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ABSTRACT

Inthe present study, we explore suitable spatio-temporal filters for inverse estimation of

an equivalent dipole-layer distribution from the scalp EEG for imaging of brain electric
sources. We propose a time-varying parametric projection filter (tPPF) for the
spatio-temporal EEG analysis. The performance of this tPPF algorithm was evaluated
by computer simulation studies. An inhomogeneous three-concentric-spheres model was
used in the present simulation study to represent the head volume conductor. An
equivalent dipole layer was used to represent equivalently brain electric sources and
estimated from the scalp potentials. The tPPF filter was tested to remove time-varying
noise such as instantaneous artifacts caused by eyes-blink. The present simulation
results indicate that the proposed time-variant tPPF method provides enhanced
performance in rejecting time-varying noise, as compared with the time-invariant

parametric projection filter.
INDEX TERMS

High-resolution EEG, Inverse problem, Spatio-temporal inverse filter, Equivalent dipole

sources, Parametric projection filter, Eyes blink artifact elimination



I. INTRODUCTION

Brain electrical activity is spatially distributed in three dimensions of the brain and
evolves in time. It is of importance to obtain spatio-temporal information regarding .
brain electrical activity from noninvasive electromagnetic measurements. Because of
inherit high temporal resolution of electroencephalogram (EEG) measurements, high
resolution EEG imaging, which aims at improving the spatial resolution of the EEG
modalities, has received considerable attention in the past decades. Such EEG imaging
modalities would facilitate noninvasive localization of foci of epileptic discharges in the
brain, and the characterization of rapidly changing patterns of brain activation.

A number of efforts have been made to achieve high resolution EEG imaging.
Among them of interest is the spatial enhancement approach, which attempts to
deconvolve the low-pass spatial filtering effect of volume conduction of the head
[11-22]. Corticél dipole layer imaging technique (CDIT), which attempts to estimate
the cortical dipole distribution from the scalp potentials, is oné of the spatial
enhancement techniqueé. In this approach, an equivalent dipole source layer is used to
model brain electrical activity and has been shown to provide enhanced performance in
imaging brain electrical sources as compared with the smeared scalp EEG [4], [19],
[22]. . .

It is important to infer the origins from the scalp-recorded EEG, and to image the
sources that‘ generate the observed EEG on the scalp. Such a problem is usually called
~ the inverse problem. The in’verse‘ problem of EEG is ill-posed and in general a
regu]arizaﬁon procedure is needed in order to obtain stable inverse solutions. Many
regularization strategies, such as the generalized inverse with truncated singular value

decomposition (TSVD), constrained least square method, and Tikhonov regularization
method, have been proposed for solving the ill-conditioned inverse problem. Additive
noise such as the uniform Gaussian white noise (GWN) is usually used to evaluate the
performance of the inverse solutions using the above regularization procedures. On the
other hand, the noise existing in scalp EEG measurements maybe non-uniformly
distributed because of the variation in the electrode impedance and experimental
‘ environment. Several methods have been developed to handle the non-uniform noise. A

multiple signal classification (MUSIC) algorithm [23] that incorporates a coVarianqe



matrix of background activity has been proposed for the MEG inverse pi'oblem [24].
Moreover, the linearly constrained minimum variance filter uses the noise covariance
. for dipole localization [25]. We have previously developed the parametric projection
filter (PPF) based cortical dipole layer imaging technique, which allows estimating
cortical dipole layer inverse solutions in the presence of noise covariance [19]. Our
previous results indicate that the results of the PPF provide better approximation to the
original dipole layer distribution than that of traditional inverse techniques in the case of
low correlation between signal and noise distributions. | |

