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Abstract

This paper describes a mnovel method for gesture
recognition using character recognition techniques on
two-dimensional eigenspace. An image-based approach
can capture human body poses in 8D motion from
multiple image sequences. The sequence of poses can
be reduced into a trajectory on the two-dimensional
eigenspace with preserving the main features in ges-
ture, so that the gesture recognition equals the charac-
ter recognition. Ezperiments for the gesture recogni-
tion using some character recognition techniques show
our method is useful.

1 Introduction

The gesture recognition has played an important
role in various applications such as human-computer
interaction and security systems that can detect pe-
culiar behavior. This is one of the most active re-
search areas with the improvement of computer. Ex-
isting methods are classified into an appearance-based
approach(1,2,3,4] and a motion parameter-based ap-
proach [5,6].

For using a gesture image sequence, hidden Markov
models (HMMs), dynamic time warping (DTW) and
parametric eigenspace were applied. Yamato et al.[1]
employed HMMs for the recognition of actions in ten-
nis. Starner et al.[2] put a camera on the cap worn
by the user and applied HMMs for real-time recogni-
tion of American Sign Language. Takahashi et al.[3]
used DTW for the recognition of dexterous manipu-
lation. Murase and Sakai[4] extended the parametric
eigenspace method for identification of pedestrian. In
these methods, the features in gesture are detected
from gesture image sequences, so that the dimension
of the feature space is very large. Additionally, the
pose of the person relative to camera is strongly re-
stricted.

For using motion parameters, Campbell and Bo-
bick[5] used a ”"phase space” for representation of the
ballet steps. The axes of the phase space correspond
to a few motion parameters measured by the motion
captures. A problem is left. That is how to select par-
ticular parameters among many motion parameters to
preserve main features according to each step.

This paper proposes a new parameter-based
method. Using the KL transform, a sequence of hu-
man poses can be reduced into a trajectory on a two-

dimensional eigenspace with preserving the main fea-
tures in gesture. That is, a gesture is drawn on the
two-dimension plane, so that the gesture recognition e-
quals the character recognition. This reduction makes
the gesture recognition very simple by using the char-
acter recognition techniques. We will apply the pro-
posed method to the basic gymnastic exercises.

The next Section describes the representation of hu-
man poses and the image-based tracking of human ac-
tion. Section 3 explains a representation of the gesture
as the trajectory on the two-dimensional eigenspace.
Section 4 deals with the gesture recognition. Experi-
ments in Section 5 refer to the gesture recognition of
basic gymnastic exercises.

2 Representation of Human Poses and
Image-based Tracking

We represent a human body by an articulated struc-
ture consisting of 11 rigid parts corresponding to head,
trunk, waist, upper arms, forearms, thighs and shins,
respectively. Each part of the body is approximated
by a polyhedron which is made by a CAD modeler|[7].
Fig.1 denotes the human body model. Each part of the
body has a local coordinate system in which the origin
is located at a joint, and a unique label to discrimi-
nate from each other. The model has a tree structure
with a root at the trunk. The poses of parts calcu-
lated by image-based tracking denote rotational an-
gles at the joint with respect to the straightened pose.
The motion parameters of this model are rotational
and translational quantities of the root and rotational
quantities of the other parts. Even a single camera can
capture the human body pose in 3D motion. However,
there are a few problems. First, an occlusion makes
it difficult to capture entire body movement, second,
a visual degenerate in motion measurement may oc-
cur when the body moves toward or away from the
camera. To overcome these problems, we use multiple
camera views|§].

The model fitting is carried out for the multiple
camera views at the initial frame to start tracking.
Then the model represents the 3D pose of the human
body. The motion parameters are estimated using the
spatial and temporal gradient method, and the pose of
human body at each frame is obtained from integra-
tion of a sequence of motion parameters onto the pose
at the initial frame[8]. Fig.2 shows multiple images of
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Figure 1: CAD modeling of parts of human body

basic gymnastic exercises from four camera views, on
which the body model overlaps. Our gesture recogni-
tion method uses a sequence of the poses of the ten
parts; i.e. trunk, waist, upper arms, forearms, thighs
and shins.

