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Standard notation

Item Meaning

Z the ring of integers

Q the field of rational numbers

R the field of real numbers

C the field of complex numbers

N the set of non-negative integers (including 0)

Fq the finite field of order q

An
k the affine space of dimension n over a field k

Ga the additive group of a field k

Gm the multiplicative group of units of a field k

S ⊂ T or S ⊆ T S is a subset of T

S ⊊ T S is a proper subset of T

#S the number of elements in S
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Introduction

In the study of Affine Algebraic Geometry, one of the our aims is to un-

derstand affine spaces over a given ground field k. For example, when an

affine algebraic k-variety X is given, we need to understand whether X

is isomorphic to An
k or not, as algebraic varieties. Although this question

sounds like quite simple, it contains a lot of mysteries. In order to con-

sider this question, we often use theories of Gm-actions and Ga-actions

on X. For a field k, we denote k[n] by the polynomial ring in n variables

over k.

First of all, we recall that theories of Gm-actions on X. It is well

known that to give a Gm-action on X = SpecB is equivalent to give a

Z-grading on B. We say a Gm-action is elliptic if the corresponding

Z-grading is positive (see Definition 1.3 ).

When X is a smooth affine variety over C, then we can regard X

as a topological manifold. We say X is an exotic structure on An
C if

it is diffeomorphic to A2n
R and X ̸∼=C An

C. The existence of an elliptic

Gm-action on X is a strong form of contractibility as below: In this case,

the Gm-action has a unique (attractive) fixed point x0 ∈ X. If the action

is given by λx (λ ∈ C∗, x ∈ X), then since all the weights of the action

are positive integers, restriction to the real interval t ∈ (0, 1] yields:

lim
t→+0

(tx) = x0, ∀x ∈ X.

So the requisite contracting homotopy is given by F : X × [0, 1] → X,

where

F (x, t) =

{
tx (t ̸= 0),

x0 (t = 0).

A well-known theorem of Ramanujam [64] says that a smooth affine

surface over C which is contractible and simply connected at infinity is

isomorphic to A2
C. This can be used to show that any smooth affine

surface over C with an elliptic Gm-action is isomorphic to A2
C; see [17].

In the same paper, Ramanujam showed that any smooth contractible

affine variety over C of dimension n ≥ 3 is diffeomorphic to A2n
R , and is

therefore either isomorphic to An
C or an exotic structure on An

C.
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Introduction

A well-known example of this phenomenon is the Koras-Russell three-

fold X = SpecB, that is, the coordinate ring is defined by

B = C[x, y, z, t]/(x+ x2y + z2 + t3).

It is known that B is a rational UFD and it has a Z-grading defined by

deg(x, y, z, t) = (6,−6, 3, 2). Moreover, X is smooth and contractible,

and X ̸∼=C A3
C. So X is an exotic structure on A3

C. In [19, Theorem 6.2],

Freudenburg and the author showed that X does not have the stronger

form of contractibility imposed by an elliptic Gm-action, i.e., B does not

admit positive Z-gradings.
Similarly, we consider the Asanuma threefolds over a field k of positive

characteristic p > 0. In [2], Asanuma introduced the following family of

rational threefolds

Am = k[x, y, z, t]/(xmy + f(z, t)),

where m ≥ 1, f(z, t) ∈ k[z, t] and k[z, t]/(f) ∼=k k[1] but k[z, t] ̸= k[f ][1].

Segre [69] gives such non-standard line embeddings in A2
k, for example,

defined by

f(z, t) = zp
e

+ t+ tsp,

where s, e ∈ Z>0 and pe and sp do not divide each other; see also the

Introduction in [21]. Asanuma showed that A
[1]
m

∼=k k[4] for each m ≥ 1.

From this, it follows that Am is a rational UFD and that each threefold

SpecAm is smooth. Furthermore, Gupta in [22] and [23] showed that

Am ̸∼=k k[3] when m ≥ 2. Freudenburg and the author showed that

these also do not admit elliptic Gm-actions, which is a consequence of

the following ([19, Theorem 6.4]):

Theorem. For any field k and positive integers n,m, let X be an affine

k-variety such that X × Am
k
∼=k An+m

k . Then X ∼=k An
k if and only if X

admits an elliptic Gm-action.

In the case where k = C, in one direction of the above theorem, for

X = SpecB, the condition X ×Am
k
∼=k An+m

k ensures that X is smooth,

affine and contractible, but does not imply that B has a positive Z-
grading. In the other direction, if B is an affine rational UFD with a

positive Z-grading and X = SpecB is smooth, then either X ∼=C An
C or

X is an exotic structure on An
C. In [19, Section 7], we conjecture the

following characterization of affine space:

Conjecture. Let X be a factorial rational affine variety of dimension n

over an algebraically closed field k. If X is smooth and admits an elliptic

Gm-action, then X ∼=k An
k .

x



Introduction

By [19, Corollary 4.7 and Theorem 5.1 ], the conjecture is true for n = 1

and n = 2.

Next, recall that theories of Ga-actions on X. It is well known that

to give a Ga-action on X = SpecB is equivalent to give a locally finite

iterative higher derivation on B, in particular, when the characteristic

of k is zero, it is equivalent to give a locally nilpotent derivation on B.

Indeed, let φ : Ga → AutX be a Ga-action on X. Then, for λ ∈ k and

f ∈ B,

φ(λ)(f) =
∞∑
ℓ=0

Dℓ(f)λ
ℓ,

where D = {Dℓ}∞ℓ=0 is a locally finite iterative higher derivation on B

(see Chapter 1.3 for details). This mapping φ 7→ D gives a one-to-

one correspondence between the Ga-actions on X and the locally finite

iterative higher derivations on B.

Here, we recall some characterizations of affine spaces in the terms of

Ga-actions. DenoteXn = SpecBn by an affine variety over k of dimension

n, then the following characterizations of affine spaces are well known:

• X1
∼=k A1

k ⇐⇒ X1 admits a non-trivial Ga-action.

• X2
∼=k A2

k ⇐⇒ X2 admits a non-trivial Ga-action and

B2 is a UFD with B∗
2 = k∗.

If B is a k-algebra, the Makar-Limanov invariant ML(B) of B is the

intersection of all invariant rings of Ga-actions on B, and the Derksen

invariant D(B) of B is the subring generated by invariants of non-trivial

Ga-actions. See [18] for details.

If B ∼=k k[n], then ML(B) = k and D(B) = B. Hence, by calculating

that invariants, we can understand whether X = SpecB is isomorphic

to An
k or not. For example, Asanuma threefolds Am are considered by

Gupta in [22] and [23], showing that, when m ≥ 2, ML(Am) = k[x] and

D(Am) = k[x, z, t]. So Am ̸∼=k k[3] when m ≥ 2. These give counterex-

amples for the cancellation problem for affine spaces in positive charac-

teristic. It is an open problem whether A1
∼=k k

[3].

By the way, in order to understand affine spaces An
k over a given

ground field k, it is important to consider the automorphism group

AutAn
k as algebraic varieties. In fact, since An

k = Spec k[n] admits a

lot of Gm-actions and Ga-actions, namely, AutAn
k contains many kinds

of Gm and Ga as subgroups, we see that AutAn
k is a huge group. For

this reason, it is difficult to understand AutAn
k , especially when n ≥ 3.

Although it is known that the structure theorem for AutA2
k, several open
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problems are still left even if n = 2. For example the Jacobian conjecture

is well known.

A k-automorphism on B ∼=k k
[n] is given by the n-tuple of polynomials

f1, . . . , fn ∈ B. In this thesis, we discuss about such polynomial fi and

the k-algebra k[fi]. We say that each fi is a variable (or coordinate). In

Proposition 2.1, we show that if f ∈ B is a variable, then the k-subalgebra

k[f ] is integrally closed in B. We say that such a polynomial is a closed

polynomial (see Chapter 2 ). Also, a pair of polynomials (f, g) is said

to be a closed-pair if k[f, g] ∼=k k
[2] and k[f, g] is algebraically closed in

B (see Chapter 5 ).

When the characteristic of k is zero, there are some constructions of

closed polynomials and closed-pairs as below. If d is a non-zero derivation

on k[2] such that ker d ̸= k, then ker d = k[f ] and f is a closed polynomial

(see Theorem 3.1 ). If d is a non-zero locally nilpotent derivation on

k[3], then ker d = k[f, g] and (f, g) is a closed-pair (see Miyanishi [51]).

Furthermore, for f, g ∈ k[n], if k[f, g] ∼=k k[2] and is a retract of k[n],

then (f, g) is a closed-pair (see Chapter 5 ). More preciously, the author

showed in [56] that, if A is a retract of k[n] of transcendence degree 2

over k, then A = k[f, g] and (f, g) is a closed-pair.

In this thesis, we give several characterizations and criteria of inte-

grally closed subalgebras of the polynomial ring over an integral domain.

In Chapter 1, we recall several definitions of degree functions, Z-gradings,
derivations and higher derivations. These are important methods and

techniques which are used in this thesis. By using these techniques, in

Theorem 1.14, we give some characterizations of algebraically closed sub-

algebras of a given integral domain.

In Chapter 2, we study closed polynomials and some other concepts of

polynomials (factorially closed polynomials, univariate polynomials and

variables). In particular, these classes of polynomials have geometric

meanings as below: Let k be an algebraically closed field and let f ∈ B\k,
where B ∼=k k

[n]. Then we can consider the morphism

Φf : An
k
∼=k SpecB → Spec k[f ] ∼=k A1

k

defined by the natural inclusion k[f ] → B. Using this morphism Φf , we

show that a polynomial f ∈ B\k is a closed polynomial (resp. factorially

closed polynomial) if and only if a general fiber (resp. every fiber) of Φf

is irreducible and reduced (see Theorems 2.3 and 2.29 ). Similarly, in the

case where n = 2, we give a characterization of univariate polynomials

in Theorem 2.28.

By the way, in Theorem 2.4, we give characterizations of closed poly-

nomials over an integral domain. These characterizations are conclusions

xii
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of Theorem 1.14. In Theorem 2.11, we give some criteria of closed poly-

nomials, using techniques of Z-gradings on the polynomial ring. The

key strategy is to find an appropriate Z-grading. Since the polynomial

ring has many kinds of Z-gradings, we can find such a Z-grading. Fur-

thermore, in Chapter 2.3, by using the criteria, we give classifications of

closed polynomials in special cases (the monomials, the polynomials with

the Jacobian condition and the polynomials whose degree is prime).

In Chapter 3, we study closed polynomials, derivations and higher

derivations in the polynomial ring R[x, y] ∼=R R[2] over an integral domain

R. In this chapter, we consider the following three cases:

• R is an arbitrary integral domain of characteristic zero.

• R is a UFD of characteristic zero.

• R is a field of positive characteristic.

In fact, the second case is studied by several mathematicians. See e.g.,

Nowicki [58], Nowicki and Nagata [62], Ayad [4], Arzhantsev and Pe-

travchuk [3], Kato and Kojima [32], etc. In Proposition 3.11, we show

relations between derivations and closed polynomials in R[x, y], under

some equivalence relations. From the result, we can understand the ker-

nel of a derivation on R[x, y] by using the theory of closed polynomials.

This observation will be used in Chapter 4. The most important tool is

what is called the Jacobian derivation. This derivation makes sense if the

characteristic of R is zero. When R is a field of positive characteristic, in

Theorem 3.16, we introduce higher derivations which look like the Jaco-

bian derivation. By using the higher derivation, we give characterizations

of variables.

In Chapter 4, as an application of results on closed polynomials in

Chapters 2 and 3, we study kernels of monomial derivations on the poly-

nomial ring in two variables over a UFD. Theorem 4.2 gives a classifica-

tion of kernels of monomial derivations. Furthermore, in Theorem 4.5,

by using the argument in [63, Section 5] and Theorem 4.2, we determine

the non-zero monomial derivations d on k[x, y] such that the quotient

field of the kernel of d is not equal to the kernel of d in k(x, y).

Finally in Chapter 5, we explain definitions and some properties of

retracts and closed-pairs, and give several examples. In particular, we

consider the following question:

Question. Let k be a field of characteristic zero and let d be a non-zero

k-derivation on k[3]. Is the kernel generated by at most two polynomials?

In Chapter 5.2, we give partial affirmative answers and examples for this

question.
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CHAPTER 1

Preliminaries

Let R be an integral domain of characteristic p ≥ 0. For a positive integer

n ≥ 1, we denote R[n] by the polynomial ring in n variables over R, Q(R)

by the field of fractions of R and R∗ by the group of units in R. For an

R-subalgebra A of B, we denote tr.degR A := tr.degQ(R) Q(A).

Through in this chapter, assume that B is an integral domain con-

taining R. B is referred to as an R-domain. Let A be a subring of B.

We say an element f ∈ B is algebraic over A if there exists a non-zero

polynomial P ∈ B[1] \ {0} such that P (f) = 0, especially say integral

over A if we can choose such a polynomial P ∈ B[1] to be monic. We say

that A is algebraically closed (resp. integrally closed) in B if there

are no algebraic (resp. integral) elements in B other than A. Also, say

A is factorially closed in B if for non-zero elements f, g ∈ B, the con-

dition fg ∈ A implies f ∈ A and g ∈ A. Here, we consider the following

three conditions.

(a) A is integrally closed in B.

(b) A is algebraically closed in B.

(c) A is factorially closed in B.

It is easy to show that the implications “(c) =⇒ (b)” and “(b) =⇒ (a)”

hold true. When A is factorially closed in B, we have that A∗ = B∗ and

every irreducible element of A is also irreducible in B. Furthermore, the

following result holds.

Proposition 1.1. Let A be a subring of B. Then the following two

conditions are equivalent:

(i) A is integrally closed in B and Q(A) ∩B = A.

(ii) A is algebraically closed in B.

Proof . (i) =⇒ (ii) If b ∈ B is algebraic over A, then there exist m ≥ 1

and a0, . . . , am ∈ A such that a0b
m + a1b

m−1 + · · ·+ am−1b+ am = 0. By

multiplying a0
m−1 on the both sides of this equation, we see that a0b is

integral over A, so a0b ∈ A. Hence b ∈ Q(A) ∩B = A.

(ii) =⇒ (i) It is enough to show that Q(A) ∩ B = A. Let b ∈
Q(A) ∩B. Then b is algebraic over A, hence b ∈ B. □

1



Chapter 1 Preliminaries

Proposition 1.2. (cf. [28, Lemma 3.2]) Suppose that B is a UFD. Let A

be a subring of B such that A∗ = B∗. Then the following two conditions

are equivalent:

(i) Every irreducible element of A is also irreducible in B.

(ii) A is factorially closed in B.

Proof . It is clear that the implication “(ii) =⇒ (i)” holds true.

(i) =⇒ (ii) Since A∗ = B∗, A satisfies the ascending chain condition

for principal ideals of A. Hence, every element of A has an irreducible

decomposition. Taking non-zero elements f, g ∈ B such that fg ∈ A.

Considering an irreducible decomposition of fg in A, we have

fg = ua1
e1 · · · arer

for some u ∈ A∗, distinct irreducible element ai ∈ A and ei ≥ 1. Since

B is a UFD and each ai is irreducible in B, the above equation gives

the irreducible decomposition of fg in B. Without loss of generality, we

may assume that f = ua1
e1−d1 · · · arer−dr and g = a1

d1 · · · ardr for some

0 ≤ di ≤ ei. Therefore f ∈ A and g ∈ A. □

1. Degree functions and Z-gradings

Let R be an integral domain of characteristic p ≥ 0 and let B be an R-

domain. In this section, we discus about degree functions and Z-gradings
on B. For more detail, refer to [19, Section 3].

A degree function on B is a map deg : B → Z ∪ {−∞} such that,

for f, g ∈ B, the following three conditions are satisfied.

(a) deg f = −∞ if and only if f = 0,

(b) deg(fg) = deg f + deg g,

(c) deg(f + g) ≤ max{deg f, deg g}.

Here, it is understood that (−∞) + (−∞) = −∞ and (−∞) + deg f =

−∞ for any f ∈ B. It is easy to show that the equality holds in condition

(c) if deg f ̸= deg g. The induced filtration is

B =
∪
d∈Z

Fd,

where the set Fd = {f ∈ B | deg f ≤ d} is the associated degree

modules. We say deg is a degree function over R if deg(R∗) = 0.

Definition 1.3. Let deg : B → Z ∪ {−∞} be a degree function over R

on B.

2



1.1 Degree functions and Z-gradings

(a) deg is non-negative if Fd = {0} for d < 0.

(b) deg is positive if it is non-negative and F0 = R.

When B admits a degree function over R, we have the following proper-

ties for the associated degree modules.

Proposition 1.4. Let deg : B → Z∪{−∞} be a degree function over R

on B. Then the following assertions hold true.

(a) F0 is a subring of B which is integrally closed in B.

(b) Fd is an F0-module for each d ∈ Z.

(c) Fd is an ideal of F0 for each d ≤ 0.

(d) If deg is non-negative, then F0 is factorially closed in B and

B∗ ⊂ F0. In particular, if deg is positive, then R is factorially

closed in B.

Proof . (a) Let f, g ∈ F0. Then deg fg = deg f + deg g ≤ 0, hence

fg ∈ F0. Therefore F0 is a subring of B. Extend deg to Q(B) and let

R = {ξ ∈ Q(B) | deg ξ ≤ 0}, namely, deg(f/g) := deg f − deg g for

f ∈ B and g ∈ B \ {0}. Then R is a valuation ring of Q(B) with the

valuation deg, and F0 = R∩B. This implies that F0 is integrally closed

in B.

(b) Let a ∈ F0 and f ∈ Fd. Then deg af = deg a+deg f ≤ deg f ≤ d.

Hence af ∈ Fd.

(c) Let d ≤ 0. Then Fd ⊂ F0. By (b), Fd is an ideal of F0.

(d) Let f, g ∈ B \ {0} with fg ∈ F0. Since deg is non-negative,

deg f ≥ 0 and deg g ≥ 0. Hence we have

0 ≤ deg f + deg g = deg fg ≤ 0.

Therefore deg f = deg g = 0, which implies that f ∈ F0 and g ∈ F0. □

Let g be a Z-grading of B over R, that is, there exist subgroups Bd

of (B,+) such that

(a) B =
⊕

d∈ZBd,

(b) BdBe ⊂ Bd+e for all d, e ∈ Z,

(c) R ⊂ B0.

Definition 1.5. Let g be a Z-grading of B over R.

(a) g is non-negative if Bd = {0} for d < 0.

(b) g is positive if it is non-negative and B0 = R.

3



Chapter 1 Preliminaries

A Z-grading g gives a degree function degg : B → Z ∪ {−∞} on B over

R by the natural way. It is clear that g is non-negative (resp. positive)

if and only if degg is non-negative (resp. positive).

