0,π0)t− αf0,π0 + αf0,π0 [f0(1 − t)]ϵf0,π0 .

Suppose that ϵf0,π0 = 1. By (2.22) we get

(2.23) (1 − αf0,π0)f0(1 − t) = (1 + αf0,π0)t− αf0,π0 , t ∈ [0, 1].

Then we have 0 = 1 − 2t for every t ∈ [0, 1] if αf0,π0 = 1, which is

impossible, so that αf0,π0 6= 1. Then by (2.23) we get

f0(1 − t) =
1 + αf0,π0
1 − αf0,π0

t− αf0,π0
1 − αf0,π0

, t ∈ [0, 1],

so that

f0(t) =
1 + αf0,π0
1 − αf0,π0

(1 − t) − αf0,π0
1 − αf0,π0

, t ∈ [0, 1],

which is a contradiction to f0 ∈ W1. We have that ϵf0,π0 6= 1, hence

ϵf0,π0 = −1. Then by (2.22) we get

(2.24) f0(1− t) = (1 +αf0,π0)t−αf0,π0 +αf0,π0f0(1 − t), t ∈ [0, 1].

Thus

(2.25) f0(1 − t) = (1 + αf0,π0)t− αf0,π0

+ αf0,π0((1 + αf0,π0)t− αf0,π0 + αf0,π0f0(1 − t)), t ∈ [0, 1].

As |αf0,π0| = 1 we get

(2.26) f0(1 − t) = (1 + αf0,π0)t− αf0,π0

+ αf0,π0(1 + αf0,π0)t− 1 + f0(1 − t), t ∈ [0, 1].

Hence

(2.27)

0 = ((1 + αf0,π0) + αf0,π0(1 + αf0,π0)) t− (αf0,π0 + 1), t ∈ [0, 1].

Thus αf0,π0 = −1. Substituting αf0,π0 = −1 into (2.22) we get

f0(1 − t) = 1 − f0(1 − t), t ∈ [0, 1]
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since ϵf0,π0 = −1. Then

f0([0, 1]) = 1 − f0([0, 1]),

which contradicts to f0 ∈ W1. It follows that (2.9) does not occur.

Assuming the existence of f0 ∈ W1 such that T1(f0) 6= f0 we arrived

at the contradiction. We conclude that T1(f) = f for every f ∈ W1.

Let g ∈ A1 Then by Proposition 9.3 there is a sequence {gn} in W1

such that ‖g− gn‖∞ → 0 as n→ ∞. By the previous part of the proof

we have

(2.28) T1(gn) = gn

for every n. By Lemma 9.1, T1 is an symmetry with respect to ‖ · ‖∞,

we have T1(g) = g by letting n → ∞ for (2.28). We conclude that

T1(g) = g for every g ∈ A1 if T1(π0) = π0. It follows that

T (g) = T (0) + α[g]ϵ, g ∈ A1

if T1(π0) = π0. Suppose that T1(π0) = π1. As we have already de-

scribed, we see that T1(g) = g ◦ π1 for every g ∈ A1. Hence we have

T (g) = T (0) + α[g ◦ π1]ϵ, g ∈ A1.

Thus we observed that T ∈ GΠ0 . As we have already proved that T1 is

a surjective isometry from A1 onto A2, we see that T is also a surjective

isometry. Hence we conclude that T ∈ GΠ0 ∩ Iso(A1, A2). □

3. Applications

We apply Theorem 9.4 to get the following corollaries.

Corollary 9.5. Iso(C1[0, 1], ‖ · ‖Σ) is 2-local reflexive.

Corollary 9.6. Iso(Lip[0, 1], ‖ · ‖∑) is 2-locally reflexive.
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APPENDIX A

Spherical version of the Kowalski-S lodkowski
theorem

One of the basic problem in the operator theory is to find sufficient

sets of conditions for linearity and multiplicativity of maps between

Banach algebras. As a generalization of the Gleason-Kahane-Żelazko

theorem [33, 56, 118], Kowalski and S lodkowski [69] proved the lin-

earity and the multiplicativity of a functional ∆ on a Banach algebra

A under the spectral condition. Recently Li, Peralta, Wang and Wang

proved interesting spherical variants of the Gleason-Kahane-Żelazko

theorem, and the Kowalski-S lodkowski theorem [75] as follows. They

[75] proved a spherical variant of the Kowalski-S lodkowski theorem; a

1-homogeneous functional which satisfies certain spectral condition is

complex-linear.

Theorem A.1. [75, Proposition 3.2] Let A be a unital complex

Banach algebra, and let ∆ : A → C be a mapping which satisfies the

following properties:

(1) ∆(λa) = λ∆(a) for every a ∈ A, λ ∈ C
(2) ∆(a) − ∆(b) ∈ Tσ(a− b), for every a, b ∈ A.

Then ∆ is linear and there exists λ0 ∈ T such that λ0∆ is multiplicative.

We shall prove a generalization of a spherical variant of the Kowalski-

S lodkowski theorem without hypothesis that the 1-homogeneity. This

hypothesis is the same as one of the original Kowalski-S lodkowski the-

orem.

Theorem A.2. Let A be a unital Banach algebra. Suppose that a

map ∆ : A→ C satisfies the conditions

(a) ∆(0) = 0,

(b) ∆(x) − ∆(y) ∈ Tσ(x− y), x, y ∈ A.
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Then ∆ is a complex-linear or conjugate linear and ∆(1)∆ is multi-

plicative.

Fix a ∈ A, we define a map f : C → C by f(λ) = ∆(a+λ·1)−∆(a).

For any λ1, λ2 ∈ C, we get

∆(a+λ1·1)−∆(a+λ2·1) ∈ Tσ((λ1−λ2)·1) = (λ1−λ2)Tσ(1) = (λ1−λ2)T,

by the assumption (b). Thus we have

|f(λ1) − f(λ2)| = |∆(a+ λ1 · 1) − ∆(a) − {∆(a+ λ2 · 1) − ∆(a)}|

= |∆(a+ λ1 · 1) − ∆(a+ λ2 · 1)|

= |λ1 − λ2|.
This implies that the map f is an isometry on C. The form of an

isometry on C is well known. Without assuming surjectivity on the

isometry there exist α, β ∈ C with |α| = 1 such that f(λ) = β + λα

(λ ∈ C) or f(λ) = β + λ̄α (λ ∈ C). Since

f(0) = ∆(a+ 0 · 1) − ∆(a) = ∆(a) − ∆(a) = 0,

we have

f(λ) = λα, λ ∈ C,

or

f(λ) = λα, λ ∈ C.

In addition, we have α = f(1) = ∆(a+ 1) − ∆(a), we infer that

∆(a+ λ · 1) − ∆(a) = λ{∆(a+ 1) − ∆(a)}, λ ∈ C,

or

∆(a+ λ · 1) − ∆(a) = λ{∆(a+ 1) − ∆(a)}, λ ∈ C.

Let

A1 = {a ∈ A; ∆(a+ λ · 1) − ∆(a) = λ{∆(a+ 1) − ∆(a)}, λ ∈ C}

and

A−1 = {a ∈ A; ∆(a+ λ · 1) − ∆(a) = λ{∆(a+ 1) − ∆(a)}, λ ∈ C}.

For any a ∈ A, the map λ 7→ ∆(a+ λ · 1) − ∆(a) is an isometry on C,

we have A = A1 ∪ A−1.

Lemma A.3. We have A = A1 or A = A−1.
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Proof. We have proved that A = A1 ∪ A−1. We prove that A1

and A−1 are closed subsets of A. Let {aα} ⊂ A1 be a net and a0 ∈ A

such that aα → a0. By assumption (b), ∆(aα) − ∆(a0) ∈ Tσ(aα − a0).