In the present study, we have expanded the PPF inverse spatial filter to the
time-varying'ﬁlter in order to handle the spatio-temporally varying nature of brain
electrical activity. Concretely, the noise covariance and the regularization parameter of
the PPF are supposed to be time-variant because the signal and noise are time-variant in
EEG measurements. In the proposed approach, the information on the noise structure, as
defined by the covariance matrix, is estimated from the spatial information of noise
ensemble. We have applied this approach to pérform the inverse regularization in
equivalent dipole layer source imaging, and tested the proposed method in effectively
rejecting time-variant artifact such as eyes.blink artifact under the background noise.
The proposed method will be applicable to non-averaged single trial data. After
eliminating the time-variant noise, the data can also be averaged in order to suppress the
background noise for analyzing the spatiotemporal behavior of brain electrical activity.
The performance of the proposed time-variant PPF (tPPF) has been evaluated by

computer simulations, as compared with time-invariant PPF. 5



II. METHODS

A. Spatio-temporal Dipole Layer Source Imaging

The observation system of brain electrical activity on the scalp shall be defined by

the following equation: | '

gk=Aﬁc+_nk(k=l,.l..,K) : ¢))
where f; is the vector of the equivalent source distribution of a dipole layer (DL), n is
the vector of the additive noise and g; is the vector of scalp-recorded potentials.
Subscript £ indicates the time instanf. A denotes the transfer matrix from the equivalent
source to the scalp potentials. In the present approach, f; is the strength of the DL. In (1),
we suppose that the signal f; and noise #; are time-variant while the transfer matrix 4 is
time-invariant. | 4

It is important to infer the origins from the scalp-recorded EEG, and to image the
sources that generate the observed EEG on the scalp. The inverse process shall be ,
defined by .
for=Bigr o @
where By is the spatio-temporal restoration filter and fy; is the estimated source
distribution of the DL. As the number of measurement electrodes is alweiys smaller than
the dimension of the unknown vector f, this problem is an underdetermined inverse
problem. If the statistical information of the noise or signal are known or are estimated
in accuracy, the restorative ability of the restoration filter By should be improved by
using not only the transfer function 4 but also the signal and noise information.
Therefore, the restoration filter By should be time variant system despite of the time
invariant transfer function 4 because the signal f; and noise 7 are time variant in (2).
The details Qf the restoration filter By are described in Section II. B.

In the present simulation study, the head volume conductor is approximated by the
inhomogeneous three-concentric-spheres model [26]. This head model takes the
variation in conductivity of different tissues, such as the scalp, the skull and the brain,
into consideration. An equivalent DL is assumed within the brain sphere being
concentric to the cortical surface. Radial current dipoles are uniforinly distributed over

the spherical DL to simulate brain electrical sources accounting for the scalp potentials.



By using the DL distribution,' the electrical sou’rce‘s inside of the DL sphere are
equivalently represented by the DL surrounding the sources, regardless of fhe number or
_ the direction of the dipole sources [22]. That is, the DL model used in the present study
is an equivalent source model, which shall acéount for arbitrary source configurations
within the DL [22]. The transfer function from the DL to the scalp potentials is obtained
by considering the geometry of the model and physical relationship between the
quantities involved. The strength of the DL is estimated from the noise-contaminated

scalp potentials.
B. Time-Varying Parametric Projection Filter

The general inverse, which is also called the Moore-Penrose pseudoinverse, denofed
by A", minimizes the norm of the restored DL distribution fo;; under the constraint g = 4
Jox in the absence of noise. In practice, singular value decomposition (SVD) can be used
to calculate 4" [27], [28]. In the presence of noise, the truncated SVD and various
regularization techniques have been implemented in order to reduce the effect of noise
[29]. |

When the statistical information of signal and noise are presented, the Wiener filter
can be applied to the inverse problem [30], [4], [8]. Suppose R, and O the signal and
the noise covariance, which can be derived from the expectation over the signal {f} and
noise {n} ensemble, E[f/] and Eln n'], respectively. f'and n" are the transpose of f'and
vn,, respectively. The parametric Wiener filter (PWF) is derived by

Bi=Red" (AReA"+ 000" 3)

with 7 a small positive number known as the regularization parameter, and 4" is the
transpose matrix of 4. i Ry = Ok = I (the identity matrix), then equation (3) is reduced
to the zero-order Tikhonov regularization method [31]. The PWF has been applied to
brain source imaging [4], [8]. However, it is difficult to obtain the signal covariance, Ry.
Moreover, even if the signal covariance is obtained, the filter may not provide
satisfactory performance for non-periodic abnormal signals, which is obviously
different from the expectation of signals.