For example, we shall consider the case where B is the polynomial

ring R[x1, . . . , xn] ∼=R R[n]. For w1, . . . , wn ∈ Z, define the Z-grading gw
by deggw xi = wi for each i. Then gw is non-negative (resp. positive)

if and only if wi is a non-negative (resp. positive) integer for each i.

This implies that every polynomial ring over R has a positive Z-grading,
especially has a positive degree function. Hence we have the following.

Proposition 1.6. R is factorially closed in R[n] for any n ≥ 1. In

particular, R is also factorially closed in R[[n]], where R[[n]] is the formal

power series ring in n variables over R.

Proof . By the above discussion, R[n] admits a positive Z-grading g over

R. Then F0 = B0 = R. By Proposition 1.4 (d), R is factorially closed

in R[n].

In the case where B = R[[n]], we consider ord : B → N∪{−∞}, where
ord is the usual order function on B. By using the similar argument of

the proof of Proposition 1.4 (d), we see that R is factorially closed in

R[[n]]. □

2. Properties of derivations

In this section, we explain fundamental properties of derivations over an

integral domain R of characteristic zero. Let B be an R-domain. An

R-derivation d : B → B is a map such that, for r ∈ R and f, g ∈ B,

(a) d(f + g) = d(f) + d(g),

(b) d(rf) = rd(f),

(c) d(fg) = gd(f) + fd(g).

For an R-derivation d on B, we denote Bd by the kernel of d. An R-

derivation d is locally nilpotent if for any f ∈ B, there exists m ≥ 1

such that dm(f) = 0. Denote DerR B by the set of all R-derivation on

B, LNDR B by the set of all locally nilpotent derivations on B. It is well

known that DerR B has a structure of B-modules. Remark also, although

LNDR B is a subset of DerR B, it is not necessarily closed under the sum.

For a locally nilpotent derivation d onB, we define theR-automorphism

exp(td) on B[t] ∼=B B[1] as below. We extend d to an R-derivation d̃ on

4



1.2 Properties of derivations

B[t] by the following formula:

d̃

(
m∑
ℓ=0

fℓt
ℓ

)
:=

m∑
ℓ=0

d(fℓ)t
ℓ

for fℓ ∈ B. It is clear that d̃ is also locally nilpotent on B[t]. Then for

ξ ∈ B[t], we define exp(td) by

exp(td)(ξ) :=
∞∑
ℓ=0

1

ℓ!
d̃ℓ(ξ)tℓ,

whenever R contains Q. Since d̃ is locally nilpotent, the above definition

makes sense. Moreover, it is easy to show that exp(td) ◦ exp(−td) =

idB[t] and exp(−td) ◦ exp(td) = idB[t]. Therefore exp(td) gives an R-

automorphism on B[t].

Properties of derivations. We denote some fundamental notations

and recall properties for derivations (P.1)–(P.8) as below. Let d be an

R-derivation on B.

(P.1) Bd is an algebraically closed subring of B.

(P.2) If d is locally nilpotent, then Bd is factorially closed in B.

(P.3) An element s ∈ B satisfying d(s) = 1 is called a slice of d.

(P.4) d is irreducible if the only principal ideal of B containing the

image of d is B itself (or equivalently, if d is not of the form fd′

with f a non-unit element of B and d′ ∈ DerRB).

(P.5) If B is UFD, then there exist an irreducible R-derivation d0 ∈
DerRB and f ∈ B \ {0} such that d = fd0, and d0 is unique up

to multiplication by units of B.

(P.6) We say that f ∈ B \{0} is an integral element if d(f) belongs

to the ideal generated by f in B. In the case where B is the

polynomial ring over R, it is called also a Darboux polyno-

mial.

(P.7) An element t of B is called an integral factor or an eigenvalue

if there exists an integral element f ∈ B \ {0} such that d(f) =

tf .

(P.8) We denote χd(B) by the set of all integral factors in B. Then

χd(B) is an abelian monoid under the addition of B.

We prove only the assertion (P.8) (see [18] or [60] for more details).

5



Chapter 1 Preliminaries

Proof . (P.8) It is clear that 0 ∈ χd(B). Let s, t ∈ χd(B). Then there

exist f, g ∈ B \ {0} such that d(f) = sf and d(g) = tg. Hence we have

d(fg) = d(f)g + fd(g) = fgs+ fgt = (s+ t)fg.

This implies that s+ t ∈ χd(B). □

Lemma 1.7. (cf. [52, Lemma 1.5 (1)]) Suppose that B is a UFD contain-

ing R. Let d be an R-derivation on B. Then the following two conditions

are equivalent:

(i) Bd is factorially closed in B.

(ii) χd(B) contains no abelian subgroups other than (0).

Proof . (i) =⇒ (ii) Suppose that Bd is factorially closed in B. If χd(B)

contains an abelian subgroup other than (0), then there exists an integral

factor t ∈ χd(B) \ {0} such that −t ∈ χd(B). Then there exist f, g ∈
B \ {0} such that d(f) = tf and d(g) = −tg. We have

d(fg) = d(f)g + fd(g) = tfg − tfg = 0,

hence fg ∈ Bd. But d(f) ≠ 0 and d(g) ̸= 0, this is a contradiction.

(ii) =⇒ (i) Let f, g ∈ B \ {0} with fg ∈ Bd. Then 0 = d(fg) =

d(f)g + fd(g). Without loss of generality, we may assume that f and

g have no common factors. Hence we have f | d(f) and g | d(g). Then

there exists t ∈ B such that d(f) = tf and d(g) = −tg, which implies

that t,−t ∈ χd(B). Since χd(B) has no abelian subgroups other than

(0), we have t = 0. So d(f) = d(g) = 0 and hence Bd is factorially closed

in B. □

The following theorem is one of the most important result in the

study of locally nilpotent derivations, and is called Slice Theorem. In

1968, Rentschler [65] announced the result. Following [14], we denote

the theorem as a generalized form as below.

Theorem 1.8. (Slice Theorem) Let R be an integral domain containing

Q and let B be an R-domain. Let d be a locally nilpotent derivation on

B. If d has a slice s ∈ B, then B is the polynomial ring in s over Bd,

that is, B = Bd[s] ∼=Bd (Bd)[1].

As the end of this section, we consider the case where B is the poly-

nomial ring in n variables over R. Set variables x1, . . . , xn of B, namely,

B = R[x1, . . . , xn] ∼=R R[n]. For an R-derivation d, we define the diver-

gence of d by

div(d) :=
n∑

i=1

∂

∂xi

(d(xi)).

6
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Proposition 1.9. For a locally nilpotent derivation d on B, div(d) = 0.

Proof . Set K = Q(R) and BK = K ⊗R B. We use the same symbol d as

the extension of d to BK . Clearly d ∈ DerK BK is also locally nilpotent.

We consider the K-automorphism exp(td) on BK [t] ∼= BK
[1]. Without

loss of generality, we may assume det J(exp(td)) = 1, where we denote

J(exp(td)) by the Jacobian matrix with respect to exp(td), that is, set

fi = exp(td)(xi) and g = exp(td)(t), then

J(exp(td)) =
∂(f1, . . . , fn, g)

∂(x1, . . . , xn, t)
.

Then g = t and for 1 ≤ i ≤ n,

fi = xi + d(xi)t+
∑
ℓ≥2

1

ℓ!
dℓ(xi)t

ℓ.

Therefore the coefficient of t in det J(exp(td)) is equal to div(d), which

implies that div(d) = 0. □

For f1, . . . , fn−1 ∈ B, let F = (f1, . . . , fn−1) and we define the Jaco-

bian derivation ∆F with respect to f1, . . . , fn−1 by, for any g ∈ B,

∆F (g) = det
∂(f1, . . . , fn−1, g)

∂(x1, . . . , xn)
.

Proposition 1.10. For f1, . . . , fn−1 ∈ B, let F = (f1, . . . , fn−1). Then

the following assertions hold true.

(a) ∆F = 0 if and only if f1, . . . , fn−1 are algebraically dependent

over R.

(b) If ∆F ̸= 0, then B∆F is the algebraic closure of R[f1, . . . , fn−1]

in B.

Proof . (Following [42]) (a) Suppose that f1, . . . , fn−1 are algebraically

dependent over R. Let A = R[f2, . . . , fn−1]. Then f1 is algebraic over A.

Choose a non-zero polynomial 0 ̸= P (t) ∈ A[t] ∼=A A[1] of minimal degree

such that P (f1) = 0. Then

0 = ∆(P (f1),f2,...,fn−1) = P ′(f1)∆(f1,...,fn−1) = P ′(f1)∆F ,

where P ′(t) = dP (t)/dt. By the minimality of the degree of P (t), we

have P ′(f1) ̸= 0, hence ∆F = 0.

Conversely, we suppose that f1, . . . , fn−1 are algebraically indepen-

dent over R. Here, we choose fn ∈ B which is transcendence over

R[f1, . . . , fn−1] and set A = R[f1, . . . , fn]. Then B is algebraic over

A, hence there exist 0 ̸= Pi(y1, . . . , yn+1) ∈ R[y1, . . . , yn+1] ∼=R R[n+1]

such that Pi(f1, . . . , fn, xi) = 0 for 1 ≤ i ≤ n. If ∂Pi/∂yn+1 = 0, then

7



Chapter 1 Preliminaries

Pi ∈ R[y1, . . . , yn]. This implies that f1, . . . , fn are algebraically depen-

dent over R. This contradicts the choice of fn. Hence ∂Pi/∂yn+1 ̸= 0 for

each i. Thus we may assume that degyn+1
Pi is minimal.

Define the homomorphism of R-algebras φi : R[y1, . . . , yn+1] → B by

φi(yj) = fj for 1 ≤ j ≤ n and φi(yn+1) = xi. Then, for 1 ≤ i, j ≤ n,

0 =
∂

∂xj

(φi(Pi)) =
n∑

ℓ=1

φi

(
∂Pi

∂yℓ

)
∂fℓ
∂xj

+ φi

(
∂Pi

∂yn+1

)
∂xi

∂xj

.

Let M = (φi(∂Pi/∂yj))1≤i,j≤n and N = −
∑n

i=1 φi(∂Pi/∂yn+1)ei, wehre

ei is the standard basis for R⊕n. Then J(F, fn)×M = N , hence

det(J(F, fn)) detM = detN = (−1)n
n∏

i=1

φi

(
∂Pi

∂yn+1

)
.

By the minimality of the degree of Pi with respect to yn+1, we have

φi(∂Pi/∂yn+1) ̸= 0. Thus det(J(F, fn)) ̸= 0, which implies that ∆F (fn) ̸=
0, namely, ∆F ̸= 0.

(b) Suppose that ∆F ̸= 0. Then tr.degR (B∆F ) ≤ n − 1. Fur-

thermore, the assertion (a) implies that f1, . . . , fn−1 are algebraically

independent over R. Since R[n−1] ∼=R R[f1, . . . , fn−1] ⊂ B∆F , we have

tr.degR (B∆F ) = n− 1. Therefore B∆F is algebraic over R[f1, . . . , fn−1].

By (P.1), B∆F is algebraically closed in B, hence it is the algebraic closure

of R[f1, . . . , fn−1] in B. □

3. Properties of higher derivations

In this chapter, we explain fundamental properties of higher derivations

over an integral domain R of characteristic p ≥ 0. Let B be an R-domain.

Let D = {Dℓ}∞ℓ=0 be a family of R-linear maps Dℓ : B → B for ℓ ≥ 0. We

say that D is a higher R-derivation on B if, for f, g ∈ B and ℓ ≥ 0,

(a) D0 = idB,

(b) Dℓ(fg) =
∑
i+j=ℓ

Di(f)Dj(g).

Note that for a higher R-derivation D = {Dℓ}∞ℓ=0, it is easy to show

that D1 is an R-derivation on B. We say also, D is a rational higher

R-derivation if every Dℓ is a homomorphism of R-modules from B to

Q(B).

For a higher R-derivation D = {Dℓ}∞ℓ=0 on B, we define the map

φD : B → B[[t]], where B[[t]] is the formal power series ring in one

8
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variable over B, by

φD(f) =
∞∑
i=0

Di(f)t
i

for f ∈ B (if D is rational, then we consider φD : B → Q(B)[[t]]). The

above condition (b) implies that φD is a homomorphism of R-algebras,

condition (a) implies that φD(f)|t=0 = f . We call the mapping φD the

homomorphism associated to D. We denote BD by the intersections of

the kernel of Dℓ for ℓ ≥ 1, that is,

BD =
∩
ℓ≥1

kerDℓ.

We say that D is trivial if BD = B. For a (rational) higher R-derivation

D = {Dℓ}∞ℓ=0 on B, we have a unique higher Q(R)-derivation D =

{Dℓ}∞ℓ=0 on Q(B) such that Dℓ|B = Dℓ for any ℓ ≥ 0. We call D the

extension of D to Q(B). For more details on the construction of D, we

refer to [34, Section 1]. It is clear that Q(BD) ⊂ Q(B)D.

A higher R-derivation D = {Dℓ}∞ℓ=0 on B is locally finite if D

satisfies

(c) for any f ∈ B, there exists a positive integer Nf ≥ 1 such that

Dℓ(f) = 0 for any ℓ ≥ Nf ,

and is iterative if D satisfies

(d) Di ◦Dj =

(
i+ j

j

)
Di+j for any i, j ≥ 0.

When D = {Dℓ}∞ℓ=0 satisfies the above conditions (a), (b), (c) and (d),

we say D is a locally finite iterative higher R-derivation.

Properties of higher derivations. We denote some fundamental no-

tations and recall properties for higher derivations (P.9)–(P.11) as below.

Let D = {Dℓ}∞ℓ=0 be a higher R-derivation on B.

(P.9) BD is an algebraically closed subring of B.

(P.10) If D is locally finite, then BD is factorially closed in B.

(P.11) If p = 0 and D is locally finite and iterative, then for ℓ ≥ 1,

ℓ!Dℓ = D1 and D1 is a locally nilpotent derivation on B.

Here, we prove (P.9) and (P.10).

Proof . Let D = {Dℓ}∞ℓ=0 be a higher R-derivations of B and let φD :

B → B[[t]] be the homomorphism associated to D. We note also that

BD is the ring of invariant for φD, namely, BD = {b ∈ B | φD(b) = b}.
9



Chapter 1 Preliminaries

(P.9) Let f ∈ B such that it is algebraic over BD. Then there exists

m ≥ 1 and b0, . . . , bm ∈ BD such that

b0f
m + b1f

m−1 + · · ·+ bm−1f + bm = 0.

Applying φD for the above equation, we have

b0φD(f)
m + b1φD(f)

m−1 + · · ·+ bm−1φD(f) + bm = 0.

Then φD(f) ∈ B[[t]] is algebraic over B. By Proposition 1.6, we have

φD(f) ∈ B, which implies that φD(f) = f . Thus f ∈ BD.

(P.10) Since D = {Dℓ}∞ℓ=0 is locally finite, the image of φD is con-

tained in B[t]. Here, we define the degree function with respect to D

degD : B → Z ∪ {−∞}

by degD f := degt(φD(f)) for f ∈ B. It is easy to show that degD gives

a non-negative degree function on B and F0 = BD. By Proposition 1.4

(d), BD is factorially closed in B. □

4. Algebraically closed subalgebras

This section is based on [37, Section 2] and [55, Section 3]. Let R be an

integral domain of characteristic p ≥ 0 and let B be an R-domain. The

aim of this section is to prove Theorem 1.14 which gives some character-

izations of algebraically closed R-subalgebras of B.

We denote the set of R-subalgebras of B whose transcendence degree

r over R by S(r, B), that is,

S(r, B) := {A | A is an R-subalgebra of B of tr.degR A = r}.
Here, this set S(r, B) is ordered by partial inclusion. First of all, we

prove three lemmas (Lemmas 1.11, 1.12 and 1.13 ) needed later. From

now on, we set K := Q(R), AK := K ⊗R A and BK := K ⊗R B.

Lemma 1.11. Let A be an R-subalgebra of B such that Q(A) ∩B = A.

Then the following two conditions are equivalent:

(i) A is integrally (resp. algebraically) closed in B.

(ii) AK is integrally (resp. algebraically) closed in BK.

Proof . (i) =⇒ (ii) Suppose that A is integrally closed in B. If β ∈ BK

is integral over AK , then there exist m ≥ 1 and α1, . . . , αm ∈ AK such

that

βm + α1β
m−1 + · · ·+ αm−1β + αm = 0.

10
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We choose elements a, b ∈ R \ {0} with aαi ∈ A and bβ ∈ B for any

1 ≤ i ≤ m and set c := ab ∈ R. Then we have

(cβ)m + cα1(cβ)
m−1 + · · ·+ cm−1αm−1(cβ) + cmαm = 0.

Since ciαi ∈ A and cβ ∈ B, cβ is integral over A, and so cβ ∈ A. Hence

β ∈ AK .

(ii) =⇒ (i) Suppose that AK is integrally closed in BK . If b ∈ B

is integral over A, then it is also integral over AK as an element of BK .

Hence b ∈ AK ∩ B ⊂ Q(A) ∩ B = A. Therefore A is integrally closed in

B. □

Lemma 1.12. Suppose that the characteristic of R equals zero and B is

finitely generated over R. For an R-subalgebra A of B, the following two

conditions are equivalent:

(i) There exists an R-derivation d on B such that Bd = A.

(ii) Q(A)∩B = A and there exists a K-derivation δ of BK such that

(BK)
δ = AK.

Proof . We may assume that B is generated by b1, . . . , br ∈ B over R.

(i) =⇒ (ii) Let d be an R-derivation on B such that Bd = A.

By (P.1), A is algebraically closed in B. By Proposition 1.1, we have

Q(A) ∩ B = A. We denote dK by the natural extension of d to BK .

It is clear that AK is contained in (BK)
dK . On the other hand, if β ∈

(BK)
dK ⊂ BK , then rβ ∈ B for some r ∈ R \ {0} and

0 = rdK(β) = dK(rβ) = d(rβ).

Therefore rβ ∈ Bd = A, hence β ∈ AK .

(ii) =⇒ (i) We suppose that Q(A) ∩ B = A and there exists a K-

derivation δ on BK with (BK)
δ = AK . We can take a non-zero element

r ∈ R \ {0} such that rδ(bi) ∈ A for 1 ≤ i ≤ r. Here, we define the

R-derivation d on B by d := rδ. By the construction of d, we have

Bd = A. □

Lemma 1.13. Suppose that B ∼=R R[n] is the polynomial ring in n vari-

ables over R. Let A be an R-subalgebra of B. Then the following condi-

tions are equivalent:

(i) A is algebraically closed in B and Q(B) is separably generated

over Q(A).

(ii) There exists a rational higher R-derivation D on B such that

A = BD and Q(B)D = Q(A), where D denotes the extension of

D to Q(B).

11
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Proof . (ii) =⇒ (i) By (P.1), A is algebraically closed in B. Since D

is a higher K-derivation on Q(B) with Q(A) = Q(B)D, it follows from

[26, Theorem (2.3)] that Q(B)/Q(A) is a regular field extension. In

particular, the field extension Q(B)/Q(A) is separable.

