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Abstract In this study, we propose computational method on several scalarizing functions for
sets in a vector spaces. Classically, we use some types of scalarization methods for multiobjective
programming problems. For two decades, some papers devoted in the fields of vector optimization
and set-valued optimization were appeared with interesting results using nonlinear scalarizing
functions with respect to some partial ordering introduced by a convex cone in a vector space. The
aim of this paper is to introduce several useful scalarizing functions for sets and propose certain
computational methods for them by global optimization technique.

1 Introduction

In recent decades, several scalarization methods for
vectors and sets in an ordered vector space are studied
and utilized as one of important tools in multiobjec-
tive programming, vector optimization, and set-valued
optimization. To evaluate vectors or calculate efficient
solutions of a given set, we usually use several scalariza-
tion techniques for multiobjective programming prob-
lems; see [5, 9]. When we want to compare and eval-
uate two vectors in a vector space like a Euclidean
space, we use the average value of the components of
each vector, which is a special case of linear weighted
sum for components, and the distance or norm of each
vector from a certain reference point like the origin of
the space or an aspiration level. They are referred to
as a weighted sum approach and a weighted Cheby-
shev norm approach, respectively. However, both ap-
proaches are interpreted in a unified framework based
on the idea of Minkowski functional. Recently, we
find some interesting applications on generalizations
of scalar problems like equilibrium problems by deal-
ing with Gerstewitz’s (Tammer’s) scalarizing function
for vectors and sets, which is a mathematical tool gen-
eralizing its approach; see [4].

The aim of this paper is to introduce some scalariza-
tion methods for sets in an ordered vector space and to
show certain algorithms to scalarize sets in a Euclidean
space by computational procedures. In this purpose,
we define four types of scalarizing functions for sets
by using the Gerstewitz’s scalarizing function, and we
show that each value of the four functions can be com-
puted practically. Moreover, we construct a successive
approximation algorithm for solving multicriteria op-
timization problems with a d.c. set (the difference of
two convex sets).

The organization of the paper is as follows. In Sec-
tion 2, we introduce Gerstewitz’s (Tammer’s) scalar-
izing function and four types of nonlinear scalarizing
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functions for sets in a vector space. In Section 3, we
observe two types of computation algorithms in a Eu-
clidean space for a simple case of polytopes with a non-
negative orthant and a more general case of d.c. sets
with a polyhedron (a finite intersection of closed half
spaces). For the first case, we show that the four func-
tions for a given polytope can be calculated with finite
steps by minmax or maxmin type with respect to ra-
tios on coordinates of each vertex of the polytope and
coordinates of a direction vector in the non-negative
orthant. For the second case, we propose a successive
approximation algorithm to calculate the four func-
tions for a given d.c. set by using a global optimization
technique for d.c. programming problems.

2 Mathematical Preliminaries

Throughout the paper, let Y be a real ordered topo-
logical vector space with the ordering ≤C induced by
a nonempty convex cone C (C + C = C and λC ⊂ C
for all λ ≥ 0) as follows:

x ≤C y if y − x ∈ C for x, y ∈ Y .

It is well known that ≤C is reflexive and transitive
where C is a convex cone, moreover, ≤C has invariant
properties to vector space structure as translation and
scalar multiplication. In particular, if C is pointed,
then ≤C is antisymmetric, and hence Y is a partially
ordered topological vector space. For any A ⊂ Y we
denote the interior, closure, complement, convex hull
of A by intA, cl A, Ac, co A, respectively.

We define the following function, called Gerstewitz’s
(Tammer’s) scalarizing function of a vector y ∈ Y :

hC(y; k) := inf{t | y ∈ tk − C}

where k ∈ intC; this function is essentially equivalent
to the smallest strictly monotonic function defined by
Luc [8]. For each y ∈ Y , hC(y; k) · k corresponds the
mimimum vector of upper bounds of y with respect to
C restricted to direction k. Similarly, −hC(−y; k) · k
corresponds the maximum vector of lower bounds of y
with respect to C restricted to direction k.
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The idea of the function was dealt by Krasnosel’skij
[6] in 1962 and by Rubinov [11] in 1977, and then it
was applied to vector optimization with its concrete
definition by Gerstewitz (Tammer) [2] in 1983, and to
separation theorems for not necessary convex sets by
Gerstewitz and Iwanow [3] in 1985. If C is a closed
convex cone, y 7→ hC(y; k) is a sublinear continuous
function and the following relationship between level
sets of the function and translations of convex cones:

{z ∈ Y |hC(z; k) ≤ λ} = λk − C,

{z ∈ Y |hC(z; k) < λ} = λk − intC.

