
Theory of Multiple-Valued Defeasible Argumentation and its Applications

Takehisa Takahashi
Graduate School of Science and Technology

Niigata University
8050 2-cho Ikarashi Niigata, 950-2181 JAPAN

takehisa@cs.ie.niigata-u.ac.jp

Hajime Sawamura
Department of Information Engineering

Niigata University
8050 2-cho Ikarashi Niigata, 950-2181 JAPAN

sawamura@ie.niigata-u.ac.jp

Abstract

This paper provides a new departure from the traditional two-
valued argumentation frameworks. We address ourselves
to formalize an expressive logic of argumentation, called
a Logic of Multiple-valued Argumentation (LMA), on top
of the very expressive knowledge representation language,
called Extended Annotated Logic Programming (EALP), and
examine its logical properties in various ways. EALP al-
lows us to represent different kinds of uncertainty such as
vagueness and inconsistency (or paraconsistency) in terms of
multi-valuedness, and incompleteness with the help of de-
fault negation. LMA is the first logic of argumentation in
which agents can argue with other contenders, using multiple-
valued knowledge base in terms of EALP.

Introduction
Argumentation is a ubiquitous form and way of dialogue in the
human society. However, computational studies on argumentation
are relatively recent, dating back to 1980s. Since then, argument
models have been studied in the various directions, showing that
argumentation is a very fruitful research object to be pursued com-
putationally. In comparison to logic, argumentation of dynamic
nature is more suitable to describing and processing the dynamic
and changing nature of information in a networked distributed in-
formation environment.

We have seen many attempts and results on argumentation in
the literature of the artificial intelligence (Chesnevar, Maguitman,
& Loui 2000). They are basically built on the logic programming
languages as knowledge representation since they allow for com-
putationally feasible argumentation frameworks. For example, the
extended logic programming (ELP) is employed in the argumenta-
tion frameworks (Dung 1993) (Mora, Alferes, & Schroeder 1998)
(Prakken & Sartor 1997) (Schweimeier & Schroeder 2002).

However, very few attempts have been made at multiple-valued
argument models, in which arguments are built on uncertain in-
formation. This paper provides a new departure from those two-
valued argumentation frameworks in theoretical rigor. We ad-
dress ourselves to formalize an expressive logic of argumentation,
called a Logic of Multiple-valued Argumentation (LMA), on top
of the very expressive knowledge representation language, called
Extended Annotated Logic Programming (EALP), and examine
its logical properties in various ways. EALP is most expressive
in the hierarchy of logic programming depicted in Figure 2 in
the sense that it allows to represent different kinds of uncertainty
such as vagueness and inconsistency (or paraconsistency) in terms
of multi-valuedness, and incompleteness with the help of default
negation.

In formalizing logic of argumentation, the most primary concern
is the rebuttal relation among arguments since it yields a cause or
a momentum of argumentation or dialogue. The rebuttal relation
for two-valued argument models is most simple, so that it natu-
rally appears between the contradictory propositions of the form
A and¬A. In case of multiple-valued argumentation based on
EALP, much complication is to be involved into the rebuttal rela-
tion under the different concepts of negation. One of the questions
arising from multiple-valuedness is, for example, how a literal with
truth-valueρ confronts with a literal with truth-valueµ in the in-
volvement with negation. This paper gives a clean and reasonable
answer to it, formalizing a logic of argumentation under uncertain
information.

The paper is organized as follows. In the following section, we
will discuss our motivation, taking up argumentative dialogues that
lead us to our logic of argumentation under multiple-valuedness.
Then, the underlying language for the logic of multiple-valued ar-
gumentation is introduced together with its interpretation. Specif-
ically, different forms of explicit negation and their formal inter-
pretations are described in detail. Next, we introduce an abstract
argumentation framework as the preliminaries for the succeeding
sections. On the basis of these preliminaries, we describe our main
results of this paper: various unique definitions as building blocks
for the logic of multiple-valued argumentation (LMA), together
with applications. The final section summarizes the paper and dis-
cusses some future works.

Motivational examples
The idea of difference of truth-values as a momentum of argumen-
tation or dialogue seems to be very intriguing in itself. However,
some logical anomalies immediately arise in realizing the idea. Let
us take a look at two examples.

Example 1 Agent A: This movie was so interesting.(represented
as interesting(movie) : µ in EALP.) Agent B: I don’t think so.
(represented as¬interesting(movie) :µ in EALP.)

It seems that they have a different taste on movies. Agent B
states an opinion contrary to Agent A, but does not intend to require
refusing and taking back Agent A’s opinion. In the dialogue, they
simply state their own realization on the evaluation of the movie.
They are not necessarily in a conflict with each other, and their
agreement (if any) would be only that through the dialogue, Agent
A and Agent B made it sure that they had a contrary opinion on the
matter. Such a negation ‘¬’ is called the epistemological explicit
negation (Kifer & Subrahmanian 1992)(Kifer & Lozinskii 1992).

Example 2 Let us consider the following discussion. Agent C
says the accident was caused by Agent D’s negligence(repre-
sented asnegligence(D) : t in EALP). Agent D says he does

not remember why and how the accident occurred(represented as
negligence(D) : ⊥ in EALP), and he can not admit Agent C’s
assertion(represented as∼ negligence(D) : t in EALP).

Agent D refuses or stands off Agent C’s one way idea. Agent D
has not only an assertionnegligence(D) :⊥ but also at the same
time he is in such a state that he can not acceptnegligence(D) :
t by Agent C. This is different from that he has an assertion
negligence(D) : f. In this case, it is not between two liter-
als negligence(D) : t and negligence(D) : ⊥ but between
negligence(D) : t and∼ negligence(D) : t that two agents
equally object to each other. Such a negation ‘∼’ is called the
ontological explicit negation.

As can be seen from these argumentative dialogues, in argumen-
tation under multiple-valued knowledge, the rebuttal relation will
tend to be complicated among many truth-values.

In order to represent and resolve those complications and
anomalies, we will introduce the extended annotated logic pro-
gramming language with two kinds of explicit negation: Epistemic
Explicit Negation ‘¬’ and Ontological Explicit Negation ‘∼’, to-
gether with the default negation ‘not’ in the next section. The
former is a negation with respect to epistemic states or realization
of contenders, and of inclusive nature in the sense that it gener-
ally does not raise a conflict among agents concerned, and rather it
could provide a way of finding a clue to cooperative actions. The
latter is a negation with respect to justification of arguments, and
of exclusive nature in the sense that it is usually used to state that
other party’s opinions can not be accepted.

The terms: epistemic negation and ontological negation, orig-
inate from Kifer and Lozinskii (Kifer & Lozinskii 1992). Note,
however, that the meaning of our ontological explicit negation is
different from their ontological negation, being properly adjusted
to argumentation as can be seen in the succeeding sections.