(i) =⇒ (ii) Since BK is normal and A is algebraically closed in B,

we know that Q(A) is algebraically closed in Q(B). So Q(A)/Q(B) is a

regular field extension. It follows from [73, Theorem 1] that there exists

a higher K-derivation D̃ = {D̃ℓ}∞ℓ=0 on Q(B) such that Q(B)D̃ = Q(A).

Set Dℓ = D̃ℓ|B for each non-negative integer ℓ and set D = {D̃ℓ}∞ℓ=0.

Then D is a rational higher R-derivation on B and A ⊂ BD. Since

BD ⊂ Q(BD) ∩B ⊂ Q(B)D̃ ∩B = Q(A) ∩B = A,

we have A = BD.

We claim that D = D̃. Indeed, let φD̃ : Q(B) → Q(B)[[t]] be the

homomorphism associated to D̃. For f/g ∈ Q(B) with f, g ∈ B and

g ̸= 0, we have

φD̃

(
f

g

)
=

φD̃(f)

φD̃(g)

because φD̃ is a homomorphism of K-algebras. Since φD̃(f) = φD(f)

and φD̃(g) = φD(g), we know that φD̃(f/g) = φD(f/g) by the definition

of the extension D of D to Q(B). So φD̃ = φD and hence D̃ = D.

Therefore Q(A) = Q(B)D̃ = Q(B)D. □

The following is the main result in this section.

Theorem 1.14. Let R be an integral domain of characteristic p ≥ 0 and

let B be an R-domain of transcendence degree n over R. For 1 ≤ r ≤ n

and A ∈ S(r, B), the following conditions are equivalent:

(i) A is algebraically closed in B.

(ii) A is integrally closed in B and Q(A) ∩B = A.

(iii) A is a maximal element of S(r, B).

If the characteristic of R equals zero and B is finitely generated over R,

then the condition (i) is equivalent to the following condition (iv):

(iv) There exists an R-derivation d of B such that Bd = A.

If B ∼=R R[n] and Q(B) is separably generated over Q(A), then the con-

dition (i) is equivalent to the following condition (v):

(v) There exists a rational higher R-derivation D on B such that

BD = A and Q(B)D = Q(A), where D denotes the extension of

D to Q(B).

12
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Proof . The part “(i) ⇐⇒ (ii)” follows from Proposition 1.1. When B ∼=R

R[n] and Q(B) is separably generated over Q(A), the part “(i) ⇐⇒ (v)”

follows from Lemma 1.13.

(i) =⇒ (iii) Let Ã be any element of S(r, B) containing A. Since A

and Ã have the same transcendence degree over R, the ring extension Ã

over A is algebraic. Hence Ã = A, which implies A is a maximal element

of S(r, B).

(iii) =⇒ (i) We denote A by the algebraic closure of A in B. Then

A is an element of S(r, B). Since A ⊂ A and A is a maximal element of

S(r, B), we have A = A.

Next, in order to prove the equivalence of (ii) and (iv), we assume

further that the characteristic of R equals zero and B is finitely generated

over R.

(ii) =⇒ (iv) By Lemma 1.11, AK is integrally closed in BK . Since

K is a field, it follows from [60, Theorem 5.4] that there exists a K-

derivation δ of BK such that (BK)
δ = AK . By Lemma 1.12 and the

assumption on A, we have an R-derivation d of B satisfying Bd = A.

(iv) =⇒ (ii) Suppose that there exists an R-derivation d on B with

Bd = A. By Lemma 1.12, Q(A)∩B = A and there exists a K-derivation

δ of BK such that (BK)
δ = AK . Then AK is integrally closed in BK . By

Lemma 1.11, A is integrally closed in B. □
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CHAPTER 2

Closed polynomials in polynomial rings

In this chapter, we assume that B ∼=R R[n] is the polynomial ring in

n variables over an integral domain R of characteristic p ≥ 0. Set a

system of variables of B by x1, . . . , xn, that is, B = R[x1, . . . , xn]. A

polynomial f ∈ B is a closed polynomial over R if f /∈ R and the

ring R[f ] is integrally closed in B. A polynomial f ∈ B is called a

variable (or coordinate) over R if there exist g2, . . . , gn ∈ B such that

R[f, g2, . . . , gn] = B, or equivalently, there exists an R-automorphism φ

of B such that φ(x1) = f .

Proposition 2.1. If f ∈ B is a variable over R, then it is a closed

polynomial over R.

Proof . It is clear that f is non-constant. Take g2, . . . , gn ∈ B such that

R[f, g2, . . . , gn] = B. Define the Z-grading g on B by degg f = 0 and

degg gi = 1. Then degg gives a positive degree function on B over R[f ].

By Proposition 1.4 (d), R[f ] is factorially closed in B. Therefore, f is a

closed polynomial over R. □

We denote the set {R[f ] | f ∈ B \ R} of R-subalgebras of B by

S(1, B). It is clear that the set is partially ordered by inclusion, and

S(1, B) ⊊ S(1, B). From now on, we set K := Q(R), AK := K ⊗R A

and BK := K ⊗R B ∼=K K [n] for an R-subalgebra A of B.

Lemma 2.2. Let S ∈ S(1, BK). If S is maximal in S(1, BK), then

S ∈ S(1, BK). In particular, the set of maximal element of S(1, BK) and

the set of maximal element of S(1, BK) are coincide.

Proof . Let S ∈ S(1, BK) be a maximal element of S(1, BK). By Theo-

rem 1.14, S is algebraically closed in BK , and has transcendence degree

1 over K. Since BK is a normal domain, S is a Dedekind K-subalgebra

of the polynomial ring BK
∼=K K [n]. It follows from [75, Theorem 8] that

there exists f ∈ BK \K such that S = K[f ]. Hence S ∈ S(1, BK) and it

is maximal as an element of S(1, BK).

Conversely, let K[f ] ∈ S(1, BK) be a maximal element of S(1, BK).

Let S = K[f ] be the algebraic closure ofK[f ] inBK . Then S ∈ S(1, BK).

Since S is algebraically closed in BK , by Theorem 1.14, S is a maximal
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element of S(1, BK). From the above discussion, S = K[g] for some g ∈
BK \K. Then we have K[f ] ⊂ S = K[g]. However, since S ∈ S(1, BK),

we have K[f ] = S, which implies that K[f ] is a maximal element of

S(1, BK). □

1. Characterizations of closed polynomials over do-

mains

Let k be a field and let k[X] ∼=k k
[n] be the polynomial ring in n variables

over k. In this case, closed polynomials in k[X] are studied by several

mathematicians. Historically, in 1988, Nowicki and Nagata [62] intro-

duced the notation of closed polynomials for understanding derivations

and their kernels. Around the same time, in 1989, Stein [71] announced

the concepts about the total reducibility order of a polynomial. This con-

cept is essentially the same as closed polynomials. However, his approach

was differ from [62]. After that, in 2007, Arzhantsev and Petravchuk [3]

improved these results as below.

Theorem 2.3. (cf. [3, Theorem 1]) Let k be a field and let k[X] ∼=k k
[n]

be the polynomial ring in n variables over k. Denote k̄ by an algebraically

closed field containing k. For a non-constant polynomial f ∈ k[X] \ k,

the following conditions are equivalent:

(i) f is a closed polynomial over k.

(ii) k[f ] is a maximal element of S(1, k[X]).

If the characteristic of k equals zero, then the condition (i) is equivalent

to the following condition (iii):

(iii) There exists a k-derivation d on k[X] such that k[X]d = k[f ].

If k is a perfect field, then the condition (i) is equivalent to the following

conditions (iv) and (v):

(iv) f − λ is irreducible over k̄ for all but finitely many λ ∈ k̄.

(v) #{λ ∈ k̄ | f−λ is reducible } < deg f , where deg is the standard

degree function on k[X].

The condition (iv) in Theorem 2.3 gives a geometrical meaning for closed

polynomials over an algebraically closed field k. Let f ∈ k[X] \ k and let

Φf : An
k
∼=k Spec k[X] → Spec k[f ] ∼=k A1

k
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be the surjective morphism defined by the natural inclusion k[f ] → k[X].

Then the condition (iv) in Theorem 2.3 implies that f is a closed poly-

nomial if and only if general fibers of Φf are irreducible and reduced.

The following is the main result in this section, which is based on [37,

Sections 3 and 4]. This theorem is a generalization of Theorem 2.3 in

the case where the coefficient ring of the polynomial ring is an arbitrary

integral domain.

Theorem 2.4. Let R be an integral domain and B ∼=R R[n] the poly-

nomial ring in n variables over R. Let f ∈ B \ R be a non-constant

polynomial such that K[f ]∩B = R[f ]. Then the following conditions (i)

and (ii) are equivalent:

(i) f is a closed polynomial over R.

(ii) K[f ] is a maximal element of S(1, BK).

Moreover, if the characteristic of R equals zero (resp. if the field extension

Q(B)/Q(R[f ]) is separable), then the condition (i) is equivalent to the

following condition (iii) (resp. (iv)):

(iii) There exists an R-derivation d on B such that Bd = R[f ].

(iv) There exists a rational higher R-derivation D on B such that

BD = R[f ] and Q(R[f ]) = Q(B)D, where D denotes the exten-

sion of D to Q(B).

Proof . The assertions follow from Theorem 1.14 and Lemma 2.2. □

We give a sufficient condition for a non-constant polynomial f ∈ B\R
over an integral domain R to be satisfied K[f ] ∩ B = R[f ]. Later, in

Lemma 2.18, we shall give a necessary and sufficient condition in the case

where R is a UFD.

Example 2.5. Let R and B be the same as in Theorem 2.4. Let f ∈
B \ R. If the ideal generated by the coefficients of f − f(0, . . . , 0) in R

equals R, then K[f ] ∩B = R[f ].

Proof . It follows from [68, Lemma 2.6.1] that K(f) ∩ B = R[f ]. Since

R[f ] ⊂ K[f ] ∩B ⊂ K(f) ∩B, we have K[f ] ∩B = R[f ].

□

We give some remarks and examples on Theorem 2.4. Let R, K =

Q(R) and B be the same as in Theorem 2.4. Let f ∈ B \ R be a non-

constant polynomial. We know that the part “(i) =⇒ (ii)” of Theorem

2.4 remains true without assuming K[f ] ∩ B = R[f ] (see the proof of

[37, Theorem 3.1]). However, in order to prove the part “(ii) =⇒ (i)”
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of Theorem 2.4, we need the hypothesis K[f ] ∩ B = R[f ]. We give an

example below.

Example 2.6. Let k be a field and set k[y] ∼=k k[1], R = k[y2, y3] and

B = R[x] ∼=R R[1]. Set f = y2x ∈ B \ R. Then K[f ] = K[x], where

K = Q(R), and soK[f ] is a maximal element of S(1, BK) andK[f ]∩B ⊋
R[f ]. However, for g = y3x ∈ B \ R[f ], we have g2 − y2f 2 = 0. So g is

integral over R[f ]. Therefore f is a not closed polynomial over R.

Here we prove the following result.

Proposition 2.7. Let f ∈ B \ R such that K[f ] ∩ B = R[f ]. Then the

following assertions hold true.

(a) If K[f ] is a maximal element of S(1, BK), then R[f ] is a maxi-

mal element of S(1, B).

(b) Suppose that R is a UFD. Then R[f ] is a maximal element of

S(1, B) if and only if K[f ] is a maximal element of S(1, BK).

Proof . (a) Let R[g] be any element of S(1, B) containing R[f ]. By the

hypothesis, K[f ] = K[g]. Then R[f ] = K[g] ∩ B ⊇ R[g] and hence

R[f ] = R[g]. This proves the assertion.

(b) It suffices to prove the “only if” part. It follows from [32,

Theorem 1.1] that f is a closed polynomial over R. Then it is also

closed over K and hence, by Theorem 2.3, K[f ] is a maximal element of

S(1, BK). □
In Proposition 2.7, the converse of the assertion (a) does not hold true

in general. We give an example below.

Example 2.8. Let k be a field of characteristic p > 0. Set R =

k[zp, zp+1] ⊂ k[z] ∼=k k[1], R[x, y] ∼=R R[2] and f = xp + zpyp ∈ R[x, y].

Then R is not normal and K := Q(R) = k(z). The following assertions

hold true.

(a) R[f ] = K[f ] ∩R[x, y].

(b) R[f ] is a maximal element of S(1, R[x, y]).

(c) K[f ] is not a maximal element of S(1, K[x, y]).

(d) f is not a closed polynomial over R.

Proof . (a) The ideal generated by the coefficients of f − f(0, 0) (as a

polynomial over R) in R equals (1, zp) = R. By Example 2.5, we see that

R[f ] = K[f ] ∩R[x, y].

(b) It suffices to show that f is irreducible as a polynomial over

R. Let g, h ∈ R[x, y] \ {0} be polynomials such that f = gh. Suppose
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2.2 Criteria of closed polynomials

that deg g and deg h are positive, where we consider the standard degree

function on R[x, y] over R. Since f = (x + zy)p as a polynomial in

k[x, y, z] ∼=k k
[3], we know that g = α(x+ zy)deg g and h = β(x+ zy)deg h

for some α, β ∈ k∗. However, since 0 < deg g, deg h < p, we have

α(x+ zy)deg g ̸∈ R[x, y], β(x+ zy)deg h ̸∈ R[x, y].

This is a contradiction. Therefore f is irreducible as a polynomial over

R.

(c) The assertion follows from K[f ] ⊊ K[x+ zy].

(d) The assertion follows from Theorem 2.4 (Of course, we can prove

the assertion directly). □

The author has not yet given an example of f ∈ B \R such that K[f ]∩
B = R[f ], R[f ] is a maximal element of S(1, B) and f is not closed in

B, where B = R[n] is the polynomial ring in n variables over an integral

domain R of characteristic zero.

2. Criteria of closed polynomials

This section is based on [54, Sections 3 and 4]. Let B ∼=R R[n] be

the polynomial ring in n variables over an integral domain R of char-

acteristic p ≥ 0. Set a system of variables of B by x1, . . . , xn, that

is, B = R[x1, . . . , xn] and set K = Q(R). For polynomials f, g ∈ B,

we write f ∼R g if there exists r ∈ R \ {0} such that f = rg. For

w = (w1, . . . , wn) ∈ Nn, we consider the Z-grading gw on B with respect

to w by deggw xi = wi for 1 ≤ i ≤ n, and set degw := deggw . We de-

note simply deg by the standard degree function on B. Since each wi is

non-negative, degw gives a non-negative degree function on B.

Let gw be a non-negative Z-grading on B for some w ∈ Nn. A

homogeneous polynomial f ∈ B for gw is decomposable with respect

to gw if there exists a homogeneous polynomial g ∈ B for gw such that

f ∼R gm for some m ≥ 2, also say f is primitive with respect to gw if

it is not decomposable with respect to gw.

For a polynomial f ∈ B, we define f̂ ∈ BK by

f̂ := gcd(fx1 , . . . , fxn),

where fxi
is the partial derivative of f with respect to xi and we take

the greatest common divisor of fx1 , . . . , fxn as polynomials in BK , hence

f̂ ∈ BK .
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Chapter 2 Closed polynomials

Definition 2.9. Let f ∈ B and w ∈ Nn. Assume that degw f ≥ 2.

Then we denote by LDw(f) the smallest positive prime integer dividing

degw f .

The number LDw(f) is the most important concept for Theorem 2.11.

We give some examples as below.

Example 2.10. For f = x9+x6y2+x3y4 ∈ Z[x, y] ∼=Z Z[2], we can easily

see that:

(a) for u = (1, 1), degu f = deg f = 9 and LDu(f) = 3,

(b) for v = (0, 1), degv f = 4 and LDv(f) = 2,

(c) for w = (1, 2), degw f = 11 and LDw(f) = 11.

As seeing the above examples, it is clear that if degw f is a prime number,

then degw f = LDw(f). The aim of this section is to prove the following

theorem.

Theorem 2.11. Let B ∼=R R[n] be the polynomial ring in n variables

over an integral domain R. Let f ∈ B \R be a non-constant polynomial

such that K[f ] ∩B = R[f ]. Then the following assertions hold true.

(a) Suppose that f is homogeneous for some Z-grading gw, w ∈ Nn.

Then f is a closed polynomial if and only if it is primitive in

B ⊗R Kwith respect to gw.

(b) Suppose that the characteristic R is zero. If there exists w ∈ Nn

such that degw f = 1 or, degw f ≥ 2 and

degw f̂ <
LDw(f)− 1

LDw(f)
degw f,

then f is a closed polynomial.

First of all, we prove three lemmas (Lemmas 2.12, 2.13 and 2.14 ) needed

later.

Lemma 2.12. Let f ∈ B \ R such that K[f ] ∩ B = R[f ]. For g ∈ B

such that f ∼R g, we have R[f ] = R[g].

Proof . Since f ∼R g, there exists r ∈ R \ 0 such that f = rg, hence

R[f ] ⊂ R[g]. On the other hand,

R[g] ⊂ K[g] ∩B = K[f ] ∩B = R[f ].

Therefore R[f ] = R[g]. □
Lemma 2.13. Let f ∈ B \ R. Assume that f is homogeneous for some

gw of degw f > 0, where w ∈ Nn. For g ∈ B such that f ∈ R[g] and

g(0, . . . , 0) = 0, the following assertions hold true.
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2.2 Criteria of closed polynomials

(a) g is homogeneous for gw.

(b) f ∼R gm for some positive integer m ≥ 1.

Proof . Since f is homogeneous for gw of degw f > 0, we see that f(0, . . . , 0) =

0. Hence we can write f as

f = u(g) =
m∑
i=1

um−ig
i,

where ui ∈ R, u0 ̸= 0 and m ≥ 1. Set g1 =
∑m

i=1 um−ig
i−1. Then

f = gg1. Since f is homogeneous, g and g1 are also homogeneous for gw.

This completes the proof of the part (a).

Next, we look at the constant term of g1. The term is g1(0, . . . , 0) =

um−1, and degw g1 = (m − 1) degw g ≥ 0. If m = 1, then f = u0g and

hence f ∼R g. If m ≥ 2, then we have um−1 = 0 and g1 = gg2, where

g2 =
∑m

i=1 um−ig
i−2. By the above argument, g2 is also homogeneous.

Using the same argument repeatedly, we have f = u0g
m, which implies

f ∼R gm. □

Lemma 2.14. Let w ∈ Nn and let f, g ∈ B \ R with f ∈ R[g]. Assume

that degw f > 0 and f = u(g) for a polynomial u(t) ∈ R[t] ∼=R R[1] of

degree m ≥ 1. Then the following assertions hold true.

(a) degw f = m degw g, hence m divides degw f .

(b) If the characteristic of R equals zero, then

degw f̂ ≥ m− 1

m
degw f.

