平成31年度/令和元年度 博士論文

多バンド電子正孔系における新奇な励起子秩序の理論

新潟大学大学院自然科学研究科 数理物質科学専攻博士後期課程

F17J008B

土門 薫

概要

最近、超伝導と類似の機構で実現すると考えられてきた励起子絶縁体研究が盛り上がり を見せている。励起子絶縁体に関する研究の歴史は長く、BCS 理論誕生間もない 1960 年 代前半に、N. F. Mott がその存在を予言したことに端を発する。そこでは絶縁体において 励起子の束縛エネルギーがエネルギーバンドギャップを超えるとき、励起子が自発的に生 成凝縮することで絶縁体が不安定になる可能性が指摘されている。励起子とは、クーロン 相互作用により束縛状態にある電子と正孔の一対を指す。このような励起子絶縁体研究の 舞台となるのは価電子バンドと伝導バンドがフェルミ準位近傍で僅かに重なる半金属や、 小さなギャップを持つ半導体である。長い間、主に自由電子のような弱相関電子系を想定 した議論がなされてきたが、近年報告されている候補物質のほとんどは強相関電子系とし て扱われる遷移金属化合物であり、予言からおよそ半世紀の時を経て励起子絶縁体研究は 新たな局面を迎えている。

本論文では、メインの研究対象物質として遷移金属カルコゲナイド Ta₂NiSe₅ を取り上 げる。この物質は 2009 年に励起子相の有力な候補物質の一つとして提案され、その後、理 論実験両面から盛んに研究が行われている。Ta₂NiSe₅ は常圧 328K において斜方晶から 単斜晶への構造相転移を示し、角度分解光電子分光(ARPES)実験により転移温度以下 で価電子バンド上端の平坦化が観測され、構造相転移の起源として励起子秩序の可能性が 提案された。磁気的な秩序が見られないことも、励起子秩序を主張する根拠の一つとなっ ている。理論的には、常圧の Ta₂NiSe₅ に対する第一原理計算を再現する Ta₂Ni 鎖の 3 鎖 Hubbard 模型に基づいて、励起子秩序の BCS 型平均場近似により実験結果がよく説明さ れている。また、Ta₂NiSe₅ は圧力の印加により半金属的になり、構造相転移は抑制され 約 8GPa で消失するが、その近傍で超伝導が発見され、超伝導との関連からも圧力下の電 子状態が注目されている。

そこで、我々は加圧下の半金属 Ta₂NiSe₅の電子状態の解明を目指す。先行研究では、転 移温度以下で起こる一様な格子歪みを伴う構造相転移と整合する励起子秩序を議論するた めに、励起子の重心運動量をゼロと仮定している。常圧における半導体 Ta₂NiSe₅において は、この定式化で実験を再現する一方、半金属では状況が異なると予想される。Ta₂NiSe₅ は Ta₂Ni 鎖がそれぞれ強い1次元性を持ち、この3 鎖に属する d 電子が電子状態を決定に 大きく寄与している。3 鎖の内、2 本の Ta 鎖と1 本の Ni 鎖が存在することに由来して、 エネルギーバンド構造としては2 重縮退伝導バンドと1 重縮退価電子バンドが形成されて いることが第一原理計算からも示されている。加圧により2本の伝導バンドがフェルミ準 位を横切ると、必然的に伝導バンドと価電子バンドの縮重度の違いから電子と正孔のイン バランスが生じ、両者が異なるフェルミ波数を取るようになる。これは丁度、縮退してい たエネルギーバンドが外部からの磁場の印加により、上下スピンバンドに Zeeman 分裂 することで、超伝導の Cooper ペアが重心運動量を獲得する状況とよく似ている。このよ うな超伝導は Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)超伝導と呼ばれ、代表的なエキ ゾチック超伝導の一種として現在でも盛んに議論されている。我々は半金属 Ta₂NiSe₅ と FFLO 超伝導が類似した状況にあることに着眼し、励起子が電子一正孔フェルミ面間のネ スティングベクトルに対応する有限の重心運動量を持つ FFLO 励起子状態が実現する可 能性を探ることにした。FFLO 励起子状態は電子一正孔 2 層系において理論的に提案され ているが、現実には発見されていない。バルクの物質に対して FFLO 励起子状態を議論す るのは本研究が初である。

はじめに、FFLO 励起子状態を議論可能な定式化を行い、平均場理論の範囲で解析を行 う。ここでは、自由エネルギー最小を与える波数を探索することにより、系の最安定状態 を特定する。まず純粋な1次元模型で議論を行うことから始め、その後2次元に模型を拡 張する。価電子バンドの上端と伝導バンドの下端のエネルギーギャップを可変パラメータ として変化させ、圧力に対応する物理量と見なす。2重縮退伝導バンドは、系の擬1次元 性を考慮して鎖間に僅かなトランスファーを入れることで縮退を解き、電子状態に現れる 変化を見る。また、3 鎖 Hubbard 模型に対する励起子相図の作成を行うことで、実験に より得られている温度圧力相図との定性的な比較を行う。次に、超伝導とのアナロジーか ら、FFLO 超伝導でよく議論される Fulde-Ferrell (FF) 状態と Larkin-Ovchinnikov (LO) 状態の安定性の比較を行う。超伝導においては、単一の波数で Cooper ペアを形成する FF 状態と比較して、複数の波数を重ね合わせることで実現する LO 状態が安定化するケース が多いことが知られており、FFLO 励起子状態においても、いずれの状態が実現するかを 議論する必要がある。Ta2NiSe5 は斜方晶から単斜晶への構造相転移で格子が一様に変形 するが、FF 型励起子状態は単一の波数で秩序するため実験と整合しない。そこで、実験 とコンシステントな秩序の可能性を調べるため、電子格子結合を加味した LO 型の励起子 秩序の定式化を行う。各状態の自由エネルギーを比較し、転移温度以下でどのような励起 子相が見られるかを数値計算により明らかにする。最後に、第一原理計算に基づく構築模 型から出発した、より現実的な Ta₂NiSe₅ の励起子秩序について議論する。実験的に求め られた Ta₂NiSe₅の結晶構造パラメータを反映させた第一原理計算によりエネルギーバン ドを得る。ここでは実験との整合性を鑑み、modified Becke-Johnson (mBJ) ポテンシャ ル法を採用することでエネルギーギャップの過小評価問題を解消する工夫を行う。得られ たエネルギーバンドから Ta5d 軌道、Ni3d 軌道、Se4p 軌道を選択して最局在 Wannier 模 型を構築する。60軌道 d-d-p 模型の Ta5d-Ni3d 軌道間のクーロン相互作用を取り入れ、平 均場近似の範囲で自己無撞着方程式を解くことで励起子秩序の可能性について検討する。

目 次

第1章	序論	6
1.1	北昱	6
1.2	Ta_2NiSe_5	7
1.3	先行理論研究	11
1.4	本研究の目的	14
笛の音	3 绀 Hubbard	16
ऋ य ∓ १1	5 g Hubbald 候主 亚均場ハミルトニアンの道出	16
2.1	自己無撞着方程式	18
2.2	山 二 二 二 二 二 二 二 二 二 二 二 二 二	22
2.0 2.4	リエントラント転移	24
2.1 2.5	字中的表示	27
<u>2</u> .6	2次元模型への拡張	28
2.0 2.7	FFLO1-3相	31
第3章	LO 型励起子秩序	39
3.1	LO 型励起子秩序の定式化	39
3.2	LO 型励起子状態	41
3.3	励起子秩序と CDW	42
第4章	第一原理計算に基づく構築模型に対する励起子秩序	44
4.1	TaoNiSesの結晶構造パラメータ	44
4.2	mBJ ポテンシャル法	45
4.3	60 軌道 <i>d-d-p</i> 模型	47
第5章	結論と今後の課題	49
5.1	結論	49
5.2	今後の課題	50
付録A	非線形方程式の解法	52
A.1	Newton 法	52
A.2	準 Newton 法	53
_	A.2.1 Secant 法	53
	A.2.2 Broyden 法	54
-41-0-1	- -	
謝辞		59

参考文献

第1章 序論

序論として、まずは励起子絶縁体研究の歴史的背景と実験的、理論的な先行研究を振り 返る。その後、本研究のモチベーションと研究目的について述べる。

1.1 背景

膨大な数の電子が互いに影響を及ぼし合うことで、磁性や超伝導などの多彩な物理現象 を引き起こす強相関電子系の各研究テーマは、物性物理学の中心的な一分野を形成してい る。現代物理学では、これらに対して量子統計力学に基づく微視的な発現機構の解明が試 みられ、いくつもの輝かしい成功を収めている。例えば、超伝導のメカニズムについては 1957 年に J. Bardeen, L. N. Cooper, J. R. Schrieffer らによる BCS 理論と呼ばれる基礎理 論が、電気抵抗の消失やマイスナー効果などの現象を見事に説明したことは有名である [1]。 BCS 理論誕生間もない 1960 年代はじめ、絶縁体において励起子の束縛エネルギーがエネ ルギーバンドギャップを超えるとき励起子が自発的に生成し、絶縁体は不安定となる可能 性が N.F.Mott によって指摘され、励起子絶縁体と呼ばれるようになった [2]。励起子とは、 クーロン相互作用により束縛状態にある電子と正孔の一対を指す。一方、A.N.Kozlov は 絶縁体に限らず、伝導バンドと価電子バンドの重なりが小さい半金属状態においても同様 の励起子凝縮機構により励起子絶縁体が発現することを予言し、バンドギャップと温度に よる相図(概念図1.1)を提案した[3]。半金属状態を含むバンドギャップの符号に依らな い議論では「励起子絶縁体」という表現は適当でないとされることもあるが、混乱がない 限り本論文では以降も「励起子絶縁体」あるいは「励起子相」と呼ぶことにする。励起子 絶縁体の定義を改めて書くと、電子と正孔がクーロン相互作用によって励起子を形成し、 BCS あるいは Bose–Einstein 凝縮 (BEC) 的に量子凝縮した秩序状態を指す。超伝導で議 論される以前から励起子相研究において BCS-BEC クロスオーバーの議論がなされている ことは興味深く、このような観点に触発されて相図 1.1 を俯瞰すると、電子正孔系研究が 多様性に満ち、全体理解への示唆に富むことが見て取れる。

1960年代に始まった励起子相の研究だが、R. Knox はこの新しい金属絶縁体転移の機 構が BCS 理論の枠組みで記述できることを指摘し [4]、1965年にL. V. Keldysh [5] と J. Des Cloizeaux [6] がそれぞれ独立に定式化を行っている。その後、実験と理論の両面から 盛んに研究が行われることで励起子相研究は進展してきた [2–22]。励起子絶縁体の候補物 質としては 1T-TiSe₂ [23] や Tm(Se,Te) [24] などいくつか挙げられてきたが、CDW の起 源として励起子相転移の可能性を提示しても、実験的に両者を区別することは難しく、励 起子絶縁体の存在は理論的な予言の域を出ない。しかし、2000年代に入り有力な候補物質 が次々と発見あるいは再注目されるようになった [23,25–27]。長い間、励起子絶縁体研究 は自由電子的なバンド分散を仮定する理論が主流であったが、近年提案された候補物質は 遷移金属化合物がほとんどであり、銅酸化物超伝導体研究が盛んであったことを背景に、 強相関電子系の一分野としての取り扱いが重要視されるようになった [28–30]。

図 1.1 A.N.Kozlov が提案した励起子相の存在領域に関する相図(概念図)[9]。横軸はエ ネルギーギャップ、縦軸は温度を表す。半導体から半金属にわたる幅広い領域で励起子秩 序が実現することが示唆されている。

1.2 Ta_2NiSe_5

励起子相の有力な候補物質の一つに遷移金属カルコゲナイドの Ta₂NiSe₅ がある [27,31]。 Ta₂NiSe₅ は各層が Van der Waals 力による弱い力で積層し、結晶構造としては図 1.2 の ように Ta と Ni がそれぞれ一次元的に整列することで Se が Ni の周囲を四面体構造、Ta の周囲を八面体構造で取り囲むように配位している。この物質は常圧 $T_c = 328$ K において 斜方晶から単斜晶への 2 次の構造相転移を示すとともに、角度分解光電子分光 (ARPES) 実験では図 1.3 のように低温で価電子バンドの上部の平坦化が観測された [32,33]。この振 る舞いは低温での励起子凝縮を示唆しており、磁気的な秩序が見れないことも励起子秩序 を主張する根拠の一つとなっている。 β 角の温度依存性を実験的に観測した図 1.4 を見る と、転移温度以下で β 角が直角からずれて斜方晶から単斜晶に構造相転移していることが 分かる [34]。また、電気抵抗の温度依存性を調べた結果、構造転移温度 $T_c = 328$ K では電 気抵抗の温度微分にとびが現れ (図 1.5)、電気抵抗の値からこの転移が絶縁体から絶縁体 への相転移であることが判明した [32]。最近の光学測定実験もまた T_c 以下で励起子絶縁 体転移を支持する結果を示している [35,36]。

Ta₂NiSe₅ は圧力を印加すると半導体から徐々に半金属的性質を見せるようになる。約 3GPa の圧力下で積層構造の面がスライドする1次の構造相転移が起こり、さらに圧力を 印加した 8GPa 程度の高圧下では低温で超伝導相に相転移することが実験的に明らかに なった [37] (図 1.6)。励起子絶縁体転移と構造相転移の関係に加え、超伝導の発現メカニ ズムについても解明が求められる興味深い物質であると言える [37]。なお超伝導について は、我々が励起子揺らぎを媒介とした超伝導の実現可能性を関連論文 [38] で議論してお り、今後実験と理論の両面から解明が期待されている。理論的な先行研究としては2章で 述べるように、BCS 理論と類似の定式化を行うことで励起子絶縁体に特徴的な価電子バンドの平坦化が確認され [39,40]、図 1.7 のように拡張 Falicov-Kimball 模型と仮想結晶近似 (VCA) を用いた解析でも励起子秩序がよく説明されている [22,41]。

図 1.2 Ta₂NiSe₅の結晶構造 [35]。赤、青、緑の球はそれぞれ Ta,Ni,Se を表す。a 軸方向 に Ta と Ni がそれぞれ一直線上に並ぶ擬一次元的な鎖構造を持つ。c 軸方向に鎖が並び、 Se が Ni を四面体的、Ta を八面体的に取り囲むように配位している。Van der Waals 力に より b 軸方向に鎖が作る面が積層構造を取る。

図 1.3 Ta₂NiSe₅の角度分解光電子分光 (ARPES) による実験結果 [32]。高温 300K(a) から温度を下げると、転移温度より十分低温の 40K(b) では励起子絶縁体の特徴的な価電子 バンド上部の平坦化が確認出来る。

図 1.4 β 角の温度依存性 [34]。横軸は構造相転移温度 $T_c = 328$ K を基準とする温度 $T_c - T$ 、縦軸は $\beta - 90°$ を表す。 T_c 以下で $\beta - 90°$ が有限値を持ち、斜方晶から単斜晶への構造 相転移を示している。

図 1.5 Ta₂NiSe₅の電気抵抗の逆温度依存性 [34]。構造相転移温度 $T_c = 328$ K で微分抵抗にとびが現れる。電気抵抗の値からこの相転移は絶縁体-絶縁体転移である。