Extended Annotated Logic Programs
Language
Definition 1 (Annotation and annotated atoms(Kifer & Sub-
rahmanian 1992)). We assume a complete lattice(T ,≤) of truth
values, and denote its least and greatest element by⊥ and> re-
spectively. The least upper bound operator is denoted byt. An
annotation is either an element ofT (constant annotation), an an-
notation variable onT , or an annotation term. Annotation term
is defined recursively as follows: an element ofT and annotation
variable are annotation terms. In addition, ifx1, . . . , xn are an-
notation terms, thenf(x1, . . . , xn) is an annotation term. Here,f
is a total continuous function of typeT n → T .

If A is an atomic formula andµ is an annotation, thenA :µ is an
annotated atom. We assume an annotation function¬ : T → T ,
and define that¬(A :µ) = A : (¬µ). ¬A :µ is called the epistemic
explicit negation (e-explicit negation) ofA : µ.

In this paper, the e-explicit negation¬A :µ is embedded into an
annotated atomA :¬µ, and implicitly handled.

Definition 2 (Annotated literals). Let A : µ be an annotated
atom. Then∼ (A :µ) is the ontological explicit negation (o-explicit
negation) ofA : µ. An annotated objective literal is either∼ A :µ
or A : µ. The symbol∼ is also used to denote complementary
annotated objective literals. Thus∼∼ A :µ = A :µ.

If L is an annotated objective literal, thennot L is a default
negation ofL, and called an annotated default literal. An anno-
tated literal is either of the formnot L or L.

For an annotated atomA : µ, we consider an annotationµ as
a recognition aboutA. Intuitively, we read an annotated literal as
follows:

• A :µ · · · There is a recognitionµ aboutA.

• ¬A : µ = A :¬µ · · · There is a negative recognition¬µ about
A.

• ∼ A :µ · · · There must not be a recognitionµ aboutA.

• not A :µ · · · There is no recognitionµ aboutA so far

• not ∼ A : µ · · ·There may be a recognitionµ aboutA so far
(it is not the case that there must not be a recognitionµ about
A).

Put it differently,∼ A :µ reads “a recognitionµ aboutA is never
acknowledged”, andnot ∼ A :µ reads “a recognitionµ aboutA
is acknowledged”.

Definition 3 (Extended Annotated Logic Programs). An ex-
tended annotated logic program(EALP) is a set of annotated rules
of the form:

H ← L1 & . . . & Ln.

whereH is an annotated objective literal, andLi (1 ≤ i ≤ n)
are annotated literals in which the annotation is either a constant
annotation or an annotation variable.

For simplicity, we assume that a rule with annotation variables
or objective variables represents every ground instance of it. In
this assumption, since every annotated term in the heads of rules
is substituted for elements ofT , we restrict ourselves to constant
annotations till the end of this paper.

The head of a rule is called aconclusionof a rule. Annotated
objective literals and annotated default literals in the body of the
rule are calledantecedentsof the rule andassumptionsof the rule
respectively. We identify a distributed EALP with anagent, and
treat a set of EALPs as amulti-agent systemas in (Mora, Alferes,
& Schroeder 1998).

Example 3 We introduce the complete lattices of truth values in
EALP.FOUR = ({⊥, t, f,>}, ≤), ∀x, y ∈ {⊥, t, f,>} x ≤
y ⇔ x = y ∨ x = ⊥ ∨ y = > is a well-known complete lattice
(depicted in the left of Figure 1). It turns out to play an important
role in argumentation under inconsistent information. The closed
interval<[0, 1] of real numbers is useful for argumentation under
uncertain information.

t f
t f

Figure 1:FOUR andI(FOUR)

Example 4 The following knowledge base expresses a particular
agent’s stance on car accidents. Rules are represented in EALP on
FOUR.

negligence(A) :⊥ ← not (hit(A′s car, B′s car) : t)
∼ negligence(A) : t← not (hit(A′s car, B′s car) : t)
negligence(A) : f ← hit(A′s car, B′s car) : f
negligence(A) : t← hit(A′s car, B′s car) : t

& ∼ hit(A′s car, B′s car) : f

The first rule says that agent A does not know whether the acci-
dent was caused by his negligence if there is no evidence to show

that A’s car hit B’s car. The second rule says that A can not ad-
mit his negligence if there is no evidence to show that A’s car hit
B’s car. The third rule is simple. Finally, the fourth rule says
that agent A acknowledges his negligence in the accident if he
hit agent B’s car and he can not overturn that he hit agent B’s
car. If the information abouthit(A′s car, B′s car) were incon-
sistent (i. e. hit(A′s car, B′s car) : >), agent A could assert
negligence(A) : f, and could not assertnegligence(A) : t since
hit(A′s car, B′s car) :> prevents the fourth rule from being ap-
plied. This knowledge base characterizes an agent who does not
want to accept his negligence as far as he can avoid it. Thus the in-
troduction of o-explicit negation allows agents to incorporate their
intentions into knowledge and belief.

Thus the introduction of o-explicit negation brings expressive
power to describing intention of agents in more detail. We de-
pict the relationship between EALP and other logic programming
frameworks in Figure 2.

Remark 1 EALP with no o-explicit negation coincides with NALP
(Normal Annotated Logic Programs) (T. Takahashi & Sawamura
2003). If default negation is not included then it coincides with
ALP (Annotated Logic Programs) (Kifer & Subrahmanian 1992).
Under a single truth valueT = {t}, EALP, NALP and ALP co-
incide with ELP(Extended Logic Programs), NLP (Normal Logic
Programs) and LP(Logic Programs) respectively. Thus, EALP is
a language of larger class than ELP and ALP.

EALP

ELP NALP

NLP ALP

LP
2-Valued

(Ontological) Explicit Negation

Default Negation

Multi-Valued

(Epistemic Explicit Negation)

Figure 2: Hierarchy of extensions of logic programming ac-
cording to different kinds of negation

Interpretation and satisfaction
In this section, we define interpretation and satisfaction for EALP.
We view the interpretation as an epistemic state of an agent.

Definition 4 (Extended annotated Herbrand base). The set of
all annotated literals constructed from an EALPP on a complete
latticeT of truth values is called the extended annotated Herbrand
baseHT

P .

Example 5 Suppose the EALPP = {p(a) : t← not p(b) :⊥} on
the complete latticeT = ({t,⊥}, {t ≤ ⊥}) of truth values. Then,

HT
P = {
p(a) : t, p(a) :⊥, ∼ p(a) : t, ∼ p(a) :⊥
not p(a) : t, not p(a) :⊥, not ∼ p(a) : t, not ∼ p(a) :⊥
p(b) : t, p(b) :⊥, ∼ p(b) : t, ∼ p(b) :⊥
not p(b) : t, not p(b) :⊥, not ∼ p(b) : t, not ∼ p(b) :⊥ }.

Definition 5 (Interpretation). Let T be a complete lattice of
truth values, andP be an EALP. Then, the interpretation onP
is the subsetI ⊆ HT

P of the extended annotated Herbrand base
HT

P of P such that for any annotated atomA,

1. If A :µ ∈ I andρ ≤ µ, thenA :ρ ∈ I;
2. If A :µ ∈ I andA :ρ ∈ I, thenA : (µ t ρ) ∈ I;
3. If∼ A :µ ∈ I andρ ≥ µ, then∼ A :ρ ∈ I.