To overcome this problem, the PPF has been introduced to solve the inverse



problem [32]. The PPF is derived by [32], [19]

Bi=A" (44" + n O™ @
The PPF considers just the covariance matrix of the noise distribution, Oy, that is, R, =I
in (3). The PPF, using the free parameter, can improve the restorative ability from the
projection filter, which provides the orthogonal projection of the original signal onto the
range of the restoration filter that minimizes the expectation over the noise component
in the restored signal. The scalar parameter y; > 0 in (4) controls the mutual weights of
two error terms. The determination of the value of paiameter Y« is left to the subjective
judgment of the user. We have applied the time-invariant version of the PPF, which is
described by omitting the time & in (4), to the cortical dipole layer source imaging [19].
The time-variant PPF (tPPF) can also be applied to the spatio-temporal inverse problem
described by (2). The optimum choice for y; and QO are described in II. C and II. D,

respectively.
C. Estimation of Regularization Parameter

The tPPF has a free parameter that determines the restorative ability. The optimuﬁl
parameter of the tPPF for Athe best approximation should be determined by minimizing
the relative error (RE) between the actual DL distribution and the estimated DL
~ distribution as

- RE: =/ forell /1l e l | )
in every time instance, k. Unfortunately, the original DL distribution, f;, could not be
obtained under practical conditions. If a signal covariénce R can be estimated, we can
use the parametric Wiener filter in (3). When minimizing E, || fi — fo I, the
regularization parameter y in (3) must be 1. We consider the restoration filter in the
absence of any signal information. In that case, we have to estimate the value of the
regularizaﬁon parameter in order to control the signal and noise amplitudes. We have
developed a new criteribn for detefmining the optimum parameter without knowing the
originaI DL distribution. One possibility is to use the following cost functionﬁ

J (W) = En || fo—BeCAfuc+ m) IP
=|| for — Bedfo | + tr(BeQBi) + 2 (for — BeAfon Bagi—Bifor) (6)



where fyris the restored DL distribution using an initial value for y, which should be
relatively large to reduce the effect of additive noise on the coefficients. Concretely, ¥
. can be selected when the second term in (6), which represents the amplitude of noise in
the restored plane, is sufficiently small. Equation (6) is approximate to the squared error
between f; and fi in taking an expectation of noise without knowing the original DL
distribution f;. The first term and the second tehn correspond to the squared restorative
error and squared restored noise, respectively. And the third term corresponds to the
inner product between the restorative error and the restored noise. In the previous
parameter determination pfocedure developed in [19], the third term in (6) was
néglected. In the present study, this term was kept in (6), aﬁd it will slightly improve the
inverse results because the correlation between signal and noise is negligible.
Furthermore, the following procedure provides the optimum approximation of
parameter y%: (i) Compute the restored DL distribution Jor using an initial value of ¥, (ii)
Calculate the evaluation function J(3), (iii) Obtain new optimum parameter 7y that

minimizes J(%), (iv) Repeat (1)—(iii) replacing y with the nequk until |7 — 74l /|l '77;|| <
e where e is the condition of convergence, which guarantees that, at the least, the order
of inagnitude of the squared error between f; and fi; should be correct. The present
“computer simulation indicates that this procedure also provides the unique solution of %
despite of varying the initial value. This method is applicable not only for the tPPF but
also for other parametric inverse techniques such as the TSVD, the Tikhonov

regﬁlarization, the constrained least-square method, and the PWF [32].
D. Estimation of Noise Covariance

If there is no spontaneous artifact in the series of EEG measurements, the noise
covariance QO should be constant and it may be estimated from data that is known to be
source free, such as pre-stimulus data in evoked potentials in a clinical situation [24],
[25]. If there are some artifacts, Oy should be adaptive to the spatial distribution of the
artifacts in order to suppress them. In the present study, two types of noise covariance
are applied to the {PPF. One is the noise covariance for background noise, denoted by

QOp. Time invariant background noise covariance (J, might be estimated from the pre



stimulus evoked potentials that do not include signals. And the other is the noise
covariance for instantaneous artifact such as eyes blink, denoted by Q,. The eyes blink
covariance Q, is substituted by the voluntary wink data. The eyes blink artifacts may be
eliminated by using two types of noise covariance in the tPPF ac.cording to the signal
conditions with or without artifacts.