The poses of each part obtained from the image-
based tracking indicate rotational angles around the
x, y and z axis with respect to the parent part coordi-
nate system. Each axis of the part-oriented coordinate
system is shown in Fig.1, where the z axis denotes a
spine of each part. It is difficult to measure the ro-
tational angles around the z axis in this image-based
tracking because the area of parts, e.g. arms and legs,
is observed to be very thin. To avoid this problem, we
represent the pose by a unit vector n aligning the z
axis of the part with respect to the parent part coor-
dinate systems as shown in Fig.3. Supposing ¢ and
¢ to be rotational angles around the x and y axis,
respectively, the n is described by

n = (—siny, cosysing, costpcosp)? . (1)

Fig.4 shows the measured components of n of body
parts in one of the basic gymnastic exercises.

3 Representation of Gesture on Low-

Dimensional Eigenspace

A human body consists of many parts, and each
has many pose parameters. If these parameters are
expressed in the low-dimensional feature space, ges-
ture recognition becomes very simple. Here we will
propose a representation of the gesture on the low-
dimensional eigenspace.

Since parts of the human body constrain each oth-
er, the number of pose parameters can be reduced.
The reduction can be performed by the KL (Karhune-
Loeve) transform.

Figure 2: Images from four cameras, on which the
body model overlaps

Figure 3: Part pose

We will represent the gesture on the eigenspace.
Let a set of pose parameters of the training gestures
be

T = [T, iz, T (2)
where ¢ is the number of frames of training gesture
and m is the total number of the parameters(m=30 in
Fig.4). The pose parameters are normalized so that
the range of every parameter could be from -1 to 1.
The average of pose parameters, ¢, is defined by

1 N
:NZ% (3)

where N is the total number of frames. Subtracting
the bias, ¢, from pose parameters results into the fol-
lowing pose matrix X.

s LN — C]T (4)

The covariance matrix @ of pose matrix X is repre-
sented by

X=[x,—cx,—c,- -

Q=Xxx"T. (5)
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Figure 4: Components of unit vectors representing part pose

An eigenvector e; and the corresponding eigenvalue \;
of @Q are computed by solving the eigenvector decom-
position problem:

Aie; = Qe; (6)

The k-dimensional eigenspace is spanned by the k
eigenvectors (e,,---,ey), which correspond to the
largest k eigenvalues (A; > -+ > Ag), as basis vec-
tors.

A training gesture is represented on the eigenspace.
A set of pose parameters, x;, is projected onto the
eigenspace by

gi = les, e, €] (@i — ©). (7)

The set of pose parameters is projected as one point
onto the eigenspace. Assuming the pose displacement
between two successive frames to be very small, the
two projections onto the eigenspace are close to each
other. So the gesture is represented as a continuous
trajectory on the eigenspace.

Now, we consider dimension of the eigenspace,
which is sufficient to represent the gesture. One ap-
proach is to select the first n eigenvectors representing
the important gesture variations. The cumulative pro-
portion

Aj
SC, =2

m

- ®
2

Aj

Jj=1

can be often referred to determine the dimension of
eigenspace enough to represent the gesture. If it is
close to unity, the n-dimensional subspace represents
an original gesture very well. In this paper, we rep-
resent the gesture on the two-dimensional eigenspace,
which will be found to be adequate. We call the two-
dimensional eigenspace an eigenplane. Fig.5 shows a
gesture on the eigenplane. Poses from 1 to 4 are pro-
jected as the points from P1 to P4, and the gesture is
represented as a trajectory on it.