図 1.6 Ta₂NiSe₅の圧力相図 [37]。横軸は圧力、縦軸は温度を表す。斜方晶 (Orthorhombic) から単斜晶 (Monoclinic) への相転移は常圧では $T_c = 328$ K で起こり、この相転移は絶縁 体から絶縁体への 2 次の構造相転移である。 $P_{c1} = 3$ GPa 付近で積層構造における面のス ライドによる 1 次の構造相転移が生じ、 $P_{c2} = 8$ GPa 付近では低温で超伝導が観測された。

図 1.7 (a)Ta₂NiSe₅ に対する ARPES 実験により得られたエネルギーバンドと、(b) 仮想 結晶近似 (VCA) を用いて解析した結果 [41]。各温度で ARPES 実験の結果をよく再現し た 1 粒子スペクトルが得られている。

1.3 先行理論研究

Kaneko らは WIEN2K を用いた第一原理計算によるエネルギーバンド図 1.8 から、一次 元性が強い Ta₂NiSe₅ に対して 3 鎖 Hubbard 模型を仮定し(図 1.9)、*c-f* 混成項に対する 平均場近似を適用することで常圧の半導体 Ta₂NiSe₅ における励起子秩序を調べた[39]。 定式化の詳細は 2章で述べることにする。この研究ではサイト内、サイト間クーロン相互 作用 U, V と電子格子相互作用 λ による結晶の歪み δ を考慮し、励起子秩序と構造相転移 の関係について議論している。結果としては、低温で励起子絶縁体転移の特徴である価電 子バンド上部の平坦化が確認され(図 1.10)、実験事実をよく説明していると言える。ま た、図 1.11 に示すように $V-\lambda$ 平面の励起子相図において斜方晶 (Orthorhombic) から単斜 晶 (Monoclinic) への励起子絶縁体転移が示された。

図 1.8 第一原理計算パッケージ WIEN2k による Ta₂NiSe₅ のエネルギーバンド [39]。(a)(b) は Ta-5*d* 軌道、(c)(d) は Ni-3*d* 軌道の重みと状態密度をそれぞれ表す。

図 1.9 Ta₂NiSe₅ に対する 3 鎖 Hubbard 模型 [39]。相互作用のないバンド分散 (a) では 伝導バンドが 2 重に縮退し、価電子バンドは非縮退状態を取る。U はオンサイトクーロン 相互作用、V はサイト間クーロン相互作用を表し、電子格子相互作用による結晶の一様な 歪みδを考慮することで斜方晶から単斜晶への構造相転移する (b)。

図 1.10 3鎖 Hubbard 模型による1粒子スペクトル [39]。転移温度 *T_c*より高温の正常相 (c) から温度を下げ、転移温度以下で励起子凝縮すると価電子バンドの上部が平坦化する (a,b)。破線は無秩序状態のバンド分散を表す。

図 1.11 3鎖 Hubbard 模型の励起子相図 [39]。横軸にサイト間クーロン相互作用 V、縦軸 に電子格子相互作用 λ をとり、(a) 秩序変数の大きさ $|\Delta|$ 、(b) 格子歪みの大きさ δ 、(c) 励 起電子数 n をカラープロットしている。(d) は縦軸に温度を示す。BI はバンド絶縁体 (Band Insulator)、EI は励起子絶縁体 (Excitonic Insulator)、O は斜方晶 (Orthorhombic)、M は 単斜晶 (Monoclinic) の略。

1.4 本研究の目的

以上のような先行理論研究から、Ta₂NiSe₅の常圧における半導体-半導体相転移が励起子 相への相転移として実験を良く説明されることが分かった。これに対して我々が注目したの は3鎖 Hubbard 模型の伝導バンドと価電子バンドの縮重度の違いである。過去に議論され てきた物質では伝導バンドと価電子バンドの縮重度が1:1であるのに対して、Ta₂NiSe₅ のバンド構造はTa-5d 軌道由来の2本の縮退した伝導バンドとNi-3d,Se-4p 軌道由来の1 本の価電子バンドが存在するため2:1になっており、この縮重度の違いは圧力を印加し て半金属状態にしたときにフェルミ波数のインバランスを生むことになる。外部磁場下の 超伝導では、上下スピンのフェルミ波数の差に起因する重心運動量が有限の Cooper 対が 凝縮した Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) 状態が知られており [42,43]、圧力 下の半金属 Ta₂NiSe₅ でも、有限の重心運動量をもつ励起子が凝縮した FFLO 状態が期待 される。励起子の FFLO 状態は、電子と正孔の密度を外部から変化させる 2 層系 [44-47] で議論されているが、バルクの系での指摘はなされていない。そこで我々は、Ta₂NiSe₅ に おける FFLO 励起子状態の実現可能性を検証することを目的として研究を行う。

第2章 3鎖Hubbard模型

2.1 平均場ハミルトニアンの導出

先行研究 [39] と同様に、Ta₂NiSe₅ に対して 2 本の Ta 鎖と 1 本の Ni-Se 鎖からなる 3 鎖 Hubbard 模型を考える。この模型では電子の運動エネルギーと結晶の周期ポテンシャルか らなる H_0 と、サイト間クーロン相互作用 H_V を用いて記述される電子のハミルトニアン $H = H_0 + H_V$ は次のように与えられる。

$$H_0 = \sum_{k\sigma} \sum_{\alpha=1,2} \varepsilon_k^c c_{k\alpha\sigma}^{\dagger} c_{k\alpha\sigma} + \sum_{k\sigma} \varepsilon_k^f f_{k\sigma}^{\dagger} f_{k\sigma}$$
(2.1)

$$=\sum_{k\sigma} \begin{pmatrix} c_{k1\sigma} \\ c_{k2\sigma} \\ f_{k\sigma} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \varepsilon_{k}^{c} \\ \varepsilon_{k}^{c} \\ \varepsilon_{k}^{c} \\ \varepsilon_{k}^{f} \end{pmatrix} \begin{pmatrix} c_{k1\sigma} \\ c_{k2\sigma} \\ f_{k\sigma} \end{pmatrix}$$
(2.2)

$$H_{V} = V \sum_{i\alpha} \sum_{\sigma\sigma'} \left(n_{i\alpha\sigma}^{c} + n_{i-1,\alpha\sigma}^{c} \right) n_{i\sigma'}^{f}$$

$$\tag{2.3}$$

ここで、 $c_{k\alpha\sigma}(c_{i\alpha\sigma})$ は波数 k (サイトi)、スピン σ 、鎖番号 α を持つc電子、 $f_{k\sigma}(f_{i\sigma})$ は 波数 k (サイトi)、スピン σ の f 電子の消滅演算子、V = 0.40eV はc-f サイト間のクーロ ン相互作用を表す。鎖番号 $\alpha = 1,2$ は図 2.1 に示す 2本の Ta 鎖に付けた番号である。ま た、強束縛近似によりエネルギー ε_k^c 、 ε_k^f は

$$\varepsilon_k^c = 2t_c \left(\cos k - 1\right) + D/2 - \mu_0 \tag{2.4}$$

$$\varepsilon_k^f = 2t_f \left(\cos k - 1\right) - D/2 - \mu_0 \tag{2.5}$$

となる。ただし μ_0 は無秩序状態の化学ポテンシャル、 t_c, t_f はそれぞれc, f電子のトランスファーを表し、先行研究のTa₂NiSe₅に対する第一原理計算によるエネルギーバンドを再現するように $t_c = -0.8$ eV, $t_f = 0.4$ eVとした。また、Dは伝導バンドと価電子バンドのエネルギーギャップであり、D>0のときは半導体状態、D<0のときは半金属状態を意味する。言い換えると、圧力を印加して半金属にしたときは|D|が伝導バンドと価電子バンドの重なりを表す。今後バンドギャップDと温度Tをパラメータとして変化させて励起子秩序の様子を調べていく。

図 2.1 Ta₂NiSe₅の3鎖 Hubbard 模型。2本のTa(5*d*) 鎖と1本のNi(3*d*)+Se(4*p*) 鎖からなり、Ni,Ta間のサイト間クーロン相互作用*V*を考慮する。また、図に示すユニットセルが一次元的に周期的に並ぶ構造を取る。

本研究においては、実験により観測されていない電磁気的な秩序の発現を無視し、電子 間に働くクーロン相互作用の中で励起子秩序の起源と考えられる Ta-Ni サイト間クーロン 相互作用 V のみを考慮し、次のハミルトニアン H_V に対して平均場近似を行う。

$$H_V = V \sum_{i\alpha} \sum_{\sigma\sigma'} \left(n_{i\alpha\sigma}^c + n_{i-1,\alpha\sigma}^c \right) n_{i\sigma'}^f$$
(2.6)

$$= V \sum_{i\alpha} \sum_{\sigma\sigma'} c^{\dagger}_{i\alpha\sigma} c_{i\alpha\sigma} f^{\dagger}_{i\sigma'} f_{i\sigma'} + V \sum_{i\alpha} \sum_{\sigma\sigma'} c^{\dagger}_{i-1,\alpha\sigma} c_{i-1,\alpha\sigma} f^{\dagger}_{i\sigma'} f_{i\sigma'}$$
(2.7)

$$\sim -V \sum_{i\alpha\sigma} \left(\left\langle f_{i\sigma}^{\dagger} c_{i\alpha\sigma} \right\rangle c_{i\alpha\sigma}^{\dagger} f_{i\sigma} + \left\langle f_{i\sigma}^{\dagger} c_{i-1\alpha\sigma} \right\rangle c_{i-1,\alpha\sigma}^{\dagger} f_{i\sigma} \right) + \text{H.c.}$$
(2.8)

$$=\sum_{kq\alpha\sigma} \left(-\frac{V}{N}\sum_{k'} \left(1+e^{-i(k'-k)}\right) \left\langle f_{k'+q,\sigma}^{\dagger}c_{k'\alpha\sigma}\right\rangle\right) c_{k\alpha\sigma}^{\dagger}f_{k+q,\sigma} + \text{H.c.}$$
(2.9)

$$\therefore H_V^{\rm MF} = \sum_{kq\alpha\sigma} \Delta_{\alpha\sigma} \left(k,q\right) c_{k\alpha\sigma}^{\dagger} f_{k+q,\sigma} + \text{H.c.}$$
(2.10)

式 (2.8) において *c-f* 混成項に関して平均からの揺らぎの 2 次以上の項を無視した。この とき定数項 *H*_{con} が残ることになるが、この項は 2.2 節で自己無撞着方程式を導く際に現 れるため、その表式を次に示す。

$$H_{\rm con} = \frac{V}{N} \sum_{kk'} \sum_{\alpha\sigma} \left(1 + e^{i(k'-k)} \right) \left\langle c^{\dagger}_{k'\alpha\sigma} f_{k'+q,\sigma} \right\rangle \left\langle f^{\dagger}_{k+q,\sigma} c_{k\alpha\sigma} \right\rangle$$
(2.11)

平均場近似の中で導入した励起子秩序変数 $\Delta_{\alpha\sigma}(k,q)$ は次のように定義される。

$$\Delta_{\alpha\sigma}(k,q) = -\frac{V}{N} \sum_{k'} \left(1 + e^{-i(k'-k)}\right) \left\langle f^{\dagger}_{k'+q,\sigma} c_{k'\alpha\sigma} \right\rangle$$
(2.12)

以上より、平均場ハミルトニアン $H_q^{
m MF}$ を行列表示すると

$$H_{q}^{\mathrm{MF}} = \sum_{k\sigma} \begin{pmatrix} c_{k1\sigma} \\ c_{k2\sigma} \\ f_{k+q,\sigma} \end{pmatrix}^{\dagger} \begin{pmatrix} \varepsilon_{k}^{c} & \Delta_{1\sigma}(k,q) \\ & \varepsilon_{k}^{c} & \Delta_{2\sigma}(k,q) \\ \Delta_{1\sigma}^{*}(k,q) & \Delta_{2\sigma}^{*}(k,q) & \varepsilon_{k+q}^{f} \end{pmatrix} \begin{pmatrix} c_{k1\sigma} \\ c_{k2\sigma} \\ f_{k+q,\sigma} \end{pmatrix}$$
(2.13)
$$= \sum_{k\sigma} \vec{c}_{kq\sigma}^{\dagger} \hat{H}_{kq\sigma} \vec{c}_{kq\sigma}$$
(2.14)

となる。ただし、

$$\vec{c}_{kq\sigma} = \begin{pmatrix} c_{k1\sigma} \\ c_{k2\sigma} \\ f_{k+q,\sigma} \end{pmatrix}, \hat{H}_{kq\sigma} = \begin{pmatrix} \varepsilon_k^c & \Delta_{1\sigma}(k,q) \\ & \varepsilon_k^c & \Delta_{2\sigma}(k,q) \\ \Delta_{1\sigma}^*(k,q) & \Delta_{2\sigma}^*(k,q) & \varepsilon_{k+q}^f \end{pmatrix}$$
(2.15)

と定義した。

2.2 自己無撞着方程式

式 (2.14) の $\hat{H}_{kq\sigma}$ を対角化して自己無撞着方程式を導く。エネルギー固有値方程式

$$\det\left(\hat{H}_{kq\sigma} - E\hat{I}\right) = 0 \tag{2.16}$$

から、エネルギー固有値は

$$E = \varepsilon_k^c, E_{kq}^{\pm} \tag{2.17}$$

$$E_{kq}^{\pm} = \varepsilon_{kq}^{\pm} \pm \sqrt{\varepsilon^{-} + \sum_{\alpha} |\Delta_{\alpha\sigma} (k,q)|^{2}}$$

$$(2.18)$$

$$\varepsilon_{kq}^{\pm} = \frac{\varepsilon_k^c + \varepsilon_{k+q}^J}{2} \tag{2.19}$$

で与えられる。各固有値に属する固有ベクトルから得られるユニタリ行列は解析的に得ら れ次の形を取る。

$$\hat{U} = \begin{pmatrix} +\frac{\Delta_{2\sigma}^*(k,q)}{\Delta} & +\frac{\Delta_{1\sigma}(k,q)}{\sqrt{\left(\eta-\varepsilon_{kq}^-\right)^2 + \Delta^2}} & -\frac{\Delta_{1\sigma}(k,q)}{\sqrt{\left(\eta+\varepsilon_{kq}^-\right)^2 + \Delta^2}} \\ -\frac{\Delta_{1\sigma}^*(k,q)}{\Delta} & +\frac{\Delta_{2\sigma}(k,q)}{\sqrt{\left(\eta-\varepsilon_{kq}^-\right)^2 + \Delta^2}} & -\frac{\Delta_{2\sigma}(k,q)}{\sqrt{\left(\eta+\varepsilon_{kq}^-\right)^2 + \Delta^2}} \\ 0 & +\frac{\eta-\varepsilon_{kq}^-}{\sqrt{\left(\eta-\varepsilon_{kq}^-\right)^2 + \Delta^2}} & +\frac{\eta-\varepsilon_{kq}^-}{\sqrt{\left(\eta+\varepsilon_{kq}^-\right)^2 + \Delta^2}} \end{pmatrix}$$
(2.20)

$$\hat{U}^{\dagger} = \begin{pmatrix} +\frac{\Delta_{2\sigma}(k,q)}{\Delta} & -\frac{\Delta_{1\sigma}(k,q)}{\Delta} & 0\\ +\frac{\Delta_{1\sigma}^{*}(k,q)}{\sqrt{(\eta-\varepsilon_{kq}^{-})^{2}+\Delta^{2}}} & +\frac{\Delta_{2\sigma}^{*}(k,q)}{\sqrt{(\eta-\varepsilon_{kq}^{-})^{2}+\Delta^{2}}} & +\frac{\eta-\varepsilon_{kq}^{-}}{\sqrt{(\eta-\varepsilon_{kq}^{-})^{2}+\Delta^{2}}}\\ -\frac{\Delta_{1\sigma}^{*}(k,q)}{\sqrt{(\eta+\varepsilon_{kq}^{-})^{2}+\Delta^{2}}} & -\frac{\Delta_{2\sigma}^{*}(k,q)}{\sqrt{(\eta+\varepsilon_{kq}^{-})^{2}+\Delta^{2}}} & +\frac{\eta-\varepsilon_{kq}^{-}}{\sqrt{(\eta+\varepsilon_{kq}^{-})^{2}+\Delta^{2}}} \end{pmatrix}$$
(2.21)

