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A bacterial metabolite ameliorates 
periodontal pathogen-induced 
gingival epithelial barrier disruption 
via GPR40 signaling
Miki Yamada1, Naoki Takahashi2, Yumi Matsuda1, Keisuke Sato1, Mai Yokoji1, Benso Sulijaya  1, 
Tomoki Maekawa2, Tatsuo Ushiki3, Yoshikazu Mikami3, Manabu Hayatsu3, Yusuke Mizutani3, 
Shigenobu Kishino4, Jun Ogawa4, Makoto Arita5, Koichi Tabeta6, Takeyasu Maeda2 &  
Kazuhisa Yamazaki1

Several studies have demonstrated the remarkable properties of microbiota and their metabolites 
in the pathogenesis of several inflammatory diseases. 10-Hydroxy-cis-12-octadecenoic acid (HYA), 
a bioactive metabolite generated by probiotic microorganisms during the process of fatty acid 
metabolism, has been studied for its protective effects against epithelial barrier impairment in the 
intestines. Herein, we examined the effect of HYA on gingival epithelial barrier function and its possible 
application for the prevention and treatment of periodontal disease. We found that GPR40, a fatty 
acid receptor, was expressed on gingival epithelial cells; activation of GPR40 by HYA significantly 
inhibited barrier impairment induced by Porphyromonas gingivalis, a representative periodontopathic 
bacterium. The degradation of E-cadherin and beta-catenin, basic components of the epithelial barrier, 
was prevented in a GPR40-dependent manner in vitro. Oral inoculation of HYA in a mouse experimental 
periodontitis model suppressed the bacteria-induced degradation of E-cadherin and subsequent 
inflammatory cytokine production in the gingival tissue. Collectively, these results suggest that HYA 
exerts a protective function, through GPR40 signaling, against periodontopathic bacteria-induced 
gingival epithelial barrier impairment and contributes to the suppression of inflammatory responses in 
periodontal diseases.

Increasing evidence has indicated that the microbiota and its metabolites are key orchestrators of host patho-
physiology through the modulation of metabolism, inflammation, and immune responses1–3. We have recently 
reported that several Lactobacillus strains have the ability to convert linoleic acid to oleic acid via intermedi-
ate metabolites, such as 10-hydroxy-cis-12-octadecenoic acid (HYA), 10-hydroxyoctadecanoic acid (HYB), 
10-oxo-cis-12-octadecenoic acid (KetoA), 10-oxo-octadecanoic acid (KetoB), and 10-oxo-trans-11-octadecenoic 
acids (KetoC); have beneficial effects on the regulation of host energy metabolism and immunomodulatory activ-
ities4–6. Furthermore, Miyamoto et al. reported that Lactobacillus-derived HYA, but not HYB, plays a protective 
role against intestinal injury and inflammation by ameliorating intestinal barrier impairment via activation of 
G protein-coupled receptor 40 (GPR40)7. GPR40, a receptor for a range of medium- to long-chain saturated 
and unsaturated fatty acids, was originally reported to be highly expressed in pancreatic beta cells and regulates 
insulin secretion and blood glucose8. Subsequent studies have indicated that GPR40 is also expressed in different 
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cell types, including epithelial cells, and is involved in the pathogenesis of several diseases such as inflammatory 
bowel disease, asthma, and kidney disease7,9,10. However, there are no reports regarding the expression of GPR40 
in gingival epithelial cells and its function in inflammatory oral disorders.

Periodontal disease, or periodontitis, is defined as an infectious and inflammatory disease affecting the 
supporting tissues of the teeth. More than 700 bacterial species have been identified in the oral cavity, some of 
which are known as periodontopathic bacteria11,12. Porphyromonas gingivalis (P. gingivalis) has been implicated 
as a major etiological pathogen in periodontitis, because of a variety of virulence factors, including fimbriae13,14, 
lipopolysaccharides15,16, capsule17,18, and proteases19,20. Gingipains are cysteine proteases secreted by P. gingivalis 
and are considered as the major causative agent in periodontal disease, leading to destruction of the supporting 
tissues of the periodontium by degradation and cleavage of the extracellular matrix and cell surface proteins21. 
Katz et al. have reported that P. gingivalis and its purified gingipains breakdown the epithelial barrier proteins 
which form, in part, the adherens and tight junctions22,23. Disruption of the gingival epithelial barrier by specific 
proteases and the subsequent penetration of exogenous pathogens into the host tissues facilitate the progression 
of periodontal breakdown24. Hence, gingival epithelial cells play crucial roles in the initiation and progression of 
periodontal diseases by acting as a physical barrier between the outside and the host.