The conditions 1 and 2 of Definition 5 are based on the definition
of the ideal of truth values which is used for the interpretation of
GAP (Kifer & Subrahmanian 1992).

We define three notions of inconsistencies corresponding to
three concepts of negation in EALP.

Definition 6 (Inconsistency). LetI be an interpretation. Then,

1. A :µ ∈ I and¬A :µ ∈ I ⇔ I is epistemologically inconsistent
(e-inconsistent).

2. A : µ ∈ I and∼ A : µ ∈ I ⇔ I is ontologically inconsistent
(o-inconsistent).

3. A : µ ∈ I andnot A : µ ∈ I, or ∼ A : µ ∈ I andnot ∼ A :
µ ∈ I ⇔ I is inconsistent in default (d-inconsistent).

When an interpretationI is o-inconsistent or d-inconsistent, we
simply sayI is inconsistent. We do not see the e-inconsistency as
a problematic inconsistency since by the condition 2 of Definition
5, A :µ ∈ I and¬A :µ = A :¬µ ∈ I imply A : (µ t ¬µ) ∈ I and
we thinkA :µ and¬A :µ are an acceptable differentia.

Let I be an interpretation such that∼ A : µ ∈ I. By the con-
dition 1 of Definition 5, for anyρ such thatρ ≥ µ, if A : ρ ∈ I
thenI is o-inconsistent. In other words,∼ A : µ rejects all recog-
nitionsρ such thatρ ≥ µ aboutA. This is the underlying reason
for adopting the condition 3 of Definition 5.

The coherence principle is an important property for the seman-
tics of ELP, and is required to properly interpret ELP (Alferes
& Pereira 1996). We extend the coherence principle for multi-
valuedness as follows.

Definition 7 (Coherence Principle). For an annotated objective
literal L and an interpretationI, I is said to be coherent, whenI
satisfies the following condition: if∼ L ∈ I, thennot L ∈ I.

The coherence principle requires that for some atomA, if there
must not be a recognitionµ explicitly (∼ A :µ), there is no recog-
nition µ so far (not A :µ), and if there is a recognitionµ explicitly
(A :µ), there may be a recognitionµ for now (not ∼ A :µ). Then
we define satisfaction.

Definition 8 (Satisfaction). Let I be an interpretation. For any
annotated objective literalH and annotated literalL andLi, we
define the satisfaction relation denoted by ‘|=’ as follows.

• I |= L ⇔ L ∈ I

• I |= L1 & · · · & Ln ⇔ I |= L1, . . . , I |= Ln

• I |= H ← L1 & · · · & Ln ⇔ I |= H or I 6|= L1 & · · · & Ln

Explicit negation and interpretation
Here we discuss the formal difference between o-explicit negation
and e-explicit negation, using the notion of interpretation. We con-
sider an interpretation that assigns an ideal of a complete lattice
of truth values to an annotated atom. The ideals-based interpre-
tation was first introduced in (Kifer & Subrahmanian 1992). The
ideals constructed fromFOUR, denoted byI(FOUR), form a
complete lattice under set inclusion (see the right part of Figure 1,
where‖µ‖ = {ρ ∈ T | ρ ≤ µ}).

Let us consider the negligence of car accidents, referring to Ex-
ample 4, and suppose an agent A asserts¬negligence(A) : t =
negligence(A) : f (meaning that A does not have a negligence).
The interpretation which can satisfy this assertion is the one that
assigns an ideal containingf to negligence(A), and has the range
shown in Figure 3 (1). The ideal‖>‖ of this range means that

agent A can accept e-consistency whennegligence(A) : t (A has a
negligence) is asserted by someone. Then let us consider an agent
A who asserts∼ negligence(A) : t (an assertion which says that
the negligence is on the side of A is never acknowledged). If the
interpretation is to be o-consistent, it has to assign an ideal not con-
tainingt (i. e.,φ, ‖⊥‖ or‖f‖) tonegligence(A), and has the range
shown in Figure 3 (2). These difference between∼ fault(A) : t
and¬fault(A) : t(= fault(A) : f) turn out to play a significant
role in our formalization of multiple-valued argumentation. Then,
the argumentation procedure, such as either respecting or rejecting
other agents’ assertions, is to be represented through these kinds of
negations. If both¬negligence(A) : t and∼ negligence(A) : t
are asserted at the same time, the ideal which should be assigned to
negligence(A) comes to have the overlapped range of two ranges
(i. e.,‖f‖).

t f

t f
t f

 A B

t f

CB

(1) (2) (3) (4)
¬fault(A) : t ∼ fault(A) : t Agent A & B Agent B & C

Figure 3: The range of the interpretation

Next, let us consider argumentation about movies. Sup-
pose three agents A, B and C assert the following respectively:
interesting(movie α) : f, interesting(movie α) : t, and
interesting(movie α) : f & ∼ interesting(movie α) : t.

Agent B says movieα is interesting, and Agent A says movieα
is not interesting. The agents A and B just assert their own opin-
ions, and do not intend to reject the other opinion. As shown
in Figure 3 (3), the range of interpretation which satisfies both
assertions is the overlapped portion of two regions (including
interesting(movie α) : >). It means that two agents can ac-
knowledge each other’s opinion. In contrast, agent C not only says
the movieα is not interesting, but also says C can not acknowl-
edge B’s opinion. That is, Agents C takes an exclusive attitude in
the argument or dialogue. The range of interpretation which satis-
fies both assertions B and C has no overlapping portion (i. e., they
are in an o-inconsistent state) as shown in Figure 3 (4)

Abstract argumentation framework
We introduce an abstract argumentation framework as preliminar-
ies for the succeeding sections. We use the same definitions as
(Dung 1993)(Prakken & Sartor 1997)(Schweimeier & Schroeder
2002) though the knowledge representation language is different.
The abstract set of arguments and attack relation on arguments are
concretized below.

Acceptable and Justified arguments
We define the argumentation semantics as the least fixpoint of the
function which collects all acceptable arguments.

Definition 9 (Attack relation (Dung 1993)). Let Args be a set
of abstract arguments. An attack relationx on Args is a binary
relation onArgs, i. e.,x ⊆ Args×Args.

Definition 10 (x/y-acceptable and justified argument (Dung
1993)). Let x and y be attack relations onArgs. Suppose
Arg1 ∈ Args and S ⊆ Args. ThenArg1 is x/y-acceptable
wrt. S if for everyArg2 ∈ Args such that(Arg2, Arg1) ∈ x
there existsArg3 ∈ S such that(Arg3, Arg2) ∈ y.

The functionFArgs,x/y mapping fromP(Args) to P(Args)
is defined byFArgs,x/y(S) = {Arg ∈ Args | Arg is x/y-
acceptable wrt.S}. We denote a least fixpoint ofFArgs,x/y by
JArgs,x/y. An argumentArg is x/y-justified ifArg ∈ Jx/y; an
argument isx/y-overruled if it is attacked by ax/y-justified ar-
gument; and an argument isx/y-defensible if it is neitherx/y-
justified norx/y-overruled.