4 Gesture Recognition

An unknown gesture can be projected onto the
eigenplane as a trajectory using eigenvectors obtained
from training gestures. A sequence of pose parameters
is projected onto this space by

g; = [e,, )T (zi — ¢). 9)

The gesture recognition is performed by comparing a
similarity between the trajectory of the unknown ges-
ture and the trajectory of the training gestures on the
eigenplane. Since the gesture trajectory is represented
as a curve on the eigenplane, one can regard the ges-
ture recognition as the character recognition. Many
methods have been proposed for the character recog-
nition, where the selection of the feature vector is very
important.

4.1 Selection of Feature Vectors

This section shows the typical feature vectors used
in the character.

(1) Centroid and length of trajectory

A different position and shape of the trajectory on
the eigenplane corresponds to the different gesture.



Figure 5: Gesture on eigenplane

So, we select the centroid, the length of the principal
axis of the trajectory and the length of the minor axis
of the trajectory as the features shown in Fig.6(a). We
set these as components of the feature vector. The
gesture trajectory is projected as one point onto the
feature space. The points in the space are scaled so
that average distance from the centroid is equal to
unity.

(2) Subspace eigenvector

The subspace method has been used as a typical
technique for the character recognition[9]. We apply
this method to the gesture recognition. When a ges-
ture trajectory is drawn on the [ X[ eigenplane, it is
quantized at I2-meshes shown in the left of Fig.6(b)

and expressed by {?-dimensional vectors
€Tr = [xl’xz,"',le]T. (10)

The covariance matrix and its eigenvectors are calcu-
lated by the same way in Section 3. The subspace is
spanned by some eigenvectors, which corresponded to
some large eigenvalues. The gesture is projected as
one point onto the subspace.

In the character recognition, the subspace method
usually normalizes the scale and position of the char-
acter, while, in the gesture recognition, the scale and
position should not be normalized, since the differen-
t scale and position of the trajectory corresponds to
the different gesture. However, a small change of the s-
cale and position of the trajectory may mean the same
gesture. Therefore, the trajectory is thickened so that
the trajectories having a small change are recognized
as the same. The meshes including the trajectory are
assigned to 1, and the other meshes are 0. We lose a
distribution density of the points on the eigenplane,
which is one of the features in gesture. So, we weight
the trajectory with the distribution density as shown
in the right of Fig.6(b).
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Figure 6: Gesture trajectory on eigenplane

4.2 Linear Discriminate Method

A gesture expressed as a trajectory on the eigen-
plane is projected as one point onto the feature space
that is spanned by the feature vectors. The train-
ing gestures consist of many samples of performers, so
that the gesture is recognized by the linear discrimi-
nate method.

Suppose the dimension of the feature space to be d,
and that the feature space contains two classes. The
hyperplan which discriminate two classes well is de-
cided by the Fisher’s linear discriminate method[10].

A criterion of separation of two classes is to increase
a within-class scatter and to decrease a between-class
scatter. The scatter matrix S; which means the scat-
ter of classes w;(i = 1,2) is defined by

Si=y (y—mi(y—m)" (11)

YEY;

where y is a feature vector of class w; and m; is the
average of y. The within-class scatter Sy, and the
between-class scatter matrix Sp are defined by

Sw=> > (y—m)y—-m)" (12

i=1,2 y€y;

Sp = Z ni(m; — m)(m; — m)7 (13)

i=1,2
where m is an average of all patterns and n is the
number of patterns. Jg(A) is a ratio of the trans-
formed within-class scatter Sy to the transformed
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Figure 7: Tracking results of the basic gymnastic ex-
ercises

within-class scatter .§B
Sp  ATSpA
Sy ATSyA’

Calculating A which maximizes Jg(A) equals maxi-
mizing

Js(A) = (14)

Sp=ATSzA (15)

subject to :
Sy =ATSy A =1. (16)
The A is a normal vector of the boundary of the two
classes for discrimination. Therefore, we decide the
position of the boundary, which could pass through

the center of the centroids of two classes. According
to more classes, we need to calculate more boundaries.