簡単のため $\Delta = \sqrt{\sum_{\alpha} |\Delta_{\alpha\sigma}(k,q)|^2}, \eta = \sqrt{\varepsilon^- + \Delta^2}$ と置き換えている。このユニタリ行列 を用いて、ハミルトニアンを対角化する。

$$H_q^{\rm MF} = \sum_{k\sigma} \vec{c}_{kq\sigma}^{\dagger} \hat{H}_{kq\sigma} \vec{c}_{kq\sigma}$$
(2.22)

$$=\sum_{k\sigma}\vec{c}^{\dagger}_{kq\sigma}\hat{U}\hat{U}^{\dagger}\hat{H}_{kq\sigma}\hat{U}\hat{U}^{\dagger}\vec{c}_{kq\sigma}$$
(2.23)

$$=\sum_{k\sigma}\vec{\gamma}_{kq\sigma}^{\dagger}\hat{H}_{kq\sigma}^{\rm MF}\vec{\gamma}_{kq\sigma}$$
(2.24)

ここで、 $ec{\gamma}_{kq\sigma}, \hat{H}_{kq\sigma}^{\mathrm{MF}}$ は

$$\vec{\gamma}_{kq\sigma} = \begin{pmatrix} \gamma_{kq\sigma}^c \\ \gamma_{kq\sigma}^+ \\ \gamma_{\bar{k}q\sigma}^- \end{pmatrix}, \hat{H}_{kq\sigma}^{\rm MF} = \begin{pmatrix} \varepsilon_k^c & & \\ & E_{kq}^+ & \\ & & E_{kq}^- \end{pmatrix}$$
(2.25)

というベクトルと行列の置き換えであり、その成分は励起子秩序した準粒子の消滅演算子 $\gamma_{kqs\sigma}$ と秩序後のエネルギーバンド $E_{kqs}^{\rm MF}$ である。ハミルトニアンの対角化が出来たため、励起子秩序変数 $\Delta_{\alpha\sigma}(k,q)$ の具体的な表式を導出する。

$$\Delta_{\alpha\sigma}\left(k,q\right) = -\frac{V}{N}\sum_{k'}\left(1+e^{-i(k'-k)}\right)\left\langle f^{\dagger}_{k'+q,\sigma}c_{k'\alpha\sigma}\right\rangle$$
(2.26)

$$= -\frac{V}{N} \sum_{k'} \left(1 + e^{-i(k'-k)} \right) \Delta_{\alpha\sigma} \left(k', q \right) \frac{f\left(E_{k'q}^+ - \mu \right) - f\left(E_{k'q}^- - \mu \right)}{2\sqrt{\varepsilon_{k'q}^-}^2 + \Delta^2} \quad (2.27)$$

$$= \frac{V}{N} \sum_{k'} \Delta_{\alpha\sigma} \left(k', q \right) g\left(k', q \right) + e^{ik} \frac{V}{N} \sum_{k'} e^{-ik'} \Delta_{\alpha\sigma} \left(k', q \right) g\left(k', q \right)$$
(2.28)

$$=\Delta_{\alpha\sigma}^{(0)}\left(q\right) + e^{ik}\Delta_{\alpha\sigma}^{(1)}\left(q\right)$$
(2.29)

ここで、フェルミ分布関数 $f(E - \mu) = 1/(1 + e^{\beta(E-\mu)})$ を用いて

$$g(k,q) = -\frac{f\left(E_{kq}^{+}-\mu\right) - f\left(E_{kq}^{-}-\mu\right)}{2\sqrt{\varepsilon_{kq}^{-2}+\Delta^{2}}}$$
(2.30)

と、波数 k に依らない

$$\Delta_{\alpha\sigma}^{(0)}(q) = \frac{V}{N} \sum_{k} \Delta_{\alpha\sigma}(k,q) g(k,q)$$
(2.31)

$$\Delta_{\alpha\sigma}^{(1)}(q) = \frac{V}{N} \sum_{k} e^{-ik} \Delta_{\alpha\sigma}(k,q) g(k,q)$$
(2.32)

を定義した。式 (2.29) を式 (2.31),(2.32) に代入して相境界条件を求める。

$$\Delta_{\alpha\sigma}^{(0)}(q) = \frac{V}{N} \sum_{k} \left(\Delta_{\alpha\sigma}^{(0)}(q) + e^{ik} \Delta_{\alpha\sigma}^{(1)}(q) \right) g(k,q)$$
(2.33)

$$= V\Delta_{\alpha\sigma}^{(0)}(q) \frac{1}{N} \sum_{k} g(k,q) + V\Delta_{\alpha\sigma}^{(1)}(q) \frac{1}{N} \sum_{k} e^{ik} g(k,q)$$
(2.34)

$$= V\chi_0(q)\,\Delta^{(0)}_{\alpha\sigma}(q) + V\chi_1(q)\,\Delta^{(1)}_{\alpha\sigma}(q) \tag{2.35}$$

$$\Delta_{\alpha\sigma}^{(1)}(q) = \frac{V}{N} \sum_{k} e^{-ik} \left(\Delta_{\alpha\sigma}^{(0)}(q) + e^{ik} \Delta_{\alpha\sigma}^{(1)}(q) \right) g(k,q)$$
(2.36)

$$= V\Delta_{\alpha\sigma}^{(1)}(q) \frac{1}{N} \sum_{k} e^{-ik} g(k,q) + V\Delta_{\alpha\sigma}^{(1)}(q) \frac{1}{N} \sum_{k} g(k,q)$$
(2.37)

$$= V\chi_{1}^{*}(q)\,\Delta_{\alpha\sigma}^{(0)}(q) + V\chi_{0}(q)\,\Delta_{\alpha\sigma}^{(1)}(q)$$
(2.38)

ここで、 $\chi_0(q), \chi_1(q)$ は次のように定義している。

$$\chi_0(q) = \frac{1}{N} \sum_k g(k, q)$$
(2.39)

$$\chi_1(q) = \frac{1}{N} \sum_k e^{ik} g(k, q)$$
(2.40)

以上をまとめて行列形式で表現すると次のようになる。

$$\begin{pmatrix} V\chi_0(q) & V\chi_1(q) \\ V\chi_1^*(q) & V\chi_0(q) \end{pmatrix} \begin{pmatrix} \Delta_{\alpha\sigma}^{(0)}(q) \\ \Delta_{\alpha\sigma}^{(1)}(q) \end{pmatrix} = \begin{pmatrix} \Delta_{\alpha\sigma}^{(0)}(q) \\ \Delta_{\alpha\sigma}^{(1)}(q) \end{pmatrix}$$
(2.41)

正常相(無秩序相)と励起子相(秩序相)の相境界状態は、式 (2.41) で励起子秩序変数 をゼロの極限にとったときに実現される。したがって、式 (2.41) の左辺に対する固有値方 程式を $\Delta \rightarrow 0$ の条件下で解き、最大固有値 α_{\max} が1を超えたときに励起子秩序すると解 釈出来る。

$$(V\chi_0(q) - \alpha)^2 - V^2 |\chi_1(q)|^2 = 0 \alpha = V (\chi_0(q) \pm |\chi_1(q)|)$$
(2.42)

よって次の最大固有値 α_{max} が1のとき、相境界条件を満たす。

$$\alpha_{\max} = V\left(\chi_0\left(q\right) \pm \left|\chi_1\left(q\right)\right|\right) \tag{2.43}$$

なお、 $\Delta \rightarrow 0$ の相境界では

$$\chi_0(q) \to \frac{1}{N} \sum_k \frac{f\left(\varepsilon_{k+q}^f - \mu\right) - f\left(\varepsilon_k^c - \mu\right)}{\varepsilon_k^c - \varepsilon_{k+q}^f}$$
(2.44)

$$\chi_1(q) \to \frac{1}{N} \sum_k e^{ik} \frac{f\left(\varepsilon_{k+q}^f - \mu\right) - f\left(\varepsilon_k^c - \mu\right)}{\varepsilon_k^c - \varepsilon_{k+q}^f}$$
(2.45)

となる。励起子秩序変数は次のように鎖番号 α とスピンσに依存しないことを仮定する が、今回の模型では対称性の観点から物理的に自然であると言える。

$$\Delta_{\alpha\sigma}^{(0)}(q) = \Delta_q \tag{2.46}$$

$$\Delta_{\alpha\sigma}^{(1)}(q) = \Delta_q e^{-i\phi_q} \tag{2.47}$$

 Δ_q は励起子秩序変数の振幅、 ϕ_q は相対位相差で、今後2つの秩序変数を決定していくことになる。なお、先行研究 [39] では励起子秩序変数のq依存性と ϕ_q を無視している。位相差 ϕ_q の物理的意味に関しては後で述べることにして、この仮定のもとでの励起子秩序変数を改めて書くと

$$\Delta_{\alpha\sigma}(k,q) = \Delta_q \left(1 + e^{ik} e^{-i\phi_q} \right)$$
(2.48)

となる。ここで、2.1 節で触れた平均場ハミルトニアンにおける定数項 (2.11) を、仮定した励起子秩序変数を使って書き直す。

$$H_{\rm con} = \frac{V}{N} \sum_{kk'} \sum_{\alpha\sigma} \left(1 + e^{i(k'-k)} \right) \left\langle c^{\dagger}_{k'\alpha\sigma} f_{k'+q,\sigma} \right\rangle \left\langle f^{\dagger}_{k+q,\sigma} c_{k\alpha\sigma} \right\rangle \tag{2.49}$$

$$V \sum_{\alpha\sigma} \sum_{\alpha\sigma} \left(1 + e^{i(k'-k)} \right) \left\langle c^{\dagger}_{k'\alpha\sigma} f_{k'+q,\sigma} \right\rangle \left\langle f^{\dagger}_{k+q,\sigma} c_{k\alpha\sigma} \right\rangle$$

$$= \frac{V}{N} \sum_{kk'} \sum_{\alpha\sigma} \left(\left\langle c^{\dagger}_{k'\alpha\sigma} f_{k'+q,\sigma} \right\rangle \left\langle f^{\dagger}_{k+q,\sigma} c_{k\alpha\sigma} \right\rangle + e^{ik'} \left\langle c^{\dagger}_{k'\alpha\sigma} f_{k'+q,\sigma} \right\rangle e^{-ik} \left\langle f^{\dagger}_{k+q,\sigma} c_{k\alpha\sigma} \right\rangle \right)$$
(2.50)

$$= \frac{N}{V} \sum_{\alpha\sigma} \left\{ \left(-\frac{V}{N} \sum_{k'} \left\langle c_{k'\alpha\sigma}^{\dagger} f_{k'+q,\sigma} \right\rangle \right) \left(-\frac{V}{N} \sum_{k} \left\langle f_{k+q,\sigma}^{\dagger} c_{k\alpha\sigma} \right\rangle \right) + \left(-\frac{V}{N} \sum_{k'} e^{ik'} \left\langle c_{k'\alpha\sigma}^{\dagger} f_{k'+q,\sigma} \right\rangle \right) \left(-\frac{V}{N} \sum_{k} e^{-ik} \left\langle f_{k+q,\sigma}^{\dagger} c_{k\alpha\sigma} \right\rangle \right) \right\}$$
(2.51)

$$= \frac{N}{V} \sum_{\alpha\sigma} \left(\Delta_{\alpha\sigma}^{(0)*}(q) \,\Delta_{\alpha\sigma}^{(0)}(q) + \Delta_{\alpha\sigma}^{(1)*}(q) \,\Delta_{\alpha\sigma}^{(1)}(q) \right)$$
(2.52)

$$=\frac{8N}{V}\Delta_q^2\tag{2.53}$$

励起子秩序状態におけるユニットセルあたりの Helmholtz の自由エネルギー F_q は、この定数項を用いて一般に

$$F_q = -\frac{T}{N} \sum_{ks\sigma} \ln\left(1 + e^{-\beta\left(E_{kqs}^{\rm MF} - \mu\right)}\right) + \mu n + H_{\rm con}$$
(2.54)

と表すことが出来る。ただし、 E_{kqs}^{MF} は励起子秩序状態のエネルギー固有値である。 F_q を励起子秩序変数 Δ_q, ϕ_q それぞれで微分してゼロになる解、すなわち Helmholtz の自由エネルギーを最小化するパラメータが基底状態を決定する。

$$\frac{\partial F_q}{\partial \Delta_q} = 0, \frac{\partial F_q}{\partial \phi_q} = 0 \tag{2.55}$$

これらの条件式から以下の自己無撞着方程式が導かれる。

$$V\left(\chi_{0}\left(q\right) + |\chi_{1}\left(q\right)|\right) = 1$$
(2.56)

$$\tan \phi_q = \frac{\operatorname{Im} |\chi_1(q)|}{\operatorname{Re} |\chi_0(q)|} \tag{2.57}$$

なお、上式は先に導いた相境界条件 (2.43) と一致することが分かる。これらの自己無撞 着方程式を、ユニットセルあたりの電子数 n = 2 に固定して数値計算によって解く。すな わち

$$\frac{1}{N}\sum_{ks\sigma}\sum_{l}f\left(E_{kqs}^{\rm MF}-\mu\right)u_{ls}^{*}u_{ls}=2$$
(2.58)

を加えた3本の自己無撞着方程式を満たす解を、温度TとバンドギャップDの平面内で 探索することで励起子相図の決定を目指す。lは軌道、sはバンドを表し、u_{ls}は対角化に 用いたユニタリ行列の行列要素に対応する。与えられた自己無撞着方程式は励起子秩序変 数と化学ポテンシャルを変数に持つ非線形の連立方程式の解を求める問題と等価であり、 数値計算では Broyden 法を用いるがアルゴリズムの詳細は付録Aに記述する。

2.3 励起子相図とFFLO励起子相

図 2.2 に、2.2 節で定式化を説明した 3 鎖 Hubbard 模型に対する平均場近似による励起 子相図を示す [48]。これらの相図は横軸にバンドギャップD、縦軸に温度Tを取っている。 まず、図 2.2(a) には励起子秩序変数の振幅の大きさ Δ_a をカラープロットしており、半導体 から半金属にかけて幅広い領域で励起子相が見られた。次に、圧力下で期待される FFLO 励起子相について図 2.2(b) のように *D* < 0 の半金属領域で励起子の重心運動量 *q* ≠ 0 の FFLO 励起子状態が実現することが明らかになった。図 2.2(a)(b) を通して、常圧半導体 状態においては励起子相転移を示すものの、励起子は重心運動量を持たず、先行研究 [39] と一致する。図 2.3 には励起子相におけるエネルギーバンド構造を示す。半導体から励起 子絶縁体への相転移が起こる D = 0.03eV では価電子バンドの上部が平坦化する特徴が見 られる(図2.3(a))。伝導バンドと価電子バンドが僅かに重なった D = -0.08eV では価電 子バンドがダブルピークを持つようになるが、励起子は重心運動量を持たずに、この場合 も Uniform 励起子状態が実現する (図 2.3(b))。 D = -0.09eV では空間反転対称性が自 発的に破れて FFLO 励起子状態となり、エネルギーバンドに顕著な非対称性が現れる(図 2.3(c))。空間反転対称性の破れから、FFLO 励起子状態においてトランスポート等に異常 が現れることが期待され、物理量が特定出来れば実験による FFLO 励起子相発見の指針 となる可能性があるが、それは今後の課題となる。