In order to apply the noise covariance to the tPPF, the time intervals of the eyes
blink should be estimated. The template of potential distribution in the case of eyes
blink is measured by voluntary wink data in advance. And the correlation coefficients o
(k=1, ..., K)between each scalp potential distribution and the eyes blink template are
calculated in every time course. Thé time-interval of eyes blink is estimated by the
correlation coefficient that is larger than the threshold that is settled by experience.
Finally, the noise covariance of the tPPF is determined by the following equation:

(0, p, <threshold
QO =

B 7
0, p, >threshold @

E. Simulation Protocol

; In the present simulation, two or four dipole sources were used to represent
multiple localized brain electrical sources. The dipoles were oriented radially or
tangentially to the sphere with varying strengths. The strength of each dipole is changed
from -1 to 1 with sinusoid in time. In the case of two dipole sources, the frequencies of
fluctuation in the dipole moments were set to 10 Hz and 30 Hz that assuming EEG
alpha and gamma activities, respectively. In the case of four dipole sources, the
frequencies of them were set to 10 Hz, 20 Hz,v30 Hz, and 40 Hz.

In the present study, the source-conductor model [11], [13], [16] as shown in
Fig. 1, was used. In this model, the radii of the brain, 7y, the skull, r», and the scalp, R,
spheres were taken as 0.87, 0.92, and 1.0, respectively [26], [11]. Thé normalized
conductivity of the scalp and the bréin was taken as op = 1.0, and that of the skull as o=
0.0125. The potentials on the scalp surface, generated by current dipoles inside the brain,
can be calculated by solving the forward problem from the dipole source to the

scalp-surface potential [33]. The strength of the DL can be calculated by solving the



forward problem from the assumed dipole source to the equivalent DL strength [22].
Two kinds of additive noise were considered. One is the time invariant noise
. such as a background noise that stochastic characteristics do not change in time. The
time invariant background noise is expressed by Gaussian white noise (GWN). The
noise level defined as the ratio between the norm of noise and the averaged norm of the
simulated scalp potential over time was set to 0.1. The other is the time variant noise
such as eyes blink artifacts. The movements of eyeballs genérate electrical artifacts
because the cornea sides of each eyeball are positively electrical-charged against the
retina sides. The eyes blink artifacts appear as spike-like shape at upper parts of the eyes
with the time duration of about 0.3 s. Since the amplitude of the eyes blink artifacts is af
the order of 100 pV that is much greater than ordinary scalp potentials, the scalp
measured potentials are degraded by the eyes blink artifacts. The simulated artifact is
represented in space and time domain as Figs. 2 (a) and (b), respectively. The amplitude
of the artifact was set to two times of the maximuin of the scalp potentials. The duration
of the artifact was set to 0.3 s. Figure 2(c) shows the time series of correlation
coefficients between a template éYes blink artifact distribution and scalp potential
distributions. The template artifact was obtéined with a simulated wink data, which has
" the same distribution as that of the eye blink artifact and was distorted with the GWN
generated with a different seed in advance. As shown in Fig. 2(c), the correlation

coefficient is high while the eyes blink occurred.

10



lll. RESULTS

A DL with 1280 radial dipoles at a radius of 0.8 was used, according to the
previous simulation results [11]. The scalp potential distribution was observed from 128 -
positions over the upper hemisphere scalp. The GWN with the noise level of 0.1 was
added to the scalp potentials to simulate noise-contaminated scalp EEG measurements.
Sampling rate was set to 100 Hz. The estimated results of our simulation were evaluated
- with the RE between the actual and estimated DL distribution in addition to visual

