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Abstract

Recently, applications of high-resolution Direction-of-Arrival

(DOA) estimation with an array have been increasing includ-

ing position estimation in smart antenna and RF-ID system. To

realize high-resolution capability, superresolution technique

such as MUSIC algorithm is often adopted. However, precise

array calibration is necessary to realize essential performance

of the algorithm. In this report, we propose a new simple

calibration technique based on impedance matrix of the array.

In this technique, number of the adjusted parameters, or un-

knowns, becomes only one for uniform array when its mutual

impedance matrix is known. Performance of the proposed

technique is verified by numerically and experimentally.

1. INTRODUCTION

Recently, DOA (Direction Of Arrival) estimation with an array
has been expanding its application areas. For applications
where number of array elements is limited, superresolution
techniques, such as the MUSIC algorithm [1], are required.
However, to realize their high-resolution capability, array
calibration is necessary. The main error factors of arrays
are analogue component error of the receiver, phase center
(position) error of the elements, and mutual coupling effects
among the elements. The former two errors can be decreased
by improving component and array precision, however, the
letter error is the unavoidable error because it cause by the
electromagnetic nature itself.

There are many calibration techniques for mutual couplings
of an array. Calibration of the array by using external reference
plane waves will be the best calibration technique [2], however,
number of the reference waves of the technique is more
than number of elements of the array. It would be a hard
task in practical applications to carry out such calibration
procedures. For the array with single-mode elements, such as
half-wavelength dipoles, the mutual coupling effects of the
elements can be modeled by a mutual coupling matrix. The
simplest derivation of the matrix can be found in [3]. This
technique utilizes the mutual impedance matrix of the array.
Since measurement of mutual impedance is not so difficult,

the technique would be attractive for practical calibrations.
However, the calibration accuracy of the matrix is not enough
for precise DOA estimation. To improve the accuracy of
the approach, some modified techniques have been proposed
[4],[5].

In this report, we propose a simple calibration technique
by using mutual coupling matrix of the array. The technique
is based on the modification of the conventional calibra-
tion matrix derived by the mutual impedance matrix. In the
technique, required parameter to be adjusted is only one
for uniform arrays. It can be easily estimated by using one
external (reference) wave. Numerical and experimental results
are provided to show availability of the proposed technique.

2. MUTUAL COUPLINGS IN DOA ESTIMATION

For simplicity, we consider the DOA estimation problem of an
N -element linear array as shown in Fig.1 (a dipole array with
N = 4 in this figure). All the elements are assumed to be the
same and terminated by ZL. When a plane wave impinges on
the array at angle of θ, the received data vector of the array
can be written by

i = Ca(θ)s + n, (1)

where i and n are the N -dimensional vectors whose elements
corresponds to the currents and the noises of the array-
elements, respectively. The N -dimensional vector a(θ) and
s are the mode vector and the complex voltage of the incident
wave. The N ×N matrix C is the mutual coupling matrix of
the array.

The array calibration of the mutual coupling effect can be
modeled by the estimation of C. It can be precisely estimated
when we have a calibration data set of one-wave incidences
with different DOAs [2]. Since the C is estimated by the plane
wave illumination to the elements, we denotes the matrix as
Cplane in the followings.

In this report, we consider how we obtain a good ap-
proximated matrix of Cplane by using conventional mutual
impedance measurements of the array.
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Fig. 1: DOA estimation with an N -element dipole array

3. CALIBRATION MATRIX FOR DOA ESTIMATION

A. Impedance matrix and conventional Calibration Matrix

As discussed in [3], induced voltages by the incidence and
terminal current can be modeled by the open-circuit voltages
and terminal current of the equivalent circuit of the array.
When we denotes the voltage and the current vector as v and
i, they can be related by

v = (Z + ZLI)i, (2)

where Z is the N ×N mutual impedance matrix of the array,
and I is the identity matrix. Clearly, relation of v and i can
be determined when we obtain Z.