We write simplyFx/y andJx/y for FArgs,x/y andJArgs,x/y

whenArgs is obvious. SinceFx/y is monotonic, it has a least fix-
point, and can be constructed by the iterative method (Dung 1993).

When argumentation is treated as one of the methods of a
consensus-attainment or a collision-avoidance, the justified argu-
ments can not conflict each other. We define the conflict-freeness
for a set of justified arguments in an abstract argumentation frame-
work as follows.

Definition 11 (Conflict-free (Dung 1993)). Let Args be an ab-
stract argument set, andx be an attack relation onArgs. S ⊆
Args is conflict-free wrt.x⇔ S does not contain argumentsArg1
andArg2 such that(Arg1, Arg2) ∈ x.

In ELP, Schweimeier and Schroeder studied a condition in
which a set of justified arguments is conflict-free wrt.x
(Schweimeier & Schroeder 2002). This result applies not only
for an argumentation on ELP but also for abstract argumentation
frameworks.

Theorem 1 Let x and y be attack relations onArgs. If x ⊇ y
thenJArgs,x/y is conflict-free wrt.x.
Proof Similar to (Schweimeier & Schroeder 2002).

Dialectical proof theory
Justified arguments can be dialectically determined from a set of
arguments by the dialectical proof theory. We give the sound and
complete dialectical proof theory for the abstract argumentation se-
manticsJArgs,x/y.

Definition 12 (x/y-dialogue (Prakken & Sartor 1997)). Anx/y-
dialogue is a finite nonempty sequence of movesmovei =
(Playeri, Argi), (i ≥ 1) such that

1. Playeri = P (Proponent) iff i is odd; andPlayeri = O
(Opponent) ⇔ i is even.

2. If Playeri = Playerj = P (i 6= j) thenArgi 6= Argj .
3. If Playeri = P (i ≥ 3) then (Argi, Argi−1) ∈ y; and if

Playeri = O (i ≥ 2) then(Argi, Argi−1) ∈ x.

Definition 13 (x/y-dialogue tree(Prakken & Sartor 1997)). An
x/y-dialogue tree is a tree of moves such that every branch is an
x/y-dialogue, and for all movesmovei = (P, Argi), the children
of movei are all those moves(O, Argi+1,j) (j ≥ 1) such that
(Argi+1,j , Argi) ∈ x.

Definition 14 (Provably x/y-justified (Prakken & Sartor
1997)). An x/y-dialogueD is a winningx/y-dialogue ⇔ the
termination ofD is a move of proponent. Anx/y-dialogue treeT
is a winningx/y-dialogue tree⇔ every branch ofT is a winning
x/y-dialogue. An argumentArg is a provably x/y-justified
argument⇔ there exists a winningx/y-dialogue tree withArg
as its root.

Theorem 2 Let Args be an abstract argument set. ThenArg ∈
Args is provablyx/y-justified⇔ Arg is x/y-justified1.

1Refer to (Takahashi & Sawamura 2004) for the proofs omitted
in this paper.

Multiple-valued argumentation for EALP
In this section, we define the notion of arguments in EALP and
associated attack relationship, and formalize the semantics of
multiple-valued argumentation and its dialectical proof theory by
concretizing abstract argumentation framework. We further de-
scribe the properties of the multiple-valued argumentation using
interpretation induced from justified arguments.

Annotated arguments
Kifer and Subrahmanian introduced the notion ofreductantsfor
complete proof theory of GAP (Kifer & Subrahmanian 1992). In
our multiple-valued argumentation, reductants are needed to allow
agents to build arguments in EALP. We further introduceminimal
reductantsin order to exclude redundant and irrelevant arguments.

Definition 15 (Reductant and Minimal reductant). SupposeP
is an EALP, andCi (1 ≤ i ≤ k) are annotated rules inP of the
form:

A :ρi ← Li
1 & . . . & Li

ni

in whichA is an atom. Letρ = t{ρ1, . . . , ρk}. Then the following
annotated rule is a reductant ofP .

A :ρ← L1
1 & . . . & L1

n1 & . . . & Lk
1 & . . . & Lk

nk
.

A reductant is called a minimal reductant when there does not exist
non-empty proper subsetS ⊂ {ρ1, . . . , ρk} such thatρ = tS.

Definition 16 (Annotated arguments). Let P be an EALP. An
annotated argument inP is a finite sequenceArg = [r1, . . . , rn]
of rules inP such that for everyi (1 ≤ i ≤ n),

1. ri is either a rule inP or a minimal reductant inP .
2. For every annotated atomA : µ in the body ofri, there exists a

rk (n ≥ k > i) such thatA :ρ (ρ ≥ µ) is head ofrk.
3. For every o-explicit negation∼ A : µ in the body ofri, there

exists ark (n ≥ k > i) such that∼ A :ρ (ρ ≤ µ) is head ofrk.
4. There exists no proper subsequence of[r1, . . . , rn] which meets

from the first to the third conditions, and includesr1.

A subargument ofArg is a subsequence ofArg which is an ar-
gument. The conclusions of rules inArg are called conclusions
of Arg, and the assumptions of rules inArg are called assump-
tions of Arg. We write concl(Arg) for the set of conclusions
andassm(Arg) for the set of assumptions ofArg. We denote
the set of all arguments inP by ArgsP , and define the set of
all arguments in a set of EALPsMAS = {KB1, . . . , KBn} by
ArgsMAS = ArgsKB1 ∪ · · · ∪ArgsKBn .

Example 6 LetP be the following EALP.

P = { p : t← q : t ¬ r : t, p : f ← q : f,
∼ p : t← r : t & ∼ q : t, q :> ←,
∼ q :⊥ ←, r : t← }

Then a set of all arguments constructed fromP is

ArgsP = { [p : t← q : t ¬ r : t, q :> ←]
[p : f ← q : f, q :> ←]
[p :> ← q : t & q : f ¬ r : t, q :> ←]
[∼ p : t←∼ q : t & r : t, ∼ q :⊥ ←, r : t←]
[q :> ←], [∼ q :⊥ ←], [r : t←] }.

Arg3 = [p :> ← q : t & q : f ¬ r : t, q :> ←] in ArgsP

is an argument in which the first rule is the minimal reductant con-
structed from the first and second rules ofP . By Definition 16 (2), it
contains the fourth rule ofP which is annotated by> greater than

t or f in the end of the argument, as the ground for the antecedents
q : t andq : f. The set of conclusions and the set of assumptions are
concl(Arg3) = {p :>, q :>} andassm(Arg3) = {not r : t} re-
spectively. The ground for the assumptionnot r : t is not required.

Arg4 = [∼ p : t ←∼ q : t & r : t, ∼ q :⊥ ←, r : t ←] is an
argument containing the third rule ofP at the head. By Definition
16 (3), it has the fifth rule∼ q :⊥ ← of P which is annotated by⊥
less thant as the ground for the antecedent∼ q : t.

A non-minimal reductant usually results in having a longer an-
tecedent than a minimal reductant. If an argument is made by non-
minimal reductants, the argument may be redundant in its content.
Furthermore, a non-minimal reductant occasionally tends to be ir-
relevant rule (refer to (T. Takahashi & Sawamura 2003) for details).