Proof . (a) We write f = u(g) as follows:

f = u(g) = u0g
m + u1g

m−1 + · · ·+ um−1g + um,

for u0 ∈ R\{0} and u1, . . . , um ∈ R. Since degw f > 0, degw g > 0. This

implies that degw gi ≥ degw gj if i ≥ j. So,

degw f = degw(u(g)) = degw(u0g
m) = m degw g.

(b) Since f = u(g), fxi
= u′(g)gxi

for 1 ≤ i ≤ n, where u′(t) =

du/dt. This implies that each fxi
is divided by u′(g), so u′(g) divides f̂

as a polynomial over K. Since degw is non-negative, this implies that

degw f̂ ≥ degw(u
′(g)). On the other hand, since the characteristic of R

equals zero, mu0 ̸= 0. Therefore degw u′(g) = (m−1) degw g, so we have

degw f̂ ≥ degw(u
′(g)) = (m− 1) degw g =

m− 1

m
degw f.

□
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Now, we start the proof of Theorem 2.11.

Proof of Theorem 2.11 . (a) Suppose that f is homogeneous for some

Z-grading gw, w ∈ Nn. It is clear that, if f is not primitive for gw, then

f is not a closed polynomial over R.

Conversely, we suppose that f is primitive in B⊗RK for gw. Accord-

ing to Theorem 2.4, it suffices to prove the maximality of the ring K[f ] in

S(1, BK). Let g ∈ BK \K be any polynomial such that f ∈ K[g]. With-

out loss of generality we may assume that g(0, . . . , 0) = 0. By Lemma

2.13 (a) and (b), g is homogeneous for gw and f ∼K gm for some posi-

tive integer m ≥ 1. Since f is primitive, we have m = 1, hence f ∼K g.

By Lemma 2.12, we have K[f ] = K[g]. Therefore, K[f ] is a maximal

element of S(1, BK).

(b) By Theorem 2.4, it is enough to show the maximality of the ring

K[f ] in S(1, BK). Let g ∈ BK \K with f ∈ K[g]. Since f ∈ K[g], there

exists u(t) ∈ K[t] of degree m such that f = u(g). We write u(t) as

u(t) = u0t
m + u1t

m−1 + · · ·+ um−1t+ um,

for some ui ∈ K and u0 ̸= 0. By Lemma 2.14 (a), degw f = m degw(g).

It is enough to show that m = 1. Indeed, if m = 1, then f = u0g + u1.

This implies g ∈ K[f ], so K[f ] = K[g].

If degw f = 1, then obviously m = 1. On the other hand, we suppose

that w ∈ Nn satisfies degw f ≥ 2 and

degw f̂ <
LDw(f)− 1

LDw(f)
degw f.

Since the characteristic of R equals zero, by Lemma 2.14 (b),

degw f̂ ≥ m− 1

m
degw f.

By comparing the above two inequalities, we have LDw(f) > m. By

using Lemma 2.14 (a) again, we see that m divides degw f . But the

number LDw(f) is the smallest positive prime number dividing degw f ,

hence m = 1. Therefore f is a closed polynomial over R. □

By using Theorem 2.11 (b), we have the following. This is a gener-

alization of [4, Proposition 14].

Corollary 2.15. Let f ∈ B \R such that K[f ]∩B = R[f ]. Suppose that

the characteristic of R is zero. If there exists 1 ≤ i < j ≤ n such that

fxi
̸= 0, fxj

̸= 0 and f̂ ∈ R[xi], then f is a closed polynomial over R.

Proof . If f̂ ∈ R, then degw f̂ ≤ 0 for any w ∈ Nn. Hence the inequality

in Theorem 2.11 (b) is satisfied for any w ∈ Nn.
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2.2 Criteria of closed polynomials

Suppose that f̂ ∈ R[xi] \ R. Set wi,j = (w1, . . . , wn) ∈ Nn, where

wi = 0, wj = 2 and wℓ = 1 for ℓ ̸= i, j. Then degwi,j
f̂ = 0 and

degwi,j
f̂ ≥ 2. Then the inequality in Theorem 2.11 (b) is satisfied for

wi,j. Therefore f is a closed polynomial over R. □

We give some remarks on Theorem 2.11 (b). In the case where R

is a field, the assumption “K[f ] ∩ B = R[f ]” is satisfied for any f ∈ B

automatically. Furthermore, in Lemma 2.18, we will give a necessary and

sufficient condition for a polynomial f to be satisfied “K[f ]∩B = R[f ]”

when R is a UFD. For this reason, we can confirm that almost all a given

polynomial is to be a closed polynomial. However, there are examples

of closed polynomials which do not satisfy the assumption on Theorem

2.11 (b) for any w ∈ Nn as below:

Example 2.16. Let f = x6y4 + x4y6 ∈ Q[x, y] ∼=Q Q[2]. Then f is

a closed polynomial over Q, but it does not satisfy the assumption on

Theorem 2.11 (b) for any w ∈ N2.

Proof . It is clear that f is primitive and homogeneous for the standard

Z-grading. By Theorem 2.11 (a), f is a closed polynomial.

On the other hand, for any w = (w1, w2) ∈ N2, we have

degw f = max{6w1 + 4w2, 4w1 + 6w2}.

Hence degw f is divided by at least 2, which implies that degw f ≥ 2 and

LDw(f) = 2. We may assume that degw f = 6w1 + 4w2. Also, we can

see easily that f̂ = x3y3, hence degw f̂ = 3(w1 + w2). Then

LDw(f)− 1

LDw(f)
degw f = 3w1 + 2w2 ≤ 3w1 + 3w2 = degw f̂ .

Therefore f does not satisfy the assumption on Theorem 2.11 (b) for any

w ∈ N2. □

Also, in the case where the characteristic of R is positive, Theorem 2.11

(b) and Corollary 2.15 do not hold true in general. We give two examples

below.

Example 2.17. Let k be a field of characteristic p > 0 and let k[x, y] ∼=k

k[2]. The following two polynomials are not closed.

(a) f = xp + yp + (x+ y)p−1.

(b) g = xp + yp + x+ y.

Indeed, for (a), we can see easily that f̂ = (x + y)p−2. Hence degw f

satisfies the assumption on Theorem 2.11 (b) for w = (1, 1). However,

k[f ] ⊊ k[x+ y], which implies that f is not a closed polynomial.
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Also, for (b), we see that ĝ = 1. Hence degw g satisfies the assumption

on Corollary 2.15. However, k[g] ⊊ k[x+ y], which implies that g is not

a closed polynomial.

Finally, we give a necessary and sufficient condition for a polynomial

f to be satisfied “K[f ]∩B = R[f ]” when R is a UFD. This is a refinement

of the statement in Example 2.5.

Lemma 2.18. Suppose that R is a UFD. For f ∈ B \ R, we denote

c(f) ∈ R by the greatest common divisor of the coefficients of f . Then

the following two conditions are equivalent:

(i) c(f − f(0, . . . , 0)) ∈ R∗.

(ii) K[f ] ∩B = R[f ].

Proof . Without loss of generality, we may assume that f(0, . . . , 0) = 0.

Then c(f − f(0, . . . , 0)) = c(f). We note also c(gh) = c(g)c(h) for

g, h ∈ B.

(i) =⇒ (ii) Suppose that c(f) ∈ R∗. Let g ∈ K[f ] ∩ B. Then there

exist u0, u1, . . . , um ∈ K such that

g = u0f
m + u1f

m−1 + · · ·+ um−1f + um.

Since f(0, . . . , 0) = 0 and g ∈ B, we see that g(0, . . . , 0) = um and

um ∈ R. Now, we choose r ∈ R \ {0} with rui ∈ R for 0 ≤ i ≤
m. Let g1 := r(g − um)/f ∈ B, namely, g1 =

∑m−1
i=0 rum−1−if

i. Then

c(g1) = rc(f)−1c(g − um) ∈ rR. Hence g1 ∈ rB, especially, rum−1 =

g1(0, . . . , 0) ∈ rR. This implies um−1 ∈ R. Next, let

g2 :=
r(g − um−1f − um)

f 2
∈ B.

By the same augment, we have um−2 ∈ R. Using the same augment

inductively, we have ui ∈ R for 0 ≤ i ≤ m, so g ∈ R[f ].

(ii) =⇒ (i) Suppose that c(f) /∈ R∗. Let f ∗ := f/c(f) ∈ B. Then

R[f ] ⊊ R[f ∗] and K[f ] = K[f ∗]. Since c(f ∗) ∈ R∗, by the consequence

of “(i) =⇒ (ii)”, K[f ∗] ∩B = R[f ∗]. Therefore

R[f ] ⊊ R[f ∗] = K[f ∗] ∩B = K[f ] ∩B = R[f ].

This is a contradiction. □
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3. Closed polynomials in special cases

This section in based on [33, Section 2]. Let B ∼=R R[n] be the polynomial

ring in n variables over an integral domain R of characteristic p ≥ 0. Set a

system of variables of B by x1, . . . , xn, that is, B = R[x1, . . . , xn] and set

K = Q(R). For w = (w1, . . . , wn) ∈ Nn, we define degw by degw xi = wi

and deg by the standard degree function on B.

In this section, we study closed polynomials in the following cases:

• Monomials (Example 2.19 ).

• Polynomials with the Jacobian condition (Proposition 2.20 ).

• Polynomials whose degree is prime (Theorem 2.22 ).

The following example gives a classification of monomials which are

closed polynomials.

Example 2.19. Let uxm1
1 · · ·xmn

n be a monomial ofB. Then the following

two conditions are equivalent:

(i) uxm1
1 · · ·xmn

n is a closed polynomial over R and K[f ]∩B = R[f ].

(ii) u ∈ R∗ and gcd(m1, . . . ,mn) = 1.

Proof . Let f = uxm1
1 · · · xmn

n and let d = gcd(m1, . . . ,mn).

(i) =⇒ (ii) If u /∈ R∗, then

R[f ] = K[f ] ∩B = R[xm1
1 · · ·xmn

n ] ⊋ R[f ].

This is a contradiction. Suppose that u ∈ R∗ and d ≥ 2. For 1 ≤ i ≤ n,

let ℓi = mi/d ∈ N. Then u−1f = (xℓ1
1 · · ·xℓn

n )d, so xℓ1
1 · · ·xℓn

n /∈ R[f ], but

it is integral over R[f ]. This is a contradiction.

(ii) =⇒ (i) Since u ∈ R∗, we haveK[f ]∩B = R[f ]. Furthermore, the

condition gcd(m1, . . . ,mn) = 1 implies that f is primitive in BK for the

standard Z-grading. By Theorem 2.11 (a), f is a closed polynomial. □

For polynomials f1, . . . , fn ∈ B, let F := (f1, . . . , fn). We denote

J(F ) by the Jacobian matrix of F with respect to variables x1, . . . , xn,

namely, J(F ) = (∂fi/∂xj)1≤i, j≤n.

Proposition 2.20. Suppose that the characteristic of R is zero. Let

F := (f1, . . . , fn) for polynomials f1, . . . , fn ∈ B. Assume that detJ(F ) ∈
R \ {0} and K[fi] ∩ B = R[fi] for 1 ≤ i ≤ n. Then these polynomials

f1, . . . , fn are closed polynomials. In particular, for g ∈ B \R satisfying
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K[g] ∩ B = R[g], if ĝ = gcd(gx1 , . . . , gxn) ∈ R \ {0}, then it is a closed

polynomial over R.

Proof . Suppose that detJ(F ) ∈ R \ {0}. Then there exist gij ∈ BK such

that, for 1 ≤ i, j ≤ n,

∂fi
∂xj

= gij f̂i.

Here, we note that f̂i is a polynomial over K. We have

detJ(F ) =
∑
σ∈Sn

sgn(σ)
∂f1

∂xσ(a)

· · · ∂fn
∂xσ(n)

=
∑
σ∈Sn

sgn(σ)g1σ(a)f̂1 · · · gnσ(n)f̂n

= (f̂1 · · · f̂n) ·
∑
σ∈Sn

sgn(σ)g1σ(a) · · · gnσ(n),

where Sn is the symmetric group on n elements. For each permutation

σ ∈ Sn, sgn(σ) denotes the signature of σ. Since detJ(F ) ∈ R \ {0}, we
have f̂i ∈ K∗. Hence deg f̂i = 0 for 1 ≤ i ≤ n. Therefore each fi satisfies

the assumption on Theorem 2.11 (b) for w = (1, . . . , 1). This implies

that fi is a closed polynomial for 1 ≤ i ≤ n. □

In the case where R is a field of characteristic zero, the above proposition

gives a relation between the Jacobian conjecture and closed polynomials.

Let k be a field of characteristic zero and let k[X] = k[x1, . . . , xn] ∼=k k
[n]

be the polynomial ring in n variables over k. For f1, . . . , fn ∈ k[X], let

F = (f1, . . . , fn). We can regard F as a k-endomorphism on k[X]. Here,

we consider the following two conditions (a) and (b).

(a) F is a k-automorphism on k[X].

(b) det J(F ) ∈ k∗.

It is easy to show that the implication “(a) =⇒ (b)” holds true. The

Jacobian conjecture says that the converse implication “(b) =⇒ (a)”

holds true, namely, the above two conditions (a) and (b) are equivalent.

Let f ∈ k[X] be a polynomial. We say that f satisfies the Jacobian

condition if there exist f2, . . . , fn ∈ k[X] such that F = (f, f2, . . . , fn)

satisfies the condition (b). We denote JCk(k[X]) by the set of polyno-

mials satisfying the Jacobian condition. Then it is well known that the

Jacobian conjecture is equivalent to the following assertion (c) (see e.g.,

[6]):

(c) Every f ∈ JCk(k[X]) is a variable.
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In fact, Proposition 2.20 implies that every f ∈ JCk(k[X]) is at least a

closed polynomial.

As the end of this section, we consider polynomials of degree prime.

We prove the following lemma needed later.

Lemma 2.21. Suppose that the characteristic of R is zero. For f ∈ B\R,

the following conditions are equivalent:

(i) deg f̂ = deg f − 1.

(ii) There exist r1, . . . , rn ∈ K with (r1, . . . , rn) ̸= (0, . . . , 0) such

that f ∈ K[r1x1 + · · ·+ rnxn].

Proof . (i) =⇒ (ii) Let d = deg f . There exist r1, . . . , rn ∈ BK such that

fxi
= rif̂ for 1 ≤ i ≤ n. We may assume that fx1 ̸= 0. Then

d− 1 = deg f̂ ≤ deg fx1 ≤ d− 1,

so we have deg fx1 = d− 1 = deg f̂ and r1 ∈ R \ {0}. For 1 ≤ i ≤ n such

fxi
̸= 0, using the same argument, we have ri ∈ K∗. On the other hand,

for 1 ≤ i ≤ n with fxi
= 0, we have ri = 0. So ri is either a non-zero

constant polynomial or 0 for 1 ≤ i ≤ n. Set g := r1x1+ · · ·+ rnxn. Since

deg g = 1, we see easily that g is a closed polynomial in BK . By Theorem

2.4, there exists a K-derivation δ on BK such that ker δ = K[g]. Then

δ(f) = δ(x1)fx1 + · · ·+ δ(xn)fxn

= δ(x1)r1f̂ + · · ·+ δ(xn)rnf̂

= δ(g)f̂

= 0.

Therefore f ∈ ker δ = K[g].

(ii) =⇒ (i) Let d = deg f and g := r1x1+ · · ·+rnxn. Since f ∈ K[g],

there exists u(t) ∈ K[t] of degree d with f = u(g). Then fxi
= riu

′(g)

for 1 ≤ i ≤ n, where u′(t) = du(t)/dt. Then deg u′(g) = d− 1 and u′(g)

divides f̂ . So we have

deg u′(g) ≤ deg f̂ ≤ d− 1.

Therefore deg f̂ = d− 1. □

Using Lemma 2.21, we give a necessary and sufficient condition for

polynomials of degree prime to be a closed polynomial.

Theorem 2.22. Let B ∼=R R[n] be the polynomial ring in n variables

over an integral domain R of characteristic zero. For a non-constant

polynomial f ∈ B \ R of prime degree such that K[f ] ∩ B = R[f ], the

following conditions are equivalent:
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(i) f is a closed polynomial.

(ii) deg f̂ < deg f − 1.

Proof . (i) =⇒ (ii) Suppose that deg f̂ = deg f − 1. By Lemma 2.21,

there exist r1, . . . , rn ∈ K such that (r1, . . . , rn) ̸= (0, . . . , 0) and f ∈
K[g], where g := r1x1 + · · · + rnxn. Since deg f is prime, especially

deg f ≥ 2, we have K[f ] ⊊ K[g]. By Theorem 2.4, f is not a closed

polynomial.

(ii) =⇒ (i) Suppose that deg f̂ < deg f − 1. Since deg f is prime,

LDw(f) = deg f ≥ 2, where w = (1, . . . , 1). Then

LDw(f)− 1

LDw(f)
deg f =

deg f − 1

deg f
deg f = deg f − 1.

Therefore we have

deg f̂ < deg f − 1 =
LDw(f)− 1

LDw(f)
deg f.

By Theorem 2.11 (b), f is a closed polynomial. □

4. Other classes of polynomials

This section is based on [55, Section 2] and a part of [33, Section 2]. Let

B ∼=R R[n] be the polynomial ring in n variables over an integral domain

R of characteristic p ≥ 0. Set K = Q(R) and BK = B⊗RK ∼= K [n]. For

w = (w1, . . . , wn) ∈ Nn, we define degw by degw xi = wi and deg by the

standard degree function on B.

A non-constant polynomial f ∈ B \ R is univariate over R if there

exists a variable u ∈ B such that f ∈ R[v]. Also f is said to be a

factorially closed polynomial over R if R[f ] is factorially closed in B.

So far, we have the following four classes of polynomials:

CLR(B) := the set of closed polynomials over R in B.

FCLR(B) := the set of factorially closed polynomials over R in B.

UVR(B) := the set of univariate polynomials over R in B.

VAR(B) := the set of variables over R in B.

It is easy to show that CLR(B) ⊃ FCLR(B) ⊃ VAR(B) and UVR(B) ⊃
VAR(B). Furthermore, it follows from Theorem 2.4 that VAK(BK) =

UVK(BK) ∩ CLK(BK). We show some examples as below.

Example 2.23. Let B = R[x, y, z1, . . . , zn−2] ∼=R R[n] for n ≥ 2. Then

the following assertions hold true.
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(a) If R is not a field, then ax ∈ UVR(B) ∩ CLR(B) for a prime

element a ∈ R. However, ax is not a variable.

(b) xy ∈ CLR(B), but it is not factorially closed.

(c) x2 + y3 ∈ FCLR(B), but it is not a variable.

Proof . (a) It is clear that ax is univariate and is not a variable. Let

f ∈ B such that f is integral over R[ax]. Then there exist m ≥ 1 and

Pi ∈ R[1] such that

fm + P1(ax)f
m−1 + · · ·+ Pm−1(ax)f + Pm(ax) = 0.