The mutual impedance matrix can be easily measured
without employing external reference plane-waves. yLet us
excite only the k-th element by V0. The voltage vector vk and
corresponding vector ik can be written by,

vk = V0ui = (Z + ZLI)ik, k = 1, · · · , N, (3a)
uk = [0, · · · , 0︸ ︷︷ ︸

k−1

, 1, 0 · · · , 0]T , (3b)

where T denotes transpose. uk is the vector whose the k-
th element is 1 and remaining elements are zeros. By using
separately excited voltages, v1 ∼ vk, we can obtain

Z + ZLI = V0J−1
all , (4a)

Jall = [i1, i2, · · · , iN ]. (4b)

From (2) and (1), we can define the mutual coupling matrix
by

Cdelta = (Z + ZLI)−1. (5)

Note that the subscript ’delta’ is added to show that the matrix
is estimated by the delta-gap feed excitation.

As denoted in [6], the estimated calibration matrix Cdelta

is slightly biased. In this derivation, the open-circuit voltage
of the elements is assumed to be independent from other
elements, however, scattered waves by the adjacent elements
often affects to the open-circuit voltage of the element.

B. Proposed Calibration Matrix

Main difference in the estimation of Cdelta and Cplane is the
excitation of the elements. In Cplane, each element is excited
uniformly by a plane wave. On the other hand, delta-gap feed
excitation is employed in Cdelta. Current distribution of the
element slightly changes even in a half-wavelength dipole.

The proposed calibration matrix can be defined by

Cproposed = Cdelta − ζI, (6)

where ζ is the modified coefficient to remove the difference
due to the excitation. This equation can also be written as
follows

Cproposed = (ρI) � Cdelta, (7)

where � is the Hadamard matrix product (element-wise mul-
tiplication). In this case, ρ can be used as the weight for
the diagonal elements. The latter expression of (7) will be
preferable in practical use that will be shown later. As shown
in each formula, we propose modification of the diagonal
elements in Cdelta to improve its accuracy. Derivation of (6)
and (7) is provided in the next subsection.

C. Derivation of the Proposed Calibration Matrix

To treat the effect of current distribution on the element, we
adopt the method of moments in this section. For simplicity,
we employ the N -element dipole array whose element is di-
vided into M segments as an example. The NM -dimensional
induced voltage vector vmom and current vector imom caused
by vmom can be given by




vmom
1

vmom
2

...
vmom

N


 =




Zmom
11 · · · Zmom

1N

Zmom
21 · · · Zmom

2N
...

. . .
...

Zmom
N1 · · · Zmom

NN







imom
1

imom
2

...
imom
N


 ,

vmom = Zmomimom, (8a)
Y momvmom = imom, (8b)

where terminal impedance of each element is added in the
corresponding element (terminal segment) in Zii

When we define voltage distribution vector of the k-th ele-
ment, hk, normalized by its voltage of the terminal segment,
we can rewrite vmon

k = hkvk. In addition, we also define the
current distribution vector gk as imom = gkii, where ik is the
corresponding terminal current. Then we have

imom = Y mom




h1v1

h2v2

...
hNvN


 =




g1i1

g2i2

...
gN iN


 . (9)

Therefore, the N × 1 terminal current vector i can be given
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by

i = [i1, i2, · · · , iN ]T

=




[Y mom
11 ]termh1 · · · [Y mom

1N ]termhN

[Y mom
21 ]termh1 · · · [Y mom

2N ]termhN

...
. . .

...
[Y mom

N1 ]termh1 · · · [Y mom
NN ]termhN







v1

v2

...
vN




= Cv, (10)

where [Y kk]term denotes the row corresponding to the termi-
nal of the k-th element. Estimation of Cplane is done with
hi = [1, 1, · · · , 1]T = 1, while the estimation of Cdelta is
done with hi = uterm. As reported in several papers, voltage
distribution difference on the elements causes the difference
between Cplane and Cdelta.

