Theory of Multiple-Valued Defeasible Argumentation and its Applications

Takehisa Takahashi
Graduate School of Science and Technology
Niigata University
8050 2-cho lkarashi Niigata, 950-2181 JAPAN
takehisa@cs.ie.niigata-u.ac.jp

Abstract

This paper provides a new departure from the traditional two-
valued argumentation frameworks. We address ourselves
to formalize an expressive logic of argumentation, called
a Logic of Multiple-valued Argumentation (LMA), on top

of the very expressive knowledge representation language,
called Extended Annotated Logic Programming (EALP), and
examine its logical properties in various ways. EALP al-
lows us to represent different kinds of uncertainty such as
vagueness and inconsistency (or paraconsistency) in terms of
multi-valuedness, and incompleteness with the help of de-
fault negation. LMA is the first logic of argumentation in
which agents can argue with other contenders, using multiple-
valued knowledge base in terms of EALP.

Introduction

Argumentation is a ubiquitous form and way of dialogue in the
human society. However, computational studies on argumentation
are relatively recent, dating back to 1980s. Since then, argument
models have been studied in the various directions, showing that
argumentation is a very fruitful research object to be pursued com-
putationally. In comparison to logic, argumentation of dynamic
nature is more suitable to describing and processing the dynamic
and changing nature of information in a networked distributed in-
formation environment.

We have seen many attempts and results on argumentation in
the literature of the artificial intelligence (Chesnevar, Maguitman,
& Loui 2000). They are basically built on the logic programming
languages as knowledge representation since they allow for com-
putationally feasible argumentation frameworks. For example, the
extended logic programming (ELP) is employed in the argumenta-
tion frameworks (Dung 1993) (Mora, Alferes, & Schroeder 1998)
(Prakken & Sartor 1997) (Schweimeier & Schroeder 2002).

However, very few attempts have been made at multiple-valued
argument models, in which arguments are built on uncertain in-
formation. This paper provides a new departure from those two-
valued argumentation frameworks in theoretical rigor. We ad-
dress ourselves to formalize an expressive logic of argumentation,
called a Logic of Multiple-valued Argumentation (LMA), on top
of the very expressive knowledge representation language, called
Extended Annotated Logic Programming (EALP), and examine
its logical properties in various ways. EALP is most expressive
in the hierarchy of logic programming depicted in Figure 2 in
the sense that it allows to represent different kinds of uncertainty

such as vagueness and inconsistency (or paraconsistency) in termsExample 2 Let us consider the following discussion.

of multi-valuedness, and incompleteness with the help of default
negation.

Hajime Sawamura
Department of Information Engineering
Niigata University
8050 2-cho lkarashi Niigata, 950-2181 JAPAN
sawamura@ie.niigata-u.ac.jp

In formalizing logic of argumentation, the most primary concern
is the rebuttal relation among arguments since it yields a cause or
a momentum of argumentation or dialogue. The rebuttal relation
for two-valued argument models is most simple, so that it natu-
rally appears between the contradictory propositions of the form
A and—A. In case of multiple-valued argumentation based on
EALP, much complication is to be involved into the rebuttal rela-
tion under the different concepts of negation. One of the questions
arising from multiple-valuedness is, for example, how a literal with
truth-valuep confronts with a literal with truth-valug in the in-
volvement with negation. This paper gives a clean and reasonable
answer to it, formalizing a logic of argumentation under uncertain
information.

The paper is organized as follows. In the following section, we
will discuss our motivation, taking up argumentative dialogues that
lead us to our logic of argumentation under multiple-valuedness.
Then, the underlying language for the logic of multiple-valued ar-
gumentation is introduced together with its interpretation. Specif-
ically, different forms of explicit negation and their formal inter-
pretations are described in detail. Next, we introduce an abstract
argumentation framework as the preliminaries for the succeeding
sections. On the basis of these preliminaries, we describe our main
results of this paper: various unique definitions as building blocks
for the logic of multiple-valued argumentation (LMA), together
with applications. The final section summarizes the paper and dis-
cusses some future works.

Motivational examples

The idea of difference of truth-values as a momentum of argumen-
tation or dialogue seems to be very intriguing in itself. However,
some logical anomalies immediately arise in realizing the idea. Let
us take a look at two examples.

Example 1 Agent A: This movie was so interestingepresented
as interesting(movie) : u in EALP) Agent B: | don't think so.
(represented asiinteresting(movie): pin EALP)

It seems that they have a different taste on movies. Agent B
states an opinion contrary to Agent A, but does not intend to require
refusing and taking back Agent A's opinion. In the dialogue, they
simply state their own realization on the evaluation of the movie.
They are not necessarily in a conflict with each other, and their
agreement (if any) would be only that through the dialogue, Agent
A and Agent B made it sure that they had a contrary opinion on the
matter. Such a negation* is called the epistemological explicit
negation (Kifer & Subrahmanian 1992)(Kifer & Lozinskii 1992).

Agent C
says the accident was caused by Agent D’s negligdregare-
sented asiegligence(D) : t in EALP). Agent D says he does

not remember why and how the accident occulrepresented as
negligence(D) : L in EALP), and he can not admit Agent C's
assertion(represented as- negligence(D):tin EALP).

Agent D refuses or stands off Agent C’s one way idea. Agent D
has not only an assertiotegligence(D) : L but also at the same
time he is in such a state that he can not aceeptigence(D) :

t by Agent C. This is different from that he has an assertion
negligence(D) : f. In this case, it is not between two liter-
als negligence(D) : t and negligence(D) : L but between
negligence(D) : t and ~ negligence(D) : t that two agents
equally object to each other. Such a negatien s called the
ontological explicit negation.

As can be seen from these argumentative dialogues, in argumen-

tation under multiple-valued knowledge, the rebuttal relation will
tend to be complicated among many truth-values.

In order to represent and resolve those complications and
anomalies, we will introduce the extended annotated logic pro-
gramming language with two kinds of explicit negation: Epistemic
Explicit Negation =" and Ontological Explicit Negation~’, to-
gether with the default negatiomét’ in the next section. The
former is a negation with respect to epistemic states or realization
of contenders, and of inclusive nature in the sense that it gener-

ally does not raise a conflict among agents concerned, and rather it

could provide a way of finding a clue to cooperative actions. The
latter is a negation with respect to justification of arguments, and
of exclusive nature in the sense that it is usually used to state that
other party’s opinions can not be accepted.

The terms: epistemic negation and ontological negation, orig-
inate from Kifer and Lozinskii (Kifer & Lozinskii 1992). Note,
however, that the meaning of our ontological explicit negation is
different from their ontological negation, being properly adjusted
to argumentation as can be seen in the succeeding sections.