For more detail, see [4].
Now, we consider a scalarization of subset A ⊂ Y

with respect to convex cone C and direction vector k ∈
intC. By use of the Gerstewitz’s scalarizing function,
we define

ϕk
C(A) := inf

y∈A
hC(y; k) (1)

ψk
C(A) := sup

y∈A
hC(y; k). (2)

By −hC(−y; k) = sup{t | y ∈ tk + C}, we define an-
other ones:

−ψk
C(−A) = inf

y∈A
−hC(−y; k) (3)

−ϕk
C(−A) = sup

y∈A
−hC(−y; k) (4)

where −A = {−a ∈ Y |a ∈ A}.

Figure 1: Scalarizations ϕk
C(A) and ψk

C(A)

The first and fourth functions in (1) and (4) and
the second and third ones in (2) and (3) have sym-
metric properties, respectively. These four scalarizing
functions for set A ⊂ Y can be regarded as an evalu-
ation approach with 4-tuple of Chebyshev type scalar-
izations, as illustrated in Figures 1 and 2. These func-
tions have been introduced by Georgiev and Tanaka [1]
in 2000 for generalizing the classical Fan’s inequality.
Then they have been studied by Nishizawa, Tanaka

Figure 2: Scalarizations −ψk
C(−A) and −ϕk

C(−A)

and Georgiev [10] in 2003 from the viewpoint of cone
convexity and cone semicontinuity as inherited prop-
erties for set-valued maps, and also applied into char-
acterizations of optimality conditions for efficient solu-
tions of set-valued optimization problems by Shimizu,
Nishizawa and Tanaka [12] in 2007. Thus, we have the
question whether they can be computed practically or
not.

3 Computation Algorithm

At first, we consider a scalarization of a polytope
when Y = Rn and C = Rn

+.

Lemma 1 Let k ∈ intRn
+. For z = (z1, . . . , zn)T ∈

Rn, we have

hRn
+
(z; k) = max

{
z1

k1
, . . . ,

zn

kn

}
(5)

and

−hRn
+
(−z; k) = min

{
z1

k1
, . . . ,

zn

kn

}
. (6)

Proof For hRn
+
(z; k) and −hRn

+
(−z; k), we consider

the following two scalar optimization problems.

minimize t
subject to z ∈ tk − Rn

+,

maximize t
subject to z ∈ tk + Rn

+.

Since ki > 0(i = 1, . . . , n) and constraints z ∈ tk − Rn
+

and z ∈ tk + Rn
+ are equivalent to t ≥ zi/ki and t ≤

zi/ki for all i = 1, . . . , n, respectively, we get (5) and
(6). 2

Theorem 1 Let k ∈ intRn
+. For nonempty polytope

A = co {a(1), . . . , a(m)}, where a(1), . . . , a(m) ∈ Rn, we
get

ϕk
Rn

+
(A) ≤ min

j
max

i

a
(j)
i

ki
, (7)
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−ϕk
Rn

+
(−A) ≥ max

j
min

i

a
(j)
i

ki
. (8)

Moreover we calculate scalarizing functions (2) and (3):

ψk
Rn

+
(A) = max

j
max

i

a
(j)
i

ki
, (9)

−ψk
Rn

+
(−A) = min

j
min

i

a
(j)
i

ki
. (10)

Proof By Lemma 1, (7) and (8) are obvious. For z =
(z1, . . . , zn)T ∈ A, there are some nonnegative coeffi-
cients λj (j = 1, . . . ,m) such that z =

∑m
j=1 λja

(j) and∑m
j=1 λj = 1. Hence, by the sublinearity of hRn

+
(·; k),

we get

hRn
+
(z; k) = hRn

+

 m∑
j=1

λja
(j); k


≤

m∑
j=1

λjhRn
+
(a(j); k)

≤ max
j=1,...,p

hRn
+
(a(j); k)

≤ sup
y∈A

hRn
+
(y; k) = ψk

Rn
+
(A).

Similarly, we obtain

−hRn
+
(−z; k) = −hRn

+

−
m∑

j=1

λja
(j); k


≥

m∑
j=1

λj

(
−hRn

+
(−a(j); k)

)
≥ min

j=1,...,p

(
−hRn

+
(−a(j); k)

)
≥ inf

y∈A

(
−hRn

+
(−y; k)

)
= −ψk

Rn
+
(−A)

Therefore, (9) and (10) hold. 2

In order to calculate the values of scalarizing func-
tions (1) and (4), we consider the following linear pro-
gramming problems.

(LPmin) inf t
(resp. (LPmax) sup)

subject to tk =
m∑

j=1

λja
(j)

m∑
j=1

λj = 1

λi ≥ 0 (i = 1, . . . ,m)

Finite optimal values of problems (LPmin) and (LPmax)
coincide with the values of scalarizing functions (1) and
(4), respectively. If both problems are infeasible, then
each equality in (7) and (8) holds.