図 2.2 3 鎖 Hubbard 模型における励起子相図 [48]。横軸はバンドギャップ D、縦軸は温度 T を表す。(a) 励起子秩序変数の振幅の大きさ Δ_q 、(b) 励起子の重心運動量の大きさ q/π をプロットしている。

図 2.3 励起子相のエネルギーバンド構造。温度 *T*=0.005eV でのバンドギャップ (a)*D*=0.03eV,(b)*D*=-0.08eV,(c)*D*=-0.09eV それぞれのバンドを表す。破線は正常状態に おけるエネルギーバンド。

2.4 リエントラント転移

Uniform 励起子相と FFLO 励起子相の相境界を調べると図 2.5 に示すように、D ~ -0.085eV 付近において温度を下げたとき、Uniform-FFLO-Uniform 励起子相のリエントラント転移が確認された。

図 2.4 励起子秩序に伴う秩序変数 (a) Δ_q , (b) ϕ_q ,(c) 励起子の重心運動量 q の温度依存性。 D = -0.080, -0.084, -0.087eV では温度を下げると一度励起子が重心運動量を持つ FFLO 励起子状態になるが、さらに低温では Uniform 励起子状態に戻る。

ここでのリエントラント転移は、温度の低下に従って Uniform 励起子状態にある系が、 一度 FFLO 励起子状態を経て再び Uniform 励起子状態に戻るという現象を指す。このリ エントラント転移において、Helmholtz の自由エネルギーの波数 q 依存性が、温度の低 下に伴ってどのように変化するかを調べた結果の詳細は関連論文にまとめている [49]。 D = -0.087eV で温度を低下させる計算を行った結果、高温側では自由エネルギーがシン グルピークを持つ2次相転移、低温側では自由エネルギーがダブルピークを持つ1次相転 移をすることが明らかになった(図 2.6)。一方で D = -0.082eV の半金属状態から温度 を下げた場合のリエントラント転移では高温低温いずれも 2 次相転移であった。また、こ の振る舞いを他の物理量で確認するため、自由エネルギーを温度微分して得られるエント ロピー S_q と比熱 C_q の温度依存性を調べた。

$$S_q = -\frac{\partial F_q}{\partial T} \tag{2.59}$$

$$\frac{S_q}{k_B} = \frac{1}{N} \sum_{ks\sigma} \left\{ \ln \left(1 + e^{-\beta \left(E_{kqs}^{\rm MF} - \mu \right)} \right) + \beta \left(E_{kqs}^{\rm MF} - \mu \right) f \left(E_{kqs}^{\rm MF} - \mu \right) \right\}$$
(2.60)

$$\frac{C_q}{k_B} = T \frac{\partial S_q}{\partial T} \tag{2.61}$$

D = -0.087eV、D = -0.082eVにおけるエントロピーと比熱の温度依存性を図 2.7 に示 す。結果としてはどちらも正常相から Uniform 相への 2 次相転移、Uniform 相から FFLO 励起子相への 2 次相転移においてエントロピーの勾配が変化し、比熱が不連続なとびを示 すことが明らかになった。低温で FFLO 励起子相から Uniform 励起子相へ 1 次相転移す る D = -0.087eV ではエントロピーが不連続にとび、 2 次相転移する D = -0.082eV で は通常の λ 型転移とは左右逆向きの λ 型転移が確認された。

図 2.5 Uniform-FFLO 励起子相の相境界における励起子相図 [48]。D = -0.082eV では 高温における Uniform-FFLO 転移、低温における FFLO-Uniform 転移がどちらも 2 次相 転移(赤矢印)を示す。D = -0.087eV では高温における Uniform-FFLO 転移が 2 次相 転移、低温における FFLO-Uniform 転移が 1 次相転移(青矢印)を示す。

図 2.6 Uniform-FFLO-Uniform リエントラント転移における、Helmholtz の自由エネル ギーの波数 q 依存性の温度変化 [49]。高温における Uniform 励起子相から FFLO 励起子 相へは自由エネルギーがシングルピークを持つ 2 次相転移、低温における FFLO 励起子 相から Uniform 励起子相へはダブルピークを持つ 1 次相転移が起こる。

図 2.7 エントロピーと比熱の温度依存性 [49]。D = -0.087eV における (a) エントロピー と (b) 比熱、D = -0.082eV における (c) エントロピーと (d) 比熱をそれぞれ表す。(d) で はリエントラント転移の低温側で通常の λ 型とは左右逆向きの λ 型の転移を示す。

2.5 実空間表示

サイト間クーロン相互作用の c,f 混成項に対する波数空間表示の平均場ハミルトニアン をフーリエ変換して、実空間表示を考える。

$$H_V^{\rm MF} = \sum_{kqs} \Delta_{\alpha\sigma} \left(k,q\right) c_{k\alpha\sigma}^{\dagger} f_{k+q,\sigma} + \text{H.c.}$$
(2.62)

$$= \Delta_q \sum_{i\alpha\sigma} e^{-iqR_i} \left(c_{i\alpha\sigma}^{\dagger} + e^{-i\phi_q} c_{i-1,\alpha\sigma}^{\dagger} \right) f_{i\sigma} + \text{H.c.}$$
(2.63)

この表式から、励起子秩序変数に関して波数qに対する空間変調とともに、隣り合う秩序 変数との間に隣接位相差 ϕ_q が存在していることが分かる(図 2.8)。これは FFLO 励起子 状態ではトランスファーに位相が付いていることを意味しており、有効的な磁束の効果に 対応する。なお計算の結果、FFLO 励起子状態では必ず有限の位相差 ϕ_q が値を持つこと が分かっている。

図 2.8 サイト間クーロン相互作用の平均場ハミルトニアンをフーリエ変換し、励起子秩 序変数を実空間表示した概念図。FFLO 励起子状態では隣接する励起子秩序変数と ϕ_q だ け位相差がつく。

2.6 2次元模型への拡張

ここまで議論してきた3鎖 Hubbard 模型を、より現実的な物質の結晶構造に近づける ため2次元に拡張し、FFLO 励起子相の安定性を確かめることを以下の節の目的とする。 先行研究 [50] に基づき、図2.9のように Ta₂Ni 鎖を実際の Ta₂NiSe₅ の結晶構造に即して c 軸方向に2次元に並べる。*c*, *f* 電子の鎖間ホッピングを考慮すると1次元模型では縮退 していた伝導バンドの縮退が解けることになる。常圧における第一原理計算(図1.8)か らも伝導バンドの2 重縮退は解けており、この拡張は定性的に妥当であると考えられる。

図 2.9 Ta₂NiSe₅の2次元 Hubbard 模型。図 2.1の3鎖模型において、Ta,Ni それぞれの 鎖間のホッピング $t_{cc} = -0.02, t_{cc1} = t_{cc2} = -0.05, t_{ff1} = t_{ff2} = 0.01$ [eV] を考慮することで 模型を2次元に拡張した。格子間隔 $\vec{a_1} = (a, 0), \vec{a_2} = (-a/2, b), a = 3.496, b = 7.820$ [Å] は先行研究 [50] を参考にしている。

2次元に拡張した3鎖Hubbard 模型に対するハミルトニアン $H = H_0 + H_V$ を書き下す。

$$H_{0} = \varepsilon_{a}^{c} \sum_{j\alpha\sigma} c_{j\alpha\sigma}^{\dagger} c_{j\alpha\sigma} + \varepsilon_{a}^{f} \sum_{j\sigma} f_{j\sigma}^{\dagger} f_{j\sigma} + t_{c} \sum_{j\alpha\sigma} c_{R_{j}-a_{1},\alpha\sigma}^{\dagger} c_{j\alpha\sigma} + \text{H.c.}$$

$$+ t_{f} \sum_{j\sigma} f_{R_{j}-a_{1},\sigma}^{\dagger} f_{j\sigma} + \text{H.c.} + t_{cc} \sum_{j\sigma} c_{j,\alpha=2,\sigma}^{\dagger} c_{j,\alpha=1,\sigma} + \text{H.c.}$$

$$+ t_{cc1} \sum_{j\sigma} c_{R_{j}+a_{1}+a_{2},\alpha=2,\sigma} c_{j,\alpha=1,\sigma} + \text{H.c.} + t_{cc2} \sum_{j\sigma} c_{R_{j}+a_{2},\alpha=2,\sigma} c_{j,\alpha=1,\sigma} + \text{H.c.}$$

$$+ t_{ff1} \sum_{j\sigma} f_{R_{j}+a_{1}+a_{2},\sigma} f_{j\sigma} + \text{H.c.} + t_{ff2} \sum_{j\sigma} f_{R_{j}+a_{2},\sigma} f_{j\sigma} + \text{H.c.}$$

$$(2.64)$$

$$\sum \begin{pmatrix} c_{k1\sigma} \end{pmatrix}^{\dagger} \begin{pmatrix} \varepsilon_{k}^{c} & \varepsilon_{k}^{cc} \\ c_{k1\sigma} \end{pmatrix} \begin{pmatrix} c_{k1\sigma} \end{pmatrix}$$

$$=\sum_{k\sigma} \begin{pmatrix} c_{k1\sigma} \\ c_{k2\sigma} \\ f_{k\sigma} \end{pmatrix} \begin{pmatrix} c_k & c_k \\ \varepsilon_k^{cc*} & \varepsilon_k^c \\ & & \varepsilon_k^f \end{pmatrix} \begin{pmatrix} c_{k1\sigma} \\ c_{k2\sigma} \\ f_{k\sigma} \end{pmatrix}$$
(2.65)

ここで、波数空間のΓ点において D=0のとき伝導バンドと価電子バンドのギャップがゼ

ロになるように Dを再定義すると、エネルギー $\varepsilon_k^c, \varepsilon_k^f, \varepsilon_k^c$ は次のように書かれる。

$$\varepsilon_k^c = +D/2 + 2t_c \left(\cos ka_1 - 1\right) + |t_{cc} + t_{cc1} + t_{cc2}|$$
(2.66)

$$\varepsilon_k^J = -D/2 + 2t_f \left(\cos ka_1 - 1\right) + 2t_{ff1} \left(\cos k\left(a_1 + a_2\right) - 1\right) + 2t_{ff2} \left(\cos ka_2 - 1\right) \quad (2.67)$$

$$\varepsilon_k^{cc} = t_{cc} + t_{cc1} e^{ik(a_1 + a_2)} + t_{cc2} e^{ika_2}$$
(2.68)

サイト間クーロン相互作用 H_Vに関しては2.1 節の平均場近似と同様の定式化により

$$H_{V} = V \sum_{j\alpha} \sum_{\sigma\sigma'} \left(n_{j\alpha\sigma}^{c} + n_{R_{j}-a_{1},\alpha\sigma}^{c} \right) n_{j\sigma'}^{f}$$
(2.69)

$$H_V^{\rm MF} = \sum_{k\alpha\sigma} \Delta_{\alpha\sigma} \left(k,q\right) c_{k\alpha\sigma}^{\dagger} f_{k+q,\sigma} + \text{H.c.}$$
(2.70)

が導かれる。よって 2 次元 3 鎖 Hubbard 模型の平均場ハミルトニアン $H_q^{\rm MF}$ は 2.1 節の定式化を利用して、次の表式になる。

$$H_{q}^{\rm MF} = \sum_{k\sigma} \begin{pmatrix} c_{k1\sigma} \\ c_{k2\sigma} \\ f_{k+q,\sigma} \end{pmatrix}^{\dagger} \begin{pmatrix} \varepsilon_{k}^{c} & \varepsilon_{k}^{cc} & \Delta_{1\sigma}(k,q) \\ \varepsilon_{k}^{cc*} & \varepsilon_{k}^{c} & \Delta_{2\sigma}(k,q) \\ \Delta_{1\sigma}^{*}(k,q) & \Delta_{2\sigma}^{*}(k,q) & \varepsilon_{k+q}^{f} \end{pmatrix} \begin{pmatrix} c_{k1\sigma} \\ c_{k2\sigma} \\ f_{k+q,\sigma} \end{pmatrix} + \frac{8N}{V} \Delta_{q}^{2}$$

$$(2.71)$$

3×3行列の行列要素がすべて入るため行列を対角化してエネルギー固有値を導出するに は3次の固有値方程式を解く必要があり、解析的には困難である。しかし、Helmholtzの 自由エネルギーを励起子秩序変数で微分して自己無撞着方程式を求める場合には、エネル ギー固有値自体ではなくエネルギー固有値の励起子秩序変数による微分形を知れば十分で あることを後で示す。よって、ここではエネルギー固有値方程式そのものを励起子秩序変 数で微分することで自己無撞着方程式を導く。エネルギー固有値方程式は次のように表す ことが出来る。

$$E^3 + AE^2 + BE + C = 0 (2.72)$$

$$A = -2\varepsilon_k^c - \varepsilon_{k+q}^f \tag{2.73}$$

$$B = 2\varepsilon_k^c \varepsilon_{k+q}^f + \varepsilon_k^{c2} - 2|\Delta_{\alpha\sigma}(k,q)|^2 - |\varepsilon_k^{cc}|^2$$
(2.74)

$$C = \left(|\varepsilon_k^{cc}|^2 - \varepsilon_k^c \right) \varepsilon_{k+q}^f + 2 \left(\varepsilon_k^c - \operatorname{Re}\varepsilon_k^{cc} \right) |\Delta_{\alpha\sigma} \left(k, q \right)|^2$$
(2.75)

変数 x で両辺を微分して整理すると

1.00

$$\frac{\partial E}{\partial x} = -\frac{\frac{\partial A}{\partial x}E^2 + \frac{\partial B}{\partial x}E + \frac{\partial C}{\partial x}}{3E^2 + 2AE + B}$$
(2.76)

という形になる。この変数 x に、励起子秩序変数 Δ_q, ϕ_q を代入することでエネルギー固有値 $E_{kqs}^{\rm MF}$ の秩序変数微分

$$\frac{\partial E_{kqs}^{\rm MF}}{\partial \Delta_q} = 8D_{kqs}\Delta_q \left(1 + \cos\left(ka_1 - \phi_q\right)\right) \tag{2.77}$$

$$\frac{\partial E_{kqs}^{\rm MF}}{\partial \phi_q} = 4D_{kqs}\Delta_q^2 \sin\left(ka_1 - \phi_q\right) \tag{2.78}$$