Hence |∆(aα) − ∆(a0)| ≤ r(aα − a0) for the spectral radius r(·). Since

r(·) ≤ ‖·‖ for the original norm ‖·‖ on A, we get ∆(aα)−∆(a0) → 0 as

aα → a0. In the same way we have that ∆(a0+λ ·1)−∆(aα+λ ·1) → 0

as aα → a0 for any λ ∈ C. Thus for any λ ∈ C, we have

|∆(a0 + λ · 1) − ∆(a0) − λ{∆(a0 + 1) − ∆(a0)}|

= |∆(a0 + λ · 1) − ∆(a0) − {∆(aα + λ · 1) − ∆(aα)}

+ λ{∆(aα + 1) − ∆(aα)} − λ{∆(a0 + 1) − ∆(a0)}|

≤ |∆(a0 + λ · 1) − ∆(aα + λ · 1)| + |∆(a0) − ∆(aα)|

+ |λ||∆(aα + 1) − ∆(a0 + 1)| + |λ||∆(aα) − ∆(a0)|

→ 0,

as aα → a0. This implies that ∆(a0 + λ · 1) − ∆(a0) = λ{∆(a0 + 1) −
∆(a0)} for any λ ∈ C. Since a0 ∈ A1, we have A1 is closed. We can

prove that A−1 is also closed in the same way. In addition, suppose

that a ∈ A1 ∩ A−1. Then we have for any λ ∈ C,

λ{∆(a+ 1) − ∆(a)} = ∆(a+ λ · 1) − ∆(a) = λ{∆(a+ 1) − ∆(a)}.

This shows that ∆(a+ 1) − ∆(a) = 0. On the other hand, we have

∆(a+ 1) − ∆(a) ∈ Tσ(1) = T.

We arrive at a contradiction. Therefore A1 ∩ A−1 = ∅. Since A is

connected, we conclude that A1 = A or A−1 = A. □

Proof of Theorem A.2. Lemma A.3 shows that one of A = A1

and A = A−1 occurs. First we take up the case A = A1.

(i) We consider the case that A is separable. By the definition of

A1, for any a ∈ A1, we get

(0.1) ∆(a+ λ · 1) − ∆(a) = λ{∆(a+ 1) − ∆(a)}, λ ∈ C.

By assumption (b), it follows that

|∆(a) − ∆(b)| ≤ ‖a− b‖, a, b ∈ A,
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which implies that ∆ is a Lipschitz map. [69, Theorem 2.3] ([75,

Theorem 3.4]) shows that ∆ has real differentials except some zero set.

We say that ∆ has a real differential at a point of a ∈ A if for every

x ∈ A the derivative ∆′
x(a) = lim

R∋r→0

∆(a+ rx) − ∆(a)

r
exists and the

map (D∆)a : A→ C, defined by (D∆)a(x) = ∆′
x(a), is real linear and

continuous. (cf.[79, 69, 75].) Since

∆(a+ rx) − ∆(a)

r
∈ Tσ(rx)

r
=
rTσ(x)

r
= Tσ(x), r ∈ R \ {0},

we have

(D∆)a(x) = lim
R∋r→0

∆(a+ rx) − ∆(a)

r
∈ Tσ(x).

As (D∆)a is a real linear, [75, Lemma 3.3] implies that (D∆)a is a

complex-linear or conjugate linear. Since a ∈ A = A1, ∆ satisfies

(0.1), we have

(D∆)a(1) = lim
r→0

∆(a+ r1) − ∆(a)

r
= lim

r→0

r{∆(a+ 1) − ∆(a)}
r

= ∆(a+ 1) − ∆(a) ∈ Tσ(1) = T,

and

(D∆)a(i1) = lim
r→0

∆(a+ ri1) − ∆(a)

r
= lim

r→0

ri{∆(a+ 1) − ∆(a)}
r

= i{∆(a+ 1) − ∆(a)}.

It follows that (D∆)a(i1) = i(D∆)a(1) and (D∆)a(1) 6= 0. We con-

clude that (D∆)a is complex-linear. We have proved that if ∆ has a

real differential at a point a ∈ A = A1, then (D∆)a is complex-linear.

We conclude that ∆ is holomorphic in A by applying [69, Lemma 2.4].

For a, b ∈ A, we define a map fa,b : C → C by

fa,b(λ) = ∆(λa+ b) − ∆(b).

Since ∆ is holomorphic in A, fa,b is entire. Moreover, we have for any

λ ∈ C \ {0}
fa,b(λ)

λ
=

∆(λa+ b) − ∆(b)

λ
∈ Tσ(λa)

λ
=
λTσ(a)

λ
= Tσ(a),

and ∣∣∣∣fa,b(λ)

λ

∣∣∣∣ ≤ ‖a‖.
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By Liouville’s Theorem, there exists M ∈ C such that fa,b(λ) = λM

for all λ ∈ C. As M = fa,b(1) = ∆(a+ b) − ∆(b), we get

∆(λa+ b) − ∆(b) = λ{∆(a+ b) − ∆(b)}, λ ∈ C,

and

(0.2) ∆(λa+ b) = λ{∆(a+ b) − ∆(b)} + ∆(b), λ ∈ C.

Taking b = 0 in (0.2), we have

(0.3) ∆(λa) = λ∆(a), λ ∈ C,

by the hypothesis (a). For any c, d ∈ A, taking a = 1
2
(c− d), b = d and

λ = 2 in (0.2), we get

∆(c) = ∆(2a+ b) = 2{∆(a+ b) − ∆(b)} + ∆(b)

= 2

{
∆

(
1

2
(c+ d)

)
− ∆(d)

}
+ ∆(d)

= 2∆

(
1

2
(c+ d)

)
− ∆(d),

and

(0.4) ∆

(
1

2
(c+ d)

)
=

1

2
∆(c) +

1

2
∆(d).

We conclude that ∆ is complex-linear by (0.3) and (0.4).

(ii) We consider the case A is not separable. For any a, b ∈ A, we

can restrict ∆ to subalgebra [a, b] of A generated by a and b. Since [a, b]

is separable, we conclude ∆|[a,b] is complex-linear. As a, b are chosen

arbitrarily, ∆ is complex-linear too.

In addition, since ∆(a) = ∆(a) − ∆(0) ∈ Tσ(a), we apply [75,

Proposition 2.2] to conclude that ∆(1)δij(k1k2,x) is multiplicative.

Secondly we assume that A = A−1. We define the map ∆ : A→ C
by

∆(a) = ∆(a), a ∈ A.

In the case A = A−1, ∆ satisfies for any a ∈ A,

∆(a+ λ · 1) − ∆(a) = λ{∆(a+ 1) − ∆(a)}, λ ∈ C.

Thus we have

∆(a+ λ · 1) − ∆(a) = λ{∆(a+ 1) − ∆(a)}, λ ∈ C.
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Moreover, it is clear that ∆(0) = ∆(0) = 0. Therefore, the map ∆ :

A→ C satisfies the conditions for ∆ in the case of A = A1. This in turn

implies that ∆ is complex-linear and ∆(1)∆ is multiplicative. Thus we

conclude that ∆ is conjugate linear and ∆(1)∆ is multiplicative. □

1. 2-local isometries with the spherical version of the

Kowalski-S lodkowski Theorem

Applying [75, Proposition 3.2] (or Theorem A.1), Li, Peralta, Wang

and Wang studied 2-local and weak 2-local complex-linear isometries in

[75]. In this appendix, we apply Theorem A.2 to solve 2-local problems.