Next, we consider a more general case of d.c. set,

A = G1 \ G2

where G1 is a compact convex set and G2 is an open
convex set, with a polyhedron

C =
{

z
∣∣∣ 〈

c(i), z
〉
≥ 0, i = 1, . . . , p

}
,

and we give a certain successive approximation algo-
rithm for the values of scalarizing functions (1)–(4).
Since

C =
p⋂

i=1

{
z ∈ Y

∣∣∣〈c(i), z
〉
≥ 0

}
=

{
z ∈ Y

∣∣∣∣ min
i=1,...,p

〈
c(i), z

〉
≥ 0

}
(11)

and k ∈ intC,
〈
c(i), k

〉
> 0 (i = 1, . . . , p). Let

c(i)(k) :=
1〈

c(i), k
〉c(i) (i = 1, . . . , p),

and then

hC(z; k) = max
i=1,...,p

〈
c(i)(k), z

〉
−hC(−z; k) = min

i=1,...,p

〈
c(i)(k), z

〉
,

which are convex and concave functions with respect
to z, respectively. We denote

H1
C(y; k) := max

i=1,...,p

〈
c(i)(k), y

〉
and

H2
C(y; k) := min

i=1,...,p

〈
c(i)(k), y

〉
.

Then, the values of (1)–(4) are

ϕk
C(A) = inf

y∈A

(
H1

C(y; k)
)
, (12)

ψk
C(A) = sup

y∈A

(
H1

C(y; k)
)
, (13)

−ψk
C(−A) = inf

y∈A

(
H2

C(y; k)
)
, (14)

−ϕk
C(−A) = sup

y∈A

(
H2

C(y; k)
)
. (15)

When we consider the following d.c. set

A = {z ∈ Y |g1(z) ≤ 0} \ {z ∈ Y |g2(z) < 0}

where g1, g2 : Y → R are continuous convex functions,
the d.c. programming problems (12)–(15) above are
equivalent to the followings, respectively.{

minimize H1
C(y; k)

subject to g1(y) ≤ 0, g2(y) ≥ 0,
(16)

第52回自動制御連合講演会
2009年11月21, 22日(大阪大学)

3

B3-5



{
maximize H1

C(y; k)
subject to g1(y) ≤ 0, g2(y) ≥ 0,

(17){
minimize H2

C(y; k)
subject to g1(y) ≤ 0, g2(y) ≥ 0.

(18){
maximize H2

C(y; k)
subject to g1(y) ≤ 0, g2(y) ≥ 0,

(19)

Then problems (16), (17), (18), and (19) can be refor-
mulated as follows. maximize α,

subject to g1(y) ≤ 0,
min

{
g2(y),H1

C(y; k) − α
}
≥ 0 ,

(20)

 minimize α,
subject to g2(y) ≥ 0,

max
{
g1(y), H1

C(y; k) − α
}
≤ 0 ,

(21)

 maximize α,
subject to g2(y) ≥ 0,

max
{
g1(y),−H2

C(y; k) + α
}
≤ 0 ,

(22)

 minimize α,
subject to g1(y) ≤ 0,

min
{
g2(y),−H2

C(y; k) + α
}
≥ 0 .

(23)

Problems (21) and (22) are canonical d.c. program-
ming problems, and they can be solved by some global
optimization technique. However, problems (20) and
(23) have d.c. constraint functions. Hence, in order to
transform problems (20) and (23) into canonical d.c.
programming problems, by using the basic property
of d.c. functions, we replace d.c. constraints in prob-
lems (20) and (23) in the following manner:{

y
∣∣min

{
g2(y),H1

C(y; k) − α
}
≥ 0

}
=

{
y

∣∣g2(y) + H1
C(y) − α

−max
{
g2(y),H1

C(y; k) − α
}
≥ 0

}
=

{
y

∣∣g2(y) + H1
C(y) − α

≥ max
{
g2(y),H1

C(y; k) − α
}}

=
{
y

∣∣g2(y) + H1
C(y) − α ≥ β

≥ max
{
g2(y),H1

C(y; k) − α
}}

=
{
y

∣∣max
{
g2(y),H1

C(y; k) − α
}
≤ β,

g2(y) + H1
C(y; k) − α ≥ β

}
and {

y
∣∣min

{
g2(y),−H2

C(y; k) + α
}
≥ 0

}
=

{
y

∣∣g2(y) − H2
C(y; k) + α

−max
{
g2(y),−H2

C(y; k) + α
}
≥ 0

}
=

{
y

∣∣g2(y) − H2
C(y; k) + α

≥ max
{
g2(y),−H2

C(y; k) + α
}}

=
{
y

∣∣g2(y) − H2
C(y; k) + α ≥ β

≥ max
{
g2(y),−H2

C(y; k) + α
}}

=
{
y

∣∣max
{
g2(y),−H2

C(y; k) + α
}
≤ β,

g2(y) − H2
C(y; k) + α ≥ β

}
.
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[4] A. Göpfert, H. Riahi, C. Tammer, and
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