Extended Annotated Logic Programs
Language
Definition 1 (Annotation and annotated atoms(Kifer & Sub-
rahmanian 1992)) We assume a complete lattic®, <) of truth
values, and denote its least and greatest element land T re-
spectively. The least upper bound operator is denoted.byAn
annotation is either an element @f (constant annotationgn an-
notation variable o7, or an annotation term. Annotation term
is defined recursively as follows: an elemenfZofind annotation
variable are annotation terms. In addition,df, ..., z, are an-
notation terms, therf(x1, . .., x,) is an annotation term. Herg,
is a total continuous function of typg™ — 7.

If Aisan atomic formula ang is an annotation, then : 1 is an
annotated atom. We assume an annotation functianZ — 7,
and define that(A:) = A:(—u). ~A: pis called the epistemic
explicit negation (e-explicit negation) &f : .

In this paper, the e-explicit negation : i is embedded into an
annotated atom : -, and implicitly handled.

Definition 2 (Annotated literals). Let A : u be an annotated
atom. Thenv (A:) is the ontological explicit negation (o-explicit
negation) ofA : u. An annotated objective literal is either A: p
or A: u. The symbok is also used to denote complementary
annotated objective literals. Thus~ A: = A: pu.

If L is an annotated objective literal, thamot L is a default
negation ofL, and called an annotated default literal. An anno-
tated literal is either of the fornmot L or L.

For an annotated atom : u, we consider an annotatiqn as
a recognition aboutl. Intuitively, we read an annotated literal as
follows:

A:p --- There is a recognitiop aboutA.

—

A
~ A:p --- There must not be a recognitipnaboutA.

:u = A:—pu --- There is a negative recognitiofy, about

not A:u --- There is no recognitiop aboutA so far

not ~ A:pu ---There may be a recognitignaboutA so far
(it is not the case that there must not be a recogniticabout
A).

Putit differently,~ A: 1 reads “a recognitiop aboutA is never
acknowledged”, anshot ~ A:p reads “a recognitiom aboutA
is acknowledged”.

Definition 3 (Extended Annotated Logic Programg. An ex-
tended annotated logic progra(BALP) is a set of annotated rules
of the form:

H—L&...&L,.

where H is an annotated objective literal, anbl; (1 < i < n)
are annotated literals in which the annotation is either a constant
annotation or an annotation variable.

For simplicity, we assume that a rule with annotation variables
or objective variables represents every ground instance of it. In
this assumption, since every annotated term in the heads of rules
is substituted for elements @f, we restrict ourselves to constant
annotations till the end of this paper.

The head of a rule is called@nclusionof a rule. Annotated
objective literals and annotated default literals in the body of the
rule are callecantecedentsf the rule andassumptionsf the rule
respectively. We identify a distributed EALP with agent and
treat a set of EALPs asmulti-agent systeras in (Mora, Alferes,

& Schroeder 1998).

Example 3 We introduce the complete lattices of truth values in
EALP. FOUR = ({L,t,f, T} <), Vz,y € {L,t,f,T} = <

y < x=yVze=1Vy=Tisawell-known complete lattice
(depicted in the left of Figure 1). It turns out to play an important
role in argumentation under inconsistent information. The closed
interval)0, 1] of real numbers is useful for argumentation under
uncertain information.

T I
Itl I£1
t f ’
1 6

Figure 1: FOUR andZ(FOUR)

Example 4 The following knowledge base expresses a particular
agent’s stance on car accidents. Rules are represented in EALP on
FOUR.

negligence(A): L « not (hit(A’s_car, B's_car):t)
~ negligence(A):t — not (hit(A's_car, B's_car):t)
negligence(A) :f «— hit(A’s_car, B's_car):f
negligence(A):t «— hit(A’'s_car, B's_car):t

& ~ hit(A's_car, B's_car):f

The first rule says that agent A does not know whether the acci-
dent was caused by his negligence if there is no evidence to show

that A's car hit B's car. The second rule says that A can not ad-

1. fA:p e Tandp < u,thenA:p € I;

mit his negligence if there is no evidence to show that A’s car hit 2 If A:p e TandA:p € I,thenA: (ulp) € I;

B’s car. The third rule is simple. Finally, the fourth rule says

that agent A acknowledges his negligence in the accident if he

hit agent B’s car and he can not overturn that he hit agent B’s
car. If the information aboutit(A’s_car, B's_car) were incon-
sistent (i. e. hit(A’'s_car, B's_car) : T), agent A could assert
negligence(A) : f, and could not assentegligence(A) : t since
hit(A’s_car, B's_car): T prevents the fourth rule from being ap-

plied. This knowledge base characterizes an agent who does not
want to accept his negligence as far as he can avoid it. Thus the in-

troduction of o-explicit negation allows agents to incorporate their
intentions into knowledge and belief.

Thus the introduction of o-explicit negation brings expressive
power to describing intention of agents in more detail. We de-
pict the relationship between EALP and other logic programming
frameworks in Figure 2.

Remark 1 EALP with no o-explicit negation coincides with NALP
(Normal Annotated Logic ProgramqT. Takahashi & Sawamura
2003) If default negation is not included then it coincides with
ALP (Annotated Logic Programs(Kifer & Subrahmanian 1992)
Under a single truth valug = {t}, EALP, NALP and ALP co-
incide with ELP(Extended Logic ProgramsNLP (Normal Logic
Programs) and LP(Logic Programg respectively. Thus, EALP is
a language of larger class than ELP and ALP.

(Ontological) Explicit Negation

Multi-Valued
.. (Epistemic Explicit Negation)

,/”/VZ-Valued

Figure 2: Hierarchy of extensions of logic programming ac-
cording to different kinds of negation

Interpretation and satisfaction

In this section, we define interpretation and satisfaction for EALP.
We view the interpretation as an epistemic state of an agent.

Definition 4 (Extended annotated Herbrand basg The set of

all annotated literals constructed from an EALPon a complete
lattice 7 of truth values is called the extended annotated Herbrand
baseH?Z.

Example 5 Suppose the EALP = {p(a):t < not p(b): L} on
the complete lattic& = ({t, L}, {t < L}) of truth values. Then,

Hp = {

p(a):t, p(a):J_, Np(a):t7 Np(a) 1

not p(a):t, not p(a): L, not ~ p(a):t, not ~ p(a): L
p(b):t, p(b):L, Np(b):h p(b): L

not p(b):t, not p() not ~ p(b):t, not ~p():L }

Definition 5 (Interpretation). Let7 be a complete lattice of
truth values, andP be an EALP. Then, the interpretation dn

is the subsef C HZ of the extended annotated Herbrand base
H? of P such that for any annotated atorh

.M~ A:peTandp > p, then~ A:p e 1.