Molnár [87] began to study 2-local complex-linear isometries. Given

a Banach space Mj for j = 1, 2, an isometry from M1 into M2 is a dis-

tance preserving map. The set of all surjective complex-linear isome-

tries from M1 onto M2 is denoted by IsoC(M1,M2). The set of all

maps from M1 into M2 is denoted by M(M1,M2). We say that a

map T ∈ M(M1,M2) is a 2-local complex-linear isometry if for every

x, y ∈ M1 there is a Tx,y ∈ IsoC(M1,M2) such that T (x) = Tx,y(x) and

T (y) = Tx,y(y). Molnár [87] proved that a 2-local complex-linear isom-

etry on a certain C∗-algebra is a surjective complex-linear isometry.

Initiated by his result, there are a lot of studies on 2-local complex-

linear isometries on operator algebras and function spaces assuring that

a 2-local complex-linear isometry is in fact a surjective complex-linear

isometry [1, 17, 34, 38, 50, 53, 75, 88, 87].

Molnár raised a problem on 2-local isometries [89, 90]. The set

of all surjective isometries (not necessarily linear) from M1 onto M2

is denoted by Iso(M1,M2). We say that T ∈ M(M1,M2) is a 2-local

isometry or T is 2-local in Iso(M1,M2) if for every x, y ∈ M1 there is

a Tx,y ∈ Iso(M1,M2) such that

T (x) = Tx,y(x) and T (y) = Tx,y(y).

The problem asks whether a 2-local isometry is in fact a surjective

isometry or not. One may expect that the problems on 2-local complex-

linear isometries and 2-local isometries are not so different. But the

problem on 2-local isometries is very different from the one on 2-local
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complex-linear isometries. To clarify the situation we exhibit an ex-

ample that the assumption of the linearity makes a quite big difference

in the conclusion for 2-local maps. Let A(C,C) = {T : C → C;Tx =

ax+ b (∃a, b ∈ C)}. Since any map T : C → C is 2-local in A(C,C), it

needs not be T ∈ A(C,C) in general. However, let AC(C,C) = {T ;T ∈
A(C,C),T is C-linear} = {T : C → C;Tx = ax (∃a ∈ C)}. Then we

get every 2-local map in AC(C,C) is an element of AC(C,C). We can

easily prove that a 2-local isometry is necessarily an isometry. What

we need to prove is that a 2-local isometry is surjective. One may think

that it is not a big deal, but it is not. Molnár [89] worked quite hard to

prove that a 2-local isometry on B(H) for a separable complex Hilbert

space H is in fact a surjective isometry on B(H). The author believes

that this is the first result on the problem of 2-local isometries. Molnár

asked a question whether a 2-local map in Iso(C([0, 1]), C([0, 1])) is an

element in Iso(C([0, 1]), C([0, 1])) or not [90]. Inspired by his problem,

Hatori and the author proved that a 2-local map in Iso(B,B) is an

element of Iso(B,B), where B is the Banach space of all continuously

differentiable functions or the Banach space of Lipschitz functions on

the closed unit interval equipped with a certain norm [42].

The aim of this chapter is to apply a generalization of a spheri-

cal variant of the Kowalski and S lodkowski theorem exhibited in [75].

Then we prove that 2-local isometries on several function spaces are

surjective isometries. In particular, we give an affirmative answer to

the problem of Molnár (Corollary A.11). We remark that Mori [93]

also got an affirmative answer to the problem by a different approach

applying theory of operator algebras.

In this chapter, we denote the unit circle on the complex plane by

T = {z ∈ C; |z| = 1}. For the simplicity of the notation we denote

[f ]1 = f and [f ]−1 = f , the complex-conjugate of f for any complex-

valued function f . For any unital Banach algebra, 1 stands for the

unity of itself. The identity map is denoted by Id.
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2. Results and Proofs

In this chapter Bj is a unital semi-simple commutative Banach alge-

bra with maximal ideal space Mj for j = 1, 2. The Gelfand transform

·̂ : Bj → B̂j ⊂ C(Mj) is a continuous isomorphism. Identifying Bj

with B̂j, we consider that Bj is a subalgebra of C(Mj).

We say that f ∈ Bj is unimodular if |f | = 1 on Mj. Since Mj is

a maximal ideal space and a unimodular element f of Bj has no zeros

on Mj, f̄ = 1/f ∈ Bj.

An interesting generalization of the concept of 2-local maps, that

is weak 2-locality, was introduced in [24, 75]. We define a pointwise

2-local map.

Definition A.4. Let S ⊂ M(B1, B2). We say T ∈ M(B1, B2) is

a pointwise 2-local in S if for every trio f, g ∈ B1 and x ∈ M2 there

exists Tf,g,x ∈ S such that

(T (f)) (x) = (Tf,g,x(f)) (x) and (T (g)) (x) = ((Tf,g,x(g)) (x).

Note that if a map T is 2-local, then T is weak 2-local. If T is

weak 2-local, then T is pointwise 2-local. We say that T ∈ M(B1, B2)

is a pointwise 2-local isometry if T is pointwise 2-local in Iso(B1, B2).

Our interest is whether a pointwise 2-local in Iso(B1, B2) is in fact

surjective isometry from B1 onto B2 or not. Simple examples show that

a pointwise 2-local isometry need not be a surjection or an isometry.

We show three of them.

• a map on C[0, 1]

Let π : [0, 1] → [0, 1] be a continuous function such that π(0) =

0, π(1) = 1 and 0 < π(x) < 1 for x ∈ (0, 1). Put T (f) = f ◦π,

f ∈ C[0, 1]. It is easy to see that T is pointwise 2-local in

Iso(C[0, 1], C[0, 1]) while it is not surjective when π is not a

homeomorphism.

• a map on C1[0, 1]

With the norm ‖f‖Σ = ‖f‖∞ +‖f ′‖∞ for f ∈ C1[0, 1], C1[0, 1]

is a unital semi-simple commutative Banach algebra with max-

imal ideal space [0, 1]. Let T : C1[0, 1] → C1[0, 1] stand

T (f) = exp(i·)f , f ∈ C1[0, 1]. By a simple calculation we
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have T is pointwise 2-local in Iso(C1[0, 1], C1[0, 1]) while T is

not an isometry since ‖1‖Σ = 1 and ‖T (1)‖Σ = 2.

• a map on the disk algebra A(D̄).

It is well known that the maximal ideal space of the disk al-

gebra A(D̄) is D̄. Let π0(z) = z2, z ∈ D̄. Then the map

T : A(D̄) → A(D̄) defined by T (f) = f ◦ π0, f ∈ A(D̄). Triv-

ially T is not surjective, hence T 6∈ Iso(A(D̄), A(D̄)). On the

other hand, T is pointwise 2-local in Iso(A(D̄), A(D̄)). The rea-

son is as follows. Let f, g ∈ A(D̄) and x ∈ D̄ be arbitrary. If

|x| = 1, then put φx(z) = xz. If |x| < 1, then it is well known

that there is a Möbius transformation φx such that φx(x) = x2

since both of x and x2 is in D. Put Tf,g,x(h) = h◦φx, h ∈ A(D̄).

We infer by a calculation that (T (f))(x) = (Tf,g,x(f))(x) and

(T (g))(x) = (Tf,g,x(g))(x). Thus T is pointwise 2-local in

Iso(A(D̄), A(D̄)).

It is interesting to point out that a pointwise 2-local isometry is in

fact a surjective isometry for some Banach algebra (see Section 3.4). A

simple example is a pointwise 2-local isometry on the annulus algebra.

• Let 0 < r < 1 and Ω = {z : r ≤ |z| ≤ 1} be an annu-

lus. Let A(Ω) be the algebra of all complex-valued continuous

functions which is analytic on the interior of Ω. It is well

known that A(Ω) is a uniform algebra on Ω whose maximal

ideal space is homeomorphic to Ω. A pointwise 2-local map in

Iso(A(Ω), A(Ω)) is a surjective isometry. This can be proved

by using the fact that a homeomorphism on Ω which is analytic

on the interior is just a rotation.