E-cadherin, a transmembrane glycoprotein expressed by epithelial cells, is an essential adhesion molecule for 
barrier formation by establishing strong cell-cell contacts between epithelial cells25. Beta-catenin is a complex 
partner of E-cadherin and plays a key role in the maintenance of adherence junction complexes by linking the 
cytoskeleton with E-cadherin26. Disruption of the functions of the barrier, which is composed of an E-cadherin/
beta-catenin complex, is associated with a variety of human diseases27. Recent studies have demonstrated a 
decrease in E-cadherin expression levels in the gingival epithelium in periodontitis, suggesting the clinical impor-
tance of E-cadherin in the pathogenesis of periodontal diseases28,29.

Herein, we explored the impact of bioactive metabolites on gingival epithelial barrier impairment induced 
by periodontopathic bacteria. This study demonstrates that epithelial barrier impairment is ameliorated by 
HYA, partially via effects on GPR40 signaling that subsequently inhibits the degradation of adhesion proteins. 
Furthermore, oral administration of HYA in a mouse model of experimental periodontitis inhibited the degra-
dation of E-cadherin and subsequent inflammatory responses, thereby indicating the protective role of HYA in 
periodontal disease.

Results
Expression of GPR40 by gingival epithelial cells. First, we validated GPR40 gene expression in a gin-
gival epithelial cell line (Epi 4) and an intestinal epithelial cell line (Caco 2; positive control) by semi-quantitative 
reverse transcription polymerase chain reaction (RT-PCR) (Fig. 1A). Next, protein expression of GPR40 in Epi 4 
cells was confirmed by immunofluorescence staining (Fig. 1B). Our findings suggest that GPR40 is expressed in 
the gingival epithelial cells as both mRNA and protein.

Protective effect of HYA-induced GPR40 signaling on epithelial barrier impairment. To exam-
ine a possible role of bioactive metabolites in gingival epithelial barrier function, we performed an in vitro per-
meability assay using fluorescein isothiocyanate (FITC) -conjugated dextran after the optimization of HYA 
concentration (Supplementary Fig. 2). The epithelial barrier impairment induced by P. gingivalis was significantly 
inhibited by pretreatment with HYA but not HYB (Fig. 2A). Pretreatment with the selective GPR40 antago-
nist GW1100 partially diminished the protective property of HYA, indicating a GPR40-dependent mechanism 
(Fig. 2B). Taken together, these results demonstrate that HYA prevents P. gingivalis-induced barrier impairment, 
via its activation of GPR40 signaling.

Figure 1. Expression of GPR40 in gingival epithelial cells. (A) Validation of Gpr40 mRNA expression by 
RT-PCR. Gapdh was used as an internal control. Full-length gels are presented in Supplementary Fig. 1. (B) 
Representative immunofluorescence staining of epithelial GPR40. Nuclei were counterstained using DAPI. The 
lower panels represent sections without primary antibody that served as negative controls. Scale bars: 100 μm.
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Transmission electron microscopy (TEM) images of the junctional complex of the epithelium.  
As morphological alterations of cell-cell junctional complexes of epithelial cells affect the integrity and bar-
rier function of the epithelium, we performed ultrastructural observations of cultured Epi 4 cells by TEM. 
Interestingly, cell-cell adhesion structures were dramatically disrupted by incubation with P. gingivalis, and 
the disruption was clearly diminished by pretreatment with HYA (Fig. 3A,B). No morphological changes were 
observed for Epi 4 cells treated with HYA only. These results imply that HYA inhibits the degradation of adhesion 
structures induced by P. gingivalis.

Inhibitory effect of HYA on the degradation of adhesion molecules. To elucidate the molecular 
mechanisms underlying the inhibitory effect of HYA against damage to the adherence junction, we focused 
on the E-cadherin/beta-catenin complex, which plays an important role as a major component of the adher-
ence junction. Western blot analysis showed that P. gingivalis induced the degradation of both E-cadherin and 
beta-catenin proteins, and pretreatment with HYA blocked this degradation substantially (Fig. 4A). No alter-
ation on E-cadherin/Beta-catenin mRNA level was observed by real-time PCR in all groups (Supplementary 
Fig. 8), suggesting that HYA promotes the proteolytic resistance of E-cadherin/Beta-catenin against P. gingivalis 
by inducing post-translational modifications. Extracellular signal-regulated kinase (ERK) is a key mediator in 
post-translational modifications30, particularly in barrier function-related proteins31–33. We demonstrated that 
HYA phosphorylated ERK in a dose-dependent manner, and pretreatment with GW1100 significantly inhibits 
the phosphorylation (Fig. 4B,C), suggesting that HYA prevents the degradation of E-cadherin/beta-catenin pro-
teins in Epi 4 cells by post-translational mechanisms via HYA-GPR40-pERK intracellular pathways.