が得られる。ただし、

$$D_{kqs} = \frac{E_{kqs}^{\rm MF} - \varepsilon_k^c + \operatorname{Re}\varepsilon_k^{cc}}{3\left(E_{kqs}^{\rm MF} - \eta_+\right)\left(E_{kqs}^{\rm kMF} - \eta_-\right)}$$
(2.79)

$$\eta_{\pm} = \frac{-A \pm \sqrt{A^2 - 3B}}{3} \tag{2.80}$$

と定義した。Helmholtzの自由エネルギーを変数 x で微分すると次のようになる。

$$\frac{\partial F_q}{\partial x} = -\frac{T}{N} \sum_{ks\sigma} \frac{\partial}{\partial x} \ln\left(1 + e^{-\beta \left(E_{kqs}^{\rm MF} - \mu\right)}\right) + \frac{\partial}{\partial x} \frac{8\Delta_q^2}{V}$$
(2.81)

$$= \frac{1}{N} \sum_{ks\sigma} \frac{\partial E_{kqs}^{\rm MF}}{\partial x} f\left(E_{kqs}^{\rm MF} - \mu\right) + \frac{16\Delta_q}{V} \frac{\partial \Delta_q}{\partial x}$$
(2.82)

ここで、求めたエネルギー固有値の秩序変数微分を代入し、自由エネルギーを最小化する 条件から1次元模型と同形の自己無撞着方程式が導かれる。

$$V(\chi_0(q) + |\chi_1(q)|) = 1$$
(2.83)

$$\tan \phi_q = \frac{\operatorname{Im} |\chi_1(q)|}{\operatorname{Re} |\chi_0(q)|} \tag{2.84}$$

ただし、2.2 節とは異なる応答関数 $\chi_0(q), \chi_1(q)$ 、それから g(k,q) を次のように再定義している。

$$\chi_0(q) = \frac{1}{N} \sum_k g(k, q)$$
(2.85)

$$\chi_1(q) = \frac{1}{N} \sum_k e^{ik} g(k, q)$$
(2.86)

$$g(k,q) = -\sum_{s} D_{kqs} f\left(E_{kqs}^{\rm MF} - \mu\right)$$
(2.87)

自己無撞着方程式が導出が完了したため、数値的にこれを解き、熱力学的に最安定な状態 を探索する。このとき、模型を 2 次元に拡張しているため x 方向の波数 $Q_{\rm EP}^y$ だけでなく y 方向の波数 $Q_{\rm EP}^y$ も探索する。

2.7 FFLO1-3相

図 2.10 に V = 0.60eV と仮定したときの 2 次元 3 鎖 Hubbard 模型で得られた励起子相 図を示す。1 次元の場合と同様に半導体から半金属にかけて幅広く励起子秩序が見られ、 $D \sim -0.2$ eV 付近の低温領域で励起子ギャップは最大値を取る。FFLO 励起子相はバンド の重なりが僅かな半金属領域では鎖間結合の効果でネスティングが弱まることで抑制され るものの、安定的に存在することが分かる。また、FFLO 励起子相は相の内部で FFLO1-3 の 3 相に分かれている。これらは電子状態を調べることにより、フェルミ面から理解可能 であることを明らかにしたため以下に示す。

図 2.10 2次元3鎖 Hubbard 模型の励起子相図。すべて横軸はエネルギーギャップD、縦軸は温度 T を表す。カラープロットにより、(a) 秩序変数の大きさ、(b) 相対位相差、(c) 秩序波数 $Q_{\rm EP}$ の x 成分の大きさ、(d) 秩序波数 $Q_{\rm EP}$ の y 成分の大きさをそれぞれ示して いる。青の実線は 2 次相転移、赤の実線は 1 次相転移を表す。

まず、半導体領域からバンドの重なりが小さい半金属領域にわたる $D \gtrsim -0.30$ eV の領域では従来型の Uniform 励起子相が実現する。この場合は結合伝導バンドと価電子バンドがオーバーラップすることにより、1対1の半金属バンドを舞台とした励起子秩序が起きており、半金属から励起子絶縁体への相転移となって、定性的に先行研究の結果と一致する [39]。図 2.11 に D = -0.20eV におけるエネルギーバンドとフェルミ面を示す。価電子バンドの上端が平坦化し、正常相で存在していたフェルミ面が Uniform 励起子相では消失していることからも励起子絶縁体転移していることが見て取れる。-0.55eV $\lesssim D \lesssim -0.30$ eVでは FFLO3の領域を除いて、x方向の波数のみが有限となる FFLO1 相が実現している。D = -0.50eV の図 2.12 におけるフェルミ面から分かるように、この秩序は正常相における価電子バンドと結合伝導バンド間のネスティングに起因している。また、1次元模型での

議論と同様に、空間反転対称性が破れ、左右非対称なバンドが形成される。 $D \lesssim -0.55$ eV では x 方向の波数だけでなく y 方向への波数 $q_y = \pi$ を伴う FFLO2 相が実現している。 D = -0.70eV の図 2.13 を見ると、この秩序は正常相における価電子バンドと反結合伝導 バンド間のネスティングに起因している。ここでも、空間反転対称性が破れ、左右非対称 なバンドが形成されている。-0.40eV $\lesssim D \lesssim -0.33$ eV では $q_y = \pi$ のネスティングに由来 して FFLO3 相が実現している。D = -0.35eV の図 2.14 における正常相のフェルミ面か ら、この秩序は $q_y = \pi$ だけずれたとき良いネスティングとなることに起因すると考察す ることが出来る。

自由エネルギーの計算から、正常相から FFLO 相への相転移は半金属から半金属への2 次相転移、FFLO1 相から FFLO2,3 相への相転移は1次相転移であることが分かった。さ らに、Uniform 励起子相は半導体、FFLO 励起子相は半金属であるため、両者の間の相転 移は半導体から半金属への2次転移であることを明らかにした。

図 2.11 D = -0.20eV における正常相、Uniform 励起子相の各エネルギーバンドとフェ ルミ面。それぞれ (a) $k_y/\pi = 0$ 、(b)MYTX を経由するバンドと (c) フェルミ面を描画。励 起子相では価電子バンドの上端が平坦化し、半金属から励起子絶縁体へ相転移している。

図 2.12 D = -0.50eV における正常相、FFLO1 励起子相の各エネルギーバンドとフェル ミ面。それぞれ (a) $k_y/\pi = 0$ 、(b)MYFX のパスを経由するバンドと (c) フェルミ面を描 画。正常相のフェルミ面において x 方向への良いネスティングに起因して FFLO 励起子秩 序が実現することで、 q_x 方向に左右非対称なバンドが形成される FFLO1 相が実現してい る。正常相から FFLO1 相への相転移は半金属-半金属転移。

図 2.13 D = -0.70eV における正常相、FFLO2 励起子相の各エネルギーバンドとフェ ルミ面。それぞれ (a) $k_y/\pi = 0$ 、(b)MYTX のパスを経由するバンドと (c) フェルミ面を 描画している。正常相のフェルミ面において y 方向に π だけずれた x 方向へのネスティン グに起因して $q_x \neq 0, q_y = \pi$ の重心運動量を持つ FFLO2 相が実現している。正常相から FFLO2 相への相転移は半金属-半金属転移。

図 2.14 D = -0.35eV における正常相、FFLO3 励起子相の各エネルギーバンドとフェル ミ面。それぞれ (a) $k_y/\pi = 0$ 、(b)MYFX のパスを経由するバンドと (c) フェルミ面を描画 している。正常相のフェルミ面において、 $q_y = \pi$ がアクシデンタルに良いネスティングと なることで $q_x = 0, q_y = \pi$ の重心運動量を持つ FFLO3 相が実現している。

図 2.15 秩序変数の実空間描像。それぞれ (a)Uniform 励起子相、(b)FFLO1 励起子相、(c)FFLO2 励起子相、(d)FFLO3 相における秩序変数の大きさを Ta-Ni 間の楕円形で表示 している。Uniform 相では秩序変数は一様となり、FFLO1 相では隣接セル間で ϕ_q だけ位 相差が生じる。FFLO2 相では隣接セル間で位相差 ϕ_q が生じるとともに鎖間で位相が反転 している。FFLO3 相では 3 鎖の内部では一様な秩序変数を取り、鎖間で位相が反転する。

これらの結果から、従来の励起子絶縁体相と3種類のFFLO相における秩序変数を波数空間から実空間にフーリエ変換し、実空間描像で表すと図2.15のようになる。それぞれ、Uniform 励起子相、FFLO1 励起子相、FFLO2 励起子相、FFLO3 相における秩序変数の大きさをTa-Ni 間の楕円形で表示している。Uniform 相では秩序変数は一様となり、FFLO1 相では隣接セル間で ϕ_q だけ位相差が生じている。FFLO2 相では隣接セル間で位

相差 ϕ_q が生じるとともに鎖間で位相が反転している。FFLO3 相では 3 鎖の内部では一様 な秩序変数を取り、鎖間で位相が反転する。

図 2.16 に、温度を T = 0.01eV に固定し、横軸をエネルギーギャップ D、縦軸を *c-f* 間クーロン相互作用 V を取る *D-V* 相図を示す。V の増大に伴い半導体から半金属にか けて励起子秩序が確認出来る。高圧下に対応する $D \lesssim -0.5$ eV の半金属領域において $V \gtrsim 0.5$ eV から FFLO1 相と FFLO2 相の相境界が見られ(図 2.16(b))、-0.45eV $\lesssim D \lesssim$ -0.30eV,-0.40eV $\lesssim V \lesssim 0.68$ eV においてフェルミ面の特殊な形状に由来して発現する FFLO3 相が実現している(図 2.16(c))。

図 2.16 2次元 3 鎖 Hubbard 模型の T = 0.01eV における *D*-V 相図。カラープロットに よりそれぞれ (a) 秩序変数の大きさ、(b) 秩序波数 $Q_{\rm EP}$ の x 成分の大きさ、(c) 秩序波数 $Q_{\rm EP}$ の y 成分の大きさを表す。青の実線は 2 次相転移、赤の実線は 1 次相転移を示す。

第3章 LO型励起子秩序

FFLO 超伝導の研究においては、Cooper ペアが単一の重心運動量を伴って運動する Fulde-Ferrell (FF)状態より、Larkin-Ovchinnikov (LO)状態の方が安定化するケースが 多いことが知られている。励起子研究は超伝導研究との類似性が極めて高く、前章までも 超伝導と励起子相のアナロジーを考慮することで議論を進めてきた。この章では前章での 議論に対応する FF 状態に対し、複数の波数を重ねることで実現する励起子の LO 状態に ついて考察する。

3.1 LO型励起子秩序の定式化

Ta₂NiSe₅ は $T_c = 328$ K において図 3.1 のように斜方晶から単斜晶へ構造相転移し一様 な格子歪み $\delta_{q=0}$ が生じるが $q \neq 0$ の FF 型励起子秩序とは整合しない。一方、複数の波数 の重ね合わせによる LO 型励起子秩序ではこの構造相転移と矛盾なく整合する。よって、 ここでは電子格子結合 γ を取り入れた LO 型励起子秩序の定式化を行う。電子格子結合を 考慮するため、ハミルトニアンに次の項を加える。

$$H_{\rm ep} = \sum_{i\sigma} \gamma \left(x_i c_{i1\sigma}^{\dagger} + x_{i-1} c_{i-1,2\sigma}^{\dagger} \right) f_{i\sigma} + H.c.$$
(3.1)

また、励起子平均場ハミルトニアンにおいて波数 q の和を残すことに注意すれば

$$H^{\rm MF} = H_0 + H_V^{\rm MF} + H_{\rm ep}^{\rm MF}$$

$$(3.2)$$

$$H_V^{\rm MF} = \sum_{kq} \sum_{\alpha\sigma} \Delta_\alpha \left(k,q\right) c_{k\alpha}^{\dagger} f_{k+q} + \text{H.c.}$$
(3.3)

$$H_{\rm ep}^{\rm MF} = \delta_{q=0} \sum_{k\sigma} \left(c_{k1}^{\dagger} + e^{ik} c_{k2}^{\dagger} \right) f_k + H.c.$$

$$(3.4)$$

となる。

図 3.1 Ta₂NiSe₅の3鎖模型における構造相転移に伴う対称性の変化。(a) 斜方晶 ($T > T_c$) と (b) 単斜晶 ($T < T_c$) における模式図を示す。構造相転移により β 角が $\beta = 90°$ から $\beta > 90°へと変化する。$

簡単のためサイト間クーロン相互作用 H_V^{MF} のみを考慮した1次元の3鎖模型を仮定する。LO型の励起子秩序を考慮する上で最も簡単な波数の重ね合わせは $q = 0, \pm \pi$ である。このとき、ハミルトニアンは波数空間の折り畳みにより

$$H^{MF} = \sum_{k\alpha\sigma} \varepsilon_k^c c_{k\alpha}^{\dagger} c_{k\alpha} + \sum_{k\sigma} \varepsilon_k^f f_k^{\dagger} f_k + \sum_{q=-\pi,0,\pi} \sum_{k\alpha\sigma} \Delta_{\alpha} \left(k,q\right) c_{k\alpha}^{\dagger} f_{k+q} + H.c.$$
(3.5)

$$=\sum_{k<0}\vec{c}_k^{\dagger}\hat{H}_k\vec{c}_k \tag{3.6}$$

$$\vec{c}_{k}^{\dagger} = \begin{pmatrix} c_{k1\sigma}^{\dagger} & c_{k2\sigma}^{\dagger} & f_{k\sigma}^{\dagger} & c_{k+\pi,1\sigma}^{\dagger} & c_{k+\pi,2\sigma}^{\dagger} & f_{k+\pi,\sigma}^{\dagger} \end{pmatrix}$$
(3.7)

$$\hat{H}_{k} = \begin{pmatrix} \varepsilon_{k}^{c} & \Delta_{1}(k,0) & \Delta_{1}(k,\pi) \\ & \varepsilon_{k}^{c} & \Delta_{2}(k,0) & \Delta_{2}(k,\pi) \\ \hline \Delta_{1}^{*}(k,0) & \Delta_{2}^{*}(k,0) & \varepsilon_{k}^{f} & \Delta_{1}^{*}(k+\pi,\pi) & \Delta_{2}^{*}(k+\pi,\pi) \\ \hline & \Delta_{1}(k+\pi,\pi) & \varepsilon_{k+\pi}^{c} & \Delta_{1}(k+\pi,0) \\ & \Delta_{2}(k+\pi,\pi) & \varepsilon_{k+\pi}^{c} & \Delta_{2}(k+\pi,0) \\ \hline & \Delta_{1}^{*}(k,\pi) & \Delta_{2}^{*}(k,\pi) & & \Delta_{1}^{*}(k+\pi,0) & \Delta_{2}^{*}(k+\pi,0) & \varepsilon_{k+\pi}^{f} \\ \end{pmatrix}$$
(3.8)