Recall that for an ϵ ∈ {±1} and f ∈ Bj, [f ]ϵ = f if ϵ = 1 and

[f ]ϵ = f̄ if ϵ = −1.
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Let

GWC = {T ∈M(B1, B2); there exist a β ∈ B2,

an α ∈ B2 with |α| = 1 on M2,

a continuous map π : M2 → M1,

and a continuous map ϵ : M2 → {±1}

such that T (f) = β + α[f ◦ π]ϵ for every f ∈ B1},

Applying Theorem A.2 we show that a pointwise 2-local map in

GWC is also in GWC.

Theorem A.5. Suppose that T ∈ M(B1, B2) is pointwise 2-local

in GWC. Then there exist a continuous map π : M2 → M1 and a

continuous map ϵ : M2 → {±1} such that

(2.1) T (f) = T (0) + (T (1) − T (0))[f ◦ π]ϵ, f ∈ B1,

where T (1) − T (0) is a unimodular element in B2. In particular, a

pointwise 2-local map in GWC is an element in GWC.

Proof of Theorem A.5. Put T0 = T −T (0). We infer that T0(0) =

0. Since T is pointwise 2-local in GWC, it is obvious that T0 is also

pointwise 2-local in GWC. Let x ∈ M2. There exists β0,1,x, α0,1,x ∈ B2

with |α0,1,x| = 1 on M2, a continuous map π0,1,x : M2 → M1 and a

continuous map ϵ0,1,x : M2 → {±1} such that

T0(1)(x) = β0,1,x(x)+α0,1,x(x)[1◦π0,1,x]
ϵ
0,1,x

(x)
(x) = β0,1,x(x)+α0,1,x(x),

and

0 = T0(0)(x) = β0,1,x(x) + α0,1,x(x)[0 ◦ π0,1,x]
ϵ
0,1,x

(x)
(x) = β0,1,x(x).

It follows that T0(1)(x) = α0,1,x(x). As x ∈ M2 is arbitrary we have

(2.2) |T0(1)(x)| = 1, x ∈ M2.

Hence T0(1) has no zeros on M2, so T0(1) = T0(1)−1 ∈ B2. We define

T1 ∈M(B1, B2) by

(2.3) T1 = T0(1)T0.

We see that

(2.4) T1(0) = T0(1)T0(0) = 0, T1(1) = T0(1)T0(1) = 1
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by (2.2). To proceed the proof of Theorem A.5, we need some claims.

Claim 1. There exists a map π : M2 → M1 and a map ϵ : M2 →
{±1} such that

T1(f) = [f ◦ π]ϵ, f ∈ B1.

Proof. By (2.2), we infer that T1 is pointwise 2-local in GWC.

Fix x ∈ M2. We define ∆x : B1 → C by

∆x(f) = (T1(f))(x), f ∈ B1.

As T1 is pointwise 2-local in GWC, for any f, g ∈ B1, there exists

Tf,g,x ∈ GWC such that

∆x(f) = (T1(f))(x)

= Tf,g,x(f)(x) = βf,g,x(x) + αf,g,x(x)[f ◦ πf,g,x]ϵf,g,x(x)(x)

and

∆x(g) = (T1(g))(x)

= Tf,g,x(g)(x) = βf,g,x(x) + αf,g,x(x)[g ◦ πf,g,x]ϵf,g,x(x)(x).

We infer that

∆x(f) − ∆x(g) = αf,g,x(x)[(f − g) ◦ πf,g,x]ϵf,g,x(x)(x).

If x ∈ ϵ−1
f,g,x(1), we have

[(f − g) ◦ πf,g,x]ϵf,g,x(x)(x) = (f − g)(πf,g,x(x)) ∈ σ(f − g).

If x ∈ ϵ−1
f,g,x(−1), we have

[(f − g) ◦ πf,g,x]ϵf,g,x(x)(x) = (f − g)(πf,g,x(x)) ∈ Tσ(f − g).

Therefore we get

∆x(f) − ∆x(g) ∈ Tσ(f − g), f, g ∈ B1.

By (2.4), we have ∆x(0) = T1(0)(x) = 0. Applying Theorem A.2,

we obtain ∆x is complex linear or conjugate linear and ∆x(1)∆x is

multiplicative. As ∆x(1) = T1(1)(x) = 1 by (2.4), we conclude that

∆x is multiplicative. In addition ∆x(1) = 1 implies that ∆x 6= 0.

Therefore for any x ∈ M2, one of the following (i) and (ii) occurs:

(i) ∆x is a non-zero multiplicative complex-linear functional,

(ii) ∆x is a non-zero multiplicative conjugate linear functional.
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In the case (i), by Gelfand theory, there exists π(x) ∈ M1 such that

∆x(f) = f(π(x)), f ∈ B1.

In the case (ii), ∆x is non-zero multiplicative complex-linear functional.

Thus there exists π(x) ∈ M1 such that

∆x(f) = f(π(x)), f ∈ B1,

hence

∆x(f) = f(π(x)), f ∈ B1.

Recall that ∆x(f) = (T1(f))(x), we have

T1(f)(x) =

{
f ◦ π(x), (∆x is complex-linear)

f ◦ π(x), (∆x is conjugate linear).

We define a map ϵ : M2 → {±1} by

(2.5) ϵ(x) =

{
1, (∆x is complex-linear)

−1, (∆x is conjugate linear).

Then we conclude that

T1(f)(x) = [f ◦ π]ϵ(x)(x), f ∈ B1, x ∈ M2.

□

Let

K1 = {x ∈ M2; ∆x is complex-linear}
and

K−1 = {x ∈ M2; ∆x is conjugate linear}.
Rewriting (2.5), we have

ϵ(x) =

{
1, (x ∈ K1)

−1, (x ∈ K−1).

Claim 2. We have K1 = {x ∈ M2; ∆x(i) = i} and K−1 = {x ∈
M2; ∆x(i) = −i}. In addition M2 = K1 ∪K−1, K1 ∩K−1 = ∅ and K1

and K−1 are closed subset of M2.

Proof. Since for any x ∈ M2, ∆x is complex-linear or conjugate

linear, it is clear that M2 = K1 ∪ K−1. By the definition of K1 and

∆x(1) = 1, if x ∈ K1, then x ∈ {x ∈ M2; ∆x(i) = i}. Suppose that

x ∈ {x ∈ M2; ∆x(i) = i}. Then ∆x(i) = i∆x(1). This implies that
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x ∈ K1. We conclude that K1 = {x ∈ M2; ∆x(i) = i}. We can also

prove that K−1 = {x ∈ M2; ∆x(i) = −i} in the similar argument.

Therefore it is easy to see that K1 ∩K−1 = ∅. Let {xα} ⊂ K1 be a net

with xα → x0 ∈ M2. We get

i = ∆xα(i) = (T1(i))(xα) → (T1(i))(x0) = ∆x0(i).

This implies that ∆x0(i) = i and x0 ∈ K1. We have K1 is closed in

M2. We also get K−1 is closed in the same way. □

Claim 2 shows that ϵ : M2 → {±1} is continuous.

Claim 3. We have π : M2 → M1 is continuous.

Proof. Let {xα} ⊂ M2 be a net with xα → x0 ∈ M2. By Claim

2, K1 and K−1 are closed and K1 ∩K−1 = ∅. Thus there is no loss of

generality to assume that

(i) {xα} ⊂ K1 and x0 ∈ K1

(ii) {xα} ⊂ K−1 and x0 ∈ K−1.