HYA reduces local inflammatory cytokine production in gingival tissue in vivo. In order to 
examine the clinical relevance of HYA in periodontitis, an in vivo study was carried out using a mouse experi-
mental periodontal disease model. After validation of epithelial GPR40 expression in the gingiva, periodontitis 
was induced by applying a ligature on the molars with repeated oral inoculation of P. gingivalis (Supplementary 
Figs 9,10A). The mRNA expression levels of inflammatory cytokines such as IL-1β, TNF-α and IL-6 in gin-
gival tissues of the ligated HYA-treated group were significantly decreased in comparison with those of the 
ligated sham-treated group, with a tendency of suppression of alveolar bone destruction (Fig. 5A–C). The ligated 
HYA-treated group showed a higher immunofluorescence intensity for E-cadherin in the epithelium when 
compared to that of the ligated sham-treated group (Fig. 6A,B). No differences of E-cadherin intensity were 
observed between the unligated groups (Supplementary Fig. 10B). In consistent with in vitro study, no alteration 
of E-cadherin mRNA expression was observed for all groups (Supplementary Fig. 10D). Collectively, these results 
indicate that HYA reinforces gingival epithelial barrier function by inhibiting E-cadherin degradation, resulting 
in the suppression of periodontal inflammatory responses and subsequent alveolar bone destruction in vivo.

Discussion
The barrier function of the epithelium is important in host defense against invading pathogens. In this study, we 
demonstrated that the gingival epithelial cells express a fatty acid receptor, GPR40; activation of this receptor by 
HYA prevents the impairment of the epithelial barrier that is caused by periodontopathic bacteria. Furthermore, 
the findings of our in vivo studies suggest that treatment with HYA has a beneficial role in the prevention of initi-
ation/progression of periodontal diseases.

It is becoming increasingly clear that metabolites, intermediates of metabolism, are linked to human health 
and disease2,3. In the gut, increased intestinal permeability of the epithelial barrier, also known as “leaky gut” is 
associated with several gastrointestinal and systemic disorders34–36. A variety of microbiota- and diet-derived 

Figure 2. HYA treatment suppresses P. gingivalis-induced barrier dysfunction via GPR40. (A) Epi 4 cells 
seeded in the upper compartment were pretreated with the indicated metabolites (5 μM) for 30 min, followed by 
stimulation with live P. gingivalis (MOI: 100) for 4 h. The paracellular permeability of Epi 4 cells was measured 
by fluorescence after adding FITC-dextran to the upper compartment for 2 h. (B) GW1100 (5 μM) was added 
to the indicated samples prior to HYA/P. gingivalis treatment (n = 4 in each group). All data are presented as 
mean ± SD (*p < 0.05 as indicated).
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metabolites such as indole37,38, acetate39, and butyrate40 are noted to have beneficial effects against intestinal epi-
thelial barrier dysfunction. Similarly, the physiological functions of metabolites in the oral cavity have been docu-
mented in several studies. Recent human metabolomics research has revealed significant correlations between the 

Figure 3. TEM imaging of the junctional complex of Epi 4 cells. (A) TEM images of Epi 4 cells after the 
indicated treatment (2 sets of representative images from each group. Left panels; low magnification, scale bars: 
10 µm, right panels; high magnification, scale bars: 200 nm) Asterisks indicate epithelial junctions of the Epi 
4 cells. (B) Measurements of number of desmosome in cell-cell contact sites (left) and length of desmosome 
in cell-cell contact sites (n = 20 in each group). All data are presented as mean ± SD. *p < 0.05, **p < 0.01 as 
indicated, by ANOVA.
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levels of several metabolites in saliva and the severity of periodontal disease, suggesting a possible involvement of 
metabolites in periodontitis41,42. Further investigation will provide mechanistic insights into how these bioactive 
metabolites contribute to the pathophysiology of periodontal diseases.

To explore the mechanisms underlying the protective effects of HYA against P. gingivalis-induced epithe-
lial barrier impairment, we first evaluated the direct effects of HYA on P. gingivalis and its proteolytic activity 
against epithelial barrier-related proteins. Fatty acids have anti-proteolytic activity and antimicrobial activity 
against several oral pathogens43,44; nevertheless, we failed to demonstrate these properties of HYA in the present 