The conditions 1 and 2 of Definition 5 are based on the definition
of the ideal of truth values which is used for the interpretation of
GAP (Kifer & Subrahmanian 1992).

We define three notions of inconsistencies corresponding to
three concepts of negation in EALP.

Definition 6 (Inconsistency. Let! be an interpretation. Then,

1. A:pelTand-A:p € I & [is epistemologically inconsistent
(e-inconsistent).

2. A:p e lTand~ A:pu € I & 1is ontologically inconsistent
(o-inconsistent).

3. A:peTlTandnot A:peI,or~ A:p € ITandnot ~ A:
w € I & [Iisinconsistent in default (d-inconsistent).

When an interpretatiof is o-inconsistent or d-inconsistent, we
simply say/ is inconsistent We do not see the e-inconsistency as
a problematic inconsistency since by the condition 2 of Definition
5,AcpeTand-A:p=A:—~pelimply A:(pU—-p) € Iand
we think A: and—A: p are an acceptable differentia.

Let I be an interpretation such that A : 1 € I. By the con-
dition 1 of Definition 5, for anyp such thatp > u,if A:p € I
then[is o-inconsistent. In other words; A : 1 rejects all recog-
nitions p such thatp > p aboutA. This is the underlying reason
for adopting the condition 3 of Definition 5.

The coherence principle is an important property for the seman-
tics of ELP, and is required to properly interpret ELP (Alferes
& Pereira 1996). We extend the coherence principle for multi-
valuedness as follows.

Definition 7 (Coherence Principlg. For an annotated objective
literal L and an interpretatior/, I is said to be coherent, when
satisfies the following condition: i L € I, thennot L € I.

The coherence principle requires that for some atonf there
must not be a recognition explicitly (~ A: u), there is no recog-
nition y so far ot A: i), and if there is a recognitiom explicitly
(A:p), there may be a recognitignfor now (not ~ A:pu). Then
we define satisfaction.

Definition 8 (Satisfaction). LetI be an interpretation. For any
annotated objective literaH and annotated literall and L;, we
define the satisfaction relation denoted by ‘as follows.

e IEL & Lel
e I L& &Ly & [=L, ..., I Ly
e IEH L& &Ly & [EHOI L& &Ly

Explicit negation and interpretation

Here we discuss the formal difference between o-explicit negation
and e-explicit negation, using the notion of interpretation. We con-
sider an interpretation that assigns an ideal of a complete lattice
of truth values to an annotated atom. The ideals-based interpre-
tation was first introduced in (Kifer & Subrahmanian 1992). The
ideals constructed fronfF OUR, denoted byZ (FOUR), form a
complete lattice under set inclusion (see the right part of Figure 1,
where|[u|| ={p €T |p < pu}).

Let us consider the negligence of car accidents, referring to Ex-
ample 4, and suppose an agent A assertggligence(A) : t =
negligence(A) : f (meaning that A does not have a negligence).
The interpretation which can satisfy this assertion is the one that
assigns an ideal containifido negligence(A), and has the range
shown in Figure 3 (1). The ided|T|| of this range means that

agent A can accept e-consistency whepgligence(A):t (A has a

The functionF 4,4, ./, Mapping fromP(Args) to P(Args)

negligence) is asserted by someone. Then let us consider an agents defined byF 4, ..,,(S) = {Arg € Args | Argis z/y-

A who assertsv negligence(A) : t (an assertion which says that
the negligence is on the side of A is never acknowledged). If the

interpretation is to be o-consistent, it has to assign an ideal not con-

tainingt (i. e., ¢, | L] or ||f||) tonegligence(A), and has the range
shown in Figure 3 (2). These difference betweenfault(A) : t
and - fault(A) : t(= fault(A) :f) turn out to play a significant
role in our formalization of multiple-valued argumentation. Then,

the argumentation procedure, such as either respecting or rejecting
other agents’ assertions, is to be represented through these kinds of

negations. If both-negligence(A) :t and~ negligence(A) : t

are asserted at the same time, the ideal which should be assigned to®

negligence(A) comes to have the overlapped range of two ranges

(. e, [If[D-

4‘?“\ P "\ /T\ HTH\
) \ X .
Itl uify ! | y \tf/ f/\
s) s s
(1) () (3) 4)
—fault(A):t ~ fault(A):t AgentA&B AgentB&C

Figure 3: The range of the interpretation

Next, let us consider argumentation about movies. Sup-
pose three agents A, B and C assert the following respectively:
interesting(movie_a) : f, interesting(movie_.a) : t, and
interesting(movie_a):f & ~ interesting(movie_a):t.

Agent B says moviex is interesting, and Agent A says movie
is not interesting. The agents A and B just assert their own opin-
ions, and do not intend to reject the other opinion. As shown
in Figure 3 (3), the range of interpretation which satisfies both
assertions is the overlapped portion of two regions (including
interesting(movie_a) : T). It means that two agents can ac-

knowledge each other’s opinion. In contrast, agent C not only says

the moviea is not interesting, but also says C can not acknowl-
edge B’s opinion. That is, Agents C takes an exclusive attitude in
the argument or dialogue. The range of interpretation which satis-

fies both assertions B and C has no overlapping portion (i. e., they

are in an o-inconsistent state) as shown in Figure 3 (4)

Abstract argumentation framework

We introduce an abstract argumentation framework as preliminar-

acceptable wrt..S}. We denote a least fixpoint 4,4, ./, by
Jargs,z/y- AN argumentdrg is z /y-justified if Arg € J,,,; an
argument isx/y-overruled if it is attacked by a/y-justified ar-
gument; and an argument is/y-defensible if it is neither /y-
justified norx /y-overruled.

We write simply F,,, and J,,;,, for Fa,gs.0/y @andJargs oy
whenArgs is obvious. Sincé’, ,, is monotonic, it has a least fix-
point, and can be constructed by the iterative method (Dung 1993).

When argumentation is treated as one of the methods of a
onsensus-attainment or a collision-avoidance, the justified argu-
ments can not conflict each other. We define the conflict-freeness
for a set of justified arguments in an abstract argumentation frame-
work as follows.

Definition 11 (Conflict-free (Dung 1993)) Let Args be an ab-
stract argument set, and be an attack relation omrgs. S C
Args is conflict-free wrtx < S does not contain arguments-g1
and Arg2 such that(Argl, Arg2) € x.

In ELP, Schweimeier and Schroeder studied a condition in
which a set of justified arguments is conflict-free wrt.z
(Schweimeier & Schroeder 2002). This result applies not only
for an argumentation on ELP but also for abstract argumentation
frameworks.

Theorem 1 Let x and y be attack relations omrgs. If x O y
thenJa,gs,2/ is conflict-free wrt.x.