First, we consider the case (i). Then we have

T1(f)(xα) → T1(f)(x0), f ∈ B1,

hence

(f ◦ π)(xα) → (f ◦ π)(x0), f ∈ B1.

This implies that π(xα) → π(x0) with the Gelfand topology. For the

case (ii), we have

T1(f)(xα) → T1(f)(x0), f ∈ B1,

and

(f ◦ π)(xα) → (f ◦ π)(x0), f ∈ B1.

Thus we get π(xα) → π(x0) with the Gelfand topology. We conclude

that π is continuous. □

Continuation of Proof of Theorem A.5. By (2.3), we get

T0 = T0(1)T1. As T0 = T − T (0) and Claim 1, we have

T (f) = T0(f) + T (0)

= T0(1)T1(f) + T (0)

= T0(1)[f ◦ π]ϵ + T (0), f ∈ B1.
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Putting f = 1, we have T0(1) = T (1) − T (0) and

T (f) = (T (1) − T (0))[f ◦ π]ϵ + T (0).

In addition, by (2.2), we have |T0(1)| = 1. We obtain that T0(1) =

T (1) − T (0) is a unimodular element in B2. □

Remark A.6. Even though a map T ∈ M(B1, B2) is a 2-local

map in GWC, it is not always the case that π : M2 → M1 is a

homeomorphism. In fact, the map T0 in [38, Theorem 2.3] is a 2-local

automorphism, hence 2-local in IsoC(C(K̄), C(K̄)). On the other hand,

the corresponding continuous map is not injective, hence it is not a

homeomorphism.

Corollary A.7. Suppose that T ∈ M(B1, B2) is a pointwise 2-

local in GWC and T is injective. Then π(M2) is a uniqueness set for

B1, i.e. if g ∈ B1 and g = 0 on π(M2), then g = 0.

Proof. Suppose that g ∈ B1 and g = 0 on π(M2). Substituting g

in (2.1), we get

T (g) = T (0) + (T (1)−T (0))[g ◦π]ϵ = T (0) + (T (1)−T (0))[0]ϵ = T (0).

Since T is injective, we have that g = 0. Hence π(M2) is a uniqueness

set for B1. □

Let

WCC = {T ∈M(B1, B2); there exists

an α ∈ B2 with |α| = 1 on M2,

and a continuous map π : M2 → M1

such that T (f) = αf ◦ π for every f ∈ B1}.

Then WCC is a set of weighted composition operators. We see that a

pointwise 2-local weighted composition operator is a weighted compo-

sition operator.

Corollary A.8. Suppose that T ∈M(B1, B2) is pointwise 2-local

in WCC. Then T ∈ WCC.
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Proof. Let T ∈ M(B1, B2) be pointwise 2-local in WCC. Since

WCC ⊂ GWC, we see by Theorem A.5 that there exist a continuous

map π : M2 → M1 and a continuous map ϵ : M2 → {±1} such that

(2.6) T (f) = T (0) + (T (1) − T (0))[f ◦ π]ϵ, f ∈ B1,

where T (1) − T (0) is a unimodular element in B2. Since any map in

WCC is complex-linear, we infer by a simple calculation that T (0) = 0

and T is homogeneous with respect to complex scalar. We see by (2.6)

that

T (f) = T (1)f ◦ π, f ∈ B1,

where T (1) is a unimodular function. Thus T ∈ WCC. □

3. Applications

In this section we study 2-local isometries on several function spaces

by applying Theorem A.5.

3.1. Uniform algebras. We say that A is a uniform algebra on X

if A is a uniformly closed subalgebra of C(X) which contains constant

functions and separates the points of X. As the Gelfand transformation

on a uniform algebra is an isometric isomorphism, a uniform algebra

is isometrically isomorphic to its Gelfand transform. We may suppose

that X is a subset of the maximal ideal space MA, and A is a uniform

algebra on MA. The Banach algebra C(X) is a uniform algebra on X

whose maximal ideal space is X. By Theorem 2.1 and Corollary 3.4

in [37] we have the following. We denote the maximal ideal space of a

uniform algebra Aj by Mj for j = 1, 2.

Theorem A.9. Let Aj be a uniform algebra on a compact Hausdorff

space Xj for j = 1, 2. Suppose that U : A1 → A2 is a surjective

isometry from A1 onto A2. Then there exists a homeomorphism π :

M2 → M1, a unimodular function α ∈ A2, and a continuous map

ϵ : M2 → {±1} such that

(3.1) U(f) = U(0) + α[f ◦ π]ϵ, f ∈ A1.

If Aj = C(Xj), the map U defined by (3.1) is a surjective isometry

from C(X1) onto C(X2).
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By Theorem A.9 we see that

Iso(A1, A2) ⊂ GWC

for uniform algebras A1 and A2. A direct consequence of Theorem A.5

we have Corollary A.10, which is a generalization of Theorem 3.10 of

[75].

Corollary A.10. Let Aj be a uniform algebra on a compact Haus-

dorff space Xj for j = 1, 2. Suppose that T ∈M(A1, A2) is pointwise 2-

local in Iso(A1, A2). Then there exist a continuous map π : M2 → M1

and a continuous map ϵ : M2 → {±1} such that

T (f) = T (0) + (T (1) − T (0))[f ◦ π]ϵ, f ∈ A1,

where T (1) − T (0) is a unimodular function.

We have the following.

Corollary A.11. Let Xj be a first countable compact Hausdorff

space for j = 1, 2. Suppose that T ∈ M(C(X1), C(X2)) is 2-local in

Iso(C(X1), C(X2)). Then we have T ∈ Iso(C(X1), C(X2)).

Proof. Let T be a 2-local in Iso(C(X1), C(X2)). By Corollary

A.10, there exist a continuous map π : X2 → X1 and a continuous map

ϵ : X2 → {±1} such that

(3.2) T (f) = T (0) + (T (1) − T (0))[f ◦ π]ϵ, f ∈ C(X1).

We prove π is an injection. Suppose that y1, y2 ∈ X2 such that π(y1) =

π(y2) = x ∈ X1. Since X1 is first countable there exists g ∈ C(X1)

such that g−1(0) = {x}. Since T1 = T0(1)T0 for T0 = T−T (0) is 2-local

in Iso(C(X1), C(X2)), we have

0 = T1(0) = T0,g(0)

= β0,g + α0,g[0 ◦ π0,g]ϵ0,g = β0,g,

and

T1(g) = T0,g(g)

= β0,g + α0,g[g ◦ π0,g]ϵ0,g .
Hence we see that

T1(g) = α0,g[g ◦ π0,g]ϵ0,g .
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We have

(T1(g))−1(0) = (g ◦ π0,g)−1(0) = π−1
0,g(x).

Since π0,g is homeomorphism, the set π−1
0,g(x) is a singleton. Moreover

applying (3.2) we have

T1(g) = [g ◦ π]ϵ.

Thus we obtain

(T1(g))−1(0) = (g ◦ π)−1(0) = π−1(x) 3 {y1, y2}.

As we have already proved that the set (T1(g))−1(0) = π−1
0,g(x) is a

singleton, we infer that y1 = y2. Thus π is injective. Since T is a 2-

local isometry, T is an isometry by the definition of a 2-local isometry.

Hence T is injective. By Corollary A.7, π(X2) is a uniqueness set for

C(X1), which is X1 itself. As Xj is compact Hausdorff space, we infer

that π is a homeomorphism. It follows that T ∈ Iso(C(X1), C(X2)) □

Corollary A.11 gives an affirmative answer to the problem men-

tioned by Molnár. Mori proved the same statement in [93, Theorem

4.6] by a different argument applying theory of linear operators.

Next we consider the disk algebra.