description of the DL distributions since the DL distribution presents not only the
information on the locations of the dipole sources but also on the directions of them. -
First of all, the time-invariant PPF, with the constant noise covariance Qx = Qs
and the constant regularization parameter y = ., was applied to estimate DL
distributions f¢ (k= 1, ... , K). Op was estimated from the background activity and it was
set to the same in every time instant. y,,. was calculated by minimizing ‘;he average of
RE over time. Figure 3(a) shows the simulated eyes blink artifact over the scalp and Fig.
3(b) shows the RE between the actual and estimated DL distribution in time sequence in
the case of two radial dipole sources at the eccentricity of 0.6. Beéause the
generaliZation parameter . of inverse ﬁlteﬁng was fixed, the RE was large over the
entire time period. In addition, the RE during the blinking exefcise ‘became extremely
large because the noise covariance of the restoration filter during the artifact was as
same as that of the background noise activity though the statistical characteristics of
-artifact noise was highly different from the background noise. The averages of the RE
for the background'noise and eyes blink noise were 0.685 and 1.067, fespectively. The
estimated distribution of DL varied substantially from the actual DL distribution in both
the background noise and eyes blink. | |
- Next, we applied the restoration filter with time varying regularization parameter
Vi The noise covariance, which was calculated with the background noise activity, was
constant in every time instant (O« = Op). Fig. 3(c) shows the time series of RE between
the actual and estimated DL distribution. The RE during the eyes blinking exercise was
large while that during the background noise was reduced due to the use of time varying

parameter %. The averages of the RE for the background noise and eyes blink noise

11



were improved to 0.530 and 0.978, respectively. The estimated DL distributions during
“the background noise were better than those obtained by using the time invariant
_regularization parameter. However, the DL distributions during the eyes blink remained
unchanged since the statistical information on the\’ eyes blink artifact was not taken into
account in the calculation. '

Moreovert, the restoration with constant noise covariance of eyes blink artifact
(Q,c = (,) was applied to the DL estimation. The result is shown in Fig. 3(d) The
averages of the RE for the background noise and eyes blink noise were 0.640 and O 637,
respectively. The RE during the eyes blinking exercise became smaller than Fig. 3(c).
However the RE for background noise became larger.

Finally, the restoration filter with the time varying parameter % and the time |
varying noise covariance O was applied to the spatio-temporal inverse problem. Two
types of noise covariance, of the background noise and eyes blink artifact, were used to
estimate cortical DL from the scalp potentials with or without the eyes blink artifact. Fig.
3(e) shows the time series of RE. The RE during the eyes blink exercises was reduced
by using the noise covariance of the eyes blink template. The averages of the RE for(the
background noise and eyes blink noise were reduced to 0.530 and 0.637, respectively.
The difference between Figs. 3 (d) and (e) looks small, but the DL map corresponding
to the case shown in Fig. 3 (d) was noisier than that of Fig. 3 (e) in the absence of
artifact (The DL maps are shown in Fig. 8).

We confirmed the restorafive ability of tPPF for time-varying DL imaging. The
estimated DL strengths using the time invariant and time variant noise covariance were
coinpared at the nearest point in space from an assumed dipole source of 10 Hz. Figure
4(5) shows the normalized strength of the actual DL at the nearest point from an
assumed dipole source of 10 Hz in the case of two radial dipole sources at the
eccentricity of 0.7. The waveform of the source strength at the point was similar to the
sinusoidal wave of 10 Hz. Figure 4(b) shows the ndrmalized scalp potential at the
nearest point from an assumed dipole source of 10 Hz. The scalp potential was
contaminated with the background GWN and the waveform was overiapped with that of
the other dipole source of 30Hz sinusoidal wave. Figures 4 (c)-(e) show estimated
results of the DL strength by the PPF with time invariant 7 and Q5 of background noise,
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time variant % and time invariant Op, and time variant y and an, respectively. The
position of the DL strength is the same as Fig. 4(a). The time variant regularization
parameter j was estimated in every time instant in Figs. (d) and (e). The distortion
around the eyes blinking artifact of the time-variant Qy in Fig. 4(e) became small as
compared with that of the time-invariant Oy in Figs. 4 (¢) and (d). The amplitude of the
estimated signal in Fig. 4 (c) looks stable in spite of artifact existing because y and Ok
are constant. If 3 was estimated to minimize the cost function in every time, the
amplitude became small during artifact in Fig. 4 (d) in order to suppress the artifact
noise. As results, Fig. 4 (c) looks better than Fig. 4 (d). On the other hand, when
considering artifact by using time varying O, the signal became stable in Fig. 4 ().
~ Figure 5(a) shows one example of the actual DL distribution of two radial