We stated that the epistemic states of agents are represented by
interpretations. Here, we define the notion of satisfaction for argu-
ments, and view the epistemic state of an agent who has a set of
arguments as interpretation which satisfy those arguments.

Definition 17 (Satisfaction for arguments). LetP be an EALP,
I be an interpretation onP , andArg be an argument inP . Then,
I |= Arg ⇔ ∀H ∈ concl(Arg) I |= H and ∀not L ∈
assm(Arg) I |= not L. In addition, lettingArgs be a set of
arguments inP , I |= Args ⇔ ∀Arg ∈ Args I |= Arg.

Corollary 1 Let Arg be an argument, andI be an interpretation
such thatI |= Arg. Then, for all rulesr ∈ Arg, I |= r.
Proof It follows from Definition 8, 16 and 17.

Generally, in ordinary logic programs, interpretations which sat-
isfy every rule are taken into account, and called models. In the
argumentation, however, it becomes necesary to consider that the
satisfaction for arguments (i. e., the satisfaction for all conclusions
and all assumptions) should be taken into account rather than the
satisfaction for rules only.

Example 7 Let I1 and I2 be interpretations such thatI1 6|=
not q :>, I2 |= p : t ¬ q :>, andArg = [p : t⇐ not q :>] be
an argument. ThenI1 satisfies only one rule inArg (I1 |= p : t ⇐
not q :>), butI1 6|= Arg because it does not satisfy an assumption
not q :> in Arg. In contrast, becauseI2 satisfies all conclusions
and all assumptions inArg, I2 |= Arg. An argumentArg asserts
its conclusion based on its assumptionnot q :>, and soI1 is not
suitable as the epistemic state of an agent withArg.

Attack relation
The semantics of the argumentation depends on what sort of attack
relation is considered to deal with conflicts among arguments. It
would be reasonable to think that conflicts among arguments occur
when the interpretation satisfying a set of arguments is inconsis-
tent.

We define the “rebut” as an attack relation associated with o-
inconsistency and the “undercut” as an attack relation associated
with d-inconsistency.

Definition 18 (Rebut). Arg1 rebutsArg2 ⇔ there existsA :
µ1 ∈ concl(Arg1) and∼ A :µ2 ∈ concl(Arg2) such thatµ1 ≥
µ2, or exists∼ A :µ1 ∈ concl(Arg1) andA :µ2 ∈ concl(Arg2)
such thatµ1 ≤ µ2.

Definition 19 (Undercut). Arg1 undercutsArg2⇔ there exists
A : µ1 ∈ concl(Arg1) andnot A : µ2 ∈ assm(Arg2) such that
µ1 ≥ µ2, or exists∼ A :µ1 ∈ concl(Arg1) andnot ∼ A :µ2 ∈
assm(Arg2) such thatµ1 ≤ µ2.

Proposition 1 For someArg1 and Arg2 in Args, if Arg1 re-
butsArg2, I such thatI |= Args is o-inconsistent. And ifArg1

undercutsArg2, I such thatI |= Args is d-inconsistent.

Proof It follows from Definition 5, 8, 17, 18 and 19.

The rebuttal relation is a symmetrical attack relation. And the
undercut relation is not always one-directional (for example,[p :
t ← not ∼ q : t] and[∼ q : t ← not p : t]). The one-directional
undercut relation is called the “strictly undercut”.

Definition 20 (Strictly undercut). Arg1 strictly undercutsArg2

⇔ Arg1 undercutsArg2 andArg2 does not undercutArg1.

We also define the combined attack relation associated with o-
inconsistency and d-inconsistency.

Definition 21 (Attack). Arg1 attacksArg2 ⇔ Arg1 rebuts or
undercutsArg2.

Under the idea that a conclusion can not hold when its assump-
tion is negated, the undercut may be stronger than rebuttal. Taking
this into consideration, we define another combined attack relation
called “defeat” (in ELP, it is defined in (Prakken & Sartor 1997)).

Definition 22 (Defeat). Arg1 defeatsArg2 ⇔ Arg1 undercuts
Arg2, or Arg1 rebutsArg2 andArg2 does not undercutArg1.

Proposition 2 For someArg1 andArg2 in Args, if Arg1 attacks
or defeatsArg2, I such thatI |= Args is o-inconsistent or d-
inconsistent.

Proof It follows from Definition 21, 22, and Proposition 1.

Argumentation semantics for EALP
To concretize an abstract argumentation framework, we need a con-
crete argument set and two concrete attack relations. We already
defined the notion of argument setArgsP for an EALP P and
ArgsMAS for a set of EALPsMAS. In what follows, we sim-
ply write an argument set byArgs when we do not tellArgsP and
ArgsMAS apart. Now we have to select two attack relations. If the
argumentation is treated as the methods of a consensus-attainment
or a collision-avoidance, justified arguments should be conflict-free
under those attack relations.

By Theorem 1, it is sufficient to adoptJArgs,a/y (a = attack,
a ⊇ y) in order to avoid the rebuttal and the undercut among jus-
tified arguments (i. e.,JArgs,a/y will be conflict-free wrt. attack).
But, actually, we can show the conflict-free wrt. the defeat rela-
tionship implies the conflict-free wrt. the attack, andJArgs,d/y (d
= defeat,d ⊇ y) is also the conflict-free wrt. the attack.

Theorem 3 If a set of argumentsS is conflict-free wrt. the defeat
relationship, thenS is conflict-free wrt. the attack.

We thinkJArgs,d/y is closer to human intuition thanJArgs,a/y

as can be seen in (Prakken & Sartor 1997) for the case of ELP. If
we adopty relation such thatd ⊇ y, JArgs,d/y will be conflict-
free wrt. the defeat. The corresponding ones in the subsection
are the defeat, the undercut and the strictly undercut. For the set
of justified arguments associated with these attack relations, the
following relationship holds.

Proposition 3 JArgs,d/su = JArgs,d/u = JArgs,d/d.

Thus, the set of justified arguments is always the same even if
we adopt any attack relation. And so we adopt the strictly under-
cut because it is smallest or simplest in these attack relations, and
straightforward .

Let P be an EALP, andMAS be a set of EALPs. Then we
define the semantics of argumentation onP by JArgsP ,d/su (JP

for short), and define the semantics of argumentation onMAS by
JArgsMAS ,d/su (JMAS for short). When we do not need to tell
apartP andMAS, we simply denoteArgsP andArgsMAS by
Args, and denoteJP and JMAS by J . JP and JMAS can be
dialectically determined by the dialectical proof theory.