Proof Similar to (Schweimeier & Schroeder 2002).

Dialectical proof theory

Justified arguments can be dialectically determined from a set of
arguments by the dialectical proof theory. We give the sound and
complete dialectical proof theory for the abstract argumentation se-
manticsJ a,gs,z/y-

Definition 12 (x/y-dialogue (Prakken & Sartor 1997))Anz/y-
dialogue is a finite nonempty sequence of mowesve; =
(Player;, Arg;), (i > 1) such that

1. Player; = P (Proponeny iff ¢ is odd; andPlayer; = O

(Opponent < i is even.

2. If Player; = Player; = P (i # j) thenArg; # Arg;.
3. If Player; =

P (i > 3) then(Arg;, Argi—1) € y; and if

Player; = O (i > 2) then(Arg;, Argi—1) € x.

ies for the succeeding sections. We use the same definitions as Definition 13 (x/y-dialogue tree (Prakken & Sartor 1997))An

(Dung 1993)(Prakken & Sartor 1997)(Schweimeier & Schroeder

2002) though the knowledge representation language is different.

z /y-dialogue tree is a tree of moves such that every branch is an
z/y-dialogue, and for all movesove; = (P, Arg;), the children

The abstract set of arguments and attack relation on arguments areof move; are all those move$O, Arg;+1,;) (j > 1) such that

concretized below.

Acceptable and Justified arguments

(Argit1,;, Arg;) € .

Definition 14 (Provably =z /y-justified (Prakken & Sartor
1997)) Anz/y-dialogueD is a winningz/y-dialogue < the

We define the argumentation semantics as the least fixpoint of the {armination ofD is a move of proponent. An/y-dialogue treel

function which collects all acceptable arguments.

Definition 9 (Attack relation (Dung 1993)) Let Args be a set
of abstract arguments. An attack relationon Args is a binary
relation onArgs, i. e.,x C Args x Args.

Definition 10 (x/y-acceptable and justified argument(Dung

1993)) Letz and y be attack relations omdrgs. Suppose
Argi € Args and S C Args. ThenArg: is z/y-acceptable
wrt. S if for every Arg. € Args such that(Argz, Argi) € =

there existsArgs € S such that(Args, Args2) € y.

is a winningz /y-dialogue tree< every branch of is a winning
z/y-dialogue. An argumentdrg is a provably z/y-justified
argument < there exists a winning /y-dialogue tree withArg
as its root.

Theorem 2 Let Args be an abstract argument set. Thdmg €
Args is provablyz /y-justified < Arg is x/y-justified.

!Refer to (Takahashi & Sawamura 2004) for the proofs omitted
in this paper.

Multiple-valued argumentation for EALP

In this section, we define the notion of arguments in EALP and

associated attack relationship, and formalize the semantics of
multiple-valued argumentation and its dialectical proof theory by

concretizing abstract argumentation framework. We further de-
scribe the properties of the multiple-valued argumentation using
interpretation induced from justified arguments.

Annotated arguments

Kifer and Subrahmanian introduced the notionrefluctantsfor
complete proof theory of GAP (Kifer & Subrahmanian 1992). In
our multiple-valued argumentation, reductants are needed to allow
agents to build arguments in EALP. We further introdugi@imal
reductantsn order to exclude redundant and irrelevant arguments.

Definition 15 (Reductant and Minimal reductant). Suppose&’
is an EALP, and”; (1 < ¢ < k) are annotated rules i of the
form:

A:piHLi&...&L;i

in which A is an atom. Lep = L{px, ...
annotated rule is a reductant @?.

, Pk +- Then the following

Aip—Li& ... &Ly & ... &Li & ... &Lk, .

A reductant is called a minimal reductant when there does not exist
non-empty proper subsstC {p1, ..., pr} such thatp = LIS.

Definition 16 (Annotated argumenty. Let P be an EALP. An
annotated argument i’ is a finite sequencdrg = [r1,...,]
of rules in P such that for every (1 < i < n),

1. r; is either a rule inP or a minimal reductant inP.

2. For every annotated atom : 1 in the body ofr;, there exists a
rr (n >k > i) suchthatd:p (p > u) is head ofry.

For every o-explicit negation- A : u in the body ofr;, there
exists ar, (n > k > i) suchthat~ A:p (p < p) is head ofry.
There exists no proper subsequencg-gof. . ., r,] which meets
from the first to the third conditions, and includes

3.

4.

A subargument ofdrg is a subsequence dfrg which is an ar-
gument. The conclusions of rules g are called conclusions
of Arg, and the assumptions of rules itrg are called assump-
tions of Arg. We write concl(Arg) for the set of conclusions
andassm(Arg) for the set of assumptions ofrg. We denote
the set of all arguments i® by Argsp, and define the set of

all arguments in a set of EALPY/ AS = {KB.,...,KB,} by
Argsyas = Argsgp, U---U Argska,, -
Example 6 Let P be the following EALP.
P={ p:t—qgt¬r:t, p:f—q:f,
~pite—rit& ~q:t, q:T «,
~q:l —, it — }

Then a set of all arguments constructed fréhis

Argsp ={ [p:t — ¢:t&mnot r:t, ¢: T «]
[p:f—q:f, ¢: T «]
[p: T — q:t&q:f&mnot r:t, ¢: T «]
[Mpite—~qit&rit, ~qi L —, rit]
[¢: T <], [~q:L <] [r:t] }.
Args = [p: T «— q:t&q:f&mnot r:t, ¢: T «]in Argsp
is an argument in which the first rule is the minimal reductant con-
structed from the first and second rulegidfBy Definition 16 (2), it
contains the fourth rule oP which is annotated by greater than

t or f in the end of the argument, as the ground for the antecedents

q:tandq:f. The set of conclusions and the set of assumptions are

concl(Args) = {p: T,q: T} andassm(Args) = {not r:t} re-

spectively. The ground for the assumptiomt 7 : t is not required.
Args = [~ pit —~ q:t&r:t, ~q:L —, r:t«<J]isan

argument containing the third rule d? at the head. By Definition

16 (3), it has the fifth rule- ¢: 1. < of P which is annotated by

less thart as the ground for the antecedentg:t.

A non-minimal reductant usually results in having a longer an-
tecedent than a minimal reductant. If an argument is made by non-
minimal reductants, the argument may be redundant in its content.
Furthermore, a non-minimal reductant occasionally tends to be ir-
relevant rule (refer to (T. Takahashi & Sawamura 2003) for details).

We stated that the epistemic states of agents are represented by
interpretations. Here, we define the notion of satisfaction for argu-
ments, and view the epistemic state of an agent who has a set of
arguments as interpretation which satisfy those arguments.