Corollary A.12. Suppose that U is a surjective isometry from

the disk algebra A(D̄) onto itself. Then there exists a Möbius transfor-

mation φ on D̄ and a unimodular constant α such that

U(f) = U(0) + αf ◦ φ, f ∈ A(D̄)

or

U(f) = U(0) + αf ◦ φ̄, f ∈ A(D̄).

Conversely if one of the above equations holds, then U is a surjective

isometry from the disk algebra onto itself.

Proof. Applying Theorem A.9 we have a homeomorphism π :

D̄ → D̄, a unimodular function α ∈ A(D̄), and a continuous map

ϵ : D̄ → {±1} such that

(3.3) U(f) = U(0) + α[f ◦ π]ϵ, f ∈ A(D̄).
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Due to the maximum modulus principle for analytic functions, α is a

unimodular constant. Since D̄ is connected, ϵ = 1 on D̄, or ϵ = −1 on

D̄. Letting f = Id, the identity function, in (3.3) we have

(3.4) ᾱ(U(Id) − U(0)) = π if ϵ = 1,

(3.5) ᾱ(U(Id) − U(0)) = π̄ if ϵ = −1.

Suppose that ϵ = 1. Then π is analytic on D by (3.4). As π is a

homeomorphism, we conclude that π is a Möbius transformation. In

the same way, π̄ is a Möbius transformation if ϵ = −1. Letting φ = π

if ϵ = 1, and φ = π̄ if ϵ = −1, φ is a Möbius transformation. It follows

that

U(f) = U(0) + αf ◦ φ, f ∈ A(D̄)

if ϵ = 1 and

U(f) = U(0) + αf ◦ φ̄, f ∈ A(D̄)

if ϵ = −1.

The converse statement is trivial. □

By Corollary A.12 we see that

Iso(A(D̄), A(D̄)) ⊂ GWC

for the disk algebra A(D̄).

Corollary A.13. Suppose that T ∈ M(A(D̄), A(D̄)) is 2-local in

Iso(A(D̄), A(D̄)). Then T ∈ Iso(A(D̄), A(D̄)).

Proof. Corollary A.10 asserts that there exist a continuous map

π : D̄ → D̄ and a continuous map ϵ : D̄ → {±1} such that

(3.6) T (f) = T (0) + (T (1) − T (0))[f ◦ π]ϵ, f ∈ A(D̄),

where T (1) − T (0) is a unimodular function. By the same way as

the proof of Corollary A.12 we see that T (1) − T (0) is a unimodular

constant. We also see that ϵ = 1 on D̄ or ϵ = −1 on D̄ because D̄ is

connected and ϵ is continuous. Letting f = Id in (3.6), we have that π

is analytic on D if ϵ = 1, and π̄ is analytic on D if ϵ = −1. Put φ = π

if ϵ = 1 and φ = π̄ if ϵ = −1. Put T1 = T (1) − T (0)(T − T (0)). Then

T1(f) = f ◦ φ, f ∈ A(D̄)
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if ϵ = 1, and

T1(f) = f ◦ φ̄, f ∈ A(D̄)

if ϵ = −1. Since T1 is 2-local in Iso(A(D̄), A(D̄)), there exists a Möbius

transform φ0, u ∈ A(D̄), and a unimodular constant α such that

φ = T1(Id) = u+ αφ0 and 0 = T1(0) = u.

It follows that φ = αφ0. As |α| = 1, we infer that φ is a Möbius trans-

formation on D̄. We infer by Corollary A.12 that T ∈ Iso(A(D̄), A(D̄)).

□

3.2. Lipschitz algebras.

Corollary A.14. Let (Xj, d) be a compact metric space for j =

1, 2. Let ‖ · ‖j be any norm on Lip(Xj). We do not assume that ‖ · ‖j
is complete. Suppose that

(3.7) Iso((Lip(X1), ‖ · ‖1), (Lip(X2), ‖ · ‖2))

= {T ∈M(Lip(X1),Lip(X2));

there exist β ∈ Lip(X2), α ∈ T,

a surjective isometry π : X2 → X1, and ϵ = ±1

such that T (f) = β + α[f ◦ π]ϵ for every f ∈ Lip(X1)}.

Suppose that T ∈ M((Lip(X1), ‖ · ‖1), (Lip(X2), ‖ · ‖2)) is 2-local in

Iso((Lip(X1), ‖ · ‖1), (Lip(X2), ‖ · ‖2)). Then T ∈ Iso((Lip(X1), ‖ ·
‖1), (Lip(X2), ‖ · ‖2)).

Proof. Suppose that T is 2-local in Iso((Lip(X1), ‖·‖1), (Lip(X2), ‖·
‖2)). The equality (3.7) implies that Iso((Lip(X1), ‖ · ‖1), (Lip(X2), ‖ ·
‖2)) ⊂ GWC. Applying Theorem A.5, there exists a continuous map

π : X2 → X1 and a continuous map ϵ : X2 → {±1} such that

(3.8) T (f) = T (0) + (T (1) − T (0))[f ◦ π]ϵ, f ∈ Lip(X1).

Recall that T1 = T0(1)T0 for T0 = T − T (0). Since T0 is 2-local, we

have

T0(1) = β0,1 + α0,1[1 ◦ π0,1]
ϵ
0,1 ,

and

0 = T0(0) = β0,1 + α0,1[0 ◦ π0,1]
ϵ
0,1 = β0,1.
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It follows that T (1) − T (0) = T0(1) is a unimodular constant. Thus

T1 = T0(1)T0 is 2-local in Iso((Lip(X1), ‖ ·‖1), (Lip(X2), ‖ ·‖2)). We get

0 = T1(0) = T0,i(0)

= β0,i + α0,i[0 ◦ π0,i]ϵ0,i = β0,i,

and

T1(i) = T0,i(i)

= β0,i + α0,i[i ◦ π0,i]ϵ0,i .
We get

T1(i) = α0,i[i ◦ π0,i]ϵ0,i .
Since α0,i is a unimodular constant and ϵ0,i = ±1, so we obtain T1(i)

is a constant. Moreover applying (3.8), we have

T1(i) = [i ◦ π]ϵ.

Thus we conclude that ϵ = 1 or ϵ = −1. As T is a 2-local isometry, T

is an isometry, hence T is injective. Corollary A.7 asserts that π(X2) is

a uniqueness set for Lip(X1). Thus we have π(X2) = X1. This implies

that π is surjective. Finally we shall prove that π is an isometry. Let

x0 ∈ X2. We define a Lipschitz function g on X1 by

g(x) = d(x, π(x0)), x ∈ X1.

As T1 is 2-local in Iso((Lip(X1), ‖ · ‖1), (Lip(X2), ‖ · ‖2)), there exists

α0,g ∈ T and π0,g : X2 → X1 is a surjective isometry such that

0 = T1(0) = T0,g(0)

= β0,g + α0,g[0 ◦ π0,g]ϵ0,g = β0,g,

and

T1(g) = T0,g(g)

= β0,g + α0,g[g ◦ π0,g]ϵ0,g = β0,g + α0,gg ◦ π0,g,
because g is a real-valued function. If follows that

(T1(g))(z) = α0,gg(π0,g(z)), z ∈ X2.

By (3.8), for any z ∈ X2

(3.9) d(π(z), π(x0)) = [g(π(z))]ϵ

= (T1(g))(z) = α0,gg(π0,g(z)) = α0,gd(π0,g(z), π(x0)).



3. APPLICATIONS 229

We may suppose that X1 is not a singleton. (Suppose that it is so.