Figure 4. Inhibitory effect of HYA on the degradation of adhesion molecules in vitro. (A) Western blots and 
quantification of adherence junction proteins in Epi 4 cells. Epi 4 cells were stimulated with or without P. 
gingivalis (MOI: 100) for 4 h, with or without HYA/HYB preincubation (5 µM) for 30 min. The band signal of 
each target protein was normalized to GAPDH. Full-length blots are presented in Supplementary Fig. 5. (B) 
Western blots and quantification of p-ERK. Epi 4 cells were stimulated with HYA (0.5, 5 µM) for 30 min. The 
band signal of p-ERK was normalized to total-ERK. Full-length blots are presented in Supplementary Fig. 6. 
(C) Western blots and quantification of p-ERK. Epi 4 cells were stimulated with HYA (5 µM) for 30 min, with 
or without GW1100 preincubation (5 µM) for 30 min. The band signal of p-ERK was normalized to total-
ERK. Full-length blots are presented in Supplementary Fig. 7 (n = 3 in each group). All data are presented as 
mean ± SD. *p < 0.05, **p < 0.01 as indicated, by ANOVA.
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study (Supplementary Figs 3, 4 and 10E). Therefore, we focused on the epithelial GPR40 receptor-dependent 
regulation of barrier function, and we found that the breakdown of barrier function was inhibited partially in 
a GPR40-dependent manner (Fig. 2B). It is well documented that the activation of epithelial GPR signaling is 
crucial for a wide variety of physiological and pathological processes in several diseases. It has been reported that 
the intestinal epithelial barrier is modulated by regulation of TNFR2 expression via the GPR40-MEK-ERK path-
way7. Gras et al. have demonstrated a proliferative effect on human bronchial epithelial cells via GPR40 receptor 
activation, involving an intracellular calcium-signaling pathway10. The activation of GPR40 in renal epithelial 
cells attenuates apoptosis by inhibiting the activation of the Sic/EGFR/ERK signaling pathway and the nuclear 
activation of NF-κB9. Elucidating the signaling pathways involved in GPR40 activation could help to unveil the 
underlying mechanisms responsible for the observations made during the present study.

In this study, we demonstrated that HYA influences epithelial barrier function at the protein level, but not at 
the transcriptional level (Fig. 4A, Supplementary Fig. 8). Although Miyamoto et al. showed that HYA modulates 
the expression levels of barrier function-related genes in epithelial colorectal adenocarcinoma cells (Caco 2), we 
did not observe any transcriptional regulation in Epi 4 cells. This difference may be explained by differences in the 
types of epithelial cells (oral vs intestinal) and/or the stimulants (inflammatory cytokine vs microorganisms) used 
in the studies. In fact, previous studies have reported differences in biological characterization between gingival 
and intestinal epithelial cells45, implying that HYA regulates gingival epithelial barrier by different molecular 
mechanisms.

Regarding the partial effect of the GPR40 inhibitor on the epithelial permeability assay (Fig. 2), it may be 
because fatty acids including HYA are not recognized only by GPR4046. Given the expressions of other G-couple 
protein such as GPR41, GPR43 and GPR120 in epithelial cells7, these receptors might be also activated by HYA; 
therefore, the specific inhibition against GPR40 by GW1100 showed only partial effect.

Post-translational modifications of proteins (e.g., phosphorylation, glycosylation, and acetylation) dramat-
ically influence protein stability, structure, and localization47,48. Multiple post-translational modifications of 
E-cadherin have been extensively studied regarding its stability and maturation. McEwen et al. reported that 
phosphorylation of the beta-catenin-binding domain of E-cadherin is responsible for intercellular adhesion by 
stabilizing the cadherin at the cell surface49. Glycosylation of E-cadherin directly influences the maturity of the 

Figure 5. HYA reduces local inflammatory cytokine production in gingival tissue. (A) Quantification of 
inflammatory cytokine mRNA expression in gingival tissue. (B) Representative stereoscope images of defleshed 
maxilla from each group on day 14. (C) Quantification of alveolar bone loss measured by the distance from CEJ 
to ABC (n = 6 in each group). All data are presented as mean ± SD. p < 0.01 versus unligated wild-type or as 
indicated, by ANOVA.
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adherence junction by affecting its molecular organization50,51. The glycosylated proteins exhibit higher resistance 
to proteolytic degradation than that of their original forms52–54, suggesting that post-translational modifications 
of E-cadherin affect its proteolytic sensitivity. ERK is one of the three major subfamilies of the mitogen-activated 
protein kinase (MAPK) signaling pathways, and plays an important role in multiple post-translational modi-
fications on barrier function-related proteins31–33. Our findings in this study indicate that HYA facilitates the 
post-translational modifications on E-cadherin in a GPR40-dependant manner via ERK activation. Taken 
together, these findings suggest that epithelial HYA-GPR40-ERK signaling may induce the post-transcriptional 
modulation of E-cadherin, resulting in more resistance of E-cadherin to P. gingivalis proteolytic activity. Our 
proposed mechanism was illustrated in Supplementary Fig. 11. Both downstream targets of ERK phosphorylation 
and distinct mechanisms of post translational modification of E-cadherin remain to be resolved.

In summary, this study demonstrates for the first time the presence of GPR40 in gingival epithelial cells and its 
beneficial effects against epithelial barrier impairment. Furthermore, this in vivo study also indicates that HYA is 
capable of ameliorating gingival epithelial barrier disruption and preventing the inflammatory responses of per-
iodontal tissue. A new therapeutic approach for periodontitis, which enhances epithelial barrier function, might 
offer advantages over conventional periodontal treatment (e.g., mechanical plaque control and root planing). In 
addition, reducing antibiotic use in periodontal therapy by manipulating host defense using HYA may potentially 
lead to minimization of the risk of antibiotic resistance in the coming super-aged society.