と行列表示することが出来る。自由エネルギーと励起子秩序変数は

$$F = -\frac{T}{N} \sum_{k<0} \sum_{s=1,6} \sum_{\sigma} \ln\left(1 + e^{-\beta(E_{ks}-\mu)}\right) + \mu n$$
(3.9)

$$\Delta_{\alpha}(k,q) = -\frac{V}{N} \sum_{k'} \left(1 + e^{i(k-k')} \right) \left\langle f^{\dagger}_{k'+q} c_{k'\alpha} \right\rangle$$
(3.10)

$$=\Delta_{q\alpha}^{(0)} + e^{ik}\Delta_{q\alpha}^{(1)} \tag{3.11}$$

となり、それぞれの波数 q に対して秩序変数が存在する点が前章と異なる。この定式化に

対し電子格子相互作用 H^{MF} を取り入れ、波数について一般化すると

$$H^{\rm MF} = \sum_{[k]} \sum_{\alpha \sigma} \begin{pmatrix} \vec{c}_1 \\ \vec{c}_2 \\ \vdots \\ \vec{c}_i \\ \vdots \\ \vec{c}_i \\ \vdots \\ \vec{c}_n \end{pmatrix}^{\dagger} \begin{pmatrix} \hat{H}_{11} & \hat{H}_{12} & \cdots & \hat{H}_{1n} \\ \hat{H}_{21} & \hat{H}_{22} & & \\ & \ddots & & \\ \vdots & & \hat{H}_{ij} & \vdots \\ & & \ddots & \\ \vdots & & \hat{H}_{ij} & & \\ & & \ddots & \\ \hat{H}_{n1} & & \cdots & \hat{H}_{nn} \end{pmatrix} \begin{pmatrix} \vec{c}_1 \\ \vec{c}_2 \\ \vdots \\ \vec{c}_j \\ \vdots \\ \vec{c}_n \end{pmatrix}, \vec{c}_i = \begin{pmatrix} c_{k+q_i,1} \\ c_{k+q_i,2} \\ f_{k+q_i} \end{pmatrix},$$

$$(3.12)$$

$$(3.12)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

となる。波数に関する和記号の範囲は 1st Brillouin Zone 内の折り畳まれた波数空間を指 す。なお、この定式化は重ね合わせる波数の数がサイト数と一致するとき Bogoliubov-de Gennes 方程式と等価である。

3.2 LO型励起子状態

前節の LO 状態の定式化に対し、数値計算を用いて自己無撞着な解を求める。±π の FFLO 励起子秩序をするパラメータは現実的な状況から離れるが、定性的に LO 状態が実 現する可能性を調べることを目的として計算を行う。

図 3.2 (a) 秩序変数と (b) 自由エネルギーの温度依存性。転移温度以下で LO 型の秩序変数 $\Delta_{q=0}, \Delta_{q=\pi}$ と一様格子歪み $\delta_{q=0}$ が同時に有限値を取る。Uniform 励起子相や FF 型励起子相と比較して LO 型励起子相の自由エネルギーが低く、LO 状態が基底状態である。

図 3.2 に LO 型励起子秩序変数 $\Delta_{q=0}, \Delta_{q=\pi}$ と一様格子歪み $\delta_{q=0}$ 、自由エネルギー F の 温度依存性を示す。励起子相転移温度以下で秩序変数 $\Delta_{q=0}, \Delta_{q=\pi}$ と一様格子歪み $\delta_{q=0}$ が 同時に有限値を取り、斜方晶から単斜晶への構造相転移と矛盾なく LO 型励起子秩序が生 じていることが分かる。また、Uniform 励起子相や FF 型励起子相と比較して LO 型励起 子相の自由エネルギーが低く、LO 状態が基底状態であると考えられる。

3.3 励起子秩序とCDW

LO 型励起子秩序が CDW(電荷密度波)と異なる秩序であることに触れておく。CDW は秩序波数の周期で電荷のサイト占有数が変化する状態である。秩序波数が $q = \pi$ の場合 は隣接するサイト間で逆符号の電荷を持つ状態であり、電荷の密度が波打つ状態からこの ように呼ばれる。一方、LO 型励起子秩序は電荷を持たない励起子が重心運動量を獲得し ているため、各サイトで電荷密度に差は生まれない。

図 3.3 (a)c, f サイト占有数の温度依存性と (b) 模式図。 $q = 0, \pm \pi$ の秩序変数が有限値を 取る転移温度以下においても、各サイトにおける電子の占有数は変化せず、電荷密度は一 様であることが分かる。

図 3.3 に c, f サイト占有数の温度依存性を示す。 $q = 0, \pm \pi$ の秩序変数が有限値を取る 転移温度以下においても、各サイトにおける電子の占有数は変化せず、電荷密度は一様で あることが分かる。このように LO 型励起子秩序は CDW とは異なる秩序である。

第4章 第一原理計算に基づく構築模型に対す る励起子秩序

前章まで、Ta₂NiSe₅の結晶構造の強い1次元性を抽出した3鎖Hubbard 模型に基づき、 定性的にFFLO励起子秩序が実現する可能性について議論してきた。結果として、3鎖模 型に対する平均場近似の範囲では、圧力を印加した半金属状態のTa₂NiSe₅では、低温で FF型あるいはLO型の励起子相が基底状態となることが分かった。一方で、実験との比較 を念頭に置いて現実の物性について言及するためには、結晶構造を反映させた、より現実 的な模型から出発する必要がある。そこで、第一原理バンド計算を行い、最局在Wannier 関数法を用いて模型を構築した後、励起子秩序を議論するというアプローチで高圧下の Ta₂NiSe₅の励起子秩序を調べることにする。

4.1 Ta₂NiSe₅の結晶構造パラメータ

第一原理バンド計算を行うにあたり、第一原理計算パッケージ WIEN2k を用いる。また、Ta₂NiSe₅の結晶構造パラメータについては、実験から得られているデータを参照する [51,52]。

図 4.1 圧力実験相図(図 1.6 参照)。横軸は圧力、縦軸は温度を表す。I 相は Cmcm、III 相は Pmnm の斜方晶。II 相は C2/c、IV 相は P2/n の単斜晶。

相図 4.1 において、I 相から II 相への相転移は半導体から半導体への2次相転移、I 相から III 相への相転移は半導体から半導体への1次相転移、III 相から IV 相への相転移は低 圧側では半導体から半金属への2次相転移、高圧側では半金属から半金属への2次相転移 である。今回は、圧力下 4.22GPa における電子状態を調べることにする。

4.2 mBJ ポテンシャル法

Ta₂NiSe₅のIII相に対して一般勾配近似 (GGA)を用いて計算を行うと図 4.2(a)のよう に、ギャップが消失して半金属的なバンド構造となり、実験と整合しない結果を得る。そ こで、半導体や半金属のバンド計算におけるエネルギーギャップの過小評価問題に対して よく用いられる手法の一つである modified Becke-Johnson (mBJ) ポテンシャル法を用い て、実験と整合するバンドを得ることにする [53]。mBJ ポテンシャル法では第一原理計算 を行う際に用いるポテンシャルに、電子密度に依存する次の準局所的な混合型ポテンシャ ルを追加する。

$$v_{x\sigma}^{TB-mBJ}(r) = c v_{x\sigma}^{BR}(r) + \frac{3c-2}{\pi} \sqrt{\frac{5}{12}} \sqrt{\frac{2t_{\sigma}(r)}{\rho_{\sigma}(r)}}$$
(4.1)

ここで、 $v_{x\sigma}^{BR}(r)$ は Beck-Roussel ポテンシャルと呼ばれる引力ポテンシャル、 $\rho_{\sigma}(r)$ は電 子密度、 $t_{\sigma}(r)$ は運動エネルギー密度をそれぞれ表し、右辺各項の係数部にある cが唯一 の可変パラメータである。cが増大するにつれてギャップが開き、半金属的なバンドから 半導体的なバンドへと改善が期待できる。I 相における mBJ ポテンシャルを取り入れた第 一原理計算には先行研究があり、そこでは光学伝導度を計算している [54]。図 4.3(a) は常 圧における Ta₂NiSe₅ と Ta₂NiS₅ に対する mBJ ポテンシャル導入後のバンド分散である。 図 4.3(b) によると Ta₂NiS₅ は $c \leq 1.2$ ではギャップが開かず半金属的であるが、c = 1.5 で は図 4.3(a) のように伝導バンドと価電子バンドに僅かなギャップが開き半導体となる。

図 4.2 第一原理計算によるエネルギーバンド。(a)GGA によるエネルギーバンドが半金 属的であるのに対し、(b)*c* = 1.9 の mBJ ポテンシャルを考慮した GGA+mBJ バンドは半 導体的なギャップを持つ。

図 4.3 (a) 常圧の Ta₂NiSe(S)₅ に対し c = 1.5 の mBJ ポテンシャルを取り入れたバンド 分散と、(b) エネルギーギャップの c 依存性 [54]。

先行研究 [54] を参考にして III 相における第一原理計算を行う。ここでは *c* パラメータ を *c* = 1.9 に設定することで、図 4.2(b) の実験と整合する半導体のエネルギーバンドを手 に入れている。

4.3 60 軌道 *d*-*d*-*p* 模型

計算パッケージ wien2wannier を使用し、得られた半導体のエネルギーバンドから最局 在 Wannier 関数法を用いて模型を構築する。第一原理バンド計算の、特に Fermi 準位近傍 のバンド構造を良く再現するように 2Ta₂NiSe₅ の Ta5d(5 軌道)×4 サイト,Ni3d(5 軌道)×2 サイト,Se4p(3 軌道)×10 サイトを選択し合計 60 軌道の *d-d-p* 模型を構築した。

図 4.4 mBJ ポテンシャルを考慮した第一原理計算に基づく 60 軌道 *d-d-p* 模型 (a) と Fermi 準位近傍の拡大図 (b)。黒の実線は第一原理計算、赤の実線は 60 軌道 *d-d-p* 模型のバンド を表す。

構築した 60 軌道 *d-d-p* 模型のバンド分散を図 4.4 に示す。特に Fermi 準位近傍で第一原 理計算を良く再現している。また、構築した模型の範囲では単位胞内 Ta-Ni 間の行列要素 はゼロであり、この行列要素は励起子秩序することにより有限値を持つようになる。

図 4.5 60 軌道 *d-d-p* 模型(黒の実線)と、温度 *T* = 0.01eV, サイト間クーロン相互作用 *V* = -0.50eV における Uniform 励起子相(赤の実線)のエネルギーバンド。

60 軌道 *d-d-p* 模型に対し、*c-f* 混成項の平均場近似を実行することにより励起子秩序を 検証する。このときの秩序変数は

$$\Delta_{kll'} = -\frac{V}{N} \sum_{k'} \left(1 + e^{i(k-k')} \right) \left\langle f^{\dagger}_{k'l'} c_{k'l} \right\rangle \tag{4.2}$$

であり、l, l'はそれぞれ T と Ni の d 軌道に対応する。図 4.5 は 60 軌道 d-d-p 模型と、温度 T = 0.01 eV, サイト間クーロン相互作用 V = -0.50 eV のときの平均場近似計算の結果の バンド図である。従来型の Uniform 励起子秩序によりエネルギーギャップが拡大し、励起 子絶縁体への絶縁体-絶縁体転移をしている。このとき、多数ある秩序変数は 0.01 eV オー ダーの有限値を持ち、今後詳細な解析が必要となる。

第5章 結論と今後の課題

5.1 結論

以上、本論文では励起子相の有力な候補物質の一つである Ta₂NiSe₅ について、3 鎖 Hubbard 模型と第一原理計算による構築模型に対する平均場近似により、新奇な励起子 秩序の可能性を検証してきた。擬一次元的な結晶構造をもつ Ta₂NiSe₅ に対して、まずは Ta₂Ni 鎖による3 鎖 Hubbard 模型を仮定して励起子相図の決定を試み、さらに模型を2 次元に拡張して FFLO 励起子相の安定性を調べた。次に、単一の波数のみを考慮する FF 状態に対し、複数の波数で秩序する LO 状態が安定化する可能性を検証した。最後に、よ り現実的な模型から出発した励起子秩序を議論するために第一原理計算によるアプローチ を試みたが、その結果を以下にまとめる。

2章では、3鎖 Hubbard 模型における Ta₂NiSe₅ の伝導バンドと価電子バンドの縮重度 の違いから、半金属状態で必然的に生じる電子正孔インバランスに着目し、先行研究 [39] で議論されていない FFLO 励起子状態の実現可能性を検証した。研究手法としては、ま ず Ta-Ni 間のクーロン相互作用を平均場近似し、一般の波数 q に対する励起子秩序変数 Δ_{q}, ϕ_{q} を決める自己無撞着方程式を導き、従来研究されてきた半導体だけでなく半金属も 含む幅広いパラメータ領域でその励起子状態を調べた。次に、これを数値的に解いて得た 解の中で自由エネルギーを最小にする励起子秩序変数を与える波数 q を探索して励起子相 図を決定した。その結果、エネルギーバンドの重なりが僅かな半金属状態では先行研究と 同様に、励起子の重心運動量 q = 0 の Uniform 励起子状態が安定化し、価電子バンドの上 端に窪みが生じることが分かった。さらに加圧してバンドの重なりを大きくすると、q ≠ 0 の FFLO 励起子状態が実現し、左右非対称なバンド構造をとることを明らかにした。こ のとき、励起子秩序変数は非自明な位相 ϕ_q を伴う。また、自由エネルギーを詳細に解析 した結果、Uniform 励起子相とFFLO 励起子相の相境界では高温で2次相転移、低温で1 次相転移をする Uniform-FFLO-Uniform のリエントラント転移が確認され、圧力によっ ては比熱が通常のλ型とは左右逆向きのλ型転移をする特徴的な振る舞いも見られた。次 に、模型を2次元に拡張し、より現実的な模型における FFLO 励起子相の安定性につい て議論した。FFLO 励起子状態では励起子がフェルミ面のネスティングベクトルに由来す る有限の重心運動量を持つため、Ta2Ni 鎖の鎖間結合を考慮した2次元模型では半金属の FFLO 励起子相は抑制された。しかし、高圧下では1次元での議論が復活し、ネスティン グが良くなることから FFLO 励起子相が安定化することを示した。このとき、x 方向だけ でなく鎖間で励起子秩序変数の位相を反転させる y 方向への有限の重心運動量 $Q_y = \pi$ を 持つ FFLO 励起子状態が安定化する領域も確認された。獲得する重心運動量のタイプ別 に3種類のFFLO1-3相が発現するが、これらはフェルミ面の形状からも理解することが 可能であることを明らかにした。また、得られた励起子相図の各相におけるエネルギーバ

ンドを見ると、Uniform 励起子相から FFLO 励起子相への相転移は半導体-半金属転移で あると考えられる。圧力実験による相図 4.1 と、2 次元 3 鎖 Hubbard 模型に基づいて作成 した相図 2.10 を比較すると、図 4.1 の II 相は従来型の Uniform 励起子相、IV 相は FFLO 励起子相に対応する可能性がある。

3章では、2章で議論した単一の秩序波数を考慮する励起子のFF 状態に対し、複数の波数を重ね合わせることで実現する LO 状態について調べた。LO 状態を調べるための定式化においては、q = 0の秩序変数が有限になることで、実験により観測されている斜方晶から単斜晶への構造相転移に伴う一様な格子歪みと無矛盾に励起子秩序が実現することが分かる。定性的な安定性の比較を行うために、LO 型励起子状態が議論できる最小単位である $q = 0, \pm \pi$ を仮定し、平均場近似に基づいて自己無撞着方程式を数値計算により解いた。結果として、転移温度以下で各波数の秩序変数と電子格子相互作用により誘起される一様格子歪みが同時に有限値を取る LO 状態が実現することが分かった。さらに、Uniform励起子状態や単一の波数 $q = \pi$ で実現する FF 状態と比較したとき、自由エネルギーが小さくなることから、LO 状態がより安定した基底状態となることを明らかにした。