Then X2 is a singleton since π0,g is a surjective isometry. Then π is

automatically surjective isometry.) Hence there exists z0 ∈ X2 such

that d(π0,g(z0), π(x0)) 6= 0. By (3.9) with z = z0 we have

α0,g =
d(π(z0), π(x0))

d(π0,g(z0), π(x0))
≥ 0,

we obtain α0,g = 1. Hence by (3.9) we have

(3.10) d(π(z), π(x0)) = d(π0,g(z), π(x0)), z ∈ X2.

Putting z = x0 in (3.10), we have

0 = d(π(x0), π(x0)) = d(π0,g(x0), π(x0)).

It follows π0,g(x0) = π(x0). By (3.10)

d(π(z), π(x0)) = d(π0,g(z), π(x0)) = d(π0,g(z), π0,g(x0)) = d(z, x0)

since π0,g is an isometry. As z and x0 are arbitrary, we conclude that

π is an isometry. This completes the proof. □

For an arbitrary compact metric spaceXj for j = 1, 2, [42, Theorem

6] shows that Iso((Lip(X1), ‖·‖Σ), (Lip(X2), ‖·‖Σ)) fulfills the condition

of Corollary A.14. Thus we have the following.

Corollary A.15. Suppose that T ∈ M(Lip(X1),Lip(X2)) is 2-

local in Iso((Lip(X1), ‖·‖Σ), (Lip(X2), ‖·‖Σ)). Then T ∈ Iso((Lip(X1), ‖·
‖Σ), (Lip(X2), ‖ · ‖Σ)).

Corollary A.15 generalizes Theorem 8 in [42], where the case X1 =

X2 = [0, 1] is proved.

3.3. The algebra of continuously differentiable functions.

We have the following corollary.
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Corollary A.16. Let ‖ · ‖j be any norm on C1([0, 1]) for j = 1, 2.

We do not assume that ‖ · ‖j is complete. Suppose that

(3.11) Iso((C1([0, 1]), ‖ · ‖1), (C1([0, 1]), ‖ · ‖2))

= {T ∈M(C1([0, 1]), C1([0, 1]));

there exist β ∈ C1([0, 1]), α ∈ T,

π = Id or π = 1 − Id and ϵ = ±1

such that T (f) = β + α[f ◦ π]ϵ for every f ∈ C1([0, 1])}.

Suppose that T ∈M(C1([0, 1]), C1([0, 1])) is 2-local in Iso((C1([0, 1]), ‖·
‖1), (C1([0, 1]), ‖ · ‖2)). Then T ∈ Iso((C1([0, 1]), ‖ · ‖1), (C1([0, 1]), ‖ ·
‖2)).

Proof. Let T be 2-local in Iso((C1([0, 1]), ‖·‖1), (C1([0, 1]), ‖·‖2)).
By (3.11), Iso((C1([0, 1]), ‖ · ‖1), (C1([0, 1]), ‖ · ‖2)) ⊂ GWC. Theorem

A.5 asserts that there exists a continuous map π : [0, 1] → [0, 1] and a

continuous map ϵ : [0, 1] → {±1} such that

(3.12) T (f) = T (0) + (T (1) − T (0))[f ◦ π]ϵ, f ∈ C1([0, 1]).

Since ϵ : [0, 1] → {±1} is continuous and [0, 1] is connected, we conclude

that ϵ = ±1. As T is a 2-local isometry, we get T is an isometry.

This implies that T is injective. Corollary A.7 asserts that π([0, 1])

is a uniqueness set for C1([0, 1]), which is [0, 1]. Thus we have π is

surjective. To complete the proof we shall prove that π is an isometry.

Let x0 ∈ [0, 1]. We define the function g(x) = x − π(x0) ∈ C1[0, 1].

Define T1 = T0(1)T0 for T0 = T − T (0). It is easy to see that T0 is

2-local in Iso((C1([0, 1]), ‖ · ‖1), (C1([0, 1]), ‖ · ‖2)), we have

T0(1) = β0,1 + α0,1[1 ◦ π0,1]
ϵ
0,1 ,

and

0 = T0(0) = β0,1 + α0,1[0 ◦ π0,1]
ϵ
0,1 = β0,1.

It follows that T (1) − T (0) = T0(1) is a unimodular constant. We

have T1 = T0(1)T0 is 2-local in Iso((C1([0, 1]), ‖ · ‖1), (C1([0, 1]), ‖ · ‖2)).
Hence we get

0 = T1(0) = T0,g(0)

= β0,g + α0,g[0 ◦ π0,g]ϵ0,g = β0,g,
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and

T1(g) = T0,g(g)

= β0,g + α0,g[g ◦ π0,g]ϵ0,g .

It follows that

(T1(g))(z) = α0,g[g ◦ π0,g]ϵ0,g(z) = α0,g[g(π0,g(z))]ϵ0,g , z ∈ [0, 1].

Thus by (3.12), we have for any z ∈ [0, 1] that

[π(z) − π(x0)]
ϵ = [g(π(z))]ϵ = (T1(g))(z)

= α0,g[g(π0,g(z))]ϵ0,g = α0,g[π0,g(z) − π(x0)]
ϵ0,g ,

where α0,g ∈ T and π0,g = Id or π0,g = 1− Id. Putting z = x0, we have

0 = [π(x0) − π(x0)]
ϵ = α0,g[π0,g(x0) − π(x0)]

ϵ0,g .

It follows that π0,g(x0) = π(x0). Thus we have

[π(z)−π(x0)]
ϵ = α0,g[π0,g(z)−π(x0)]

ϵ0,g = α0,g[π0,g(z)−π0,g(x0)]ϵ0,g ,

and

|π(z) − π(x0)| = |π0,g(z) − π0,g(x0)| = |z − x0|.

As z and x0 are arbitrary, we conclude that π is an isometry. This

completes the proof. □

In [60, 84], they gave a characterization for surjective isometries

on C1([0, 1]) with respect to various norms. There are many norms

with which the groups of surjective isometries on C1([0, 1]) satisfys the

condition of Corollary A.16. We present one of them.

Corollary A.17. Suppose that

T ∈M((C1([0, 1]), ‖ · ‖Σ), (C1([0, 1]), ‖ · ‖Σ))

and T is 2-local in Iso((C1([0, 1]), ‖ · ‖Σ), (C1([0, 1]), ‖ · ‖Σ)). We con-

clude that T ∈ Iso((C1([0, 1]), ‖ · ‖Σ), (C1([0, 1]), ‖ · ‖Σ)).

Corollary A.17 has been shown in [42, Theorem 9] in a different

way.
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3.4. The algebra S∞(D). Let

S∞(D) = {f ∈ H(D); f ′ ∈ H∞(D)},

whereH(D) is the linear space of all analytic functions on D andH∞(D)

is the algebra of all bounded analytic functions on D. The algebra

S∞(D) equipped with the norm ‖f‖Σ = supz∈D |f(z)| + supw∈D |f ′(w)|
for f ∈ S∞(D) is a unital semi-simple commutative Banach algebra.

As is described in [83], S∞(D) coincides with the space of all Lipschitz

functions in the linear space of all analytic functions on D and each

f ∈ S∞(D) is continuously extended to the closed unit disk D̄. Hence

we may suppose that S∞(D) is a unital subalgebra of the disk algebra

on D̄. Trivially all analytic polynomials are in S∞(D).

Theorem A.18. The maximal ideal space M∞ of S∞(D) is home-

omorphic to the closed unit disk D̄.

Proof. For each p ∈ D̄, the point evaluation on S∞(D) which takes

the value at p is a nontrivial complex homomorphism. Hence we may

suppose that D̄ ⊂ M∞. To prove D̄ = M∞, suppose that f1, . . . , fn

be an arbitrary finite number of functions in S∞(D) such that

n∑
j=1

|fj| > 0 on D̄.