For λ ∈ R, let gλ = f(1, y, z1, . . . , zn−2) ∈ R[y, z1, . . . , zn−2]. Applying

x = λ for the above equation, gλ is integral over R, hence gλ ∈ R for any

λ ∈ R. Since R is an infinite set, this implies that f ∈ R[x].

If f ̸∈ R[ax], then there exists ℓ ≥ 1 such that aℓf ∈ R[ax] and

aℓ−1f ̸∈ R[ax]. Multiplying aℓm on the both side of the equation, we

have

(aℓf)m = −a(aℓ−1P1(ax)(a
ℓf)m−1 + · · ·+ aℓm−1Pm(ax)),

hence (aℓf)m ∈ aR[ax]. Since aR[ax] is a prime ideal of R[ax], we have

aℓf ∈ aR[ax]. Then we have aℓ−1f ∈ R[ax], however, this contradicts

to the choice of ℓ. Hence f ∈ R[ax], which implies that ax is a closed

polynomial over R.

(b) It is clear that xy is not a factorially closed polynomial. It follows

from Example 2.19 that xy ∈ CLR(B).

(c) It is clear that x2 + y3 is not a variable. It follows from Example

4.9 (see Chapter 4 ) that x2 + y3 ∈ FCLR(B). □

As seeing the above examples, if n ≥ 2, then we have

• CLR(B) ⊋ FCLR(B) ⊋ VAR(B),

• UVR(B) ⊋ VAR(B),

• VAR(B) ̸= UVR(B) ∩ CLR(B),

for an arbitrary integral domain R which is not a field.

In the rest of this section, we assume that k is a field and B ∼=k k[n]

is the polynomial ring in n variables over k.

Lemma 2.24. Let f ∈ B \ k. Then the following two conditions are

equivalent:

(i) k[f ] is algebraically closed in B.

(ii) k[f ] is integrally closed in B.
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Proof . “(i) =⇒ (ii)” is clear. “(ii) =⇒ (i)” follows from k(f)∩k[n] = k[f ]

and Proposition 1.1. □

We denote k[f ] by the algebraic closure of k[f ] in B. Then k[f ] is a

Dedekind subring of B containing k. It follows from [75, Theorem 8]

that there exists clf ∈ B\k such that k[f ] = k[clf ] and (clf)(0, . . . , 0) = 0.

Furthermore, clf is unique up to multiplication by k∗. Then the following

holds true.

Lemma 2.25. With the above notations, the following two conditions

are equivalent:

(i) f is univariate.

(ii) clf is a variable.

Proof . The part “(ii) =⇒ (i)” is obvious. We prove the converse im-

plication. Suppose that f is univariate. Then there exists a coordinate

u ∈ k[n] such that f ∈ k[u]. Since k[clf ] ⊂ k[u] and k[clf ] is algebraically

closed in B, k[clf ] = k[u]. Hence clf is a variable. □

In the case where n = 2, there are some criteria of a polynomial

f ∈ k[2] to be a variable. The following theorem is proved by Abhyankar

and Moh ([1]). There are several algebraic proofs of this theorem, see

e.g., Richman [66], Kang [31], Makar-Limanov [44], Nowicki [61] and

Essen [15, Theorem 5.4.1].

Theorem 2.26. Let k be a field of characteristic p ≥ 0 and let k[t] ∼=k k
[1]

be the polynomial ring in one variable over k. Let f, g ∈ k[t] \ {0} such

that k[f, g] = k[t] and p does not divide gcd(deg f, deg g) whenever p > 0.

Then either deg f divides deg g or deg g divides deg f .

Although the statement of the above theorem is very simple, it has a

lot of applications for the study of the polynomial ring in two variables.

Among them, the most famous result is the following, and it is called the

Abhyankar-Moh-Suzuki Theorem.

Theorem 2.27. (cf. Abhyankar-Moh [1], Suzuki [72]) Let k be a field of

characteristic zero and let ξ ∈ k[x, y] ∼=k k
[2]. Then ξ is a variable if and

only if k[x, y]/ξk[x, y] ∼=k k
[1].

Proof . The “only if” part is clear. We prove the “if” part. Suppose that

k[x, y]/ξk[x, y] ∼=k k[1]. Let f, g ∈ k[t] be the image of x, y respectively.

We can define the surjective homomorphism of k-algebras

φ : k[x, y] → k[t]
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by φ(x) = f and φ(y) = g. Here, we define degφ := deg f + deg g. If

degφ = 1, then we may assume that deg f = 1 and deg g = 0, that is,

f = at+ b and g = c for some a, c ∈ k∗ and b ∈ k. Then

ξk[x, y] = kerφ = (y − c)k[x, y],

hence ξ is a variable.

Assume that degφ ≥ 2. Since k[f, g] = k[t], by Theorem 2.27, we may

assume that deg g is divided by deg f , namely, deg g = d deg f for some

d ≥ 1. We can choose a ∈ k∗ such that deg g > deg(g − afd). Here, we

define the k-automorphism E on k[x, y] by E(x) = x and E(y) = y−axd.

Then deg(φ ◦ E) < degφ and

k[f, g − afd] = k[f, g] = k[t].

By the induction hypothesis, we see that ξ is a variable. □

When k is an algebraically closed field of characteristic zero, the above

theorem says that, for f ∈ k[x, y], f is a variable if and only if every fiber

of Φf : Spec k[2] → Spec k[f ] is isomorphic to A1
k.

By using the Abhyankar-Moh-Suzuki Theorem, we give characteriza-

tions of univariate polynomials in k[x, y] ∼=k k
[2] as below.

Theorem 2.28. Let k be an algebraically closed field of characteristic

zero, let f ∈ k[2]\k be a non-constant polynomial and let Φf : Spec k[2] →
Spec k[f ] be the morphism associated to the inclusion k[f ] → k[2]. Let

m be the degree of field extension Q(k[f ]) over k(f). Then the following

three conditions are equivalent:

(i) f is univariate.

(ii) ∆f is locally nilpotent.

(iii) For any closed point P ∈ Spec k[f ],

Φ−1
f (P ) =

r∑
i=1

miFi,

where Fi
∼=k A1

k for 1 ≤ i ≤ r and
∑r

i=1mi = m.

Proof . The part “(i) ⇐⇒ (ii)” follows from Rentschler’s Theorem (see

e.g., [18, Corollary 4.6]). We show the equivalence of (i) and (iii).

First of all, we give some arguments. By the discussion preceding

the statement of Lemma 2.25, we have k[f ] = k[clf ]. Now, we consider

the morphism Ψ : Spec k[clf ] → Spec k[f ] with respect to the inclusion
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k[f ] → k[clf ], that is, we consider the following diagram:

A2
k
∼=k Spec k[x, y]

Φf //

Φclf ((QQ
QQQ

QQQ
QQQ

QQ
Spec k[f ]

Spec k[clf ].

Ψ

OO

Let m ≥ 1 be the degree of field extension k(clf) over k(f). Then for any

closed point P ∈ Spec k[f ],

Ψ−1(P ) =
r∑

i=1

miQi,

where each Qi is a distinct closed point of Spec k[clf ] and
∑r

i=1mi = m.

Therefore

Φ−1
f (P ) = Φ−1

clf

( r∑
i=1

miQi

)
=

r∑
i=1

miΦ
−1
clf
(Qi).

(i) =⇒ (iii) By Lemma 2.25, if f is univariate, then clf is a variable.

It follows from Theorem 2.27 that Φ−1
clf
(Qi) is isomorphic to A1

k for any

1 ≤ i ≤ r. Therefore we have the assertion.

(iii) =⇒ (i) It is enough to show that clf is a variable. Since clf

is a closed polynomial, it follows from Theorem 2.3 that there exists

Q0 ∈ Spec k[clf ] such that Φ−1
clf
(Q0) is irreducible and reduced. Put P :=

Ψ(Q0) ∈ Spec k[f ]. By the assumption, Φ−1
f (P ) =

∑r
i=1 miFi with Fi

∼=k

A1
k, where

∑r
i=1mi = m. Since Φ−1

clf
(Q0) ⊂ Φ−1

f (P ) and Φ−1
clf
(Q0) is

irreducible, there exists 1 ≤ i ≤ r such that Φ−1
clf
(Q0) ⊂ Fi

∼=k A1
k. Since

the dimension of Φ−1
clf
(Q0) is one, Φ−1

clf
(Q0) ∼=k A1

k. By using Theorem

2.27 again, we see that clf is a variable. □

Next, we give characterizations of factorially closed polynomials in

B ∼=k k
[n], where k is an algebraically closed field of characteristic p ≥ 0.

Let f ∈ B \ k and let

Φf : An
k
∼=k SpecB → Spec k[f ] ∼=k A1

k

be the surjective morphism defined by the natural inclusion k[f ] → B.

Theorem 2.29. Let k be an algebraically closed field. For a non-constant

polynomial f ∈ B ∼=k k
[n], the following conditions are equivalent:

(i) f is a factorially closed polynomial.

(ii) f − λ is irreducible for any λ ∈ k.

(iii) Every fiber of Φf is irreducible and reduced.
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Proof . The part “(ii) ⇐⇒ (iii)” is obvious. We show the equivalence of

(i) and (ii).

(i) =⇒ (ii) Suppose that k[f ] is a factorially closed in B. If there

exists λ ∈ k such that f − λ is reducible, then f − λ = gh for some

g, h ∈ B \ k. Then gh ∈ k[f − λ] = k[f ], however, since deg g and deg h

are less than deg(f − λ), g ̸∈ k[f ] and h ̸∈ k[f ]. This is a contradiction.

(ii) =⇒ (i) Let g, h ∈ B \ {0} such that gh ∈ k[f ]. Since k is an

algebraically closed field, there exist λ1, . . . , λs ∈ k and ε ∈ k∗ such that

gh = ε

s∏
i=1

(f − λi).

By reordering λ1, . . . , λs ∈ k if necessary, we have g = ε1
∏r

i=1(f − λi)

and h = ε2
∏s

j=r+1(f − λj) for ε1, ε2 ∈ k∗. Then g, h ∈ k[f ], so k[f ] is

factorially closed in B. □
Later in Chapter 4.3, by using the above theorem, we give some examples

of factorially closed polynomials.

As the end of this section, we show a relation between factorially

closed polynomials and Darboux polynomials (see (P.6)) in the case

where n = 2.

Proposition 2.30. Let k be an algebraically closed field of characteristic

zero and let f ∈ k[x, y] ∼=k k[2]. If f is a factorially closed polynomial,

then ∆f has no Darboux polynomials any other than elements of the

kernel of ∆f .

Proof . We define a morphism Φf : Spec k[x, y] → Spec k[f ] by the in-

clusion k[f ] ⊂ k[x, y]. By Theorem 2.29, every fiber of Φf is irreducible

and reduced, in particular it gives a fibration. By [12, Corollary 2.4],

gcd(fx, fy) = 1, so ∆f is irreducible. Moreover k(x, y)∆f contains k(f).

Therefore f and ∆f satisfy the assumptions of [52, Lemma 2.4]. By [52,

Lemma 2.4 (2)], X∆f
= 0, which means that if g is a Darboux polynomial

of ∆f , then g ∈ k[x, y]∆f . □
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CHAPTER 3

Dimension two

In this chapter, we study derivations, higher derivations and closed poly-

nomials in the polynomial ring in two variables over an integral domain.

Let R be an integral domain of characteristic p ≥ 0 and let R[x, y] ∼=R R[2]

be the polynomial ring in two variables x, y over R. When R is a UFD,

the following result is important.

Theorem 3.1. Let R be a UFD of characteristic p ≥ 0. Then the

following two assertions hold true.

(a) Suppose that p = 0. For any non-zero R-derivation d on R[x, y],

R[x, y]d = R[f ] for some f ∈ R[x, y].

(b) For any non-trivial higher R-derivation D = {Dℓ}∞ℓ=0 on R[x, y],

R[x, y]D = R[f ] for some f ∈ R[x, y].

When R is a field of characteristic zero, Theorem 3.1 (a) is proved by

Nowicki and Nagata [62] in 1988. After that, this result is generalized

by Berson [7] in 1999 or El Kahoui [13] in 2004, when R is a UFD of

characteristic zero. Furthermore, in 2011 Kojima and Wada [38] proved

the assertion in Theorem 3.1 (b) and Wada [74] gave a simple proof. The

remarkable point of Wada’s proof is what he only used Lüroth’s theorem

and some elementary discussions to prove the assertion. For this reason,

his proof makes sense for the assertion (a).

On the other hand, when R is not necessarily a UFD, Theorem 3.1

dose not hold in general.

Example 3.2. (cf. [18, Example 4.4]) Let k be a field of characteristic

zero and let k[t] ∼=k k[1]. Set R = k[t2, t3]. Here, we define the R-

derivation d on R[x, y] ∼=R R[2] by

d = t2
∂

∂x
+ t3

∂

∂y
.

Then R[x, y]d = R[fmt2 | m ≥ 1], where f = tx− y /∈ R[x, y]. Therefore

the kernel is not finitely generated, especially, is not generated by one

polynomial.
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1. Over an integral domain of characteristic zero

This section is based on [37, Section 3] and [54, Section 2]. By using

Theorem 2.4, we generalize some of Nowicki’s results in [58, Section 2].

The aim of this section is to show Theorem 3.7. When R is a UFD of

characteristic zero, by Theorem 3.1 (a), we know already that, for every

non-zero R-derivation on R[x, y], its kernel is generated by one element

over R. However, as seen in Example 3.2, it does not hold over an integral

domain which is not necessarily a UFD. When R is an integral domain

containingQ, in Theorem 3.7, we give a necessary and sufficient condition

for kernels of derivations to be generated by one polynomial over R.

Through in this section, we assume that R is an integral domain of

characteristic zero, K = Q(R) and R[x, y] ∼=R R[2]. First of all, we

consider derivations of Jacobian type, that is, it has the form d = ∆f for

some f ∈ R[x, y].

Lemma 3.3. For f ∈ R[x, y], the following two assertions hold true.

(a) R[x, y]∆f = R[x, y] if and only if f ∈ R.

(b) R[x, y]∆f = R[f ] if and only if f is a closed polynomial over R

and K[f ] ∩R[x, y] = R[f ].

Proof . (a) If f ∈ R, then fx = fy = 0 and so R[x, y]∆f = R[x, y].

Suppose that f ̸∈ R. Since the characteristic of R is zero, fx ̸= 0 or

fy ̸= 0, which means that ∆f ̸= 0. Hence R[x, y]∆f ̸= R[x, y].

(b) Suppose that R[x, y]∆f = R[f ]. Since the characteristic of R

is zero, by (a) and (P.1), R[f ] is algebraically closed in R[x, y]. By

Proposition 1.1, R[f ] is integrally closed in R[x, y] and K(f) ∩R[x, y] =

R[f ]. Therefore, f is a closed polynomial over R and K[f ] ∩ R[x, y] ⊂
K(f) ∩R[x, y] = R[f ]. Hence K[f ] ∩R[x, y] = R[f ].

Conversely, we suppose that f is a closed polynomial over R and

K[f ]∩R[x, y] = R[f ]. By Proposition 1.1, R[f ] is algebraically closed in

R[x, y]. It follows from Theorem 1.14 that R[f ] is a maximal element of

S(1, R[x, y]). Since R[x, y]∆f ∈ S(1, R[x, y]) and R[f ] ⊂ R[x, y]∆f , we

have R[f ] = R[x, y]∆f . □
As seeing in Theorem 2.29, we give a characterization of univariate

polynomials in the terms of Jacobian derivations. Similarly, we can char-

acterize the closed polynomials in the terms of Jacobian derivations as

below.
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Proposition 3.4. Let f ∈ R[x, y] \ R such that K[f ] ∩ R[x, y] = R[f ].

Then the following conditions are equivalent:

(i) f is a closed polynomial over R in R[x, y].

(ii) The ring K[f ] is a maximal element of S(1, R[x, y]).

(iii) The ring K[f ] is a maximal element of S(1, R[x, y]).

(iv) R[x, y]∆f = R[f ].

Proof . The part “(iv) =⇒ (i)” is a fundamental fact of derivations (see

(P.1)). The equivalence of (i), (ii) and (iii) follows from Theorem 2.4.

Furthermore, the part “(i) =⇒ (iv)” follows from Lemma 3.3 (b). □

When R contains Q, the following lemma is useful to find an element

of the kernel of a derivation on R[x, y]. Although this result follows

from [60, Lemma 2.5.3], we write its proof more kindly as below. The

remarkable point is what we can construct such an element whenever

div(d) = 0. This construction is also used in the next chapter.

Lemma 3.5. Suppose that R contains Q. Let d be a non-zero R-

derivation on R[x, y]. Then div(d) = 0 if and only if there exists a

non-constant polynomial f ∈ R[x, y]\R such that d = ∆f . In particular,

if one of the above equivalent conditions holds, then R[x, y]d ̸= R.

Proof . If there exists f ∈ R[x, y] \ R such that d = ∆f , then it is clear

that div(d) = 0.

Suppose that div(d) = 0. Set p := d(x) and q := d(y). Then we can

write p, q as below:

p =
∑

m,n≥0

[m,n]px
myn, q =

∑
m,n≥0

[m,n]qx
myn,

where [m,n]p, [m,n]q ∈ R. Then

∂p

∂x
=

∑
m≥1, n≥0

m[m,n]px
m−1yn =

∑
m, n≥1

m[m,n− 1]px
m−1yn−1,

∂q

∂y
=

∑
m≥0, n≥1

n[m,n]qx
myn−1 =

∑
m, n≥1

n[m− 1, n]qx
m−1yn−1.

Since 0 = div(d) = ∂p/∂x+ ∂q/∂y, we have that, for m,n ≥ 1,

−n−1[m,n− 1]p = m−1[m− 1, n]q.
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Here, we define a polynomial f ∈ R[x, y] by

[m,n]f =


0 (m = n = 0),

m−1[m− 1, 0]q (m ≥ 1, n = 0),

−n−1[m,n− 1]p (m ≥ 0, n ≥ 1).

Therefore we have,

f =
∑
m≥1

1

m
[m− 1, 0]qx

m +
∑

m≥0, n≥1

− 1

n
[m,n− 1]px

myn.

Then fx = q = d(y) and fy = −p = −d(x), hence we have d = ∆f . Since

d(f) = 0, R[x, y]d ̸= R. □
We prove the following result.

Lemma 3.6. For f ∈ R[x, y]\R, the following two conditions are equiv-

alent:

(i) R[x, y]∆f = R[g] for some g ∈ R[x, y] \R.

(ii) There exists g ∈ R[x, y] \R such that f ∈ R[g] and g is a closed

polynomial over R in R[x, y] with K[g] ∩R[x, y] = R[g].