dipoles at a single time point during the artifact. The dipole sources were located at the
éccentricity of 0.7 with the angle of #/3. Figure 5(b) shows the scalp potential
distribution contaminated with eyes blink artifact as shown in Fig. 2. Figures 5 (c), (d), -
and (e) show estimated inverse results of the DL using the PPF with time invariant }7“
and O, time variant 5 and time @nvariant O, and time variant % and O, respectiVely, _
which are normalized by the maximum of the actual DL distribution. As shown in Figs.
5(c)-(d),bﬂl’e DL distribution obtained by the time-invariant Oy was blurred and large
distortion in the amplitude of the DL distribution observed. Owing to the strong artifact
noise, the restoration filter was going to suppress both the DL distribution and the noise; v
As a result, the DL distribution was contaminated with noise. On the other hand, the DL
distribution obtained by the tPPF shows two areas of well-localized activity similar to
the actual DL source distribution (Fig. 5(a)). This result is consistent with the temporal
performance of the tPPF as shown in Fig. 3(e). The difference between the two inverse
techniques is the noise covariance that was utilized in the PPF These results show that
the present tPPF filter can suppress the eyes blink artifact by using the noise covariance
of the eyes blink artifact. ,

‘ Figure 6 shows another example of DL estimation in the case of two tangential
dipoles at the eccentricity of 0.7 with an angle of 7/3. The improved performance of the
tPPF (e) as compared with the time-invariant inverse filters (c¢) and (d) despiie the

direction of dipoles is shown in Fig. 6. As shown in Figs. 6(c)-(d), the DL distribution
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obtained by the time-invariant Oy was blurred and failed to reconstruct the distribution
of DL. On the other hand, the DL distribution obtained by the tPPF shows good
. reconstruction 6f the spatial pattern of the DL distribution as compared with fhe actual
DL distribution.

Figure 7 shows one example of DL estimation in the case of four radial dipoles
at a single time point during (the artifact. The positions of four dipoles are given as

follows:

[20.75sin(z / 6),0,0.75 sin(7 / 6)]

[0,20.75sin(7z / 6),0.75 sin(7 / 6)]
Fig. 7(a) shows the distribution of the actual DL. Fig. 7(b) shows the scalp potential
distribution by the 4 radial dipoles being contaminated by noise. Figs. 7(c)-(¢) show the
inverse estimation results. The extrema corresponding to the four radial dipoles are well
reconstructed by the time-variant PPF as shown in Fig. 7(e). On the other hand, the
tifn’e-invarianf PPF resulted significant artifacts in the DL inverse solutions (Fig. 7(c)
| and (d)), not revealing the major features of the spatial pattern of the DL distribution.

Fig. 8 shows one example of cortical DL imaging of two tangential dipoles at the
ecéentricity of 0.7 with an angle of 77/3. Background noise of 0.1 NSR was added to the
scélp potentials. No eye-blink artifact was considéred. The improved performance of
time-varying regularization parameter y is observed in Fig. 8(d) and Fig. 8(f). Note
distortion in the DL topbgraphic map in Fig. 8(e) due to use of the Q,. The result using
time varying regularization parameter % and Qx (and Qj in this case) provided the best

reconstruction result.
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IV. DISCUSSION

A spatio-temporal inverse filter to solve the cortical inverse problem has been
developed by taking the time-varying properties into consideration. The usefulness of -
this inverse filter has been tested in handling tinie-variant noise such as eyes blink
artifacts. The present inverse filter has the time variant regularization parameter and the
time variant noise covariance. The effect of the time variant regularization parameter on
the DL inver§e solution is shown in Figs. 3. The RE between the actual and estimated
DL distributions was reduced in every time instant. Especially, the RE during the period
with only the background noise was dramatically reduced. The present results suggest -
that the value of the regularization parameter should be changed according to the signal
and noise configurations. Since the signal, ‘that is, the DL distribution changes in every
time instant, the regularization paraméter % of the tPPF should be char‘lged’ even if the
statistical characteristics of noise are constant. |