Definition 17 (Satisfaction for argumentg. Let P be an EALP,
I be an interpretation or?, and Arg be an argument i®. Then,
I = Arg & VH € concl(Arg) I = H andVnot L €

assm(Arg) I = not L. In addition, lettingArgs be a set of
arguments inP, I = Args < VArg € Args I = Arg.

Corollary 1 Let Arg be an argument, and be an interpretation
such thatl/ = Arg. Then, forallrules € Arg, I E= 7.
Proof It follows from Definition 8, 16 and 17.

Generally, in ordinary logic programs, interpretations which sat-
isfy every rule are taken into account, and called models. In the
argumentation, however, it becomes necesary to consider that the
satisfaction for arguments (i. e., the satisfaction for all conclusions
and all assumptions) should be taken into account rather than the
satisfaction for rules only.

Example 7 Let I; and I be interpretations such thaf; [~
notq: T,z Ep:t¬q:T,andArg = [p:t < not ¢: T| be

an argument. Thet; satisfies only one rule idrg (I1 = p:t <
not ¢: T), butl; = Argbecause it does not satisfy an assumption
not ¢: T in Arg. In contrast, becausé, satisfies all conclusions
and all assumptions idlrg, I = Arg. An argumentirg asserts

its conclusion based on its assumptimat ¢: T, and sol; is not
suitable as the epistemic state of an agent wiity.

Attack relation

The semantics of the argumentation depends on what sort of attack
relation is considered to deal with conflicts among arguments. It
would be reasonable to think that conflicts among arguments occur
when the interpretation satisfying a set of arguments is inconsis-
tent.

We define the “rebut” as an attack relation associated with o-
inconsistency and the “undercut” as an attack relation associated
with d-inconsistency.

Definition 18 (Rebutf). Arg; rebuts Arg, < there existsA :
1 € concl(Argr) and~ A: s € concl(Args) such thatu, >
12, Or exists~ A:uy € concl(Argi) and A: us € concl(Args)
such thatu; < po.

Definition 19 (Undercut). Arg; undercutsArg, < there exists
A:py € concl(Argi) andnot A: us € assm(Argz) such that
1 > 2, Or exists~ A:puq € concl(Argr) andnot ~ A:ps €
assm(Argz) such thatu; < po.

Proposition 1 For someArg, and Arg, in Args, if Arg; re-
buts Args, I such thatl = Args is o-inconsistent. And ifirg;
undercutsArgs, I such thatl = Args is d-inconsistent.

Proof It follows from Definition 5, 8, 17, 18 and 19.

The rebuttal relation is a symmetrical attack relation. And the
undercut relation is not always one-directional (for examfple,
t < not ~ ¢:tjand[~ ¢:t < not p:t]). The one-directional
undercut relation is called the “strictly undercut”.

Definition 20 (Strictly undercut). Arg; strictly undercutsArgs
< Argy undercutsArg, and Arg, does not undercutirg;.

We also define the combined attack relation associated with o-
inconsistency and d-inconsistency.

Definition 21 (Attack). Arg; attacksArg, < Arg: rebuts or
undercutsArgs.

Under the idea that a conclusion can not hold when its assump-
tion is negated, the undercut may be stronger than rebuttal. Taking
this into consideration, we define another combined attack relation
called “defeat” (in ELP, it is defined in (Prakken & Sartor 1997)).

Definition 22 (Defeal. Arg; defeatsdrg. < Arg: undercuts
Arga, or Arg; rebutsArg, and Arg. does not undercutirg; .

Proposition 2 For someArg; and Args in Args, if Arg; attacks
or defeatsArgs, I such thatl = Args is o-inconsistent or d-
inconsistent.

Proof It follows from Definition 21, 22, and Proposition 1.

Argumentation semantics for EALP

To concretize an abstract argumentation framework, we need a con-
crete argument set and two concrete attack relations. We already
defined the notion of argument sdirgsp for an EALP P and
Argsaas for a set of EALPsSM AS. In what follows, we sim-

ply write an argument set bytrgs when we do not teldrgsp and
Argsa as apart. Now we have to select two attack relations. If the

Example 8 We describe an example of argumentation about the
pros and cons of the death penalty of murderers. Suppose a com-
plete latticeZ = R[0, 1]? where(u1, p1) < (p2,p2) < p1 < p2
andp: < p2, andin(u, p) € 7, p andp represent the degrees of
an affirmation and a negation respectively. This truth value can
represent e-inconsistent or unknown state and degree of truth to-
gether. LetM AS = {K By, K B2, K B3} be a set of EALPs, and
eachK B, be a knowledge base such that:
KBy =
~ agree(death):(0.0,0.8) «—
hate(family, murderer):(0.8,0.0) &
desire(family, death):(0.7,0.0),
hate(family, murderer):(1.0,0.0) —
~ allow(family, murderer):(0.5,0.0),
desire(family, death):(0.7,0.0) «,
~ desire(family, death):(0.0,0.8) «,
~ allow(family, murderer):(0.5,0.0) — },

KBy = {
agree(death):(0.2,0.4) «— atone(death, guilt):(0.0,0.5),
atone(death, guilt):(0.2,0.8) —

not remorse(dead): (1.0,0.0),
agree(death):(0.0,1.0) —

not ~ allow(family, murderer):(0.8,0.0) },

KBs = {
agree(death):(0.0,0.6) « desire(family, death):(0.0,0.6),
desire(family,death):(0.0,1.0) —

not assuage(death, family):(0.7,0.0),
agree(death):(0.6,0.0) —

hate(family, murderer):(0.6,0.0),
hate(family, murderer):(0.9,0.2) — },

Figure 4 shows every possible argument and every possible at-

argumentation is treated as the methods of a consensus-attainmentack relation among them. The justified arguments Akgs, =

or a collision-avoidance, justified arguments should be conflict-free
under those attack relations.

By Theorem 1, it is sufficient to adopts,¢s,./ (a = attack,
a D y) in order to avoid the rebuttal and the undercut among jus-
tified arguments (i. €.J4,¢s,q4/y Will be conflict-free wrt. attack).
But, actually, we can show the conflict-free wrt. the defeat rela-
tionship implies the conflict-free wrt. the attack, afg, . 4/, (d
=defeatd D y) is also the conflict-free wrt. the attack.

Theorem 3 If a set of arguments' is conflict-free wrt. the defeat
relationship, thert is conflict-free wrt. the attack.

We think J 41454/, is closer to human intuition thay s 4/,
as can be seen in (Prakken & Sartor 1997) for the case of ELP. If
we adopty relation such thatl O y, Jargs 4/, Will be conflict-
free wrt. the defeat. The corresponding ones in the subsection
are the defeat, the undercut and the strictly undercut. For the set
of justified arguments associated with these attack relations, the
following relationship holds.