The derived current imon by the method of moments is
the steady state current. It can be regarded as the sum of
initial current (without mutual coupling) i(mom−0), the first-
order coupled current i(mom−1), and the higher-order coupled
currents i(mom−�), � = 2, 3, · · · ,∞. This can be also under-
stood as the multiple reflections among the elements. Then,
the current can be written by

imom = i(mom−0) + i(mom−1) + · · · + i(mom−�) + · · · (11)

This concepts can also be applied to the terminal current i.

i = i(0) + i(1) + · · · + i(�) + · · ·
= i(0) +

∞∑
�=1

i(�) = ii + ic (12)

where ii(= i(0)) is the initial terminal-current vector without
mutual coupling, and ic is the coupled terminal-current vector
caused by the initial excited current i(0).

When we apply the expansion in (12) to (4b), and substitute
it for (4a) and (5), then we obtain that the Cdelta can be written
by

Cdelta = (Z + ZLI)−1 = V −1
0 (J i

delta + Jc
delta) (13a)

J i
delta = [i(0)

1 , i
(0)
2 , · · · , i

(0)
N ] (13b)

Jc
delta = [ic

1, ic
2, · · · , ic

N ] (13c)

where i
(0)
k and ic

k are the initial current vector and its coupled
current vector in the k-th element excitation. The constant
coefficient V −1

0 in (13a) can be omitted in the calibration,
then we assume V0 = 1 in the followings. Note that J i

delta is
a diagonal matrix and its diagonal terms are the same value.

On the other hand, when we apply the expansion to Cplane

we can obtain almost the same results. In the ordinary estima-
tion for Cplane, all of the elements are excited simultaneously,
then the initial current term, J i

plane, is not a diagonal matrix.
However, any current distributions can be expressed by the
sum of current distributions obtained by the single-element-
excitation at each element. Therefore, we can also expand the
Cplane as

Cplane = V −1
p (J i

plane + Jc
plane) (14)

Again, the constant term V −1
p can be ignored because it does

not affect calibration accuracy. In the followings, we assume
that Vp = 1.

In comparison (13a) and (14), it can be found that Jc
delta �

Jc
plane holds. Because 1) they are excited term by the external

sources, and 2) initial current distribution on the source-
element is almost the same due to the single-mode assumption.
As the results we can say that the difference between J i

plane

and J i
delta is dominant. Since the diagonal term of J i

delta are
the same value, then the compensation of the difference can
be easily done by selecting an adequate value of ζ. It can be
given by

Cplane ∝ J i
plane + Jc

plane

� (J i
delta − ζI) + Jc

delta

= Cdelta − ζI (15)

This corresponds to expression of the proposed calibration
matrix in (6). In this expression we should carry out two-
dimensional estimation for ζ (amplitude and phase, or real and
imaginary value). This can be further simplified as follows.
Since we employ (quasi-)single-mode elements, change of the
initial current distribution on the elements by each excitation
will be small, that is |ζ| � 1. Therefore, it will be easy to use
the next expression.

Cplane ∝ (ρI) � Cdelta (16)

This corresponds to expression of the proposed calibration ma-
trix in (7). For (quasi-)single-mode elements such as dipoles,
we can approximate |ρ| � 1 because of |ζ| � 1. Then only the
phase adjustment of Cdelta will bring us a better calibration
performance than the conventional Cdelta.

Next problem to be solved is the how we determine the
suitable value of ρ. In ideal situation where SNR is high
enough or large number of snapshots is available, ρ will be
estimated as well as the DOAs of incoming waves. When we
apply the MUSIC algorithm, we can define the search function
by

PMUSIC(θ, ρ) =
a(θ)HCest(ρ)HCest(ρ)a(θ)

a(θ)HCest(ρ)HENEH
NCest(ρ)a(θ)

(17)

The MUSIC spectrum is sensitive to calibration errors, then
maximum of the peaks will appear at the adequate ρ and
true θs of the waves. When |ρ| � 1 holds, the estimation
problem can be further simplified by the approximation of
ρ = |ρ|ejφρ � ejφρ .