Example 8 We describe an example of argumentation about the
pros and cons of the death penalty of murderers. Suppose a com-
plete latticeT = <[0, 1]2 where(µ1, ρ1) ≤ (µ2, ρ2) ⇔ µ1 ≤ µ2

andρ1 ≤ ρ2, and in(µ, ρ) ∈ T , µ andρ represent the degrees of
an affirmation and a negation respectively. This truth value can
represent e-inconsistent or unknown state and degree of truth to-
gether. LetMAS = {KB1, KB2, KB3} be a set of EALPs, and
eachKBi be a knowledge base such that:

KB1 = {
∼ agree(death) : (0.0, 0.8)←

hate(family, murderer) : (0.8, 0.0) &
desire(family, death) : (0.7, 0.0),

hate(family, murderer) : (1.0, 0.0)←
∼ allow(family, murderer) : (0.5, 0.0),

desire(family, death) : (0.7, 0.0)←,
∼ desire(family, death) : (0.0, 0.8)←,
∼ allow(family, murderer) : (0.5, 0.0)← },
KB2 = {
agree(death) : (0.2, 0.4)← atone(death, guilt) : (0.0, 0.5),
atone(death, guilt) : (0.2, 0.8)←

not remorse(dead) : (1.0, 0.0),
agree(death) : (0.0, 1.0)←

not ∼ allow(family, murderer) : (0.8, 0.0) },
KB3 = {
agree(death) : (0.0, 0.6)← desire(family, death) : (0.0, 0.6),
desire(family, death) : (0.0, 1.0)←

not assuage(death, family) : (0.7, 0.0),
agree(death) : (0.6, 0.0)←

hate(family, murderer) : (0.6, 0.0),
hate(family, murderer) : (0.9, 0.2)← },

Figure 4 shows every possible argument and every possible at-
tack relation among them. The justified arguments areJKBs =
{Arg11, Arg12, Arg13, Arg14, Arg21, Arg22, Arg31, Arg32}.
Comprehensively, the justified arguments would be able to read
as follows: “It is sure that a bereaved family hates a murderer
(Arg31), and so agreement to the death penalty is partly possible
(Arg32). In addition, because a bereaved family can not accept al-
lowing a murderer(Arg11), and desires the death penalty(Arg13),
a complete opposition of the death penalty is never acknowledged
(Arg14). However, because there is no evidence to show that a
dead man is in remorse for the crime, and the death can not atone
a guilt (Arg21), an opposition of the death penalty is acknowledged
to some degree at the same time(Arg22).”

In Example 8, assume¬(µ, ρ) = (1.0−µ, 1.0−ρ), and replace
every o-explicit negation ‘∼ ’ in eachKBi by e-explicit negation ‘
¬ ’. Then,Arg15 will not rebutArg33, and both conclusions hold
(a bereaved family desires and does not desire the death penalty).
The degree of opposition of the death penalty will increase to 0.6
(Arg34). Thus agents can incorporate what they intend to do in
argumentation into their knowledge base by selecting appropriate
explicit negation according to a topic for argumentation.

Example 9 Let us consider an argumentation about the monthly
schedule management. Here we use an unconventional complete
lattice of truth values which is the power setP({1, . . . , 31}) of
the set of the monthly dates, with the order by the set-inclusion re-
lation. Then an annotated atomwork(a) : {5, 6} reads “Agent
a works on the 5th and the 6th”. It asserts that the proposition
work(a) is true only in a certain time interval.∼ work(a) :{5, 6}
reads “Agenta does not work on the 5th and the 6th”. We define
the epistemic explicit negation so as to be¬µ = {1, . . . , 31} − µ,
and thus¬work(a) : {5, 6} reads “Agenta works on the dates

Arg14

Arg34 Arg32

Arg35

Arg22

agree(death):(0.2, 0.4)

atone(death,guilt):(0.2, 0.8)

not remorse(dead):(1.0, 0.0)

Arg21

Arg23

agree(death):(0.0, 1.0)

agree(death):(0.2, 1.0)

not ~allow(family, murderer):(0.8, 0.0)

r

r

u

u

~agree(death):(0.0, 0.8)

desire(family, death):(0.7, 0.0)

~desire(family, death):(0.0, 0.8)

hate(family, murderer):(1.0, 0.0)

~allow(family, murderer):(0.5, 0.0)

Arg12

agree(death):(0.0, 0.6)

agree(death):(0.6, 0.6)

agree(death):(0.6, 0.0)

desire(family, death):(0.0, 1.0)

not assuage(death, family):(0.7, 0.0)

hate(family, muderer):(0.9, 0.2)

Arg33 Arg31

ArgsKB3

ArgsKB1

ArgsKB2

r r r

Arg24

Arg15

Arg13

Arg11

Figure 4: Relation among arguments in Example 8, where ‘u’ stands for undercut, and ‘r ’ stands for rebuttal. The broken lines
stand for the operation of the reductant, and arguments framed in a thick line are justified arguments.

except the 5th and the 6th”. The difference and significance be-
tween the ontological and epistemic explicit negations is obvi-
ous. Under this complete lattice of truth values, we consider
MAS = {KBm, KBa, KBb, KBo}, whereKB of each agent
is, in EALP,

KBm = {
finish(project) :{6} ←

work(a) :{3, 4, 5}& arrive(component) :{5},
work(a) :{3, 4, 5} ←,
arrive(component) :{5} ←,
pay(upcharge) :{8} ← },

KBa = {
∼ work(a) :{5} ← not work(b) :{5}& holiday :{5},
∼ work(a) :{12} ←

not work(b) :{12}& holiday :{12},
holiday :{5, 6, 12, 13} ← },

KBb = {
¬work(b) :{12, 19, 26} ←,
holiday :{5, 6, 12, 13} ← },

KBo = {
∼ arrive(component) :{5} ← not pay(upcharge) :φ }.

WhereKBm, KBa, KBb andKBo stand for knowledge bases
of a manager agentm, employee agentsa, b and a subcontractor
agento respectively. Agentm’s argument which has the conclusion
finish(project) :{6} (the project will finish on the 6th) is justified
by the dialectical proof theory as shown in the figure 5.

In the winning dialogue tree, initially Agentm says “if a com-
ponent will arrive on the 5th, and Agenta works on the 3th, the 4th
and the 5th, then the project will finish on the 6th”. Then Agento
defeats it as follows “I will be not able to bring a component on
the 5th if the additional charge is not paid”. But Agentm strictly
undercutso’s argument by saying “I will pay it to you on the 8th”.
For the first argument of Agentm, Agenta also defeats by saying
“the 5th is a holiday, and if the coworkerb does not work, I do not
want to work on the 5th”. However Agentb strictly undercuts it by
saying “I will work on days except the 12th, 19th and the 26th”.

Strictly

undercut

Strictly

undercut

Defeat Defeat

finish(project):{6}

arrive(component):{5} work(a):{3, 4, 5}

P Agent m

O Agent o

P Agent m

O Agent a

P Agent b

¬work(b):{12, 19, 26}

not work(b):{5}

~work(a):{5}

holiday:{5, 6, ...}

pay(upcharge):{8}

not pay(upcharge):{}

~arrive(component):{5}

Figure 5: The winning dialogue tree in Example 9

Consequently, the first argument of Agentm is justified.

These idiosyncratic uses of complete lattices of different type
make our points: (i) the variety of the expressiveness of EGAP, and
(ii) the versatility of the multiple-valued argumentation.