Figure 6. HYA suppresses the degradation of gingival E-cadherin in mice. (A) Representative 
immunofluorescence staining for E-cadherin in gingival tissues of ligated mice. Lower panels represent 
magnified views of the boxed areas. Scale bars: 100 μm. (B) Mean fluorescence intensity (MFI) of E-cadherin 
in gingival epithelial layer (n = 3 in each group). All data are presented as mean ± SD. *p < 0.05, versus sham 
group, by ANOVA.
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Methods
Reagents and antibodies. 10-hydroxy-cis-12-octadecenoic acid (HYA) and 10-hydroxyoctadecanoic acid 
(HYB) were synthesized according to methods published previously4. Anti-GPR40 antibody was purchased from 
GeneTex Inc. (San Antonio, TX, USA). Anti-E-cadherin, anti-Beta-catenin, anti-ERK and anti-phosphorylated 
ERK antibodies were obtained from Cell Signaling Technology (Danvers, MA, USA). Rabbit anti-mouse glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH; Cell Signaling Technology) and peroxidase-labeled anti-rabbit IgG 
antibody (Cell Signaling Technology) were used for Western blotting experiments. A selective GPR40 antagonist, 
GW1100, was purchased from Cayman Chemical (Ann Arbor, MI, USA).

Cell preparation and culture. The Epi 4 simian virus 40 immortalized human gingival epithelial cell line 
was kindly provided by Prof. Murakami (Osaka University, Japan) and maintained as previously described15,55. 
The Caco 2 human intestinal epithelial cell line was obtained from the Riken BioResource Center (Tsukuba, 
Japan) and cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 100 U/
mL penicillin, and 100 µg/mL streptomycin.

Bacterial strains and culture conditions. P. gingivalis strain W83 was cultured in modified Gifu anaer-
obic medium (GAM) broth (Nissui, Tokyo, Japan) in an anaerobic jar (Becton Dickinson Microbiology System, 
Cockeysville, MD, USA), in the presence of an AnaeroPackTM (Mitsubishi Gas Chemical Co. Inc., Tokyo, Japan) 
at 37 °C for 48 h. Bacterial suspensions were prepared in phosphate-buffered saline (PBS) without Mg2+/Ca2+, 
using established growth curves and spectrophotometric analysis. The number of colony-forming units (CFU) 
was standardized by measuring optical density (OD) at 600 nm.

Reverse transcription polymerase chain reaction (RT-PCR) and gel electrophoresis. Total RNA 
was isolated from cells and gingival tissues using TRI Reagent® (Molecular Research Center, Inc., Cincinnati, 
OH, USA). cDNA was synthesized using a Transcriptor Universal cDNA Master (Roche Molecular Systems, 
Inc., Branchburg, NJ, USA). Semi-quantitative RT-PCR was performed in a 20 μL reaction volume with GoTaq 
polymerase (Promega Corporation, Madison, WI, USA) using the following protocol: predenaturation at 94 °C 
for 5 min followed by 30 cycles of denaturation at 94 °C for 15 s, annealing at 60 °C for 15 s, extension at 72 °C for 
30 s, and a final extension step at 72 °C for 10 min using a GeneAmp® PCR System 7700 (Applied Biosystems, 
Carlsbad, CA, USA). The PCR products were run on 1.5% agarose gels and visualized using SYBR® Safe DNA 
(Invitrogen Corporation, Carlsbad, CA, USA).

Quantitative PCR. Quantitative PCR was performed on a LightCycler® 480 (Roche Molecular Systems) 
using a FastStart Essential DNA Green Master (Roche Molecular Systems). The relative expression levels of each 
mRNA were normalized to that of Gapdh mRNA using the delta delta Ct method56. The custom-designed oligo-
nucleotide sequences (Thermo Fisher Scientific, MA, USA) used for both semi-quantitative RT-PCR and quanti-
tative PCR are summarized in Tables 1 and 2, respectively.

Immunostaining. The Epi 4 and Caco 2 cells were seeded in a Lab-Tek™ Chamber Slide (Nunc, Rochester, 
NY, USA) at a density of 5 × 104 cells/well for immunofluorescence staining. The attached cells were fixed with 
4% paraformaldehyde, washed in Tris-buffered saline, and stained with anti-GPR40 (1: 200) and Alexa Fluor 
488-conjugated anti-rabbit secondary antibodies (1: 200) (Abcam, Cambridge, UK). The slides were mounted 
using VECTASHIELD® HardSet™ Mounting Medium with DAPI (Vector Laboratories, Burlingame, CA, USA) 
and analyzed by fluorescence microscopy (Biozero BZ-8000; Keyence Corporation, Osaka, Japan).