4章では、第一原理計算から最局在 Wannier 模型を構築し、構築模型に基づいて励起子 秩序を議論した。今回行った計算は、加圧下における電子状態と励起子秩序を調べること で、実験と比較するための物理量の変化を明らかにする足掛かりとなる。実験による半導 体的なエネルギーバンドを再現するために、半導体や半金属においてギャップの過小評価 問題を改善する際によく用いられる mBJ ポテンシャル法を採用して第一原理計算を行い、 *c*パラメータを調節することで目的のエネルギーバンドを得た。得られたバンド構造に基 づいて最局在 Wannier 模型を構築するために、選択が妥当と考えられる Ta の 5*d* 軌道、Ni の 3*d* 軌道、Se の 4*p* 軌道による 60 軌道 *d*-*d*-*p* 模型を構築した。クーロン相互作用を Ta5*d* 軌道と Ni3*d* 軌道間に取り入れて 2,3 章と同様に、*c*-*f* 混成項の平均場近似による励起子秩 序の実現可能性を調べた。ただし、ここでは計算コストの都合上 Uniform 励起子秩序の みを考慮している。構築模型の範囲では、単位胞内の Ta-Ni 間混成行列要素はゼロである ことを確認しており、励起子秩序により有限値を取るようになる。結果として、十分低温 では従来型の励起子絶縁体へと相転移し、エネルギーギャップが拡大することを明らかに した。

5.2 今後の課題

本研究で明らかにした、圧力下の半金属 Ta₂NiSe₅ における FFLO 励起子状態では、FF 状態の場合、空間反転対称性が自発的に破れてエネルギーバンドが左右非対称になる。こ の事実に起因して、例えば輸送現象などに異常が現れる可能性がある。元素置換や圧力印 加の実験に先駆けて、FF 状態が引き起こす物性の異常について理論的な提案をすること が急務である。一方、超伝導でよく知られているように、今回調べた3鎖 Hubbard 模型 に対する平均場近似の範囲では LO 状態が安定化しやすい傾向が確認できたが、LO 状態 が安定化する場合には空間反転対称性は破れず、この相においてどのような物理量が LO 型励起子秩序の特定に結び付くかは自明でない。すなわち、FF 型励起子相と LO 型励起 子相、いずれの相が実現するとしても、輸送現象を含む FFLO 励起子相の異常物性を解明 することは今後の課題と言える。また、FFLO 励起子状態は、FFLO 超伝導と類似の発現 機構を持つことから、不純物の影響を強く受けるものと考えられる。不純物効果によりど の程度 FFLO 励起子相が抑制されるかも次の議論の対象となる。また、第一原理計算に基 づいて構築した最局在 Wannier 模型から出発した励起子秩序の議論では、自己無撞着に 得られた多数の励起子秩序変数の解析、特に励起子秩序に重要な軌道を特定する必要があ る。さらに、構築模型における FFLO 励起子秩序の可能性についても議論し、そこでの熱 力学量や輸送係数、磁気・光学応答等の物理量の計算を行うことは、FFLO 励起子相を実 験的に観測するための指針提供の観点からも重要である。

付 録 A 非線形方程式の解法

非線形方程式の解を求める問題は様々な場面で現れる。非線形方程式は多くの場合解析 的に解くことが困難であり、計算機による数値計算に頼るのが一般的である。本研究にお いても、化学ポテンシャルと励起子秩序変数を求める際にこの問題が登場しており、そこ では Broyden 法と呼ばれる手法を用いて多変数の連立非線形方程式により記述される自己 無撞着方程式の解を求めた。計算に使用したプログラム中では数値計算パッケージのサブ ルーチンを実装しているが、そのアルゴリズムを理解することは有益であるため、付録と して準 Newton 法のひとつである Broyden 法について Newton 法から段階的に解説する。

A.1 Newton法

ここでは Newton 法を解説する。Newton 法は f(x) = 0を満たす、f(x)の根 x を求める問題に対して、数値計算により反復的に真の解を求めるもっとも有名な方法の一つである。大まかなフローとしては、まず適当な開始点 x_0 を決めて出発し、ある決められた更新式に従って変数を更新する。次に更新により得られた変数 x_1 が、与えられた方程式を満たすかを、予め設定した閾値 ε を用いて $|f(x_1)| < \varepsilon$ の範囲内に収束するかにより判定する。収束していない場合は、得られた x_1 を新たな初期値として再び変数を更新し判定するというプロセスを繰り返し、収束した時点で計算を終了する。このように、以下では更新を繰り返す上で変数に $x_0, x_1, \dots, x_{k-1}, x_k, x_{k+1}, \dots$ のように更新番号 k を付すことにする。

以下、変数の更新に必要な更新式を導く。まずは対象となる関数 f(x) を x = a を中心 に Taylor 展開し、2 次以上の項を無視する。

$$f(x) = \sum_{n=0}^{\infty} \frac{(x-a)^n}{n!} f^{(n)}(a)$$
(A.1)

$$= f(a) + (x - a) f'(a) + \frac{1}{2}(x - a)^2 f^{(2)}(a) + \cdots$$
 (A.2)

$$f(x) - f(a) \sim (x - a) f'(a)$$
 (A.3)

 x_k を「現在点」、 x_{k+1} を「次点」と呼ぶこととし、現在点と次点の間の関数と変数の差分 をそれぞれ $\Delta f, \Delta x$ として次のように定義する。

$$\Delta f(x_k) = f(x_{k+1}) - f(x_k) \tag{A.4}$$

$$\Delta x_k = x_{k+1} - x_k \tag{A.5}$$

$$x_{k+1} = x_k + \Delta x_k \tag{A.6}$$

式 (A.3) において $a = x_k, x = x_{k+1}$ とすると、

$$\Delta f\left(x_k\right) \sim \Delta x_k f'\left(x_k\right) \tag{A.7}$$

が成り立つ。これは現在点 x_k を中心に関数f(x)を線形近似し、傾き $f'(x_k)$ に Δx をかけて関数の変化量 Δf を評価することに等しい。ここで、選択する初期値 x_0 は十分真の解に近く、次点 x_{k+1} は真の解に等しいと仮定する。このとき、 $f(x_{k+1}) = 0$ となるため、式(A.7)より

$$\Delta x_k = \frac{1}{-f'\left(x_k\right)} f\left(x_k\right) \tag{A.8}$$

となる。後の議論のために、差分 Δx_k と現在点における関数値 $f(x_k)$ の間の係数 B_k を次のように定義すると、その逆数を用いて差分 Δx_k を表現できる。

$$B_k = f'\left(x_k\right) \tag{A.9}$$

$$\Delta x_k = -B_k^{-1} f\left(x_k\right) \tag{A.10}$$

差分が得られれば、式 (A.6) より次点 x_{k+1} 、すなわち 1 次の非線形方程式の解が得られることになる。ただし、式 (A.3) において関数を線形近似しているため、次点と真の解との間にはその分のずれが生じる。そこで、判定条件として閾値 ε を用意し、 $|f(x_{k+1})| < \varepsilon$ を満たさない場合は得られた次点を新たな現在点として採用し、繰り返し計算を行うことで、真の解への収束を試みる。このように、与えられた関数を線形近似し、導関数 f'(x)を直接使用する更新式に従って変数を更新することで、解の収束を試みる手法を Newton法と呼ぶ。

A.2 準 Newton 法

前節では、与えられた関数の導関数を直接計算して変数の更新を実行する Newton 法を 紹介した。しかし、非線形方程式の導関数が不明な場合には、この方法は使うことができ ない。そこで、微分を差分で近似することにより導関数を評価する方法が必要とされる。 差分への近似法は当然一意には決まらず、有力な手法はいくつか存在し、それらは Newton 法からの派生手法として準 Newton 法と呼ばれる。ここでは準 Newton 法の中から、1 次 元の非線形方程式に対する「Secant 法」と、多次元に拡張した「Broyden 法」を紹介する。

A.2.1 Secant 法

ここでは Secant 法について解説する。Secant 法は、数値的に 1 次元の非線形方程式の 解を求める簡単かつ強力な準 Newton 法の一種である。微分の差分近似について、現在点 x_k とは別に、前点 x_{k-1} を用意し、関数 f(x)の現在点における導関数 $f'(x_k)$ を以下の差 分に近似する。

$$f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
(A.11)

式 (A.11) により得られた導関数を Newton 法のアルゴリズムに乗せるのが Secant 法で ある。計算を始める際に初期パラメータ x_0 とは別に x_{-1} における情報が必須であるかの ように上述したが、 x_0 から微小量 δ だけずらした点 $x = x_0 - \delta$ を前点として代用すれば 初期パラメータのみで計算を開始することが可能である。すなわち開始点 x_0 における差 分近似は次のように書くことが出来る。

$$f'(x_0) = \frac{f(x_0) - f(x_0 - \delta)}{\delta}$$
(A.12)

前節で説明したように、差分 Δx_k と現在点における関数値 $f(x_k)$ の間の係数 B_k が変数更新の鍵となる。Secant 法では

$$B_0 = f'(x_0)$$
 (A.13)

$$=\frac{f(x_0) - f(x_0 - \delta)}{\delta} \tag{A.14}$$

という近似を採用する。 B_0 から逆数 B_0^{-1} を生成することで式 (A.10) より差分 Δx_0 が求ま るため、式 (A.6) の変数更新が可能となる。式 (A.7) と式 (A.11) は形が似ているが、式 (A.7) は関数の線形近似、式 (A.11) は微分の差分近似であることに注意する。簡単であるために 見落としそうになるが、この差分近似こそが Secant 法の肝であり、 $B_k \Delta x_{k-1} = \Delta f(x_{k-1})$ が Secant 法を準 Newton 法たらしめている。

A.2.2 Broyden法

ここでは Broyden 法について解説する。Broyden 法は Secant 法を素直に多次元へと拡張した手法ではあるものの、差分近似を司る係数 *B_k* をスカラーではなく行列として取り扱う必要があるため、更新式の導出がやや複雑化する。まずは、取り扱う多次元の連立非線形方程式の表式を示す。

$$\begin{cases} f_1(x_1, \cdots, x_N) = 0 \\ f_2(x_1, \cdots, x_N) = 0 \\ \vdots \\ f_N(x_1, \cdots, x_N) = 0 \end{cases}$$
(A.15)

N次元の連立方程式を仮定しており、問題となるのは関数 f_1, f_2, \cdots, f_N それぞれの根の求め方である。関数と変数に対しベクトル表現をとれば

$$\vec{f}\left(\vec{x}\right) = \vec{0} \tag{A.16}$$

と簡単に書くことができる。ただし、

$$\vec{f}(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \\ \vdots \\ f_N(\vec{x}) \end{pmatrix}, \vec{x} = (x_1, x_2, \cdots, x_N)$$
(A.17)

としている。

さて、多次元の Newton 法を出発点として考えるため、多次元の Taylor 展開からこれ までの流れを追う。

$$\vec{f}(x_1, \cdots, x_N) = \sum_{n_1, \cdots, n_N}^{\infty} \frac{(x_1 - a_1)^{n_1} \cdots (x_N - a_N)^{n_N}}{n_1! \cdots n_N!} \frac{\partial^{n_1 + \cdots + n_N}}{\partial x_1^{n_1} \cdots \partial x_N^{n_N}} \vec{f}(a_1, \cdots, a_N)$$
(A.18)

$$\vec{f}(x_1,\cdots,x_N) - \vec{f}(a_1,\cdots,a_N) \sim \sum_{i=1}^N \frac{\partial \vec{f}(a_1,\cdots,a_N)}{\partial x_i} (x_i - a_i)$$
(A.19)

1次元の議論と同様、現在点は \vec{x}_k 、次点は \vec{x}_{k+1} のように更新番号kを付けて表現し、現 在点と次点との間における関数と変数の差分 $\Delta \vec{f}$, $\Delta \vec{x}$ を次のように定義する。

$$\Delta \vec{f}(\vec{x}_k) = \vec{f}\left(\vec{x}_{k+1}\right) - \vec{f}(\vec{x}_k) \tag{A.20}$$

$$\Delta \vec{x}_k = \vec{x}_{k+1} - \vec{x}_k \tag{A.21}$$

なお、多変数関数の議論において、ベクトルや行列に対しては関数や変数の右下に、スカ ラーに対しては右上に括弧書きで更新番号を付すことにする。

$$\vec{f}_{k} = \vec{f}(\vec{x}_{k}) = \begin{pmatrix} f_{1}^{(k)}(\vec{x}_{k}) \\ f_{2}^{(k)}(\vec{x}_{k}) \\ \vdots \\ f_{N}^{(k)}(\vec{x}_{k}) \end{pmatrix}, \vec{x}_{k} = \begin{pmatrix} x_{1}^{(k)}, x_{2}^{(k)}, \cdots, x_{N}^{(k)} \end{pmatrix}$$
(A.22)

式 (A.19) において $a_i = x_i^{(k)}, x_i = x_i^{(k+1)}$ とすると、

$$\vec{f}\left(x_{1}^{(k+1)},\cdots,x_{N}^{(k+1)}\right) - \vec{f}\left(x_{1}^{(k)},\cdots,x_{N}^{(k)}\right) \sim \sum_{i=1}^{N} \frac{\partial \vec{f}\left(x_{1}^{(k)},\cdots,x_{N}^{(k)}\right)}{\partial x_{i}} \left(x_{i}^{(k+1)} - x_{i}^{(k)}\right)$$
(A.23)

$$\Delta \vec{f}_k \left(\vec{x}_k \right) \sim \frac{\partial \vec{f}_k}{\partial x_1} \Delta x_1^{(k)} + \dots + \frac{\partial \vec{f}_k}{\partial x_N} \Delta x_N^{(k)} \tag{A.24}$$

が成り立つ。前節と同様に初期値が十分真の解に近く、次点が真の解に等しいと仮定した とき、

$$-\vec{f}_k = \frac{\partial \vec{f}_k}{\partial x_1} \Delta x_1^{(k)} + \dots + \frac{\partial \vec{f}_k}{\partial x_N} \Delta x_N^{(k)}$$
(A.25)

となり、行列表示にすると係数行列としてヤコビアンが登場する。

$$\begin{pmatrix} f_1^{(k)} \\ f_2^{(k)} \\ \vdots \\ f_N^{(k)} \end{pmatrix} = - \begin{pmatrix} \frac{\partial f_1^{(k)}}{\partial x_1} & \cdots & \frac{\partial f_1^{(k)}}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N^{(k)}}{\partial x_1} & \cdots & \frac{\partial f_N^{(k)}}{\partial x_N} \end{pmatrix} \begin{pmatrix} \Delta x_1^{(k)} \\ \Delta x_2^{(k)} \\ \vdots \\ \Delta x_N^{(k)} \end{pmatrix}$$
(A.26)