Proof . (i) =⇒ (ii) Let g ∈ R[x, y] \R such that R[x, y]∆f = R[g]. Since

R[g] is algebraically closed in R[x, y], we see that g is a closed polynomial

over R and K[g] ∩R[x, y] = R[g].

(ii) =⇒ (i) By Proposition 1.1, R[g] is algebraically closed in R[x, y].

By Proposition 1.10 (b), R[x, y]∆f is the algebraic closure of R[f ] in

R[x, y]. Since R[f ] ⊂ R[g], we have R[x, y]∆f = R[g]. □
For a non-zero R-derivation on R[x, y], by Lemma 3.5, if div(d) = 0, then

we can find f ∈ R[x, y] \ R such that d = ∆f . Furthermore, assuming

f(0, 0) = 0, such polynomial is uniquely determined. In this case, we

denote the polynomial by Pd, that is, Pd ∈ R[x, y]\R such that Pd(0, 0) =

0 and d = ∆Pd
.

Theorem 3.7. Let R be an integral domain containing Q. Let d be a

non-zero R-derivation on R[x, y] with div(d) = 0. Then the following

two conditions are equivalent:

(i) R[x, y]d = R[f ] for some f ∈ R[x, y] \R.

(ii) There exists f ∈ R[x, y]\R such that Pd ∈ R[f ] and f is a closed

polynomial over R in R[x, y] with K[f ] ∩R[x, y] = R[f ].

Proof . Since div(d) = 0, according to the previous discussion of Theorem

3.7, we can write d = ∆Pd
. By applying Lemma 3.6 for ∆Pd

, we have

the assertion. □
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We consider again the derivation d = t2∂x + t3∂y in Example 3.2. We

see that div(d) = 0 and Pd = t3x − t2y. Since the standard degree with

respect to x and y of Pd is one, there are no polynomials f such that

Pd ∈ R[f ] any other than Pd up to multiplication by k∗. However, we

have

K[Pd] ∩R[x, y] = R[(tx− y)mt2 | m ≥ 1] ⊋ R[Pd].

Therefore d does not satisfy the condition (ii) in Theorem 3.7.

2. Over a UFD of characteristic zero

This section is based on a part of [37, Section 3] and [54, Section 2]. In

this section, we study derivations on R[x, y] ∼=R R[2] in the case where R

is a UFD of characteristic zero.

Proposition 3.8. Let f, g ∈ R[x, y] \R. Suppose that ∆f (g) = 0. Then

the following assertions hold true.

(a) R[x, y]∆f = R[x, y]∆g .

(b) There exist h ∈ R[x, y] and u(t), v(t) ∈ R[t] ∼=R R[1] such that

f = u(h) and g = v(h).

Proof . (a) By the assumptions on g, we see that

R ⊊ R[x, y]∆g ⊊ R[x, y].

Hence R[x, y]∆g ∈ S(1, R[x, y]). Since R is a UFD, by Theorem 3.1,

there exists h ∈ R[x, y] \ R such that R[x, y]∆g = R[h]. Then we can

write g ∈ R[x, y]∆g = R[h] as

g = a0h
m + a1h

m−1 + · · ·+ am−1h+ am,

where a0, a1, . . . , am ∈ R and a0 ̸= 0. Applying ∆f for the both side of

the above equation, we have

(ma0h
m−1 + (m− 1)a1h

m−2 + · · ·+ am−1)∆f (h) = 0.

Since h /∈ R, ma0h
m−1 + · · ·+ am−1 ̸= 0, hence ∆f (h) = 0. Therefore we

have R[x, y]∆g = R[h] ⊂ R[x, y]∆f , hence R[x, y]∆f = R[x, y]∆g .

(b) By the proof of the assertion (a), we have R[x, y]∆f = R[x, y]∆g =

R[h] for some h ∈ R[x, y] \R. Hence f and g are written as polynomials

with respect to h over R. □

For d, δ ∈ DerR R[x, y], we write d ∼ δ when fd = gδ for some

f, g ∈ R[x, y] \ {0}. In the rest of this section, we assume further R

contains Q.
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Chapter 3 Dimension two

Theorem 3.9. Let R be a UFD containing Q and let d be a non-zero

R-derivation on R[x, y] ∼=R R[2]. Then the following two conditions are

equivalent:

(i) R[x, y]d ̸= R.

(ii) There exists an R-derivation δ with div(δ) = 0 such that d ∼ δ.

Proof . (ii) =⇒ (i) If d ∼ δ, then R[x, y]d = R[x, y]δ. Hence it follows

from Lemma 3.5 that R[x, y]d ̸= R.

(i) =⇒ (ii) Suppose that R[x, y]d ̸= R. Since R[x, y]d = R[x, y]hd for

any non-zero polynomial h ∈ R[x, y]\{0}, we may assume that d(x) and

d(y) are relatively prime. Let f ∈ R[x, y]d\R and set h = gcd(fx, fy) ̸= 0.

Then fx = Ph and fy = Qh for some P,Q ∈ R[x, y] which are relatively

prime. We have

d(x)P + d(y)Q = 0.

Therefore we have d(x) = −Q and d(y) = P , hence d = h∆f , that is,

d ∼ ∆f and div(∆f ) = 0. □

Theorem 3.10. Let R be a UFD containing Q and let d and δ be R-

derivations of R[x, y] ∼=R R[2] such that R[x, y]d ̸= R and R[x, y]δ ̸= R.

Then R[x, y]d = R[x, y]δ if and only if d ∼ δ.

Proof . The “if” part is obvious. We prove the “only if” part.

If R[x, y]d = R[x, y]δ = R[x, y], then d = δ = 0 and hence d ∼ δ.

Hence we may assume that d ̸= 0 and δ ̸= 0. It follows from Lemma 3.5

and Theorem 3.9 that d ∼ ∆f and δ ∼ ∆g for some f, g ∈ R[x, y] \ R.

Then

R[x, y]∆f = R[x, y]d = R[x, y]δ = R[x, y]∆g .

By Proposition 3.8 (b), there exists h ∈ R[x, y] and u(t), v(t) ∈ R[t] ∼=R

R[1] such that f = u(h) and g = v(h). Then

∆f = −fy∂x + fx∂y = u′(h)(−hy∂x + hx∂y) = u′(h)∆h,

where u′(t) = du(t)/dt. Similarly, we have also ∆g = v′(h)∆h. Therefore

we have ∆f ∼ ∆g, which implies that d ∼ δ. □

Suppose that R is a UFD containing Q. Let d ∈ DerR R[x, y]\{0}. Then
there exists f ∈ R[x, y] such that R[x, y]d = R[f ]. If R[f ] ̸= R, then f is

a closed polynomial. For f, g ∈ R[x, y], we write f ≡ g if f = ag + b for

some a ∈ R∗ and b ∈ R. Clearly, f ≡ g if and only if R[f ] = R[g]. Here,

we define the following:
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3.3 Over a field of positive characteristic

DerRR[x, y] := the set of equivalence classes of DerR R[x, y] \ {0},

CLRR[x, y] := the set of equivalence classes of CLR(R[x, y]),

KDerRR[x, y] := {R[x, y]d | d ∈ DerR R[x, y] \ {0} }.

By Theorem 3.10, we have the following result:

Proposition 3.11. We define α : DerRR[x, y] → CLRR[x, y] ∪ {1} by,

for [d] ∈ DerRR[x, y],

α([d]) =

{
f if R[x, y]d = R[f ] ̸= R,

1 if R[x, y]d = R,

where we denote [d] by the equivalence class of d ∈ DerR R[x, y]. Then α

is a well-defined bijective mapping.

Proof . The above map α factors through KDerRR[x, y] as below:

β : KDerRR[x, y] → CLRR[x, y] ∪ {1},

where β is defined by β(R[x, y]d) = f if R ̸= R[x, y]d = R[f ], otherwise

β(R[x, y]d) = 1. It is clear that β is injective. By Theorem 2.4, β

is surjective, hence β is bijective. Furthermore, by Theorem 3.10, the

natural mapping [d] 7→ R[x, y]d is bijective. Therefore, α is bijective. □

Suppose that R is a UFD containingQ. For a given d ∈ DerR R[x, y]\{0},
it is important to determine the generator of R[x, y]d. By Proposition

3.11, it is enough to understand closed polynomials up to “≡”. We al-

ready have some criteria and partial classifications of closed polynomials

(see e.g., Chapter 2 ). By using these ideas, we classify the kernel of a

monomial derivation on R[x, y] and k(x, y) in Chapter 4.

3. Over a field of positive characteristic

The aim of this section is to define higher derivations of Jacobian type

(see Definition 3.14 ) and observe them. By using this kind of higher

derivations, we show Theorem 3.16 which gives a characterization of

variables of the polynomial ring in two variables over a field of positive

characteristic. This is a generalization of [14, Proposition 2.3] in the case

where the characteristic of the ground field is positive.

Let k be a field of characteristic p ≥ 0 and let B = k[x, y] ∼=k k[2].

For a given polynomial f ∈ B, we denote HDk[f ]B by the set of higher

derivations on B whose kernels contain k[f ]. When p = 0, we know that

the set HDk[f ]B has a non-trivial element. Indeed, it is enough to take
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Chapter 3 Dimension two

D = {ℓ!−1∆f
ℓ}∞ℓ=0. However, when p > 0, ℓ!−1∆f

ℓ does not make sense

for ℓ ≥ p. For this reason, we do not know whether the set HDk[f ]B

contains a non-trivial element or not. Proposition 3.15 gives a partial

answer for this question.

First of all, we prepare some notation and results of general commu-

tative ring theory (see [25] or [45]). Let A be a commutative ring and let

B be a commutative A-algebra via a homomorphism φ : A → B. We say

that B is smooth over A if for any A-algebra C with g : A → C, an ideal

N ⊂ C with N2 = 0 and homomorphism of A-algebras u : B → C/N ,

there exists a homomorphism ofA-algebras v : B → C such that v◦π = u,

where π : C → C/N is the natural homomorphism. That is, v commutes

the following diagram:

B
u / /

∃v

!!D
D

D
D

D C/N

A

φ

OO

g
// C.

π

OO

For p ∈ SpecA, we denote the residue field by κ(p) = Ap/pAp.

Proposition 3.12. Let φ : A → B be a homomorphism of commutative

rings. For p ∈ SpecA, let ιp : κ(p) → B ⊗A κ(p) be the natural homo-

morphism of A-algebras. If φ is smooth, then ιp is also smooth for any

p ∈ SpecA.

Proof . Let p ∈ SpecA. Let C be a κ(p)-algebra with g : κ(p) → C, let

N be an ideal of C with N2 = 0 and let u : B ⊗A κ(p) → C/N be a

homomorphism of κ(p)-algebras. Then we have the following diagram:

B
p // B ⊗A κ(p)

u // C/N

A

φ

OO

f
// κ(p)

ιp

OO

g
// C,

π

OO

where p : B → B ⊗A κ(p) and f : A → κ(p) are the natural homo-

morphisms. When we regard C as an A-algebra via g ◦ f , we can re-

gard u ◦ p : B → C/N as a homomorphism of A-algebras. Since φ

is smooth, there exists a homomorphism v0 : B → C as A-algebras

such that π ◦ v0 = u ◦ p. Here, we define v : B ⊗A κ(p) → C by

v(b⊗ a) = v0(b)g(a) for b ∈ B and a ∈ κ(p). Then v is a homomorphism

of κ(p)-algebras satisfying v ◦ π = u. Therefore ιp is smooth. □
Example 3.13. Let k be a field of characteristic p ≥ 0 and let k[x, y] ∼=k

k[2]. Then the following assertions hold true.

(a) The natural inclusion k → k[x, y] is smooth.
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3.3 Over a field of positive characteristic

(b) For a variable f ∈ k[x, y], the natural inclusion k[f ] → k[x, y] is

smooth.

(c) For xy ∈ k[x, y], the natural inclusion ι : k[xy] → k[x, y] is not

smooth.

Proof . (a) and (b) are obvious. We prove the assertion (c).

Assume to the contrary that ι : k[xy] → k[x, y] is smooth. By Propo-

sition 3.12, the 0-fiber of ι is also smooth, that is,

ι0 : k ∼=k κ(0) → k[x, y]⊗k[xy] κ(0) ∼=k k[x, y]/(xy)

is smooth. Set C = k[t]/(t3) and N = t2C, where k[t] ∼=k k[1]. Then

N2 = 0. Here, we define u : k[x, y]/(xy) → C/N by u(x) = u(y) = t.

Since ι0 is smooth, there exists a homomorphism v : k[x, y]/(xy) → C

of k-algebras such that π ◦ v = u, namely, v commutes the following

diagram:

k[x, y]/(xy)
u //

∃v

&&M
MMMMM
C/N

k

ι0

OO

g
// C.

π

OO

Then v(x) = t+ at2 and v(y) = t+ bt2 for some a, b ∈ k. However,

0 = v(xy) = v(x)v(y) = t2,

which is a contradiction. □

From now on, let k be a field of positive characteristic p > 0 and let

B = k[x, y] ∼=k k
[2] be the polynomial ring in two variables over k.

Definition 3.14. A higher derivation D = {Dℓ}∞ℓ=0 on B is of Jacobian

type if there exists f ∈ k[x, y] such that

(a) f ∈ k[x, y]D,

(b) For 0 ≤ ℓ ≤ p− 1, Dℓ =
1

ℓ!
Dℓ

1 and D1 = ∆f .

Note that the above condition (a) is equivalent to φD(f) = f , where

φD : B → B[[t]] ∼=B B[[1]] is the homomorphism associated to D. That

is, φD is a homomorphism as k[f ]-algebras.

The following proposition guarantees the existence of higher deriva-

tions of Jacobian type in the special case.

Proposition 3.15. Let f ∈ B \k[xp, yp]. If the natural inclusion k[f ] →
B is smooth, then there exists a higher derivation D on B of Jacobian

type with respect to f .
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Chapter 3 Dimension two

Proof . Define D0 = idB and D1 = ∆f (̸= 0). Let B[t] ∼=B B[1]. Here, we

define a map φℓ : B → B[t]/(tℓ+1) by, for g ∈ B and 1 ≤ ℓ ≤ p− 1,

φℓ(g) =
ℓ∑

i=0

1

i!
∆f

i(g)ti.

Then φℓ is a homomorphism of k[f ]-algebras such that φℓ(g)|t=0 = g for

any g ∈ B.

For r ≥ 0, let Cr = B[t]/(tp+r) and Nr = tp+r−1Cr. Then N2
r = 0

and Cr/Nr
∼=B B[t]/(tp+r−1). Since k[f ] → B is smooth, there exists a

homomorphism φp+r : B → Cr of k[f ]-algebras such that πr ◦ φp+r =

φp+r−1, that is, we have the following diagram:

B
φp+r−1 //

∃φp+r

&&L
L

L
L

L
L B[t]/(tp+r−1)

∼=B // Cr/Nr

k[f ]

OO

// B[t]/(tp+r)
= // Cr.

πr

OO

Moreover φp+r(g)|t=0 = g for any g ∈ B. For 0 ≤ i ≤ r − 1, by using

φp+r, we define a homomorphism of k-modules Dp+i : B → B by the

following formula:

φp+r(g) =

p−1∑
ℓ=0

1

ℓ!
∆f

ℓ(g)tℓ +
r−1∑
i=0

Dp+i(g)t
p+i

for g ∈ B. By constructing such homomorphisms inductively, we have

a homomorphism of k[f ]-algebras φ = φ∞ : B → B[[t]] ∼=B B[[1]] such

that, for g ∈ B, φ(g)|t=0 = g and

φ(g) =

p−1∑
ℓ=0

1

ℓ!
∆f

ℓ(g)tℓ +
∞∑
i=0

Dp+i(g)t
p+i.

SetDℓ = ℓ!−1∆f
ℓ for 0 ≤ ℓ ≤ p−1 andD = {Dℓ}∞ℓ=0. By the construction

of each Dℓ, we see that D is a higher derivation on B of Jacobian type

with respect to f . □

The following is the main result in this section which is a generaliza-

tion of [14, Proposition 2.3] in the case where the characteristic of the

ground field is positive.

Theorem 3.16. Let k be a field of characteristic p > 0 and let f ∈ B ∼=k

k[2]. Then the following conditions are equivalent:

(i) f is a variable.

(ii) There exists a locally finite iterative higher derivation D on B

such that BD = k[f ].

44



3.3 Over a field of positive characteristic

(iii) There exists a locally finite iterative higher derivation D on B

of Jacobian type with respect to f such that BD = k[f ].

In order to prove Theorem 3.16, we introduce some definitions as

below. For a positive integer ℓ ≥ 1, we write ℓ! = pe(ℓ)m, where p

does not divide m. Let ℓ ≥ 1 and f ∈ B. For a non-zero derivation

d ∈ Derk B, we say that ℓ!−1dℓ is defined at f if there exists fℓ ∈ B such

that dℓ(f) = pe(ℓ)fℓ and define the value by ℓ!−1dℓ(f) = m−1fℓ. When

ℓ!−1dℓ is defined at any f and ℓ ≥ 1, we consider the map Exp(td) : B →
B[[t]] ∼=B B[[1]] defined by

Exp(td)(f) :=
∞∑
ℓ=0

1

ℓ!
dℓ(f)tℓ.

By the definition of Exp(td), it is a homomorphism of k-algebras and

Exp(td)(f)|t=0 = f for f ∈ B. In order to check whether the map

Exp(td) is defined or not, it is enough to see that ℓ!−1dℓ is defined at x

and y for any ℓ ≥ 1.

Example 3.17. Let B = F5[x, y] ∼=F5 F[2]
5 . Set d1 = y6∂x + ∂y and

d2 = y∂x + x∂y. Then Exp(td1) is defined, but Exp(td2) is not defined.

Indeed, for d1, it is clear that ℓ!−1d1
ℓ is defined at y for ℓ ≥ 1. Also, it

is defined at x for ℓ ≥ 1 as the following table. Therefore Exp(td1) is

defined.

ℓ m d1
ℓ(x) ℓ!−1d1

ℓ(x)

1 1 y6 y6

2 2 y5 3y5

3 3! 0 0

4 4! 0 0

5 4! 5 · 2y2 3y2

6 6 · 4! 5 · 4y y

7 7 · 6 · 4! 5 · 4 3

ℓ ≥ 8 8 · 7 · 6 · 4! 0 0

On the other hand, for d2,

d2
ℓ(x) =

{
y (ℓ is odd),

x (ℓ is even),

hence ℓ!−1d2
ℓ is not defined at x when ℓ ≥ 2.

Remark 3.18. Let d ∈ Derk B be a non-zero derivation. We consider

Autk B as a subgroup of Autk B[[t]] by σ(t) = t for σ ∈ Autk B. If
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Exp(td) can be defined, then Exp(t·σd) can be defined for any σ ∈ Autk B,

where σd := σ−1 ◦ d ◦ σ. In particular, the following holds:

Exp(t · σd) = σ−1 ◦ Exp(td) ◦ σ.