For the immunostaining of periodontal tissues, samples were fixed, decalcified, embedded, and sectioned 
as described previously57. Tissue sections were deparaffinized and incubated with anti-GPR40 (1: 200) or 

Gene Forward Reverse

Gapdh ACCAAATCCGTTGACTCCGAC TTCGACAGTCAGCCGCATCT

Gpr40 AGTGTGGTGCTTAATCCGCT AGTGGCGTTACTTCTGGGAC

E-cadherin CTTGGAGCCGCAGCCTCT ACACCATCTGTGCCCACTTT

Beta-catenin ACGGAGGAAGGTCTGAGGAG GCCGCTTTTCTGTCTGGTTC

Table 1. Primer sequences for in vitro experiments.

Gene Forward Reverse

Gapdh TCAACAGCAACTCCCACTCTT ACCCTGTTGCTGTAGCCGTAT

Tnf-alpha GATCGGTCCCCAAAGGGATG TTGACGGCAGAGAGGAGGTT

Il-1beta TGCCACCTTTTGACAGTGATG AAGGTCCACGGGAAAGACAC

Il-6 CCGGAGAGGAGACTTCACAG TCTGAAGGACTCTGGCTTTGT

Gpr40 CACTTTGCTCCCCTCTACGC GATGGCTTGGTACCCGAAGG

E-cadherin CTACAGCATCACCGGCCAA CCACCGCTTCCCCATTTGA

Table 2. Primer sequences for in vivo experiments.
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anti-E-cadherin antibody (1: 200) at 4 °C overnight. Immunoreactivity of GPR40 was detected with biotinylated 
chicken anti-rabbit immunoglobulin (1: 200) (Abcam) in an avidin-biotin-immunoperoxidase system (Vector 
Laboratories). E-cadherin was visualized using Alexa Fluor 488-conjugated anti-rabbit secondary antibody  
(1: 200) (Abcam). The specificity of E-cadherin antibody for gingival tissues was validated as in Supplementary 
Fig. 10 C. The quantification of the immunofluorescent staining was performed using ImageJ software (National 
Institute of Health, Bethesda, MD, USA). Briefly, the mean fluorescence intensity corresponding to E-cadherin 
(green color) in gingival epithelial layers was compared between groups.

Epithelial barrier function assay. An in vitro epithelial permeability assay to assess barrier function was 
performed with FITC-conjugated dextran using Millicell® 24-well Hanging Cell Culture Inserts (EMD Millipore 
Corporation, Billerica, MA, USA) as reported previously58,59. Epi 4 cells were cultured in the upper compart-
ments at a concentration of 5 × 104 cells/well; 5 μl of 10 mg/ml FITC-dextran (average molecular weight, 3,000 to 
5,000; Sigma-Aldrich) was added to the upper compartments of the inserts. The medium was collected from the 
lower chamber compartments 2 h after FITC-dextran addition, and fluorescence intensity was measured using 
an EMax Plus plate reader (Molecular Devices, Sunnyvale, CA, USA) at 485 nm excitation and 520 nm emission 
wavelength.

TEM imaging. The samples were fixed with 1.0% glutaraldehyde in Dulbecco’s PBS (Thermo Fisher Scientific) 
at 4 °C for 20 min; they were subsequently post-fixed with 1% osmium tetroxide for 20 min at 4 °C. The fixed sam-
ples were washed with distilled water for 10 min, three times, and stained with uranyl acetate for 2 h at 4 °C. The 
stained samples were washed with distilled water for 10 min, three times, dehydrated in a graded ethanol series, 
and embedded in Epon 812 (Nisshin EM Co. Ltd., Tokyo, Japan). Ultrathin sections (70 nm) were cut on an ultra-
microtome (Ultracut-N, Reichert-Jung, Vienna, Austria) and placed on 150-mesh copper grids. The sections were 
stained with uranyl acetate (for 10 min) and lead citrate (for 5 min), and observed using a transmission electron 
microscope (H-7650, Hitachi, Tokyo, Japan) at an accelerating voltage of 80 kV. The quantification of TEM images 
was performed by referring to previous publications60,61. Briefly, 20 randomly selected cell-cell contact sites were 
captured, and the number of desmosome-like structures and their length in each contact sites were measured in 
a blind manner.

