仮想矩形アレーを用いたアレーアンテナの校正精度について

On Calibration Accuracy of Array Antenna by using Virtual Rectangular Array

酒井宏史 †

山田寛喜 †

山口芳雄†

Hiroshi Sakai

Hiroyoshi Yamada

Yoshio Yamaguchi

† 新潟大学大学院自然科学研究科

Graduate School of Science & Technology. Niigata University

1 まえがき

実際の環境においてアレーアンテナを用いて DOA 推定を行う場合、誤差要因の影響を取り除くための校正が必要である。本稿では、リニアアレーに仮想素子を配置し、仮想素子配置の違いによる仮想矩形アレーを用いたアレーアンテナの校正精度について実験データにより比較検討する。

2 受信信号モデルと校正手法

素子数 L のリニアアレーアンテナを考える。このアレーアンテナに K 個の平面波が到来するとき、波長、到来方向をそれぞれ λ 、 θ_k とすると、受信信号 x(t) は以下のように表される。

$$x(t) = CAs(t) + n(t)$$
 (1)

ここで,C は $L \times L$ 誤差行列 (校正行列) であり,A は $L \times K$ のモード行列,s(t) は信号ベクトル,n(t) は雑音ベクトルである. DOA が既知な M 方向 (1 波) の方位角参照データを用いて, $L \times L$ 行列 C を推定する. それにより,方位角依存性による誤差を補正することができるが,仰角依存性による誤差は取り除くことができない. そこでリニアアレーに本来存在しない仮想素子を付加し,仮想矩形アレーを形成する.x 軸,y 軸,z 軸方向にそれぞれ L_x , L_y , L_z 素子を配置すると,受信データは以下のようになる.

$$x(\theta, \phi) = C_{\text{ex}} a_{\text{ex}_i}(\theta, \phi) \quad (i = 1, 2)$$
 (2)

$$a_{ex_1}(\theta_i, \phi_i) = a_x(\theta_i, \phi_i) \otimes a_z(\phi_i)$$
 (3)

$$a_{\text{ex}_2}(\theta_i, \phi_i) = a_x(\theta_i, \phi_i) \otimes a_y(\theta_i, \phi_i) \tag{4}$$

$$a_x(\theta_i,\phi_i) = [e^{-j\frac{2\pi}{\lambda}x_1\sin\theta_i\cos\phi_i},\cdots,e^{-j\frac{2\pi}{\lambda}x_{L_x}\sin\theta_i\cos\phi_i}](5)$$

$$a_y(\theta_i,\phi_i) = [e^{j\frac{2\pi}{\lambda}y_1\cos\theta_i\cos\phi_i},\cdots,e^{j\frac{2\pi}{\lambda}x_{L_y}\cos\theta_i\cos\phi_i}] \quad (6)$$

$$a_z(\phi_i) = \left[e^{j\frac{2\pi}{\lambda}z_1\sin\phi_i}, \cdots, e^{j\frac{2\pi}{\lambda}z_{L_z}\sin\phi_i} \right] \tag{7}$$

ここで、 $a_{\rm ex_1}$, $a_{\rm ex_2}$ はそれぞれ $L_z \times L_x$, $L_y \times L_x$ 仮想矩形アレーのモードベクトルであり、 \otimes はクロネッカ積である。 $C_{\rm ex}$ の導出については文献 [1] を参照して頂きたい。

3 実験データによる評価

2 波到来時の実験パラメータを表 1 に示す。仮想矩形アレーによる校正においては, 3×4 素子仮想矩形アレーを考える。到来波の 1 波目は $(\theta_1,\phi_1)=(10^\circ,0^\circ)$ とし,2 波目は $(\theta_2,\phi_2)=(20^\circ,15^\circ)$ とする。図 2 (a), (b) における推定角 $((\theta_1,\phi_1),(\theta_2,\phi_2))$ はそれぞれ $((10.7^\circ,0.9^\circ),(19.6^\circ,9.5^\circ))$, $((4.3^\circ,-36.9^\circ),(4.3^\circ,36.9^\circ))$ となっており,x-z 平面に仮想素子を配置することで校正精度が向上する。

4 まとめ

本稿では、リニアアレーに仮想素子を配置し、仮想素子配置の違いによる仮想矩形アレーを用いたアレーアンテナの校正精度について実験データにより比較検討した、x-z 平面、すなわち電流上に素子を配置することで校正精度が向上する.

謝辞

本研究の一部は科研費 (2056349), 一部は財団法人テレコムエンジニアリングセンター研究助成金により実施されたものである.

参考文献

[1] 内藤 孝, 山田寛喜, 山口芳雄. "仮想アレーを用いた リニアアレー DOA 推定の仰角依存性の校正につい て、" 信学技報, A·P2007-130, pp.45-50, Jan. 2008.

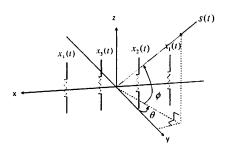
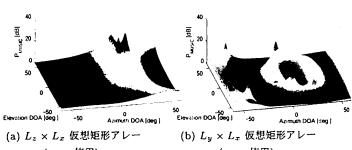



図1 受信アレーモデル

表 1 実験パラメータ

素子	1/4 波長モノボール
実在アレー素子数	-4
仮想アレー素子数	12 (3 × 4)
周波数	2.45 [GHz]
外部参照波	$-70^{\circ} \sim +70^{\circ}$
(方位角)	10° 問隔 15 波
外部参照波	$0^{\circ} \sim +24^{\circ}$
(仰角)	6°間隔 5 波

 $(a_{ex_1}$ 使用) $(a_{ex_2}$ 使用) 図 2 MUSIC スペクトラム