5 Experimental Results

5.1 Set up Experimental Conditions
We try to recognize nine classes in the basic gym-
nastic exercises (exercise 1: stretching. exercise 2:
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Figure 8: Nine gestures on the eigenplane in the basic
gymnastic exercises (performer A)

swinging arms while making shallow knee bends. ex-
ercise 3: arm rolling. exercise 4: side bending. exer-
cise 5: back and forth torso bending. exercise 6: full
body stretching, arms above head to the floor. exer-
cise 7: angled toe touching. exercise 8: torso rotation,
exercise 9: jumping). Eight performers played the ex-
ercises. They are named as A to H, respectively, and
are males between twenty and forty years old.

An image from the camera has 8-bits gray scales in
320 X 240 pixels. A gesture is tracked from multiple
camera views. One cycle time of exercise is varying
from 48 to 200 frames. Fig.7 shows some examples of
the tracking results.

In the subspace method, a trajectory on the eigen-
plane is quantized by the 32 X 32 meshes.

5.2 Results and Discussion

Eight performers are divided into two groups, six
and two. Six performers from A to F acted training
gestures and the others G and H acted unknown ges-
tures. When the number of training gestures is (1)
4 from A to D, (2) 5 from A to E, (3) 6 from A to
F, eighteen gestures of nine exercises acted by the t-
wo, G and H, are tested. Fig.8 shows gestures on
the eigenplane in the basic gymnastic exercises acted
by the performer A. Fig.9 shows one gesture on the
eigenplane played by the eight performers. Table 1
shows the recognition rate when the feature vectors
are composed of centroid and length. Table 2 shows
the recognition rate using subspace method.

According to the experimental results in Table 1
and Table 2, the recognition rate increases when the
number of training samples increases. However, the
recognition rate decreases when the training data and
unknown data are interchanged. For example, when
the performer D taking a unique action is included in
training samples, the recognition rate decreases.

In the subspace method, the recognition rates are
calculated when the cumulative proportion is 60, 80
and 90 % which correspond to feature space with 4,
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Figure 9: One gesture on the eigenplane played by
eight performers (exercise 8: torso rotation)

13 and 22 dimensions, respectively. The recognition
rate increases when the dimension of the feature space
increases. However, the number of training sample has
to increase according to the dimension of the feature
space.

Comparing the subspace method with weight to
one without weight, weighting is effective. In the case
without weight it is difficult to discriminate exercise
1 from 3, and exercise 2 from 9, because these trajec-
tories have the similar shapes on the eigenplane. But
the distribution density of the points on the eigenplane
depends on the gesture. So weighting by the distribu-
tion density of the points makes the recognition rate
increase.

The pose parameters in all parts of the body
model are reduced using KL transform and the ges-
ture is expressed by a trajectory on two-dimensional
eigenspace(eigenplane). When the number of train-
ing samples is 4, 5 and 6, the cumulative proportion
is about 58 % and it is not so high. However, the
high recognition rate means that the two-dimensional
eigenspace is sufficient to represent the main features
in gesture.

6 Conclusion

This paper described a new method for gesture
recognition using character recognition techniques on
a two-dimensional eigenplane. Experiments for the
gesture recognition using some character recognition
techniques show that our method is useful. The hu-
man motion is complicated, but the expression of ges-
tures on the eigenplane makes the gesture recognition
very simple. This means that the gesture recognition
equals the character recognition and we can get high
recognition rate using some character recognition tech-
niques.

As for future works, we have to make more experi-
ments with many other gestures.

Table 1: Recognition rate (%)(centroid and length)

number of training samples
4 5
88.9 94.4 100.0

Table 2: Recognition rate (%)(subspace method)

number of training samples
dimension 4 5

without 4 72.2 77.8 83.3
weight 13 83.3 83.3 83.3
22 83.3 83.3 83.3

with 4 83.3 83.3 88.9

weight 13 83.3 88.9 88.9

22 88.9 88.9 94.4
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