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1 Introduction

Direction of arrival (DOA) estimation is an important feature of smart antenna arrays. Sev-
eral algorithms have been proposed for high-resolution DOA estimation such as the MUSIC
algorithm[1]. From a signal processing point of view, these so-called superresolution tech-
niques have excellent resolution capability, however, array calibration is indispensable to re-
alize the performance. In real arrays, calibration of mutual coupling among elements is a
difficult task. Several calibration techniques have been proposed to obtain an accurate calibra-
tion matrix[2],[3]. These techniques require external reference waves or knowledge of current
distributions on the elements, hence they sometimes become difficult to apply.

For arrays with single-mode elements such as half-wave length dipoles, the calibration
matrix derived by the Thévenin equivalent circuit becomes a good approximation[4]. The
calibration matrix of this method can be estimated by terminal current and voltage of each
element. Modified method can be found in [5]. While this type of methods is preferable in
practical array calibration, there still remain calibration errors that affect DOA estimation
even in calibration of hale-wavelength dipole arrays.

In this report, we proposed a new calibration method that can be also derived by using
terminal currents and voltages of the elements. Definition of self and mutual impedances in
the equivalent circuit is modified in this derivation. Performance of the proposed technique
is verified numerically by DOA estimation results of the MUSIC algorithm in coherent and
incoherent signal environments.

2 Mutual Couping Conpensation in Receiving Array

We consider an array of single-mode elements, meaning that the element aperture currents may
change in amplitude but not in shape as a function of DOA of incident waves. In this report,
mutual coupling compensation problem of a dipole array shown in Fig.1 is considered. When
d plane waves impinge on the array, the received data vector can be given by

r = [r1, r2, · · · , rN ]T = CAs + n (1)

where A and s denote the N ×d mode-matrix including d mode-vectors and the source vector,
respectively. n is the additive noise vector and T denotes transpose. The matrix C denotes a
mutual coupling matrix whose element shows coupling coefficient between elements.

When C is known, the calibrated covariance can be obtained by

Rcal = C−1(E[rrH ]− σ2I)(CH)−1 (2)

where E[·] and σ2 denote ensemble average and the noise power, respectively. This is the
basic procedure of mutual coupling compensation, or calibration, for the DOA estimation. The
problem is how to estimate the mutual coupling matrix C.
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2.1 Conventional Calibration Matrix

Gupta et. al., derived, by using Thévenin equivalent circuit, that the relation between re-
ceived/terminal voltages v and open circuit voltages vopen of an array can be expressed by
Zcv = vopen, where

Zc =




1 + Z11
ZL

Z12
ZL

· · · Z1N
ZL

Z21
ZL

1 + Z22
ZL

Z2N
ZL

...
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...
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. (3)

Zii and Zij is the self and the mutual impedance of equivalent circuit of the array. ZL is the
load impedance. Applying this result, we can obtain the calibration matrix by C−1 = Zc. As
several researchers reported, the open circuit voltages are not coupling free in real arrays and
as a result the calibration matrix is biased. Hui proposed the modified method[5], however,
the matrix is still slightly biased.

2.2 Proposed Calibration Matrix

Several reports on problem of equivalent circuits for a receiving antenna can be found recently[6].
These reports show that discrepancy of power dissipation in the network derived by the circuit,
especially when there exist reradiated/scattering objects. This may also affects derivation of
mutual coupling coefficient of a receiving array.

To evaluate the power dissipation correctly, we propose to use the following definition:
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(4)

The equation corresponds to the case when j-th element is excited by induced voltage Vg. v′i
and iij is the terminal voltage and current of i-th element in this excitation. In this definition,
we allow to have different values in the mutual impedances to make power dissipation correct,
that is Zs

ij 6= Zij . Note that Zs
ij and Zij relate to mutual impedance of the reradiate and the

transmitted element, respectively, and the mutual impedances in j-th column of the matrix
become Zijs.

By using the definition in (4), the calibration matrix of a receiving array can be derived by

C−1 = Zs
c =




1 + Z11
ZL

Zs
12

ZL
· · · Zs

1N
ZL

Zs
21

ZL
1 + Z22

ZL

Zs
2N

ZL
...