Properties of argumentation for EALP
In this section, we examine logical properties of argumentation se-
mantics for EALP. For this purpose, the examination by interpre-
tation is better than by the set of arguments since we view the in-
terpretation satisfying arguments as the epistemic state of an agent.
In addition, even if the justified arguments are conflict-free, the in-
terpretation satisfying them is not always consistent.

We begin with the mapping from the justified arguments to an
interpretation, and define the semantics of EALP by its interpre-
tation. This amounts to specifying only one epistemic state of an
agent (or agent group) from the justified arguments, and to looking
at whether each annotated literal is justified (i. e., agreed) in an
argumentation.

Definition 23 (Interpretation by argumentation). Suppose a set
of argumentsArgs and a set of justified argumentsJ onArgs. The

interpretation by justified argumentsA′Args(J) is the least inter-
pretation wrt. the inclusive relation as follows: for every annotated
atomA :µ,

1. ∀Arg ∈ J A :µ ∈ concl(Arg) ⇒ A′Args(J) |= A :µ;
2. ∀Arg ∈ J ∼ A :µ ∈ concl(Arg) ⇒ A′Args(J) |= ∼ A :µ;
3. {∀S = {Arg1, . . . , Argn} ⊆ Args ∀ρ1, . . . , ρn such that
t{ρ1, . . . , ρn} ≥ µ ∃Argi ∈ S A : ρi 6∈ concl(Argi) or
Argi is overruled} ⇒ A′Args(J) |= not A :µ;

4. {∀Arg ∈ Args ∀ρ ≤ µ ∼ A :ρ 6∈ concl(Arg) or Arg is
overruled} ⇒ A′Args(J) |= not ∼ A :µ.

Let P be an EALP,MAS be a set of EALPs. The interpreta-
tion by argumentation onP (A(P)) and the interpretation by
argumentation onMAS (A(MAS)) are defined as follows:
A(P) = A′ArgsP (JP) andA(MAS) = A′ArgsMAS (JMAS).

The semantics of EALPP is defined by the interpretation by
argumentationA(P), and the semantics of a set of EALPsMAS
is defined by the interpretation by argumentationA(MAS).

We focus on four properties, o-consistency, d-consistency, co-
herence principle and a satisfaction of justified arguments. Initially
we state d-consistency.

Theorem 4 LetMAS be a set of EALPs. ThenA(MAS) is con-
sistent wrt. the default negation.

SinceA(MAS) coincides withA(P) in the case ofMAS =
{P},A(P) is also consistent wrt. the default negation by Theorem
4.

FromTheorem 4, it follows that the Definition 23 has been de-
fined to guarantee d-consistency. In contrast, o-consistency is not
generally satisfied as shown in the following example.

Example 10 Assume a set of EALPsMAS = {{p : t ←}, {p :
f ←}, {∼ p : > ←}}. SinceArgsMAS = {[p : t ←], [p :
f ←], [∼ p : > ←]}, and the defeat relation does not occur on
arguments inArgsMAS , JMAS = ArgsMAS . By Definition 23
and 5,A(MAS) |= p : >& ∼ p : >. ThusA(MAS) is o-
inconsistent.

In the above example, the problem lies in having dealt with the
attack relation between each argument in the argumentation frame-
work one by one. The argument[∼ p :> ←] do not have a con-
flict individually with [p : t ←] and [p : f ←], but the argument
[∼ p : > ←] conflicts with the group of them. This is a prob-
lem proper to the multiple-valued argumentation that does not ap-
pear in the two-valued argumentation. To universally resolve this
problem, we would need to modify the fundamental structure of
argumentation framework, taking into consideration new attack re-
lations among any groups of arguments. Later we will give another
solution to it.

If the knowledge base is a single EALPP = {p : t ←, p : f ←
, ∼ p : > ←}, we can have an argument[p : > ←] by making
reductant fromp : t ← andp : f ←. An argument[p :> ←] is iden-
tified with the combination of[p : t ←] and[p : f ←], and conflicts
with an argument[∼ p :> ←]. The interpretation by argumenta-
tion on the single EALP can be o-consistenct by reductants.

Theorem 5 Let P be an EALP. ThenA(P) is ontologically con-
sistent.

Next, let us examine the satisfaction of justified arguments. We
think the interpretation by argumentation has to satisfy every justi-
fied argument to view it as an epistemic state of an agent. However
it is not generally satisfied as shown in the following example.

Example 11 Assume a set of EALPsMAS = {{p : t ←}, {p :
f ←}, {q : t ← not p : >}}. SinceArgsMAS = {[p : t ←

], [p : f ←], [q : t ← not p : >]}, and the defeat relation does
not occur on arguments inArgsMAS , JMAS = ArgsMAS . Since
there exist non-overruled arguments which have conclusionsp : t
or p : f, and> = t t f, by Definition 23,A(MAS) 6|= not p :>.
ThenA(MAS) 6|= JMAS sincenot p :> is an assumption of an
argument[q : t← not p :>].

Though there is no defeat relation inArgsMAS since an argu-
mentation framework does not deal with the attack relations among
groups of arguments as we have already stated, it seems that the
combination of[p : t ←] and [p : f ←] undercuts an argument
[q : t ← not p :>]. Hence a justified argument[q : t ← not p :>]
is not satisfied by the interpretation by argumentation.

This problem does not occur in a single EALP by making reduc-
tants as discussed in the previous restoration of o-consistency. If
the knowledge base is a single EALP, an argument[q : t ← not p :
>] will be undercut by[p :> ←] which is constructed fromp : t ←
andp : f ←.

Theorem 6 LetP be an EALP. ThenA(P) |= JP .

Finally, we examine the coherence principle. The coherence
principle is not generally satisfied as shown in the following ex-
ample.

Example 12 Suppose EALPP = {p : t←, p : f ←, ∼ p :> ←}.
ThenArgsP = {[p : t←], [p : f ←], [p :> ←], [∼ p :> ←]}, and
arguments[p :> ←] and [∼ p :> ←] rebut each other. Arguments
[p : t ←] and [p : f ←] which are not defeated are justified. And,
[p : > ←] and [∼ p : > ←] are defensible. By Definition 23,
A(P) = {p : ⊥, p : t, p : f, p : >, not ∼ p : ⊥, not ∼ p :
t, not ∼ p : f}. Sincenot ∼ p :> is not inA(P) thoughp :> is
in A(P),A(P) does not satisfy the coherence principle.

Similarly, sinceA(MAS) coincides withA(P) if MAS =
{P}, for a set of EALPsMAS,A(MAS) does not always satisfy
the coherence principle.

The EALP in the above example has the same rules as in Ex-
ample 10. Although an argument[p :> ←] is identified with the
combination of[p : t ←] and[p : f ←], note that they are not treated
equally. Since[p : t ←] and[p : f ←] are justified though[p :> ←]
is defeated, The coherence principle is not satisfied.

The interpretation not satisfying the coherence principle shown
in Example 12 is unlikely to human intuition. Therefore, we turn
to giving a subclass of EALP satisfying the coherence principle by
restricting annotations in negations.