Here, we prove Theorem 3.16.

Proof of Theorem 3.16 . The part “(iii) =⇒ (ii)” is obvious. The impli-

cation “(ii) =⇒ (i)” follows from [35, Theorem 1]. So, we prove the part

“(i) =⇒ (iii)”.

Since f is a variable, f /∈ k[xp, yp] and there exists g ∈ B such that

k[f, g] = B. Define the k-automorphism σ : B → B by σ(x) = f and

σ(y) = g. We may assume that ∆f (g) = 1. Then σ∆f = ∂y. It is clear

that Exp(t∂y) can be defined, hence Exp(t · σ∆f ) = σ−1 ◦ Exp(t∂y) ◦ σ.

This implies that ℓ!−1∆f
ℓ is defined at any h ∈ B and ℓ ≥ 1. Set

D = {ℓ!−1∆f
ℓ}∞ℓ=0. Then D is a locally finite iterative higher derivation

on Jacobian type with respect to f such that BD = k[f ].

□
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CHAPTER 4

Applications and examples

In this chapter, as an application of results on closed polynomials, we

study kernels of monomial derivations on the polynomial ring in two

variables over a UFD (see Theorem 4.2 ). Also, by using the argument in

[63, Section 5] and Theorem 4.2, we determine the non-zero monomial

derivations d on k[x, y] ∼=k k[2] such that the quotient field of the kernel

of d is not equal to the kernel of d in k(x, y) (see Theorem 4.5 ). Fur-

thermore, we give observations for important three kinds of polynomials;

Vénéreau polynomial, Danielewski surface and Koras-Russell threefold.

1. Kernels of monomial derivations on R[x, y]

This section is based on [33, Section 3]. Let R be a UFD containing Q
and K = Q(R). In this section, we study the kernels of R-derivations

on the polynomial ring R[x, y] in two variables x and y over R. A non-

zero R-derivation d on R[x, y] is said to be monomial if d(x) and d(y)

are monomials, here we assume that a monomial may not be monic.

Using results on closed polynomials in Chapters 2 and 3, we determine

generators of the kernel of monomial derivations on R[x, y].

In the case where R is a UFD, the kernel of a non-zero derivation on

R[x, y] is generated by one polynomial (see Theorem 3.1 (a)) and it is

integrally closed in R[x, y]. Thus, if R[x, y]d ̸= R, then it is generated

by a closed polynomial. Therefore, in order to determine a generator

of the kernel of a derivation on R[x, y], it is sufficient to find a closed

polynomial which is vanished by the derivation (see Proposition 3.11 ).

Indeed, the following holds true.

Lemma 4.1. Let R be an integral domain (not necessarily a UFD) of

characteristic zero and let d be a non-zero R-derivation on R[x, y]. If

there exist a closed polynomial f ∈ R[x, y] \ R such that d(f) = 0 and

K[f ] ∩R[x, y] = R[f ], then R[x, y]d = R[f ].

Proof . Since R[f ] is integrally closed in R[x, y] and K[f ] ∩ R[x, y] =

R[f ], by Theorem 1.14, R[f ] is a maximal element of S(1, R[x, y]). Since
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d(f) = 0, we have that R[f ] ⊂ R[x, y]d and R[x, y]d ∈ S(1, R[x, y]). By

the maximality of R[f ], we have R[f ] = R[x, y]d. □
The following is the main result in this section, which gives the clas-

sification of kernels of monomial derivations on R[x, y].

Theorem 4.2. Let d be a non-zero R-derivation on the polynomial ring

R[x, y] in two variables over a UFD R containing Q. Assume that d(x)

and d(y) are monomial, gcd(d(x), d(y)) = 1 and d is none of the following

(a)–(c):

(a) ∂x or ∂y,

(b) aym∂x + bxn∂y, where m,n ∈ N and a, b ∈ R \ {0},

(c) nx∂x −my∂y, where m and n are positive integers.

Then R[x, y]d = R.

In order to prove Theorem 4.2 we show the following two lemmas.

By the following lemma, we see that for derivations as in Theorem 4.2

(a)–(c), their kernels are generated by a closed polynomial.

Lemma 4.3. For the derivations as in Theorem 4.2 (a), (b) and (c), the

following assertions hold true.

(a) d1 := ∂x. Then R[x, y]d1 = R[y].

(b) d2 := aym∂x + bxn∂y, where m,n ∈ N and a, b ∈ R \ {0} with

gcd(a, b) = 1. Then R[x, y]d2 = R[b(m+1)xn+1−a(n+1)ym+1].

(c) d3 := nx∂x −my∂y, where m and n are relatively prime positive

integers. Then R[x, y]d3 = R[xmyn].

Proof . (a) Obvious.

(b) Since div(d2) = 0, by Lemma 3.5, there exists f ∈ R[x, y] \ R

such that d2(f) = 0. By the proof of Lemma 3.5, we can write f as

f =
1

n+ 1
bxn+1 − 1

m+ 1
aym+1.

By Lemma 2.18, we see that K[f ] ∩ R[x, y] = R[f ]. Moreover, we can

check easily that gcd(fx, fy) = 1. By Proposition 2.20, f is a closed

polynomial, also (m+1)(n+1)f is a closed polynomial. Thus R[x, y]d2 =

R[(m+ 1)(n+ 1)f ].

(c) Let g = xm−1yn−1 ∈ R[x, y]. Then div(gd3) = 0. By Lemma

3.5, we can construct a polynomial h ∈ R[x, y] such that gd3(h) = 0 by

h = −xmyn. By Lemma 2.18, we have K[h] ∩ R[x, y] = R[h]. Since m

and n are relatively prime, by Example 2.19, h is a closed polynomial.

Thus R[x, y]d3 = R[x, y]gd3 = R[h] = R[xmyn]. □
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Next, we show the following lemma. This gives some types of deriva-

tions whose kernels have only constant polynomials.

Lemma 4.4. For g ∈ R[x, y] \ {0}, let d = ∂x + g∂y. If degy g ≥ 1, then

R[x, y]d = R.

Proof . Let g = b0y
degy g+ (the lower y-degree terms), for b0 ∈ R[x] \ {0}.

We take any element h ∈ R[x, y] \ {0} and put

h = a0y
s + a1y

s−1 + · · ·+ as−1y + as,

where s = degy h(≥ 0), a0, . . . , as ∈ R[x] and a0 ̸= 0. Then

d(h) = (d(a0)y
s + · · ·+ d(as)) + g(sa0y

s−1 + · · ·+ as−1).

Since degy g ≥ 1, we have s ≤ s− 1 + degy g.

Now, we suppose that d(h) = 0. If s < s − 1 + degy g, then by

comparing the coefficients of ys in the equation d(h) = 0, we obtain the

equality a0b0s = 0, so s = 0. Then 0 = d(h) = d(a0) = ∂x(a0), hence

h = a0 ∈ R. On the other hand, if s = s − 1 + degy g, then we obtain

the equality d(a0) + a0b0s = 0. Since degx d(a0) < degx a0 ≤ degx a0b0,

we have s = 0. Hence h = a0 ∈ R. □
Now, we shall prove Theorem 4.2.

Proof of Theorem 4.2 . From now on, we assume that d is none of (a)–

(c) of Theorem 4.2 and prove that R[x, y]d = R. We denote dK by the

K-derivation on K[x, y] which is the natural extension of d. In order to

prove R[x, y]d = R, it is enough to show that K[x, y]dK = K. Therefore

it is enough to show that, for the following K-derivation d, the kernel of

that is equal to K:

d = xm∂x + ayn∂y,

where a ∈ K∗, m,n ∈ N. If m = 0 and n ≥ 1, then d is the form in

Lemma 4.4. So we know already that the kernel is K. Therefore we may

assume that n ≥ m ≥ 1. Let ℓ be the greatest common divisor of m− 1

and n − 1 as integers, m′ := (m − 1)/ℓ and n′ := (n − 1)/ℓ, here we

assume m′ = n′ = 1 if m = n = 1. We set w := (n′,m′) and consider

the Z-grading gw on K[x, y], that is, degw(x) = n′ and degw(y) = m′ .

Then we can see easily that if f ∈ K[x, y] is homogeneous for gw then so

is d(f).

Let f ∈ K[x, y]d \ {0}. In order to prove K[x, y]d = K, we may

assume that f is homogeneous for gw. Then we have (α0, β0) ∈ N2 such

that

f =
∑
i≥0

β0−in′≥0

cix
α0+im′

yβ0−in′
, (∗)
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where ci ∈ K. Since f ∈ K[x, y]d, we have

0 = d(f)

=
∑
i≥0

β0−in′≥0

ci

(
(α0 + im′)xαiyβ0−in′

+ (β0 − in′)axα0+im′
yβi

)
, (∗∗)

where αi = α0 + im′ +m− 1 and βi = β0 − jn′ + n− 1. Here we set the

following subsets A and B of N2:

A := {(α0 + im′ +m− 1, β0 − in′) | i ≥ 0, β0 − in′ ≥ 0},

B := {(α0 + jm′, β0 − jn′ + n− 1) | j ≥ 0, β0 − jn′ ≥ 0}.
Suppose that A ∩ B = ∅. Then, by taking i = 0 in A, we see from

(∗∗) that c0α0 = 0. So, α0 = 0. Similarly, we have β0 = 0. Hence

f = c0x
α0 = c0 ∈ K.

Suppose that A ∩B ̸= ∅. Then there exist i, j ∈ N such that

α0 + im′ +m− 1 = α0 + jm′,

β0 − in′ = β0 − jn′ + n− 1,

β0 − in′ ≥ 0,

β0 − jn′ ≥ 0.

Then (j− i)m′ = m− 1 and (j− i)n′ = n− 1. Here we may assume that

j ≥ i. Then j− i = ℓ. We consider the cases n ≥ 2 and n = 1 separately.

Case: n ≥ 2. Then j > i. By considering the term i = 0 in (∗∗), we
have c0β0a = 0. So β0 = 0. Since f = c0x

α0 ∈ K[x, y]d, we have α0 = 0.

Therefore, f = c0 ∈ K.

Case: n = 1. Then m′ = n′ = 1 and so i = j. By (∗∗), we have

c0α0 + c0β0a = 0,

c1(α0 + 1) + c1(β0 − 1)a = 0,
...

cβ0−1(α0 + β0 − 1) + cβ0−1a = 0,

cβ0(α0 + β0) + cβ0a = 0.

Since c0 ̸= 0, we have α0 + β0a = 0. If β0 > 0, then a = −α0/β0 ∈ Q<0.

So d is (c) of Theorem 4.2. If β0 = 0, then α0 = 0 and hence f ∈ K. □
We note here that the condition “R is a UFD” is necessary. Even if d

is a monomial derivation, the kernel may not be finitely generated over

R in the case where R is not a UFD (see e.g., Example 3.2 ). Indeed,

the derivation d in Example 3.2 is a monomial derivation, however, that

kernel is not generated by one polynomial, in particular, it needs infinite

generators.
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4.2 Monomial derivations on k(x, y)

　

2. Kernels of monomial derivations on k(x, y)

This section is based on [33, Section 4]. Let k[x, y] ∼=k k
[2] be the polyno-

mial ring in two variables over a field k of characteristic zero and k(x, y)

its quotient field. For a k-derivation d on k[x, y], we denote the same nota-

tion d by the k-derivation on k(x, y) which is the natural extension of the

original d, and its kernel is denoted by k(x, y)d. In this section, by using

the argument in [63, Section 5] and Theorem 4.2, we determine the non-

zero monomial derivations d on k[x, y] such that Q(k[x, y]d) ̸= k(x, y)d.

Let d be a monomial k-derivation on k[x, y]. In order to study k(x, y)d,

by switching the role of x and y, we may assume that the following

conditions are satisfied:

(i) d(x) is monic.

(ii) gcd(d(x), d(y)) = 1.

(iii) deg d(x) ≤ deg d(y) provided d(y) ̸= 0.

The following is the main result in this section.

Theorem 4.5. Let d be a non-zero monomial k-derivation on the poly-

nomial ring k[x, y] in two variables over a field k of characteristic zero.

Assume that d satisfies the above three conditions (i)–(iii), k[x, y]d = k

and k(x, y)d ̸= k. Then d is one of the following (a)–(c).

(a) d = ∂x + axmyn+1∂y, where m ∈ N, n ∈ Z>0 and a ∈ k∗.

(b) d = xm+1∂x+ayn+1∂y, where m,n ∈ Z>0 with m ≤ n and a ∈ k∗.

(c) d = x∂x + ay∂y, where a is a positive rational number.

Let d be a k-derivation on k[x, y]. If k[x, y]d ̸= k, then Q(k[x, y]d) =

k(x, y)d. See [77, Theorem], which is generalized in [5] and [34]. So

Theorem 4.5 also gives the classification of the monomial k-derivations

d on k[x, y] such that Q(k[x, y]d) ̸= k(x, y)d.

In order to prove Theorem 4.5 we show the following two lemmas.

Lemma 4.6. Let d = ∂x+axmyn+1∂y, where m,n ∈ N and a ∈ k∗. Then

k(x, y)d = k if and only if n = 0.

Proof . If n ≥ 1, then nxm+1 + (m+ 1)a−1y−n ∈ k(x, y)d \ k. We assume

that n = 0. By Lemma 4.4, k[x, y]d = k. Let f ∈ k[x, y] \ k be a
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non-constant polynomial and put

f = asy
s + as−1y

s + · · ·+ a1y + a0,

where s = degy f(≥ 0), a0, . . . , as ∈ k[x] and as ̸= 0. Assume that

g := d(f)/f ∈ k[x, y], namely, f is a Darboux polynomial of d.

Assume further that a0 ̸= 0, i.e., y ̸ |f . Since f is non-constant and

d(f) = gf , g ̸= 0. We have

s ≥ degy d(f) = degy g + degy f = degy g + s.

This implies g ∈ k[x]. Comparing the constant terms with respect to y

in the equation d(f) = gf , we have a′0 = ga0, where a′0 is the derivative

of a0 with respect to x, which is a contradiction. Hence a0 = 0.

The argument in the previous paragraph implies that f can be ex-

pressed as f = f1y
t, where t ∈ Z>0, f1 ∈ k[x, y] and y ̸ |f1. By [63,

Proposition 2.4], f1 is also a Darboux polynomial of d and so f1 ∈ k∗.

Therefore, f can be expressed as f = asy
s, where as ∈ k∗. We infer from

[63, Proposition 2.5] that k(x, y)d = k. □

Lemma 4.7. Assume that d = xm+1∂x+ayn+1∂y, where a ∈ k∗, m,n ∈ N
and m ≤ n, and that k(x, y)d ̸= k. Then one of the following conditions

(a) and (b) holds true.

(a) m,n > 0.

(b) m = n = 0 and a ∈ Q \ {0}.

Proof . If d satisfies the condition (a) (resp. (b)), thenma−1y−n−nx−m ∈
k(x, y)d \ k (resp. xpy−q ∈ k(x, y)d \ k, where p and q are relatively prime

integers such that a = p/q). We consider the following cases separately.

Case: m = n = 0 and a ̸∈ Q. By Theorem 4.2, Bd = k. Let f ∈ R \ k
be a non-constant polynomial and put

f = asy
s + as−1y

s + · · ·+ a1y + a0,

where s = degy f(≥ 0), a0, . . . , as ∈ k[x] and as ̸= 0. Assume that f is a

Darboux polynomial and set g = d(f)/f .

Assume further that a0 ̸= 0, i.e., y ̸ |f . Since f is non-constant and

d(f) = gf , g ̸= 0. We have degy d(f) = degy g + s. Since degy d(f) ≤ s,

g ∈ k[x] and xa′0 = ga0. So, n0 := g = degx a0 ∈ Z>0 and a0 = bxn0 for

some b ∈ k∗. Assume further that s > 0. Comparing the highest terms

with respect to y in the equation d(f) = n0f , we have xa
′
s = (n0− sa)as.

Then n0−sa = degx as and so a ∈ Q. This is a contradiction. Therefore,

s = 0, i.e., f = bxn0 .
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Assume next that a0 = 0. We set as f = f1y
t, where t ∈ Z>0, f1 ∈ B

and y ̸ |f1. Then f1 is also a Darboux polynomial of d. So the argument

in the previous paragraph implies that f1 = bxdegx f1 for some b ∈ k∗.

Therefore, f can be expressed as bxiyj for some i, j ∈ N and b ∈ k∗.

Since a ̸∈ Q, we infer from [63, Proposition 2.5] that k(x, y)d = k.

Case: n = 0, m ≥ 1. Set d1 = ∂x + axm+1y∂y, where m and a are the

same as in d. By Lemma 4.6, k(x, y)d1 = k. Let σ : k(x, y) → k(x, y)

be the k-automorphism defined by σ(x) = x−1 and σ(y) = y−1. Then

d = −xm−1σd1σ
−1. Hence k(x, y)d = k.

Case: m = 0, n ≥ 1. By using the same argument as in the previous

case, we have k(x, y)d = k.

The proof of Lemma 4.7 is thus verified. □
Theorem 4.5 is a consequence of Theorem 4.2, Lemmas 4.6 and 4.7.

3. Examples

In this section, by using Theorem 2.29, we give some examples of closed

polynomials and factorially closed polynomials. Let R be an integral

domain of characteristic p ≥ 0, K = Q(R) and let B ∼=R R[n].

Lemma 4.8. Let f ∈ B \ R such that K[f ] ∩ B = R[f ]. Then the

following assertions hold true.

(a) The following two conditions are equivalent:

(i) f is factorially closed over R.

(ii) f is factorially closed over K.

(b) If there exist a field L such that L/K is Galois extension and f

is factorially closed over L, then f is factorially closed over K.

Proof . For a field L containing R, denote BL = B ⊗R L ∼=L L[n].

(a) (i) =⇒ (ii) Take g, h ∈ BK \ {0} with gh ∈ K[f ]. Without loss

of generality, we may assume that g, h ∈ B. Since gh ∈ K[f ], there exist

a0, ..., am ∈ R and b0, ..., bm ∈ R \ {0} such that

gh =
a0
b0
fm +

a1
b1
fm−1 + · · ·+ am−1

bm−1

f +
am
bm

.

Set b :=
∏m

i=0 bi and ci := b(ai/bi) ∈ R for 0 ≤ i ≤ m. Then

bgh = c0f
m + · · ·+ cm−1f + cm ∈ R[f ].

Since f is factorially closed over R, we have g, h ∈ R[f ] ⊂ K[f ].
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(ii) =⇒ (i) Take g, h ∈ B \ {0} with gh ∈ R[f ]. Since gh ∈ K[f ]

and f is factorially closed over K, we have that g, h ∈ K[f ] ∩B = R[f ].

(b) Let G be the Galois group of L over K. Here, G acts on a

polynomial of BL by acting on its coefficients. Then we can see easily

that L[f ]G = K[f ], where L[f ]G is the ring of G-invariant of L[f ].