. . .
...

Zs
N1

ZL

Zs
N2

ZL
· · · 1 + ZNN

ZL




= I +
1

ZL
Zs. (5)

This shows that the calibration matrix changes when Zij 6= Zs
ij and the reradiation mutual

impedances should be used for the calibration. These impedances can be estimated by a
receiving array alone. When each port is excited by Vg separately, the following equation can
be obtained.

diag{Vg, · · · , Vg} =
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= (Zm + ZLI)


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where Zm is the impedance matrix whose non-diagonal elements are the Zij , not Zs
ij . This is

the N2 simultaneous equations having N2 unknowns (Zii, Zij , Z
s
ij). For uniform linear arrays

(ULA), only
⌊

N2

2

⌋
equations are independent because of array symmetry. Number of unknowns

also becomes 2N−1 since both Zm and Zs become Toeplitz matrices. Therefore, all impedances
can be estimated when N > 2. Note that the self-impedances, Zii, are different from those
derived by the conventional definition. Numerical results show that each self-impedance in this
definition almost corresponds to the input impedance of the isolated element.

3 Simulation Results

Calibration performance of the proposed technique is verified numerically by using the Method
of Moments. A 4-element ULA of dipoles is employed in these simulations. The array param-
eters are listed in Table.1. Here we apply the Hui’s calibration method[5] as the conventional
method and compare the calibration performance of the proposed and the conventional meth-
ods by MUSIC spectrums. We omit the noise component in (1) to remove the noise and
snapshots effect.

Figure 2 shows the DOA estimation results of 2 data sets. The first set has incoherent
two incident waves coming from -20◦ and 0◦, and the second has the waves from 30◦ and 60◦.
All of the waves have the same power. As can be seen in this figure, the peaks of MUSIC
spectrum become dull and biased. Furthermore, corresponding peak often disappears without
the calibration. The Hui’s calibration method works well at broadside direction, however, the
detected peak for the wave from 60◦ becomes small and biased. On the other hand, the MUSIC
spectrums obtained by the proposed calibration technique show sharp peaks and almost no bias.

The second example is the DOA estimation of coherent waves. The Spatial Smoothing
Preprocessing[7] is applied to the calibrated covariance matrix in (2) before the MUSIC analysis.
In each processing, number of the subarray is 2 (number of elements in each subarray is 3). The
estimated MUSIC spectrums are shown in Fig.3. DOAs of the waves are the same in Fig.2.
In the incoherent case, peaks of the dataset for broadside waves (−20◦&0◦) can be almost
correctly detected without calibration, however these waves cannot be resolved after the SSP
in this coherent simulation. This figure also shows that the SSP with the Hui’s calibration
often deteriorates the DOA estimation accuracy of the MUSIC. Bias of the estimation results
by the proposed method is acceptably small in these simulations. As shown in these examples,
precise calibration is important especially for the coherent signal detection with the SSP.

4 Conclusions

In this report, we propose a new calibration method by using the modified mutual impedances.
The numerical results show that accuracy of the calibration matrix estimated by the proposed
definition can be improved. By using the method, mutual coupling effect of single-mode arrays
can be calibrated effectively with measured parameters (voltages and currents or S parameters)
of the receiving array without external reference plane waves. Therefore, the proposed method
would be useful for high-resolution DOA estimation by arrays with single-mode elements.
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Fig.1: Configulation of the dipole array.

Table.1 Array Parameters

Frequency 　 2.4 GHz
Length of wire 5.8 cm (0.464 λ)
Radius of wire 0.5 mm

Load impedance 50 Ω
Element separation 6 cm (0.48 λ)

50

40

30

20

10

0

 P
m

u
s
ic
(θ

)

806040200-20-40

 DOA (degree)

 w/o Calibration
 w. Hui's Calibration
 w. Proposed Calibration

Fig.2: DOA Estimation Results of MUSIC algorithm for incoherent two wave incidence.
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Fig.3: DOA Estimation Results of MUSIC algorithm for coherent two wave incidence.
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