If we prove that there exist the same number of g1, . . . , gn ∈ S∞(D)

such that
n∑
j=1

fjgj = 1,

then a general result assures that D̄ = M∞. We prove the existence

of such g1, . . . , gn ∈ S∞(D). It is well known that the maximal ideal

space of the disk algebra A(D̄) is D̄. As f1, . . . , fn ∈ S∞(D) ⊂ A(D̄),

there exists h1, . . . , hn ∈ A(D̄) such that

n∑
j=1

fjhj = 1.

As functions in A(D̄) are uniformly approximated by analytic poly-

nomials, there exists a sequence of polynomials {p(j)m }∞m=1 such that
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‖p(j)m − hj‖∞ → 0 as m → ∞ for every j = 1, . . . , n. Hence for suffi-

ciently large m0 we have∥∥∥∥∥1 −
n∑
j=1

fjp
(j)
m0

∥∥∥∥∥ < 1/2.

In particular,
∑n

j=1 fjp
(j)
m0 has no zeros on D̄. Then 1/

∑n
j=1 fjp

(j)
m0 ∈

S∞(D). Put gj = p
(j)
m0/

∑n
j=1 fjp

(j)
m0 for j = 1, . . . , n. Then gj ∈ S∞(D)

and
∑n

j=1 fjgj = 1 by a simple calculation. It follows that D̄ = M∞.

□

Miura [83, Theorem1] showed the form of the surjective isometry

on S∞(D).

Theorem A.19 (Miura [83]). Suppose that U : S∞(D) → S∞(D) is

a surjective isometry with respect to the norm ‖ · ‖Σ. Then there exists

unimodular constants α, λ ∈ C such that

U(f) = U(0) + αf(λ·), f ∈ S∞(D)

or

U(f) = U(0) + αf(λ·), f ∈ S∞(D).

Conversely, each of the above form is a surjective isometry from S∞(D)

onto S∞(D).

As we stated in the beginning of Section 2, for some Banach algebras

Bj, a pointwise 2-local map in Iso(B1, B2) is not always a surjective

isometry. But applying Theorem A.5 and Theorem A.19 we deduce

that a pointwise 2-local map in Iso(S∞(D), S∞(D)) is always a surjective

isometry.

Corollary A.20. Suppose that T ∈ M(S∞(D), S∞(D)) is point-

wise 2-local in Iso(S∞(D), S∞(D)). Then T ∈ Iso(S∞(D), S∞(D)).

Proof. Let T ∈ M(S∞(D), S∞(D)) be a pointwise 2-local map

in Iso(S∞(D), S∞(D)). By Theorem A.19 Iso(S∞(D), S∞(D)) ⊂ GWC.

Then Theorem A.5 asserts that there exist a continuous map π : D̄ → D̄
and a continuous map ϵ : D̄ → {±1} such that

T (f) = T (0) + α[f ◦ π]ϵ, f ∈ S∞(D),
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where α = T (1) − T (0) is a unimodular constant since T (1) − T (0) is

unimodular function and it is analytic on D. Furthermore ϵ = 1 on D̄
or ϵ = −1 on D̄. Put T1 = ᾱ(T − T (0)). Then

T1 = f ◦ π, f ∈ S∞(D)

if ϵ = 1, and

T1(f) = f ◦ π, f ∈ S∞(D)

if ϵ = −1. Letting f = Id, the identity function, we see that π ∈ S∞(D)

if ϵ = 1 and π̄ ∈ S∞(D) if ϵ = −1. Put φ = π if ϵ = 1, and φ = π̄ if

ϵ = −1. Then we have that φ ∈ S∞(D) and

T1(f) = f ◦ φ, f ∈ S∞(D)

if ϵ = 1, and

T1(f) = f ◦ φ̄, f ∈ S∞(D)

if ϵ = −1. In particular, we have

(3.13) T1(Id) = φ

either for ϵ = 1 and for ϵ = −1. Since T1 is pointwise 2-local in

Iso(S∞(D), S∞(D)) by the definition of T1, for every x ∈ D̄ there exists

ux ∈ S∞(D) and unimodular constant αx, λx such that

(T1(Id))(x) = ux(x) + αx Id(λxx)

and

0 = (T1(0))(x) = ux(x),

or

(T1(Id))(x) = ux(x) + αxId(λxx) = ux(x) + αx Id(λxx)

and

0 = (T1(0))(x) = ux(x).

In any case we have

(3.14) (T1(Id))(x) = αxλxx.

Combining (3.13) and (3.14) we have

φ(x) = αxλxx
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for every x ∈ D̄. Then we have φ(0) = 0, and |φ(x)| = |x| for every

x ∈ D̄. Since φ : D̄ → D̄ is analytic in D, the Schwartz lemma asserts

that there is a unimodular constant λ0 such that

φ(x) = λ0x, x ∈ D̄.

It follows that

T (f) = T (0) + (T (1) − T (0))f(λ0·), f ∈ S∞(D)

or

T (f) = T (0) + (T (1) − T (0))f(λ0·), f ∈ S∞(D).

By Theorem A.19 we conclude that T ∈ Iso(S∞(D), S∞(D)). □

4. Iso-reflexivity

Many literatures study isometries from the point of view of how

they are determined by their local actions [3, 25, 51, 85, 91, 92, 100].

By Theorem A.5 we have that several 2-local maps are linear, hence

they are local maps. In this section we prove that a local isometry in

IsoC(B1, B2) is 2-local in Iso(B1, B2). Applying Theorem A.23 we see

the reflexivity of IsoC(B1, B2) for several Banach spaces of continuous

functions.

Definition A.21. Put

MC(B1, B2) = {T ∈M(B1, B2);T is complex-linear }

IsoC(B1, B2) = {T ∈ Iso(B1, B2);T is complex-linear }.

Recall that T ∈MC(B1, B2) is local in IsoC(B1, B2) if for every f ∈ B1,

there exists Tf ∈ IsoC(B1, B2) such that

T (f) = Tf (f).

We say that IsoC(B1, B2) is iso-reflexive if every local map in IsoC(B1, B2)

is an element in IsoC(B1, B2).

Proposition A.22. Suppose that T ∈MC(B1, B2) is local in IsoC(B1, B2).

Then T is 2-local in Iso(B1, B2).
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Proof. Let f, g ∈ B1 be arbitrary. Then there exists Tf,g ∈
IsoC(B1, B2) such that

T (f − g) = Tf,g(f − g).

As T and Tf,g are complex-linear, we have

(4.1) T (f) − T (g) = Tf,g(f) − Tf,g(g).

Put

hf,g = T (f) − Tf,g(f).

By (4.1) we have

T (f) = hf,g + Tf,g(f),

T (g) = hf,g + Tf,g(g).

It is easy to see that hf,g + Tf,g(·) ∈ Iso(B1, B2). It follows that T is

2-local in Iso(B1, B2). □

Theorem A.23. Suppose that every 2-local map in Iso(B1, B2) is

an element in Iso(B1, B2). Then IsoC(B1, B2) is iso-reflexive.

Proof. Suppose that T ∈ MC(B1, B2) is local in IsoC(B1, B2).

Then by Proposition A.22, T is 2-local in Iso(B1, B2). By assumption,

we have T ∈ Iso(B1, B2). Since T is complex-linear, we infer that

T ∈ IsoC(B1, B2). □

Applying Corollaries A.11,A.13,A.15,A.17 and A.20, we see that

IsoC(C(X1), C(X2)) for first countable compact Hausdorff spaces X1

andX2, IsoC(A(D̄), A(D̄)), IsoC(Lip(X1),Lip(X2)), IsoC(C1[0, 1], C1[0, 1])

and IsoC(S∞(D), S∞(D)) are iso-reflexive.