Definition 24 (Well-Behaved EALP). Let P be an EALP on a
complete latticeT of truth values,∼ A :µ be a conclusion of a rule
in P , andS ⊆ T be a finite subset such thatS 6= φ. Then, ifP
satisfies the following condition,P is called well-behaved EALP.
µ ≤ tS ⇒ ∃ρ ∈ S µ ≤ ρ.

In addition, if an assumptionnot A :µ of a rule inP also sat-
isfies the above condition,P is called strictly well-behaved EALP.

Example 13 Suppose the complete latticeT = ({⊥, t1, t2, f,>},
≤), ∀x, y ∈ {⊥, t1, t2, f,>} x ≤ y ⇔ x = y ∨ x = ⊥ ∨ y =
> ∨ (x = t2 ∧ y = t1) and the EALPP = {∼ p : t1 ←} on
theT . ThenP is not well-behaved sincet1 ≤ t{t2, f} = >, and
there exists noρ ∈ {t2, f} such thatt1 ≤ ρ. If the annotation inP
is either⊥, f, or t2, P is a well-behaved EALP.

The well-behaved EALP actually yields not only o-consistency
but also the coherence principle. The strictly well-behaved EALP
also yields the satisfaction of justified arguments. Under the well-
behaved EALP, we anew examine the properties of the interpreta-
tion by argumentation.

Theorem 7 Let MAS be a set of well-behaved EALPs. Then,
A(MAS) satisfies the coherence principle(A(MAS) |= ∼ L⇒
A(MAS) |= not L).

Table 1: Properties of the interpretation by argumentation

Interpretation by argumentation A(P) A(P ′) A(MAS) A(MAS′) A(MAS′′)
Ontological consistency © © × © ©
Consistency in default © © © © ©
Coherence principle × © × © ©

Satisfaction of justified arguments © © × × ©

Each knowledge base is an EALPP , a well-behaved EALPP ′, a set of EALPsMAS,
a set of well-behaved EALPsMAS′ and a set of strictly well-behaved EALPsMAS′′.

SinceA(MAS) coincides withA(P) in the case ofMAS =
{P},A(P) also satisfies the coherence principle by Theorem 7.

Theorem 8 Let MAS be a set of well-behaved EALPs. Then,
A(MAS) is ontologically consistent.

Finally, we examine the satisfaction of justified arguments.
MAS in Example 11 is clearly well-behaved since it does not in-
clude o-explicit negation. Hence,A(MAS) |= JMAS is not gen-
erally satisfied even thoughMAS is a set of well-behaved EALPs.
In order to generally satisfyA(MAS) |= JMAS , we need a set of
strictly well-behaved EALPs

Theorem 9 Let MAS be a set of strictly well-behaved EALPs.
Then,A(MAS) |= JMAS .

Table 1 summarizes the results developed so far in this paper.
Thus, if we adopt the well-behaved EALP for argumentation on a
single EALP (a single agent), and the strictly well-behaved EALPs
for argumentation on a multi-agent environment, the consistency,
coherence principle and satisfaction of justified arguments are sat-
isfied. This is our principal result.

Conclusion and future work
We presented an attempt to a logic of multiple-valued argumenta-
tion (LMA) in which agents can argue with other contenders, using
multi-valued knowledge base in the extended annotated logic pro-
gramming (EALP), and scrutinized its logical properties closely.

EALP was proposed as an expressive knowledge representation
language with three kinds of negation, with which agents can make
versatile argumentative dialogues since they can signify a momen-
tum or driving force of argumentation. The more negations, the
more momentum for argumentation.

LMA was proposed as a logic of argumentation that has multi-
valued argumentation semantics and dialectical proof theory. We
proved the soundness and completeness for it. Furthermore, we
gave the semantics to EALP via the multi-valued argumentation
semantics, and examined the properties of the inconsistency, co-
herence and satisfaction of justified arguments in the semantics.
Then, we pointed out a proper problem caused by the introduction
of multi-valuedness into argumentation, but discovered a subclass
of EALP, a (strictly) well-behaved EALP that satisfies those three
properties, resulting in a solution to the problem.

There are some works that can be related to our approach to
multiple-valued argumentation (e. g., (Pollock 1987), (Amgoud &
Cayrol 2002)). They introduce multi-valuedness with simple order
or a preference relation over propositions. There also are other
types of logic programming different from ALP and EALP, and
hence different argumentation models proposed (e. g., abductive or
defeasible logic programming (Garcia & Simari 2004)). We have
to omit discussions on the comparison due to the limited space.

In the future, we are going to further develop LMA in the fol-
lowing directions: introduction of an attack relation among argu-
ment groups, WFSXP -like(Alferes & Pereira 1996) semantics for

EALP, an efficient method for computing justified arguments, for
example, in case of the infinite set of truth-values on<[0, 1], in-
troduction of dialectics to LMA, and use and application of LMA
as an apparatus of cooperation, compromise, consensus-attainment
under multiple-valuedness and the epistemic explicit negation of
inclusive nature.

Acknowledgments
The authors would like to thank the anonymous reviewers who con-
tributed to increase the quality of this paper.

References
Alferes, J. J., and Pereira, L. M. 1996.Reasoning with Logic
Programming, volume 1111. Springer-Verlag.
Amgoud, L., and Cayrol, C. 2002. A reasoning model based on
the production of acceptable arguments.Annals of Mathematics
and Artificial Intelligence34(1–3):197–215.
Chesnevar, C. I.; Maguitman, G.; and Loui, R. P. 2000. Logical
models of argument.ACM Computing Surveys32:337–383.
Dung, P. M. 1993. An argumentation semantics for logic pro-
gramming with explicit negation. InProc. of 10th Int. Conference
on Logic Programming, 616–630.
Garcia, A. J., and Simari, G. R. 2004. Defeasible logic program-
ming: An argumentative approach.Theory and Practice of Logic
Programming4(1–2):95–138.
Kifer, M., and Lozinskii, E. L. 1992. A logic for reasoning with
inconsistency.J. of Automated Reasoning9:179–215.
Kifer, M., and Subrahmanian, V. S. 1992. Theory of generalized
annotated logic programming and its applications.J. of Logic
Programming12:335–397.
Mora, I.; Alferes, J. J.; and Schroeder, M. 1998. Argumenta-
tion and cooperation for distributed extended logic programs. In
Working notes of the Workshop on Non-monotonic Reasoning.
Pollock, J. 1987. Defeasible reasoning.Cognitive Science
11(4):481–518.
Prakken, H., and Sartor, G. 1997. Argument-based extended
logic programming with defeasible priorities.J. of Applied Non-
Classical Logics7(1):25–75.
Schweimeier, R., and Schroeder, M. 2002. Well-founded argu-
mentation semantic for extended logic programming. InProc. of
Int. Workshop on Non-monotonic Reasoning.
T. Takahashi, Y. U., and Sawamura, H. 2003. Formal argumen-
tation frameworks for the extended generalized annotated logic
programs. InProc. of KES’2003, LNAI, volume 2773, 95–138.
IEEE Press.
Takahashi, T., and Sawamura, H. 2004. A logic of multiple-
valued argumentation. Technical report, Niigata University,
http://www.cs.ie.niigata-u.ac.jp/˜takehisa/.