Western blotting. Total protein was extracted using M-PER Mammalian Protein Extraction Reagent 
(Thermo Fisher Scientific) with Halt Protease Inhibitor Cocktail and Halt Phosphatase Inhibitor Cocktail (Pierce 
Biotechnology, Rockford, IL, USA). Protein concentration was determined using a Pierce Bicinchoninic Acid 
Protein Assay Kit (Pierce Biotechnology). Each sample was solubilized in sodium dodecyl sulfate (SDS) sam-
ple buffer, separated by SDS-polyacrylamide gel electrophoresis, and transferred to polyvinylidene fluoride 
membranes (EMD Millipore Corporation). After incubation with the appropriate primary (E-cadherin; 1: 500, 
Beta-catenin; 1: 500, ERK; 1: 500, p-ERK; 1: 500, GAPDH; 1: 5000) and secondary antibodies (peroxidase-labeled 
anti-rabbit IgG antibody; 1: 5000), target proteins were detected using ECL Plus Western blotting detection rea-
gents (GE Healthcare) and a LumiVision PRO 400EX system (Aisin Seiki Co., Ltd., Aichi, Japan). The intensity of 
the signal was quantified using ImageJ software. The intensity of each molecule was expressed after normalization 
to the GAPDH or total-ERK intensity.

Mice. All experiments were performed in accordance with the Regulations and Guidelines on Scientific and 
Ethical Care and Use of Laboratory Animals of the Science Council of Japan, enforced on June 1, 2006, and 
approved by the Institutional Animal Care and Use Committee at Niigata University (permit number 151-3). 
Eight-week-old male C57BL/6 mice were purchased from Japan SLC, Inc. (Shizuoka, Japan). All mice were 
acclimatized under specific pathogen-free conditions and fed regular chow and sterile water throughout the 
experiment.

Induction of periodontitis in mice and administration of HYA. Murine experimental periodontitis 
was induced as described previously with minor modifications62. In brief, a 5–0 silk ligature was tied around the 
maxillary second molar under anesthesia without damaging the surrounding gingiva. During the ligation period, 
P. gingivalis (109 CFU) suspended in 100 µl of 2% carboxymethyl cellulose (Sigma-Aldrich) was given to the mice 
using a feeding needle every 2 days. The unligated group mice were sham-infected without P. gingivalis and served 
as controls. HYA was administrated via drinking water at a final concentration of 50 mM for 14 days. On day 7, 
half of the mice with P. gingivalis infection underwent ligation; all mice were sacrificed for analysis on day 14. The 
experimental design of this study is illustrated in Supplementary Fig. 10A.

Measurement of alveolar bone loss. After defleshing, the bones were subjected to brushing and bleach-
ing. The maxillae were stained with 1% methylene blue to delineate the CEJ and ABC. The distances of the mesial 
roots of the maxillary second molar from the CEJ to ABC were measured on images obtained with a stereom-
icroscope (DP2-BSW; OLYMPUS, Tokyo, Japan). Alveolar bone loss measurements were performed in a blind 
manner.

Measuring cell viability/cytotoxicity. The Epi 4 cells were seeded into a 96-well plate (5 × 103 cells/well) 
and incubated in the absence or presence of the indicated concentrations of HYA or HYB. The MTT assay was 
performed according to the manufacturer’s instructions (Sigma-Aldrich).

Assessment of antimicrobial activity. P. gingivalis bacteria were cultured in GAM broth under anaerobic 
conditions in the absence or presence of various concentrations of HYA or HYB at 37 °C. OD values (600 nm) 
were measured at the indicated time points using an EMax Plus plate reader.
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In vitro degradation of adhesion proteins. Recombinant human E-cadherin protein (R&D Systems, 
Inc., MN, USA) was incubated with live P. gingivalis with or without the preincubation of metabolites at the 
indicated concentrations. Electrophoresis was carried out using a Mini-PROTEAN Tetra System (Bio-Rad); 10% 
SDS-polyacrylamide gels were stained with Coomassie Blue, and the protein bands on gels were detected using 
an Imaging Scanner. In order to examine the anti-proteolytic properties of metabolites under physiological con-
ditions, a purified E-cadherin protein obtained from the Epi 4 cells was used. Purification was performed by an 
immunoprecipitation-based method according to the manufacturer’s instructions (Santa Cruz Biotechnology, 
Dallas, TX, USA). The purified E-cadherin was incubated with live P. gingivalis with or without preincubation 
with various concentrations of HYA or HYB, and then detected by Western blotting using a specific antibody.

Determination of bacterial accumulation. A sterile paper point (Zipperer Absorbent Paper Points, 
VDW GmbH, Munich, Germany) was held against the gum line in the oral cavity for 5 s. Bacterial DNA was 
extracted from these samples using a QIAampDNA Blood Mini Kit (Qiagen, Hilden, Germany). Quantitative 
real-time PCR was performed with 5 μL of sample DNA in a final volume of 20 μL per reaction using a Fast Start 
Essential DNA Green Master (Roche) on a LightCycler® 96 System (Roche). The universal 16 S rRNA sequence 
was amplified by predenaturation at 95 °C for 30 s, followed by 40 cycles at 95 °C for 10 s and at 60 °C for 30 s 
using a specific primer for universal 16 S rRNA (forward primer 5′-ACTCCTACGGGAGGCAGCAGT-3′; reverse 
primer 5′-ATTACCGCGGCTGCTGGC-3′). The Ct values obtained from the PCR were converted to gene copy 
numbers to estimate the amount of bacterial genomes.