以下、スカラーと区別するため行列はハットを付けて表現する。

$$\hat{B}_{k} = \begin{pmatrix} \frac{\partial f_{1}^{(k)}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}^{(k)}}{\partial x_{N}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{N}^{(k)}}{\partial x_{1}} & \cdots & \frac{\partial f_{N}^{(k)}}{\partial x_{N}} \end{pmatrix}$$
(A.27)

$$\vec{f}_k = -\hat{B}_k \Delta \vec{x}_k \tag{A.28}$$

$$\Delta \vec{x}_k = -\hat{B}_k^{-1} \vec{f}_k \tag{A.29}$$

Secant 法に倣い $\hat{B}_k \Delta \vec{x}_{k-1} = \Delta \vec{f}_{k-1}$ として差分近似する。

$$\hat{B}_k \Delta \vec{x}_{k-1} = \Delta \vec{f}_{k-1} \tag{A.30}$$

$$\hat{D}_k \Delta \vec{x}_k \Delta \vec{f}_k \tag{A.31}$$

$$\vec{B}_{k+1}\Delta \vec{x}_k = \Delta f_k \tag{A.31}$$

$$\left(\hat{B}_{k+1} - \hat{B}_k\right)\Delta\vec{x}_k = \Delta\vec{f}_k - \hat{B}_k\Delta\vec{x}_k \tag{A.32}$$

$$\left(\hat{B}_{k+1} - \hat{B}_k\right)\Delta\vec{x}_k = \frac{\Delta\vec{f}_k - \hat{B}_k\Delta\vec{x}_k}{\Delta\vec{x}_k^T\Delta\vec{x}_k}\Delta\vec{x}_k^T\Delta\vec{x}_k \tag{A.33}$$

$$\hat{B}_{k+1} = \hat{B}_k + \frac{\Delta \vec{f}_k - \hat{B}_k \Delta \vec{x}_k}{\Delta \vec{x}_k^T \Delta \vec{x}_k} \Delta \vec{x}_k^T$$
(A.34)

このように、次点におけるヤコビアンの近似量 B_{k+1} の導出に成功したが、このままでは 求めるべき逆行列 \hat{B}_{k+1}^{-1} を自明に得ることは出来ない。そこで、Sherman-Morrison の公 式を参照する。

$$\left(\hat{A} + \hat{B}\hat{D}\hat{C}\right)^{-1} = \hat{A}^{-1} - \hat{A}^{-1}\hat{B}\left(\hat{D}^{-1} + \hat{C}\hat{A}^{-1}\hat{B}\right)^{-1}\hat{C}\hat{A}^{-1}$$
(A.35)

この公式において $\hat{A} \in N$ 行 N 列の行列、 $\hat{B} \in N$ 次元の縦ベクトル \vec{u} 、 $\hat{C} \in N$ 次元の横 ベクトル \vec{v}^T 、 $\hat{D} \in N$ 行 N 列の単位行列 \hat{I} としたとき

$$\left(\hat{A} + \vec{u}\vec{v}^{T}\right)^{-1} = \hat{A}^{-1} - \hat{A}^{-1}\vec{u}\left(\hat{I} + \vec{v}^{T}\hat{A}^{-1}\vec{u}\right)^{-1}\vec{v}^{T}\hat{A}^{-1}$$
(A.36)

が成り立つ。ここで、左辺の括弧内の行列を \hat{B} と定義すれば \hat{B} の逆行列 \hat{B}^{-1} について次の一般表式が得られる。

$$\hat{B} = \hat{A} + \vec{u}\vec{v}^T \tag{A.37}$$

$$\hat{B}^{-1} = \hat{A}^{-1} - \frac{1}{1 + \vec{v}^T \hat{A}^{-1} \vec{u}} \left(\hat{A}^{-1} \vec{u} \right) \left(\vec{v}^T \hat{A}^{-1} \right)$$
(A.38)

行列 \hat{B}_{k+1} の逆行列 \hat{B}_{k+1}^{-1} を求めるため、上述の一般論に対して

$$\hat{B} = \hat{B}_{k+1} \tag{A.39}$$

$$\hat{A} = \hat{B}_k \tag{A.40}$$

$$\vec{u} = \frac{\Delta \vec{f}_k - \hat{B}_k \Delta \vec{x}_k}{\Delta \vec{x}_k^T \Delta \vec{x}_k} \tag{A.41}$$

$$\vec{v} = \Delta \vec{x}_k \tag{A.42}$$

を代入する。

$$\hat{B}_{k+1}^{-1} = \hat{B}_{k}^{-1} - \frac{1}{1 + \Delta \vec{x}_{k}^{T} \hat{B}_{k}^{-1} \frac{\Delta \vec{f}_{k} - \hat{B}_{k} \Delta \vec{x}_{k}}{\Delta \vec{x}_{k}^{T} \Delta \vec{x}_{k}}} \left(\hat{B}_{k}^{-1} \frac{\Delta \vec{f}_{k} - \hat{B}_{k} \Delta \vec{x}_{k}}{\Delta \vec{x}_{k}^{T} \Delta \vec{x}_{k}} \right) \left(\Delta \vec{x}_{k}^{T} \hat{B}_{k}^{-1} \right) \quad (A.43)$$

$$=\hat{B}_{k}^{-1} - \frac{\hat{B}_{k}^{-1}\Delta f_{k} - \Delta \vec{x}_{k}}{\Delta \vec{x}_{k}^{T}\Delta \vec{x}_{k} + \Delta \vec{x}_{k}^{T}\hat{B}_{k}^{-1}\left(\Delta \vec{f}_{k} - \hat{B}_{k}\Delta \vec{x}_{k}\right)}\Delta \vec{x}_{k}^{T}\hat{B}_{k}^{-1}$$
(A.44)

$$=\hat{B}_{k}^{-1} - \frac{\hat{B}_{k}^{-1}\Delta\vec{f}_{k} - \Delta\vec{x}_{k}}{\Delta\vec{x}_{k}^{T}\Delta\vec{x}_{k} + \left(\Delta\vec{x}_{k}^{T}\hat{B}_{k}^{-1}\Delta\vec{f}_{k} - \Delta\vec{x}_{k}^{T}\hat{B}_{k}^{-1}\hat{B}_{k}\Delta\vec{x}_{k}\right)}\Delta\vec{x}_{k}^{T}\hat{B}_{k}^{-1} \qquad (A.45)$$

$$\therefore \hat{B}_{k+1}^{-1} = \hat{B}_k^{-1} + \frac{\Delta \vec{x}_k - \hat{B}_k^{-1} \Delta \vec{f}_k}{\Delta \vec{x}_k^T \hat{B}_k^{-1} \Delta \vec{f}_k} \Delta \vec{x}_k^T \hat{B}_k^{-1}$$
(A.46)

以上より、逆行列 \hat{B}_{k+1}^{-1} の更新式が現在点の情報のみから導出された。ここで導かれた 更新式に従って変数の更新を繰り返し、真の解への収束を反復的に試みる方法は Broyden 法と呼ばれる。図 A.1 に Broyden 法のフローチャートを載せる。非線形連立方程式は一般 に多くの解を持つため、得られた解がターゲットとなる解であるかの検討が常に必要とな ることに注意する。また、初期値が収束の良し悪しに大きく影響することから、既に得ら れている解を現在点として採用し、次点の探索を開始することで効率良く解が求まる傾向 がある。

図 A.1. Broyden 法における変数更新のフローチャート

謝辞

本研究を遂行するにあたり、多くの方のご教示、ご支援を賜りましたので、ここに感謝 を申し上げます。

指導教員である大野義章教授には、博士前後期課程にわたる5年間、大学院での研究を ご指導いただきました。取り組むべき課題に対し、常に熱心かつ親身に寄り添っていただ いたことで大変励みになりました。また、先生との議論にはいつも研究の意義や面白さに ついての話題が多く含まれ、研究を進める上で大きなモチベーションになりました。心よ り感謝申し上げます。

新潟大学物性理論研究室の吉森明教授、奥西巧一准教授、大阪大学へ転出された金鋼准 教授、京都大学へ転出された柳瀬陽一准教授には物性理論コロキウムや修士論文発表会等 の研究発表の場において、的確で有益なコメント・ご質問をいただきました。先生方には 研究室で普段から気さくに接していただき、分野が異なる研究がいつも身近にあったこと は新たな知見を得ることに繋がりました。

他研究室から学位論文の審査委員を務めていただいた摂待力男教授、瀧本哲也教授には 本研究に関する様々なご指摘をいただき、大変参考になりました。また、千葉大学の太田 幸則教授には物理学会やコロキウム等で議論をしていただきお世話になりました。

共同研究者である東京理科大学の山田武見助教には、新潟大学在籍時より格別のご指導 を賜りました。山田様のご指導がなければ本研究の遂行はありえませんでした。研究への 真摯な取り組み方や、後進に対する面倒見の良さは今後お手本にさせていただきたいと思 います。

新潟大学物性理論研究室の先輩、同期、後輩の皆様には研究に関することはもちろん、 研究室生活全般にわたり大変お世話になりました。大学院生活が楽しく、充実したものと なったのは皆様に支えられながら過ごすことができたからです。

最後に、私を見守ってくれた家族に感謝し、謝辞とさせていただきます。

参考文献

- [1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
- [2] N. F. Mott, Philos. Mag. 6, 287 (1961).
- [3] A. N. Kozlov and L. A. Maksimov, Sov. Phys. JETP 21, 790 (1965).
- [4] R. Knox, Solid State Phys. (Academic, New York) 5, 100 (1963).
- [5] L. V. Keldysh and Y. V. Kopeav, Sov. Phys. Solid state 6, 2219 (1965).
- [6] J. D. Cloizeaux, J. Phys. Chem. Solids 26, 259 (1965).
- [7] J. E. Cloizeaux, J. Phys. Chem. Solids 26, 259 (1965).
- [8] W. Kohn, Phys. Rev. Lett. **19**, 439 (1967).
- [9] D. Jérome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462 (1967).
- [10] J. Zittartz, Phys. Rev. 162, 752 (1967).
- [11] J. Zittartz, Phys. Rev. 164, 575 (1967).
- [12] J. Zittartz, Phys. Rev. 165, 605 (1968).
- [13] J. Zittartz, Phys. Rev. **165**, 612 (1968).
- [14] E. W. Fenton, Phys. Rev. **170**, 816 (1968).
- [15] B. I. Halperin and T. M. Rice, Rev. Mod. Phys. 40, 755 (1968).
- [16] H. Ebisawa and H. Fukuyama, Prog. Theor. Phys. 42, 512 (1969).
- [17] H. Fukuyama and T. Nagai, J. Phys. Soc. Jpn. 31, 812 (1971).
- [18] M. T. Béal-Monod, K. Maki, and H. Fukuyama, J. Low Temp. Phys. 9, 73 (1972).
- [19] F. X. Bronold and H. Fehske, Phys. Rev. B 74, 165107 (2006).
- [20] K. Seki, R. Eder, and Y. Ohta, Phys. Rev. B Condens. Matter Mater. Phys. 84, 245106 (2011).
- [21] H. Matsuura and M. Ogata, J. Phys. Soc. Jpn. 85, 093701 (2016).

- [22] K. Hamada, T. Kaneko, S. Miyakoshi, and Y. Ohta, J. Phys. Soc. Japan 86, 1 (2017).
- [23] H. Cercellier, C. Monney, F. Clerc, C. Battaglia, L. Despont, M. Garnier, H. Beck, and P. Aebi, Phys. Rev. Lett. 99, 146403 (2007).
- [24] J. Neuenschwander and P. Wachter, Phys. Rev. B 41, 12693 (1990).
- [25] P. Wachter, B. Bucher, and J. Malar, Phys. Rev. B 69, 094502 (2004).
- [26] T. Mizuno, T. Iizuka, S. I. Kimura, K. Matsubayashi, K. Imura, H. S. Suzuki, and N. K. Sato, J. Phys. Soc. Jpn. 77, 113704 (2008).
- [27] T. Mizokawa, K. Takubo, T. Sudayama, Y. Wakisaka, N. Takubo, K. Miyano, N. Matsumoto, S. Nagata, T. Katayama, M. Nohara, H. Takagi, M. Ikeda, N. Kojima, M. Arita, H. Namatame, and M. Taniguchi, J. Supercond. Nov. Magn. 22, 67 (2009).
- [28] J. Kunes, J. Phys.Condens. Matter 27, 333201 (2015).
- [29] T. Kaneko, Theoretical Study of Excitonic Phases in Strongly Correlated Electron Systems, PhD thesis, 2016.
- [30] 太田幸則, 金子竜也, 杉本高大, 固体物理 52, 613 (2017).
- [31] S. A. Sunshine and J. A. Ibers, Inorga. Chem. 24, 3611 (1985).
- [32] Y. Wakisaka, T. Sudayama, K. Takubo, T. Mizokawa, M. Arita, H. Namatame, M. Taniguchi, N. Katayama, M. Nohara, and H. Takagi, Phys. Rev. Lett. 103, 026402 (2009).
- [33] Y. Wakisaka, T. Sudayama, K. Takubo, T. Mizokawa, N. L. Saini, M. Arita, H. Namatame, M. Taniguchi, N. Katayama, M. Nohara, and H. Takagi, J. Supercond. Nov. Magn. 25, 1231 (2012).
- [34] F. J. Di Salvo, C. H. Chen, R. M. Fleming, J. V. Waszczak, R. G. Dunn, S. A. Sunshine, and J. A. Ibers, J. Less-Common Met. 116, 51 (1986).
- [35] Y. F. Lu, H. Kono, T. I. Larkin, A. W. Rost, T. Takayama, A. V. Boris, B. Keimer, and H. Takagi, Nat. Commun. 8, 14408 (2017).
- [36] T. I. Larkin, A. N. Yaresko, D. Pröpper, K. A. Kikoin, Y. F. Lu, T. Takayama, Y. L. Mathis, A. W. Rost, H. Takagi, B. Keimer, and A. V. Boris, Phys. Rev. B 95, 195144 (2017).
- [37] K. Matsubayashi, private communication (2015).
- [38] T. Yamada, K. Domon, and Y. Ono, J. Phys. Soc. Jpn., 064701 (2019).

- [39] T. Kaneko, T. Toriyama, T. Konishi, and Y. Ohta, Phys. Rev. B 87, 035121 (2013).
- [40] K. Sugimoto, T. Kaneko, and Y. Ohta, Phys. Rev. B **93**, 041105 (2016).
- [41] K. Seki, Y. Wakisaka, T. Kaneko, T. Toriyama, T. Konishi, T. Sudayama, N. L. Saini, M. Arita, H. Namatame, M. Taniguchi, N. Katayama, M. Nohara, H. Takagi, T. Mizokawa, and Y. Ohta, Phys. Rev. B 90, 155116 (2014).
- [42] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
- [43] A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).
- [44] P. Pieri, D. Neilson, and G. C. Strinati, Phys. Rev. B 75, 113301 (2007).
- [45] K. Yamashita, K. Asano, and T. Ohashi, J. Phys. Soc. Jpn. 79, 033001 (2009).
- [46] J.-X. Zhu and A. R. Bishop, Phys. Rev. B 81, 115329 (2010).
- [47] M. M. Parish, F. M. Marchetti, and P. B. Littlewood, (2011).
- [48] T. Yamada, K. Domon, and Y. Ōno, J. Phys. Soc. Jpn. 85, 053703 (2016).
- [49] K. Domon, T. Yamada, and Y. Ono, J. Phys. Soc. Jpn. 85, 065005 (2016).
- [50] K. Sugimoto and Y. Ohta, Phys. Rev. B 94, 085111 (2016).
- [51] A. Nakano, K. Sugawara, S. Tamura, N. Katayama, K. Matsubayashi, T. Okada, Y. Uwatoko, K. Munakata, A. Nakao, H. Sagayama, R. Kumai, K. Sugimoto, N. Maejima, A. Machida, T. Watanuki, and H. Sawa, IUCrJ 5 (2018).
- [52] K. Matsubayashi, et al., Submitted (2018).
- [53] F. Tran and P. Blaha, Phys. Rev. Lett. **102**, 226401 (2009).
- [54] K. Sugimoto, S. Nishimoto, T. Kaneko, and Y. Ohta, Phys. Rev. Lett. 120, 247602 (2018).