Proposition 3 Ja,gs,da/su = Jargs,dju = Jargs,d/d-

Thus, the set of justified arguments is always the same even if
we adopt any attack relation. And so we adopt the strictly under-
cut because it is smallest or simplest in these attack relations, and
straightforward .

Let P be an EALP, and\/ AS be a set of EALPs. Then we
define the semantics of argumentation By Ja,gs,,d/su (JP
for short), and define the semantics of argumentatiofohS by
JArgsapas.d/su (Jamas for short). When we do not need to tell
apartP and M AS, we simply denotedrgsp and Argsaras by
Args, and denote/p and Jyras by J. Jp and Jaras can be
dialectically determined by the dialectical proof theory.

{Argn, A’I“glz, A’l“glg, AT914, Angl, A’I“gzz, A’I“gm7 A’r‘ggz}.
Comprehensively, the justified arguments would be able to read
as follows: “It is sure that a bereaved family hates a murderer
(Args1), and so agreement to the death penalty is partly possible
(Args2). In addition, because a bereaved family can not accept al-
lowing a murdere(Arg11), and desires the death penaft§rgis),

a complete opposition of the death penalty is never acknowledged
(Argi4). However, because there is no evidence to show that a
dead man is in remorse for the crime, and the death can not atone
aguilt(Arg21), an opposition of the death penalty is acknowledged
to some degree at the same tifae-g22)”

In Example 8, assume(u, p) = (1.0—pu, 1.0— p), and replace
every o-explicit negation~ ' in each K B; by e-explicit negation *
—='. Then, Argi5 will not rebut Argss, and both conclusions hold
(a bereaved family desires and does not desire the death penalty).
The degree of opposition of the death penalty will increase to 0.6
(Argss). Thus agents can incorporate what they intend to do in
argumentation into their knowledge base by selecting appropriate
explicit negation according to a topic for argumentation.

Example 9 Let us consider an argumentation about the monthly
schedule management. Here we use an unconventional complete
lattice of truth values which is the power sB({1,...,31}) of

the set of the monthly dates, with the order by the set-inclusion re-
lation. Then an annotated atomork(a) : {5,6} reads “Agent

a works on the 5th and the 6th”. It asserts that the proposition
work(a) is true only in a certain time intervak- work(a): {5,6}

reads “Agenta does not work on the 5th and the 6th”. We define
the epistemic explicit negation so as to-he = {1,...,31} — 4,

and thus—work(a) : {5,6} reads “Agenta works on the dates

-~

Argss ArgSKBs Lo
_ -~

----- agree(death):(0.6, 0.6) --~~

Args4 it Arg32 N e

~
agree(death):(0.0, 0.6) agree(death):(0.6, 0.0) ' A
Arg33 | Arg31 | 1822
1 T ! .
desire(family, death):(0.0, 1.0) | hate(family, muderer):(0.9, 0.2) | Argay agree(death):(0.2,04) -~
T N
not assuage(death, family):(0.7, 0.0) | atone(death,guilt):(0.2, 0.8) \

! not remorse(dead):(1.0, 0.0)

1

4 1

_________ X I - - - - -)
r r Wyr 1 1

Arg /
ArgsKB‘ |~desire(family, death):(0.0, 0.8) | 13 I agree(death):(0.2, 1.0) =
Argi4 ; Arg2s Y
. r p;
Argi3 ~agree(death):(0.0, 0.8) Argi2 < " agree(death):(0.0, 1.0) —---- r
. . i] . Tor i
| desire(family, death):(0.7, 0.0) I Argll}ate(famlly, rlnurderer).(l.O, 0.0) . not ~allow(family, murderer):(0.8, 0.0)
~allow(famil ,Imurderer (0.5, 0.0 '
[~atlow(family):(0.5,0.0) - . Argot

Figure 4: Relation among arguments in Example 8, wherstands for undercut, and’stands for rebuttal. The broken lines
stand for the operation of the reductant, and arguments framed in a thick line are justified arguments.

except the 5th and the 6th”. The difference and significance be-
tween the ontological and epistemic explicit negations is obvi-
ous. Under this complete lattice of truth values, we consider

MAS = {KBn, KB,, KBy, KB,}, where K B of each agent
is, in EALP,

KB = {
finish(project): {6} —
work(a):{3,4,5} & arrive(component): {5},
work(a):{3,4,5} <,
arrive(component): {5} «,
pay(upcharge) : {8} « },

KB, ={
~ work(a): {5} < not work(b):{5} & holiday:{5},
~ work(a): {12} —
not work(b): {12} & holiday : {12},
holiday:{5,6,12,13} «— },

KBy = {
—work(b):{12,19,26} «,
holiday:{5,6,12,13} «— },

KB, ={
~ arrive(component): {5} « not pay(upcharge):¢ }.

WhereK B,,,, K B,, K By, and K B,, stand for knowledge bases
of a manager agent:, employee agents, b and a subcontractor

agento respectively. Agent:’s argument which has the conclusion

finish(project): {6} (the project will finish on the 6hs justified
by the dialectical proof theory as shown in the figure 5.

In the winning dialogue tree, initially Agemt says “if a com-
ponent will arrive on the 5th, and Ageatworks on the 3th, the 4th
and the 5th, then the project will finish on the 6th”. Then Agent

defeats it as follows “I will be not able to bring a component on

the 5th if the additional charge is not paid”. But Agenmt strictly
undercuts’s argument by saying “l will pay it to you on the 8th”.
For the first argument of Agent, Agenta also defeats by saying
“the 5th is a holiday, and if the coworkérdoes not work, | do not
want to work on the 5th”. However Agebistrictly undercuts it by

saying “I will work on days except the 12th, 19th and the 26th”.

P Agentm

finish(project):{6}
/\

arrive(component):{5} work(a):{3, 4, 5}

O Agento / Defeat O Agenta Defeat

~arrive(component): {5} ~work(a):{5}
not pay(upcharge):{} not work(b):{5} holiday:{5, 6, ...}
A
Strictly Strictly
P Agentm undercut P Agentb undercut
N
pay(upcharge): {8} -work(b):{12, 19, 26}

Figure 5: The winning dialogue tree in Example 9

Consequently, the first argument of Agents justified.

These idiosyncratic uses of complete lattices of different type
make our points: (i) the variety of the expressiveness of EGAP, and
(i) the versatility of the multiple-valued argumentation.

Properties of argumentation for EALP

In this section, we examine logical properties of argumentation se-
mantics for EALP. For this purpose, the examination by interpre-
tation is better than by the set of arguments since we view the in-
terpretation satisfying arguments as the epistemic state of an agent.
In addition, even if the justified arguments are conflict-free, the in-
terpretation satisfying them is not always consistent.