Statistical analysis. All experiments were independently repeated at least twice, on separate days. All data 
are expressed as the mean ± standard deviation (SD). Statistical analyses were performed using GraphPad Prism 
(GraphPad Software, Inc., San Diego, CA, USA), and a p-value < 0.05 was considered as statistically significant.

Data availability statement. The data that support the findings of this study are available from the corre-
sponding author, N.T. and K.Y, upon reasonable request.
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Supplementary Figure 1 

The full-length gel image for Figure1A. 

Agarose gel electrophoresis of RT-PCR products for Gpr40 (left panel) and Gapdh (right panel). 

Caco 2 was used as a positive control. H2O was used as a negative control.
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Supplementary Figure 2

Optimization of concentration of metabolites for in vitro study.  

In vitro cytotoxic activities of metabolites at the indicated concentration were assessed using MTT 

assay. The relative cell proliferation of Epi4 cells was compared at the indicated time point. Less than 

5µM of HYA/HYB did not show any cytotoxicity at both time points.  (n = 4 in each group). All data 

are mean ± SD. p < 0.01 versus control at same time point, by ANOVA.
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Supplementary Figure 3 

Control
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5mM

Control
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Time (hours)

No antimicrobial effect of HYA/HYB against P. gingivalis. 

P. gingivalis was grown in liquid medium in the presence of the indicated concentration of 

HYA/HYB. Growth rate and bacterial concentration were determined by measuring OD value at 600 

nm at the indicated time points. Neither HYA nor HYB showed any antimicrobial activities against P. 

gingivalis at all time points. (n = 5 in each group). All data are mean ± SD. 
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No anti-proteolytic activities of HYA against P. gingivalis-derived protease.

The effect of HYA/HYB in the degradation of E-cadherin protein induced by P. gingivalis-derived 

protease in vitro. (A) Recombinat human E-cadherin and (B) immunoparticipated E-cadherin of 

Epi 4 cells were incubated with live-P. gingivalis (MOI:100) for 4 hours with or without the 

preincubation of indicated concentration of HYA/HYB for 30 mins. Loaded proteins were 

visualized by Coomassie-Blue-staining in upper panel and western blotting in lower panel, 

respectively. Arrows on the left side indicate the predicted size of E-cadherin. Nα-tosyl-L-lysine 

chloromethyl ketone hydrochloride (TLCK) served as a positive control of protease inhibitor.

Supplementary Figure 4 
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Supplementary Figure 5 

E-cadherin Beta-cateninGAPDH

Full-length immunoblot images for Figure 4A. 



Supplementary Figure 6 

Full-length immunoblot images for Figure 4B. 

p-ERK total-ERK GAPDH



Supplementary Figure 7 

Full-length immunoblot images for Figure 4C. 

p-ERK total-ERK GAPDH



Supplementary Figure 8
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No alteration on E-cadherin/Beta-catenin mRNA level.

Quantification of indicated mRNA expression of Epi 4 cells at 4 h after

stimulation, with or without HYA/HYB preincubation (5 µM) for 30 min. (n = 3 in

each group). All data are presented as mean± SD.



2nd Ab only

GPR40 expression in the gingival epithelium.

Representative immunohistochemical staining of murine gingival sections with anti-GPR40 antibody. 

GPR40 immunoreactivity was detected in the basal and suprabasal layers as well in  junctional 

epithelium. The right panels are sections without primary antibody, which served as negative controls 

Scale bars represent 100 μm.

GPR40

Supplementary Figure 9
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Effect of HYA treatment in the ligature-induced periodontitis model.

(A) Experimental design of HYA treatments in the mice model. (B) Representative immunofluorescence 

staining of epithelial E-cadherin and quantification. (n=3 in each group) Scale bars represent 100 μm. (C) 

Validation of E-cadherin antibody for immunofluorescence staining. (D) Quantification of indicated 

mRNA expression in gingival tissue. (n=6 in each group) (E) Quantification of bacterial abundance was 

performed by PCR using universal 16s rRNA primerson Day14. Subgingival plaque samples were 

obtained from each mouse by placing sterile paper points. (n=6 in each group). All data are mean ± SD. 

*p < 0.05 vs unligated sham group, by ANOVA.
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Supplementary Figure 10
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Supplementary Figure 11

A schema of our proposed mechanism. Post-translational modifications (PTMs) on E-cadherin 

mediated by HYA-GPR40-ERK signaling suppress the degradation of E-cadherin proteins in Epi 4.