Noise plays an important role in brain source imaging, as in any other ill-posed
inverse pfoblem. In the present study, we have investigated the performance of dipole
source imaging by considering noise covariance matrix through the use of PPF in (4).
The PPF consists of the nbise covariance matrix that represents spatial information of
noise distribution; It was reported that the PPF is effective for improving cortical dipole
source imaging, under the condition of low correlation between the signal and noise
distributions and has similar restorative ability to the GWN and the condition of high
correlation between the signal and noise [19]. In the present simulation, the correlation
between the signal and the eyes blink artifact is low because the major areas of activity
in the scalp potentials are located at the parietal region while the eyes blink artifacts are
located in the frontal regions, near the eye balls. ‘ |

If we can obtain both signal covariance matrix and noise coVariance, the PWF as
shown in (3) may be applied to the inverse problem.' There is no, to our knowledge,
comprehensive investigation on coftical DL imaging in the metric of noise, in which
non-white noise is considered. Actually, it is difficult to estimate the signal covariance
exactly from the obserVed scalp potentials. Whenever the signal covariance is estimated,

the PWF reconstructs the averaged signal over the time. We have confirmed the
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restorative ability of the PPF and the PWF in a separate study [34]. The simulation
results obtained in that study suggest that, the PPF has better performance than other
_inverse filters under the condition of low correlation between signal and noise
distributions. On the other hand, the PWF with incorporating signal information
provides good results of equivalent dipole source imaging results compared to the PPF
and Tikhonov regularization without signal covariance under the condition of high
correlation between signal and ndise distributions. As mentioned above, since the
correlation between the eyes blink artifact and the brain electrical activities are low in
most cases, we may use the PPF for eyes blink artifact suppression. If we can obtain the
signal covariance in time course, the time-variant PWF would be also applicable to the
equiValent cortical dipole layer imaging. In order to improve the resolution of restored
dipole source imaging, we should choose the PPF and PWF according to the correlation
between signal and noise distributions. The time variant PWF will be addressed in
future investigation.

The signal space projection (SSP) method was applied for the detection and
characterization of time dependent MEG data [35]-[36]. The projection operators used
in the SSP divide the observed signals into the signal space and noise spéce. The SSP
also used the spatial noise distribution in order to search and to remove artifacts. Inverse
techniques used in the reported SSP studies were based on the SVD or pseudoinverse.
Partial SSP that applies only in corrupted epochs due to eye blinks was also proposed
[3 7]. In this later investigation, combination of temporal detection of eye blinks and SSP
‘noise suppreséion was used so either the artifact be rejected based on temporal detection
of SSP applied in order to extract useful spatial information [37]. On the other hand, the
pfesent time-varying spatio-temporal PPF approach incorporates time-variant noise
distribution information so it provides a general framework to handle various noise and
artifacts, including éye blinks, muscle noise, etc. By incorporating the statistical
properties of noise distribution into the inverse imaging, the tPPF approach promises to
handlé various noise. Furthermore, we propose in the present tPPF approach to use the
time-variant regularization parameter, which adjust the estimation error and the noise in
the original Signal space. ‘

| The effect of the time variant noise covariance was shown in Figs. 3(c) and ‘(d).

In the present simulation, two types of noise covariance were used. In the case of
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time-variant noise covariance, the RE during the period of the eyes blink artifact was
reduced aS compared with that in the case of time-invariant noise covariance. The
present results suggest that the estimation was improved by changing the noise
covariance in the situation of eyes blink artifacts. The effects of the time-variant noise
covariance on the cortical dipole layer imaging are further illustrated in Figs. 5-7. In the
space domain, Figs. 5-7 suggest the utility of the time-variant noise covariance in
rejecting the artifacts like eyes blink. While using of noise covariance estimated from
EEG data during eyes blink would suppress well ihe effects of artifact on the cortical
imaging, using only the noise covariance of artifact will on the other hand distort the
cortical imaging results when there éxists only background noise, as shown in Fig. 8.
Figs. 5-8 suggest that it is optimal to use the noise covariance being estimated from the
EEG data at which moment the spatial source analysis is performed. In other word, it is
desirable to use time-varying imaging instead of time-independent imaging.

