E2 電波暗室における Polarimetric SAR Interferometry 基礎実験 岡田武幸 山田寛喜 山口 芳雄 新潟大学工学部

1. まえがき

現在,地球環境の変動を広域にわたって観測する手段 として,マイクロ波リモートセンシングの技術が非常に 注目されている.その中の一つの手法として,偏波を用 いて地表面の情報を取得し,地表面の識別や分類を行う レーダポーラリメトリ (Radar Polarimetry)と位置が 異なる二つのアンテナを用いて地表面の高度を算出す るインターフェロメトリ (Interferometry)の特徴を組 み合わせた Polarimetric SAR Interferometry という手 法がある.現在,この手法を用いた森林解析に関する研 究が進められており,森林の高さを測定することによ り,森林バイオマスの体積などの情報を得ることが可能 となる.そこで本研究では,電波暗室内において森林モ デルを模擬したモデル実験を行い,コヒーレンス解析の 妥当性を検証している.

2. コヒーレンス

コヒーレンスとは二つのアンテナから得られる信号 の干渉性を表し、このコヒーレンスの位相からターゲッ トの高さを測定することができる.送受信一体型のレー ダを仮定した場合、コヒーレンスベクトル k は次のよ うに定義される.

$$\boldsymbol{k} = \frac{1}{\sqrt{2}} [S_{HH} + S_{VV}, S_{VV} - S_{HH}, 2S_{HV}]$$
(1)

また, コヒーレンスγは式 (1) により次式のように与え られる [1].

$$\gamma = \frac{\langle \omega_1^{*T}[\Omega_{12}]\omega_2 \rangle}{\sqrt{\langle \omega_1^{*T}[T_{11}]\omega_1 \rangle \langle \omega_2^{*T}[T_{22}]w_2 \rangle}}$$
(2)

ただし, T は転置, * は複素共役, <・> はアンサンブ ル平均,ωは散乱メカニズムを表す. [T₁₁], [T₂₂], [Ω₁₂] はそれぞれ次式のように定義される.

$$[T_{11}] = \left\langle k_1 k_1^{*T} \right\rangle \tag{3}$$

$$[T_{22}] = \langle k_2 k_2^{-1} \rangle \qquad (4)$$

$$[\Omega_{12}] = \langle k_1 k_2^{**} \rangle \qquad (5)$$

最適化されたコヒーレンスは, 次式の複素固有値問題を 解くことによって求められる [1].

$$[T_{22}]^{-1}[\Omega_{12}]^{*T}[T_{11}]^{-1}[\Omega_{12}]w_2 = \nu\omega_2 \quad (6)$$

$$[T_{11}]^{-1}[\Omega_{12}][T_{22}]^{-1}[\Omega_{12}]^{*T}w_1 = \nu\omega_1 \quad (7)$$

$$[T_{11}] \quad [M_{12}][T_{22}] \quad [M_{12}] \quad w_1 = \nu \omega_1 \quad (7)$$

この固有値の平方根が最適化コヒーレンスの値となる.

$$\gamma_{max} = \sqrt{
u_{max}}$$

また,森林領域ではコヒーレンス γ の式は次のように 表される [2].

$$\tilde{\gamma}(\omega) = \exp(i\phi_0) \left[\frac{\tilde{\gamma}v + m(\omega)}{1 + m(\omega)} \right]$$
 (9)

ここで øo は地表面に関する位相, ÿv は体積成分に関 する複素数コヒーレンス, m は地面と体積成分の振幅 比を表す. この式は得られるコヒーレンスが複素平面 上において ÿv を通る直線上にのることを示す.

3. 実験

実験は電波暗室内で行った。側面から見た実験状況 を図1に示す.マスターアンテナの高さを170cm、ス レーブアンテナの高さを173cmとして測定を行った. 実験パラメータを表1に示す.

ターゲットには発泡スチロール上に金属棒を多数配 置したものを二枚用いた二層モデルを使用している.上 層には水平方向(アジマス方向)に金属棒を配置して地 面の層のモデルとし、下層には垂直方向(レンジ方向) に金属棒を配置して非常に薄い樹冠の層のモデルとし ている.

表 1. 設定パラメータ

システム	ネットワークアナライザ
アンテナ	X-band ホーンアンテナ
中心周波数	10 [GHz]
周波数带域幅	2 [GHz]
送受信偏波	HH, HV, VV
アベレージング	16 [🖸]
測定ポイント	201
走查点数 (走查間隔)	128 (1 [cm])

図 1. 実験状況

4. 実験結果,考察

測定データに合成開口処理を施した後,ターゲット の中心付近における算出された各偏波間のコヒーレン

(8)

ス画像を図2,3,4に示す.グラフの横軸はアンテナか らターゲットの距離方向,縦軸はアンテナの走査方向 となっている. ターゲットの中心付近におけるコヒー レンスを複素平面上にプロットしたものを図5に示す. ただし、opt1, opt2, opt3 は最適化コヒーレンスを大き い順に割り振ったものである.また、解析したコヒーレ ンスの値は5×5pixel でマルチルックしたものである. これより、hh-hh 偏波と vv-vv 偏波のコヒーレンスが高 くなっていることがわかる.複素コヒーレンスの値は、 最適化コヒーレンス opt1, opt2 と hh-hh 偏波, vv-vv 偏波によるコヒーレンスがほぼ一致する傾向があるこ とがわかる.また、各コヒーレンスはほぼ直線上の値と なっている. hh-hh 偏波と vv-vv 偏波の位相差から算 出された高さ画像を図6に示す。高さはターゲットの 中心付近でほぼ 20cm となっているが, ±10cm 程度の 誤差があることがわかる.

5. まとめ

本稿では二層ターゲットを用いて実験を行い, Polarimetric SAR Interferometry におけるコヒーレンスにつ いて解析を行った. ターゲット中心のコヒーレンスは ほぼ理想的な値であったが, マルチルック数を変化させ た場合についても検討しなければならない. また, 高さ の誤差についても検討が必要である. なお, この研究の 一部は文部科学省科研費によるものである.

参考文献

- K. P. Papathanassiou, S. R. Cloude, "Polarimetric SAR Interferometry", IEEE Trans. Geosci. Remote Sensing, vol. 36, No. 5, pp. 1551-1565, Sept, 1998.
- [2] K. P. Papathanassiou, S. R. Cloude, "Vegetaion and ground parameter estimation using polarimetric interferometry part 1/2", Proc. of ESA CEOS SAR Workshop, Toulouse, France, Oct. 1999.

図 6. 高さ画像