We begin with the mapping from the justified arguments to an
interpretation, and define the semantics of EALP by its interpre-
tation. This amounts to specifying only one epistemic state of an
agent (or agent group) from the justified arguments, and to looking
at whether each annotated literal is justified (i. e., agreed) in an
argumentation.

Definition 23 (Interpretation by argumentation). Suppose a set
of argumentsirgs and a set of justified argumenfson Args. The

interpretation by justified argumentd’ 4,4, (J) is the least inter-
pretation wrt. the inclusive relation as follows: for every annotated
atomA: u,

1. VArg e J A:p € concl(Arg) = A'args(J) E A:p;

2. VArge J ~ A:p € concl(Arg) = A args(J) B~ A:p;
3. {vS = {4rg¢1,...,Argn} C Args Vpi,...,pn such that
W{p1,...,pn} > pu FArg; € S A:p; & concl(Arg;) or

Arg; is overruled} = A’ 4rgs(J) | not A:y;
. AVArg € Args Vp < u ~ A:p & concl(Arg) or Arg is
overruled} = A’ args(J) Enot ~ A:p.

Let P be an EALP,M AS be a set of EALPs. The interpreta-
tion by argumentation o® (.A(P)) and the interpretation by
argumentation onM AS (A(MAS)) are defined as follows:
A(P) = A'argsp (Jp) and A(MAS) = A’ argsyas (Jaras).

The semantics of EALRP is defined by the interpretation by
argumentationd(P), and the semantics of a set of EALRSAS
is defined by the interpretation by argumentatidfi\/ AS).

We focus on four properties, o-consistency, d-consistency, co-
herence principle and a satisfaction of justified arguments. Initially
we state d-consistency.

Theorem 4 LetM AS be a set of EALPs. TheA(M AS) is con-
sistent wrt. the default negation.

Since A(M AS) coincides withA(P) in the case oM/ AS =
{P}, A(P) is also consistent wrt. the default negation by Theorem
4

FromTheorem 4, it follows that the Definition 23 has been de-
fined to guarantee d-consistency. In contrast, o-consistency is not
generally satisfied as shown in the following example.

Example 10 Assume a set of EALREY AS = {{p:t —}, {p:
f—} {~p:T «}}. SinceArgsmas = {[p:t <], [p:

f <], [~ p: T <]}, and the defeat relation does not occur on
arguments inArgsaras, Jmas = Argsmas. By Definition 23
and 5, A(MAS) Ep: T& ~ p:T. ThusA(MAS) is o-
inconsistent.

In the above example, the problem lies in having dealt with the
attack relation between each argument in the argumentation frame-
work one by one. The argumept p: T <] do not have a con-
flict individually with [p : t <] and[p : f <], but the argument
[~ p: T «] conflicts with the group of them. This is a prob-
lem proper to the multiple-valued argumentation that does not ap-
pear in the two-valued argumentation. To universally resolve this
problem, we would need to modify the fundamental structure of
argumentation framework, taking into consideration new attack re-
lations among any groups of arguments. Later we will give another
solution to it.

If the knowledge base is a single EAUP = {p:t «—, p:f —

, ~p:T <} we can have an argumept: T «] by making
reductant fromp:t < andp:f <. An argumenfp: T <] is iden-
tified with the combination ofp:t <] and[p:f], and conflicts
with an argumenij~ p: T «]. The interpretation by argumenta-
tion on the single EALP can be o-consistenct by reductants.

Theorem 5 Let P be an EALP. Thetd(P) is ontologically con-
sistent.

Next, let us examine the satisfaction of justified arguments. We
think the interpretation by argumentation has to satisfy every justi-
fied argument to view it as an epistemic state of an agent. However
it is not generally satisfied as shown in the following example.

Example 11 Assume a set of EALREY AS = {{p:t <}, {p:
f—}, {¢g:t— notp:T}}. SincedArgsmas {lp:t <

I, [p:f <], [g:t < not p: T]}, and the defeat relation does
not occur on arguments iArgsaras, Juas = Argsaras. Since
there exist non-overruled arguments which have conclugiarts
orp:f,andT = tuf, by Definition 23,A(M AS) }~ not p: T.
ThenA(MAS) = Jamas sincenot p: T is an assumption of an
argumentq:t < not p: T].

Though there is no defeat relation #trgsyras since an argu-
mentation framework does not deal with the attack relations among
groups of arguments as we have already stated, it seems that the
combination of[p : t <] and[p : f «] undercuts an argument
[¢:t — not p: T]. Hence a justified argumefi:t < not p: T|
is not satisfied by the interpretation by argumentation.

This problem does not occur in a single EALP by making reduc-
tants as discussed in the previous restoration of o-consistency. If
the knowledge base is a single EALP, an argunjertt«<— not p:

T] will be undercut by[p: T «] which is constructed from:t «—
andp:f «.

Theorem 6 Let P be an EALP. Thetd(P) = Jp.

Finally, we examine the coherence principle. The coherence
principle is not generally satisfied as shown in the following ex-
ample.

Example 12 Suppose EALPP? = {p:t —, p:f —, ~p: T «}.
ThenArgsp = {[p:t <], [p:f <], [p: T <], [~ p: T <]}, and
argumentgp: T «] and[~ p: T <] rebut each other. Arguments
[p:t <] and[p:f <] which are not defeated are justified. And,
[p: T «]and[~ p: T <] are defensible. By Definition 23,
AP)={p: L, p:t, p:f, p: T, not ~p: L, not ~p:

t, not ~ p:f}. Sincenot ~ p: T is notin A(P) thoughp: T is

in A(P), A(P) does not satisfy the coherence principle.

Similarly, since A(M AS) coincides with A(P) if MAS =
{P}, for a set of EALPSV/ AS, A(M AS) does not always satisfy
the coherence principle.

The EALP in the above example has the same rules as in Ex-
ample 10. Although an argumept: T <] is identified with the
combination ofjp:t <] and[p:f <], note that they are not treated
equally. Sincgp:t <] and[p:f <] are justified thouglip: T «]
is defeated, The coherence principle is not satisfied.

The interpretation not satisfying the coherence principle shown
in Example 12 is unlikely to human intuition. Therefore, we turn
to giving a subclass of EALP satisfying the coherence principle by
restricting annotations in negations.

Definition 24 (Well-Behaved EALP). Let P be an EALP on a
complete lattic&l” of truth values~ A: . be a conclusion of arule
in P, andS C 7 be a finite subset such that# ¢. Then, ifP
satisfies the following conditior®? is called well-behaved EALP.
p<uUS=3peS unp.