In order to apply the time Varying noise covariance, the time windows
contaminated with eyes blink artifacts should be estimated in advance. The time
windows were estimated by the threshold of the spatial correlation coefficients between
the template of voluntary wink artifact distribution and the measured scalp potential
distributions. ‘

In the time variant PPF, the regularization parameter y is calculated in ever time
instant. It is time consuming to estimate an optimum value of the reglilarization'
parameter using the proposed iterating procedure. The number of iteration depends oii
the difference between the value of the initial parameter and that of the optimum
parameter. Considering the sufficient sampling frequency in the time domain, the DL
distribution at time instant £ may be similar to that at time instant k-1. Then, by
substituting the initial value for % by -1, the parametervconverged to the optimum value
faster than the previous method.

In summary, we have developed a time-varying PPF inverse filter for cortical
imaging, and showed its applicability in suppressing rapidly changing artifacts such as
the eyes blink. The present simulation results suggest that the estimation error is
reduced substantially by taking the spatio-temporal properties of the noise into

consideration, such as eyes blink artifacts. Further investigations on other applications
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of this new method should be addressed in the future.
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FIGURES

Scalp Skull (os)

Dipole Layer Cortical Surface

Fig. 1. Schematic illustration of the head volume conductor-source model. The head is
represented by an inhomogeneous concentric three-sphere volume conductor model
with radii r;, 7, and R being 0.87, 0.92, and 1.0, réépectively. The normalized
conductivity of the scalp and the brain is taken as 1.0, and that of the skull as 0.0125.

Dipoles are uniformly distributed over a sphere with the radius of r,.
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Fig. 2. Simulated eyes-blink artifact represented in (a) space and (b) time domain. The
artifacts caused by eyes-blink appear in the frontal area over the scalp. And they
continue about 0.3 seconds. (c) shows the time series of correlation coefficients between

a template eyes blink artifact distribution and a scalp potential distribution.
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Fig. 3. Effects of time-varying PPFs. (a) Eyes blink artifact described in time domain.
(b) The RE in the case of constant % and constant O of the background noise. (c) The
RE in the case of time varying y with constant O of the background noise. (d) The RE
in the case of time varying y, with constant Q, of the eye blink artifact. (¢) The RE in

the case of time varying % and Q.
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Fig. 4. (a) Normalized temporal variation of the actual source strength at the nearest
point in space from an assumed dipole source over the DL surface. (b) Normalized
- temporal variation of the scalp potential at the nearest point in space from an assumed
dipole source contaminated with the GWN. (c) Estimated temporal behavior of the
source strength at the same point as (a) over the DL surface, obtained by means of the
PPF with constant % and constai;t Os. (d) Estimated temporal behavior of the source
strength at the same poirit as (a) over the DL surface, obtained by means of the PPF with
time variant % and constant Q. (e) Estimated temporal behavior of the source strength
at the same point as (a) over the DL surface, obtained by means of the PPF with time

variant 7 and Q.
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Fig.5. One example of cortical DL imaging of two radial dipoles. (a) Actual DL
distribution. (b) Scalp potential contaminated with artifact. (c) Estimated result of the
PPF with constant and constaht Op. (d) Estimated result with time variant y and
constant Q5. (¢) Estimated result with time variant % and Q.

~
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Fig. 6. One example of cortical DL imaging of two tangential dipoles. (a) Actual DL
distribution. (b) Scalp potential contaminated with artifact. (c) Estimated result of the
PPF with constant y and constant Qp. (d) Estimated result with time variant y and

constant Os. (¢) Estimated result with time variant # and Ox.

o
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Fig. 7. One example of cortical DL imaging of four radial dipoles. (a) Actual DL
distribution. (b) Scalp potential contaminated with artifact. (c) Estimated result of the
PPF with constant % and constant Qp. (d) Estimated result with time variant % and

constant Q. (€) Estimated result with time variant % and Q.
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(e)

F1g 8. One exampler of cortical DL imaging of two tangential dipoles Without
eye-blink artifact. (a) Actual DL distribution. (b) Scalp potential during backgrbu’nd
GWN. (c) Estimated result of the PPF with constant j and constant O of background
GWN. (d) Estimated result with time variant y and constant Q. (e) Estimated result
with time variant y and constant O, of eye-blink‘artifact. (f) Estimated result with time

variant 3 and Q.
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