Practically, SNR and number of snapshots may be limited
and we cannot realize the ideal situation. Peak values of
the MUSIC spectrum are also sensitive to SNR and number
of snapshots, in addition to the calibration error, then the
estimation of ρ by its peak(s) detection will become difficult.
In such a case, it will be the simplest scheme to use only one
reference signal of known θ0. We can estimate the suitable ρ
by the maximum of PMUSIC(θ0, ρ).
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TABLE 1: ARRAY PARAMETERS

Frequency (Wavelength:λ) y2.4 GHz (λ=12.5 cm)
Element length 5.8 cm (0.464 λ)
Element radius 0.5 mm

Terminal Impedance (ZL) 50 Ω
Number of the elements (N ) 4
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Fig. 2: DOA and Calibration coefficient estimation by PMUSIC(θ, φρ). N =
4, ∆x1 = ∆x2 = ∆x3 = 0.48λ, θ0 = 50◦, SNR = ∞(no noise).

4. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we show some numerical results and ex-
perimental results to verify the availability of the proposed
calibration technique.

A. Numerical Results

Numerical verification of the proposed technique is carried out
by the method of moments. Dipole Linear array as shown in
Fig.1 is used in this verification. Number of the elements is 4
(N=4). Array parameters are listed in Table.1.

The first example is the uniform linear array (ULA) with
element separation of 0.48λ (∆x1 = ∆x2 = ∆x3 = 0.48λ
in Fig.1). The Cdelta is derived numerically by the method
of moments by the procedure described in Sec.3A. Figure 2
shows an example of PMUSIC(θ, ρ) spectrum in (17). Here
we use the data for one incident wave from θ0 = 50◦ in
this estimation. We also assume that |ρ| � 1, then we carried
out 2-D peak search on θ and φρ. The estimated peak in
Fig.2 is located at (θ, φρ) = (50◦,−9.3◦). As shown in here,
the maximum appears at the true DOA of the wave. DOA
estimation results of one-wave incidence at several DOAs and
their DOA estimation errors are shown in Figs.3(a) and (b),
where ’Raw Data’, ’Conventional’, and ’Proposed’ show the
results of estimation results without calibration, with Cdelta

calibration, and with Cproposed calibration, respectively. In the
calibration with Cproposed, estimated value of ρ = e−jφρ

in Fig.2 is used throughout the evaluations. As shown in
these figures, the peak property of the MUSIC algorithm is
improved and the DOA estimation error becomes almost zero
by the proposed calibration technique. Since the proposed
calibration matrix Cproposed is derived by approximation, then
estimated φρ slightly changes by incident angle (θ0) of the
wave. However, the estimated spectrum and DOA bias were
almost unchanged when we employed the wave having DOA
of 20◦ ≤ θ0 ≤ 60◦. Then, we may say that the technique is
also robust.
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Fig. 3: DOA estimation results and estimation errors by the MUSIC
algorithm. N = 4, ∆x1 = ∆x2 = ∆x3 = 0.48λ, SNR = ∞(no noise).
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Fig. 4: DOA and Calibration coefficient estimation by PMUSIC(θ, φρ). N =
4, ∆x1 = ∆x2 = ∆x3 = 0.2λ, θ0 = 50◦, SNR = ∞(no noise).

Assumption of similarity of the coupled current terms,
Jc

plane � Jc
delta, in Cplane and Cdelta is the key in the deriva-

tion of Cproposed. For arrays with narrow element spacings,
this assumption will be violated. Figures 4 and 5 shows the
results of the 4-element ULA with element spacings of 0.2λ.
Although the errors of the DOAs are decreased in comparison
with those by the conventional calibration, there still remain
DOA biases. Also peaks of the MUSIC spectrum are not so
improved, which is also the effect by the approximation. As
shown in this example, the proposed calibration technique is
not suitable for ULAs with closely spaced elements. In the
numerical verifications, we found that the proposed algorithm
works well for ULA with element spacing of ∆x ≥ 0.3.