In addition, if an assumptionot A : y of a rule in P also sat-
isfies the above conditiol® is called strictly well-behaved EALP.

Example 13 Suppose the complete lattide= ({L,t,t2,f, T},
O Ve,ye{Lti,te,f, T} z<y o z=yVe=1lVy=
TV (x=t2 A y=t)andthe EALPP = {~ p:t; <} on
the7. ThenP is not well-behaved sinde < U{t, f} = T, and
there exists n@ € {tz,f} such that; < p. If the annotation inP
is either L, f, ortq, P is a well-behaved EALP.

The well-behaved EALP actually yields not only o-consistency
but also the coherence principle. The strictly well-behaved EALP
also yields the satisfaction of justified arguments. Under the well-
behaved EALP, we anew examine the properties of the interpreta-
tion by argumentation.

Theorem 7 Let M AS be a set of well-behaved EALPs. Then,

A(M AS) satisfies the coherence princigld (M AS) =~ L =
A(MAS) |=not L).

Table 1: Properties of the interpretation by argumentation

[Interpretation by argumentation]] A(P) [A(P") [A(MAS) | A(MAS") [A(MAS™)]

Ontological consistency O O X O O
Consistency in default O O O O O
Coherence principle X O X O O
Satisfaction of justified arguments (O O X X O

Each knowledge base is an EAUR a well-behaved EALR’, a set of EALPSV/ AS,
a set of well-behaved EALPE AS’ and a set of strictly well-behaved EALRE AS".

Since A(M AS) coincides withA(P) in the case of\/ AS =
{P}, A(P) also satisfies the coherence principle by Theorem 7.

Theorem 8 Let M AS be a set of well-behaved EALPs. Then,
A(MAS) is ontologically consistent.

Finally, we examine the satisfaction of justified arguments.
MAS in Example 11 is clearly well-behaved since it does not in-
clude o-explicit negation. Hencel(M AS) = Juas is not gen-
erally satisfied even thoughl AS is a set of well-behaved EALPs.
In order to generally satisfA(M AS) = Jaas, we need a set of
strictly well-behaved EALPs

Theorem 9 Let M AS be a set of strictly well-behaved EALPSs.
Then, A(MAS) = Jamas.

Table 1 summarizes the results developed so far in this paper.
Thus, if we adopt the well-behaved EALP for argumentation on a
single EALP (a single agent), and the strictly well-behaved EALPs
for argumentation on a multi-agent environment, the consistency,
coherence principle and satisfaction of justified arguments are sat-
isfied. This is our principal result.

Conclusion and future work

We presented an attempt to a logic of multiple-valued argumenta-
tion (LMA) in which agents can argue with other contenders, using
multi-valued knowledge base in the extended annotated logic pro-
gramming (EALP), and scrutinized its logical properties closely.

EALP was proposed as an expressive knowledge representation
language with three kinds of negation, with which agents can make
versatile argumentative dialogues since they can signify a momen-
tum or driving force of argumentation. The more negations, the
more momentum for argumentation.

LMA was proposed as a logic of argumentation that has multi-
valued argumentation semantics and dialectical proof theory. We
proved the soundness and completeness for it. Furthermore, we
gave the semantics to EALP via the multi-valued argumentation
semantics, and examined the properties of the inconsistency, co-
herence and satisfaction of justified arguments in the semantics.
Then, we pointed out a proper problem caused by the introduction
of multi-valuedness into argumentation, but discovered a subclass
of EALP, a (strictly) well-behaved EALP that satisfies those three
properties, resulting in a solution to the problem.

There are some works that can be related to our approach to
multiple-valued argumentation (e. g., (Pollock 1987), (Amgoud &
Cayrol 2002)). They introduce multi-valuedness with simple order
or a preference relation over propositions. There also are other
types of logic programming different from ALP and EALP, and
hence different argumentation models proposed (e. g., abductive or
defeasible logic programming (Garcia & Simari 2004)). We have
to omit discussions on the comparison due to the limited space.

In the future, we are going to further develop LMA in the fol-
lowing directions: introduction of an attack relation among argu-
ment groups, WFSX-like(Alferes & Pereira 1996) semantics for

EALP, an efficient method for computing justified arguments, for
example, in case of the infinite set of truth-values®, 1], in-
troduction of dialectics to LMA, and use and application of LMA
as an apparatus of cooperation, compromise, consensus-attainment
under multiple-valuedness and the epistemic explicit negation of
inclusive nature.

Acknowledgments
The authors would like to thank the anonymous reviewers who con-
tributed to increase the quality of this paper.

References

Alferes, J. J., and Pereira, L. M. 199@Reasoning with Logic
Programming volume 1111. Springer-Verlag.

Amgoud, L., and Cayrol, C. 2002. A reasoning model based on
the production of acceptable argumen#ginals of Mathematics
and Artificial Intelligence34(1-3):197-215.

Chesnevar, C. |.; Maguitman, G.; and Loui, R. P. 2000. Logical
models of argumentACM Computing Survey&2:337—-383.

Dung, P. M. 1993. An argumentation semantics for logic pro-
gramming with explicit negation. IRroc. of 10th Int. Conference
on Logic Programming616—630.

Garcia, A. J., and Simari, G. R. 2004. Defeasible logic program-
ming: An argumentative approachheory and Practice of Logic
Programming4(1-2):95-138.

Kifer, M., and Lozinskii, E. L. 1992. A logic for reasoning with
inconsistencyJ. of Automated Reasonifgl79-215.

Kifer, M., and Subrahmanian, V. S. 1992. Theory of generalized
annotated logic programming and its applicationk. of Logic
Programmingl2:335—-397.

Mora, |.; Alferes, J. J.; and Schroeder, M. 1998. Argumenta-
tion and cooperation for distributed extended logic programs. In
Working notes of the Workshop on Non-monotonic Reasoning

Pollock, J. 1987. Defeasible reasoningCognitive Science
11(4):481-518.

Prakken, H., and Sartor, G. 1997. Argument-based extended
logic programming with defeasible priorities. of Applied Non-
Classical Logics7(1):25-75.

Schweimeier, R., and Schroeder, M. 2002. Well-founded argu-
mentation semantic for extended logic programmingPiloc. of

Int. Workshop on Non-monotonic Reasoning

T. Takahashi, Y. U., and Sawamura, H. 2003. Formal argumen-
tation frameworks for the extended generalized annotated logic
programs. InProc. of KES'2003, LNAIvolume 2773, 95-138.
IEEE Press.

Takahashi, T., and Sawamura, H. 2004. A logic of multiple-
valued argumentation. Technical report, Niigata University,
http://www.cs.ie.niigata-u.ac.jp/ takehisa/.