Take g, h ∈ BK \ {0} with gh ∈ K[f ]. Since K[f ] ⊂ L[f ] and f is

factorially closed over L, g ∈ L[f ] and h ∈ L[f ]. Hence

g, h ∈ L[f ] ∩BK = L[f ]G = K[f ].

Therefore f is a factorially closed polynomial over K. □

We give an example of factorially closed polynomials below.

Example 4.9. Suppose that the characteristic of R is zero. Let f ∈ B

such that K[f ]∩B = R[f ]. Assume that f−λ is irreducible in B⊗RL for

any λ ∈ L, where L is an algebraic closure of K. Then f is a factorially

closed polynomial over R.

Proof . This assertion follows from Theorem 2.29 and Lemma 4.8. □

As the end of this section, we give observations for important three

kinds of polynomials; Vénéreau polynomial, Danielewski surface and

Koras-Russell threefold over C. For f ∈ C[x1, . . . , xn] ∼=C C[n], we define

the Makar-Limanov invariant for f by

ML(f) :=
∩
d

(C[x1, . . . , xn]/(f))
d,

where d runs through the non-zero locally nilpotent derivations on the

C-algebra C[x1, . . . , xn]/(f). We can easily see that if f is a variable,

then ML(f) = C. By using this fact, we get the following examples:

Example 4.10. LetR = C[x] ∼=C C[1] andB = R[y, z, t] = C[x, y, z, t] ∼=C

C[4]. For n ≥ 1, let

vn := y + xn(xz + y(yt+ z2)) ∈ B.

This is called the n-th Vénéreau polynomial. If n ≥ 2, then it is

known to be a variable over R, however, we do not know whether v1 is

a variable over R or not (see [18, Example 3.18] and [39, Corollary 14]).

Here, we can show that v1 is a closed polynomial over R (of course, vn is

a closed polynomial for n ≥ 2).

Proof . Since c(v1 − v1(0, 0, 0)) = gcd(1, x2, x1) = 1, by Lemma 2.18,

Q(R)[v1] ∩B = R[v1]. It is easy to show that

v̂1 = gcd((v1)y, (v1)z, (v1)t) = 1.
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By Corollary 2.15, v1 is a closed polynomial over R. In other words,

C[x, v1] is integrally (especially algebraically) closed in B = C[x, y, z, t].
□

Example 4.11. (a) (Danielewski surface). Let C[x, y, z] ∼=C C[3]. The

Danielewski surface is the polynomial in C[x, y, z] defined by

f := xnz − y2 − y,

where n ≥ 2. Then f is a factorially closed polynomial, but is not a

variable.

(b) (Koras-Russell threefold). Let C[x, y, z, t] ∼=C C[4]. The Koras-

Russell threefold is the polynomial in C[x, y, z, t] defined by

g := x+ x2y + z2 + t3.

Then g is a factorially closed polynomial, but is not a variable.

Proof . (a) For λ ∈ C, let fλ := f − λ. We assume that fλ = gh for

some g, h ∈ C[x, y, z] \ {0}. Computing the z-degree of fλ = gh, we may

assume that degz g = 1 and degz h = 0. Here, we write g = g1z + g2 for

g1, g2 ∈ C[x, y]. Then we have xn = g1h and −y2 − y − λ = g2h. Hence

degy h = degx h = 0, which means h ∈ C∗. Therefore fλ is irreducible for

any λ ∈ C. By Theorem 2.29, f is a factorially closed polynomial. On the

other hand, it follows from [18, Theorem 9.2] (see also [43, Proposition

(ii)]) that ML(f) = C[x]. So, f is not a variable.

(b) For λ ∈ C, let gλ := g − λ. We assume that gλ = pq for some

p, q ∈ C[x, y, z, t] \ {0}. Computing the y-degree of gλ = pq, we may

assume that degy p = 1 and degy q = 0. Here, we write p = p1y + p2 for

p1, p2 ∈ C[x, z, t]. Then we have x2 = p1q and x+z2+t3−λ = p2q. By the

first equation, we have degz q = degt q = 0 and q is a component of x2. If

x divides q, then this contradicts the second equation. Thus degx q = 0,

so q ∈ C∗. By Theorem 2.29, g is a factorially closed polynomial. On

the other hand, it follows from [18, Theorem 9.9] (see also [41, Section

1]) that ML(g) = C[x]. So, g is not a variable. □
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CHAPTER 5

Partial theories for higher dimensional cases

Let k be a field and let B = k[x1, . . . , xn] ∼=k k[n] be the polynomial

ring in n variables over k. For 1 ≤ r ≤ n, let f1, . . . , fr ∈ B such that

they are algebraically independent over k and the ring k[f1, . . . , fr] is

algebraically closed in B, and let F = (f1, . . . , fr). Here we consider the

dominant morphism

ΦF : An
k
∼=k SpecB → Spec k[f1, . . . , fr] ∼=k Ar

k

associated by the natural inclusion k[f1, . . . , fr] → B. When k is an alge-

braically closed field, by the first Bertini theorem (see e.g., [70, Theorem

1, p.139]), we see that general fibers of ΦF are irreducible and reduced.

This is a natural generalization of theories of closed polynomials (see e.g.,

Theorem 2.3 ). As a first step, we will discuss the case where r = 2.

Let f, g ∈ B. A pair of polynomials (f, g) is said to be a closed-pair

if f and g are algebraically independent over k, and the ring k[f, g] is

algebraically closed in B. Clearly, if n = 2, then a closed-pair (f, g) is

a system of variables of B ∼=k k[2], that is, k[f, g] = B. For this reason,

the concept of closed-pair makes sense for the polynomial ring having at

least three variables.

In this chapter, we construct several examples of closed-pairs and

give some observations for them. In particular, we consider the following

situation:

Φ(f,g) : A3
k → Spec k[f, g] ∼=k A2

k,

wehre f, g ∈ B ∼=k k
[3] and k[f, g] ∼=k k

[2].

First of all, we show the following result. This is a characterization

of closed-pairs (see also Proposition 3.4 ).

Proposition 5.1. Let k be a field of characteristic zero, B ∼=k k[3] and

let f, g ∈ B. Then the following conditions are equivalent:

(i) (f, g) is a closed-pair.

(ii) B∆(f,g) = k[f, g].

Proof . (i) =⇒ (ii) Suppose that (f, g) is a closed-pair. By Proposition

1.10 (a) and (b), we have ∆(f,g) ̸= 0 and B∆(f,g) = k[f, g].
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(ii) =⇒ (i) Similarly, if B∆(f,g) = k[f, g], then ∆(f,g) ̸= 0. By Propo-

sition 1.10 (a), f and g are algebraically independent over k. Therefore

(f, g) is a closed-pair. □

Remark 5.2. A pair of closed polynomials is not necessarily a closed-

pair. For example, in Q[x, y, z] ∼=Q Q[3], consider polynomials xy and x+

y. Then these polynomials are closed polynomials which are algebraically

independent over Q. However, Q[xy, x+ y] ⊊ Q[x, y], which implies that

there exists f ∈ Q[x, y, z] \ Q[xy, x + y] such that f is algebraic over

Q[xy, x+ y]. Thus, (xy, x+ y) is not a closed-pair.

1. Retracts of polynomial rings

Let R be an integral domain. Let B be an R-algebra and let A be an R-

subalgebra of B. We say that A is a retract of B if there exists an ideal

I of B such that B ∼=R A⊕ I as R-modules. There are some equivalent

conditions of retracts as below.

Lemma 5.3. The following conditions are equivalent:

(i) A is a retract of B.

(ii) There exists a homomorphism φ : B → A of R-algebras such

that the following sequence of R-modules is exact and split:

0 −→ kerφ −→ B
φ−→ A −→ 0.

(iii) There exists a homomorphism φ : B → A of R-algebras such

that φ|A = idA.

Proof . Obvious. □

The homomorphism φ : B → A in (ii) is called a retraction. The

followings are basic properties of retracts.

Proposition 5.4. (cf. [11, Section 1]) Let A be a retract of B. Then the

following assertions hold true.

(a) If B is an integral domain, then A is algebraically closed in B.

(b) If B is a UFD, then A is also a UFD.

(c) If B is regular, then A is also regular.

Corollary 5.5. Suppose that the characteristic of R is zero and B is

finitely generated R-domain. For every retract A of B, there exists an

R-derivation on B such that A = Bd.
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Proof . By Proposition 5.4 (a), A is algebraically closed in B. It follows

from Theorem 1.14 that A = Bd for some R-derivation d. □

In [11], Costa asks us the following interesting question.

Question 5.6. Let k be a field and let B ∼=k k[n]. Is every retract of B

a polynomial ring over k?

If n ≤ 2, then the above question is affirmative and proved by Costa

([11, Theorem 3.5]). On the other hand, it is well known that Question

5.6 is related to Zariski’s cancellation problem as below.

Proposition 5.7. Let k be a field. If Question 5.6 holds for n+ 1, then

Zariski’s cancellation problem has an affirmative answer for An
k , that is,

for an affine variety X over k, X × A1
k
∼=k An+1

k implies X ∼=k An
k .

Proof . Suppose that Question 5.6 holds for n + 1. Let X be an affine

variety over k such that X × A1
k
∼=k An+1

k and let A be the coordinate

ring of X. Then A[1] ∼=k k[n+1] and tr.degk A = n. Let B = A[t] ∼=A

A[1] ∼=k k
[n+1]. Define the homomorphism of k-algebras

φ : B = A[t] → A

by φ(t) = 0 and φ(a) = a for a ∈ A. Then φ is a retraction. By the

assumption, A ∼=k k
[n], which implies that X ∼=k An

k . □

It is well known that if n ≤ 2, then Zariski’s cancellation problem holds

true for any field (see Fujita [20], Miyanishi-Sugie [53] and Russell [67]).

On the other hand, when the characteristic of k is positive, Gupta in [22]

and [23] proved that Zariski’s cancellation problem does not hold for An
k

if n ≥ 3. Therefore Question 5.6 does not hold in the case where k is a

field of positive characteristic and n ≥ 4. So, the remaining cases are:

• the characteristic of k is positive and n = 3,

• the characteristic of k is zero and n ≥ 3.

In [56], the author gave an affirmative answer for Question 5.6 in the

case where k is a field of characteristic zero and n = 3.

Let k be a field of characteristic zero. We consider retracts of the

polynomial ring B ∼=k k
[n]. Since B is a UFD and regular, by Proposition

5.4, every retract of B has the same properties. Furthermore, it follows

from [56, Theorem 2.5] that if A is a retract of B ∼=k k
[n] of transcendence

degree 2 over k, then there exist f, g ∈ B such that A = k[f, g] ∼=k k[2].

By Proposition 5.4 (a), the pair (f, g) is a closed-pair. In this way, we

can find closed-pairs.
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Example 5.8. Let B = k[x, y, z] ∼=k k[3] be the polynomial ring over a

field k of characteristic zero. Let f = x + x2z and g = y + y2z. Then

k[f, g] is a retract of B. In particular, k[f, g] = B∆(f,g) and (f, g) is a

closed-pair.

Proof . Define the homomorphism of k-algebras φ : k[x, y, z] → k[f, g] by

φ(x) = f , φ(y) = g and φ(z) = 0. Then φ is a retraction. Since ∆(f,g) ̸=
0, by Proposition 1.10, we have that k[f, g] ∼=k k[2] and k[f, g] = B∆(f,g) .

Hence (f, g) is a closed-pair. □

2. Closed-pairs and kernels of derivations on k[x, y, z]

Let k be a field of characteristic zero and let B ∼=k k
[n] be the polynomial

ring in n variables over k. For a derivation d ∈ Derk B, we define the

corank of d by the maximal integer i such that there exists a partial

system of variables {x1, . . . , xi} of B contained in Bd and denote it by

corank(d). The rank of d is defined by

rank(d) := n− corank(d),

in particular, rank(d) ∈ {0, 1, . . . , n}. By definition, the rank and corank

are invariants of d.

We know already that the kernel of a derivation on k[3] is finitely gen-

erated over k (see Zariski’s Theorem [76]). Also, if d is a locally nilpotent

derivation on k[3], then the kernel is generated by two polynomials (see

Miysnishi [51]). Then the following is the natural question.

Question 5.9. Let d ∈ Derk k
[3] be a non-zero derivation. Is the kernel

generated by at most two polynomials?

In the rest of this section, we consider the above question. From now on,

we assume that B = k[x, y, z] ∼=k k
[3]. Let d ∈ Derk B \{0} be a non-zero

k-derivation on B.

Lemma 5.10. If tr.degk B
d ≤ 1, then Bd = k[f ] for some k ∈ B.

Proof . If tr.degk B
d = 0, then Bd = k. So Bd = k[1]. If tr.degk B

d = 1,

then Bd is a maximal element of S(1, B). By Lemma 2.2, there exists

f ∈ B \ k such that Bd = k[f ]. □

Proposition 5.11. If tr.degk B
d = 2 and rank(d) ≤ 2, then there exists

a closed-pair (f, g) such that Bd = k[f, g].

Proof . Since rank(d) ≤ 2, we may assume that z ∈ Bd. Set R = k[z].

Then we can regard d as an R-derivation on R[x, y] ∼=R R[2]. By Theorem
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3.1 (a), Bd = R[x, y]d = R[f ] for some f ∈ R[x, y]. Since tr.degkB
d = 2,

we have f ̸∈ R. Therefore Bd = k[f, z] ∼=k k[2], which implies that (f, z)

is a closed-pair. □

We give a necessary condition for kernels of derivations to be isomor-

phic to k[2] as follows (see also Theorem 3.9 ).

Proposition 5.12. (cf. [42, Lemma 6]) Assume that Bd = k[f, g] ∼=k k
[2]

for some f, g ∈ B. Then d ∼ ∆(f,g), that is, there exist ξ, η ∈ B such

that ηd = ξ∆(f,g).

Proof . By Proposition 1.10 (b), B∆(f,g) is the algebraic closure of k[f, g] =

Bd in B. Choose h ∈ B such that d(h) ̸= 0. Then h is transcendental

over k[f, g]. Hence ∆(f,g)(h) ̸= 0. Let η = ∆(f,g)(h) and ξ = d(h). Then

we have ηd = ξ∆(f,g) on the subalgebra k[f, g, h] ⊂ B. Since the exten-

sion B/k[f, g, h] is algebraic, it follows from [18, Proposition 1.14] that

ηd = ξ∆(f,g) on B. □

By Lemma 5.10 and Proposition 5.11, it is enough to consider the

case where rank(d) = 3 and tr.degk A = 2. We introduce some kinds of

types for derivations as below.

Definition 5.13. For d ∈ Derk B, let A = Bd. Assume that rank(d) = 3

and tr.degk A = 2. Then we say d is

• of type I if d is locally nilpotent and A is not a retract,

• of type II if d is not locally nilpotent and A is a retract,

• of type III if d is not locally nilpotent and A is not a retract.

See also the following table:

type locally nilpotent retract A = Bd

I yes no k[2]

II no yes k[2]

III no no ??

In [40], Liu and Sun announced the following result.

Proposition 5.14. Let A be a retract of B. If A is the kernel of a

non-zero locally nilpotent derivation on B, then there exist a system of

variables s, t, u ∈ B such that A = k[u, v] and B = A[w].

Corollary 5.15. If d is a locally nilpotent derivation of rank 3, then Bd

is not a retract. In particular, d is of type I.
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Proof . Assume to the contrary that A = Bd is a retract of B. Then A

is a retract and the kernel of the non-zero locally nilpotent derivation

∆(f,g). By Proposition 5.14, there exists a system of variables u, v, w of

B such that A = k[u, v] and B = A[w]. This is a contradiction. □
According to Corollary 5.15, we know that there are no derivations d such

that d is locally nilpotent of rank 3 and Bd is a retract. The following is

an example of derivations of type I.

Example 5.16. (Derivations of type I) Let f = xz − y2 and g =

zf 2 + 2x2yf + x5. Then ∆(f,g) is locally nilpotent and rank(∆(f,g)) = 3.

Furthermore, A = B∆(f,g) is not a retract of B. Hence ∆(f,g) is of type I.

In particular, (f, g) is a closed-pair.

Proof . It follows from [18, Theorem 5.23] that ∆(f,g) is locally nilpotent

and rank(∆(f,g)) = 3. Hence, by Corollary 5.15, ∆(f,g) is of type I. □
Next, we give two examples of derivations of type II.

Example 5.17. (Derivations of type II) Define d = x∂x + y∂y − z∂z.

Then A = Bd = k[xz, yz], rank(d) = 3, d is not locally nilpotent and

A is a retract of B. Hence d is of type II. In particular, (xz, yz) is a

closed-pair.

Proof . It is easy to show that d is not locally nilpotent, k[xz, yz] ∼=k k
[2]

and k[xz, yz] ⊂ A. Define the homomorphism φ : B → A of k-algebras

by φ(x) = xz, φ(y) = yz and φ(z) = 1. Then φ|A = idA. Therefore A is

a retract of B, hence A = k[xz, yz]. It is clear that A does not contain

variables, that is, rank(d) = 3. □

Example 5.18. (Derivations of type II) Define d = x∂x+z∂y+y∂z. Then

A = Bd = k[xy− xz, y2 − z2], rank(d) = 3, d is not locally nilpotent and

A is a retract of B. Hence d is of type II. In particular, (xy−xz, y2− z2)

is a closed-pair.

Proof . It is easy to show that d is not locally nilpotent, k[xy − xz, y2 −
z2] ∼=k k[2] and k[xy − xz, y2 − z2] ⊂ A. Define the homomorphism

φ : B → A of k-algebras by φ(x) = xy − xz and

φ(y) =
1

2
(y2 − z2 + 1), φ(z) =

1

2
(y2 − z2 − 1).

Then φ|A = idA. Therefore A is a retract of B, hence A = k[xy−xz, y2−
z2]. It is clear that A does not contain variables, that is, rank(d) = 3. □
As seeing the above table, we know already that the kernel of a derivation

of type I or II is isomorphic to k[2]. However, the author has not yet given

an example of derivations of type III.
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Finally, we give another example of closed-pair.

Example 5.19. Let d = x∂y + 2y∂z. Then d is locally nilpotent and

Bd = k[x, xz − y2]. Hence Bd is factorially closed in B, in particular,

(x, xz − y2) is a closed-pair. However, Bd is not a retract of B.

Proof . Let A = Bd. Assume to the contrary that A is a retract of B.

Then there exists a homomorphism φ : B → A such that φ|A = idA.

Then φ(x) = x and

xz − y2 = φ(xz − y2) = xφ(z)− φ(y)2.

Note that φ(y), φ(z) ∈ A. Set s = x and t = xz−y2. Since A = k[s, t] ∼=k

k[2], we can consider the standard degree function on A with respect to

s and t. By the above equation, we have t = φ(z)s− φ(y)2. Comparing

the t-degree of the both side, we have a contradiction. □
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