One feature of the proposed calibration technique to be
noted is that the proposed technique can be applied to arbitrary
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Fig. 5: DOA estimation results and estimation errors by the MUSIC
algorithm. N = 4, ∆x1 = ∆x2 = ∆x3 = 0.2λ, SNR = ∞(no noise).
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Fig. 6: DOA estimation results and estimation errors by the MUSIC algo-
rithm. N = 4, ∆x1 = ∆x3 = 0.65λ, ∆x2 = 0.2λ, SNR = ∞(no noise).
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Fig. 7: DOA estimation with 4-element monopole array

TABLE 2: ARRAY PARAMETERS FOR THE EXPERIMENT

Frequency (Wavelength:λ) y2.4 GHz (λ=12.5 cm)
Element length 3.11 cm (0.249 λ)
Element radius 0.5 mm

Terminal Impedance (ZL) 50 Ω
Number of the elements (N ) 4

Element Separation (∆x) 6.22 cm (0.498λ)

array with single-mode elements. The method in (7) can be ap-
plied to non-uniform arrays with no modifications. Figures 6(a)
and (b) show the results of MUSIC spectrum and estimated
DOA errors by the 4-element array with ∆x1 = ∆x3 = 0.65λ
and ∆x2 = 0.2λ. As shown in this example, we can obtain
a good estimation of precise calibration matrix Cplane by
the proposed Cproposed. The diagonal weight coefficient φ is
also constant all over the elements. This is because all of the
elements are the same in this array.

B. Experimental Results

Availability of the proposed calibration was also verified
by experiments. The experiment was done with a network
analyzer in an echoic chamber. The array employed in the
experiment was a 4-element uniform monopole array on an
infinite ground plane as shown in Fig.7. The array parameter
is also listed in Table.2. The size of the ground plane was
2λ × 3.5λ whose edges were rounded so as to decrease the
edge and corner scatterings.

Figure 8 shows the estimated PMUSIC(θ, φρ) spectrum for
the one-wave incidence from θ0 = 50◦ with 1 snapshot.
The peak is detected at around (θ, φρ) � (50.6◦,−26.0◦).
Since the estimation was carried out with only one snapshot
data, then the estimated peak became dull and discriminated
peak location would be biased due to noise. It will be
improved when many snapshots are available. Small scattering
by edges of the ground plate may also cause bias of the
peak. When these affection cannot be negligibly small, we
should use a reference wave of known DOA and derived
φρ by PMUSIC(θ0, φρ) to decrease bias. When we employed
PMUSIC(θ0, φρ), the estimated φρ became φρ = −24◦. In the
MUSIC estimation, we used this value.

Estimated MUSIC spectrum and DOA errors are shown
in Figs.9(a) and (b). As shown in Fig.9(b), DOA estimation
error can be decreased effectively. Improvement of the peaks
by the proposed calibration is not so dominant. Although the
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Fig. 8: DOA and Calibration coefficient estimation by PMUSIC(θ, φρ). N =
4, ∆x = 0.498λ, θ0 = 50◦, 1 snaphot.
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Fig. 9: DOA estimation results and estimation errors by the MUSIC
algorithm. N = 4, ∆x = 0.498λ, 1 snapshot.

array was made precisely as we could, element imbalance and
position error (manufacturing error) will still remain. Since
the proposed technique is available for calibration of mutual
couplings, the technique cannot remove these errors. Also,
noise and small number of snapshots yield small peaks. They
will affect the peak performance of the calibrated spectrum.

5. CONCLUSIONS

In this report, we propose a simple array calibration technique
based on the mutual impedance matrix of the array. We
examine relation between correct mutual coupling matrix and
the matrix derived by the eqivalent circuit of an array, and
show that accuracy of the mutual coupling matrix by the
equivalent circuit of array can be easily improved by suitable
diagonal weighting.

Numerical and experimental results of 4-element arrays
are provided to show validity of the proposed calibration
technique. The propose calibration is valid for arrays with
single-mode elements such as half-wavelength dipoles and a
λ/4-monopoles, that are the important elements of arrays in
DOA estimation.
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