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1. Introduction

In recent years, high-resolution near-field target location estimation technique for indoor wireless
terminal detection, medical imaging and so forth, using an array antenna have been studied actively.
In many applications, small number of array elements is desirable. Recently, at simple array signal
processing technique called Khatri-Rao (KR) product array [1] [2] has been proposed. By using the
technique, degrees-of-freedom (DOF) of the array can be easily increased. Strictly speaking, this holds
only for uncorrelated wave incidence. When, the waves are correlated or coherent accuracy of, parameter
estimation deteriorates by the signal correlation terms [3]. The estimation error can be decreased when
we estimate correlation terms in addition to the signal terms[3]. It costs DOF of the array, and not
effective for signal parameter estimation in far-field. On the other hand, if the wave sources are located
in near-field, incoming wave becomes spherical wave at the receiving array. Therefore, it can be expected
that we can obtain further DOFs by the Khatri-Rao product expansion. In this paper, we consider the
effect of increase of DOF by the Khatri-Rao product array for spherical wave numerically, and show
that the location estimation accuracy can be improved by using the increased DOFs even when all of the
incoming wave are coherent.

2. Data Model

Consider that K waves impinges on the array antenna having M,-element. The received data vector

can be written as follows: K
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where s;(¢) is the complex amplitude of the k-th incident wave, and n(¢) is the noise vector. a(6y) in (2)
and a(ry) in (3) are the mode vector of the k-th wave for far-field source (plane wave) and for near-field
source (spherical wave), respcetively. ry,, is the distance between the m,-th array element and the k-th
wave source. The received data correlation matrix is estimated by

R, = E[x()x" ()] = ASA" + Ry, (4)

where E[-] is the expected value operator, [-]7 is the complex conjugate transpose. In addition, the M, x K
matrix A is the mode matrix whose column is the mode vector defined by (2) or (3) depending on the
source location. § and Ry are the source and the noise correlation matrix, respectively.

3. Khatri-Rao Product Expansion Array

The Khatri-Rao (KR) product is defined by the two matrices having the same number of columns.
By using the KR product expansion to the data correlation matrix shown in (4), DOF of the array can be
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Figure 1: Element arrangement

increased [1]. When we assume that the incoming waves are uncorrelated with each other, the matrix $
becomes a diagonal matrix, hence the following equation holds.

z = vec(R) = vec(ASA™) + vec(Ry)
= (A" O A)§ + vec(Ry)
= A§+ec, (5)

where [-]" is the complex conjugate, ® denotes the KR product operator, and vec(-) is the operator to
transform a matrix to the vector stacking every column of the matrix. Also, § denotes the K-dimensional
column vector consisting of the diagonal elements of S. This equation has the same form as that in
(1). Since the z is the Mr2 dimensional vector, the array has Mr2 — 1 DOFs if the all of the elements are
independent. For the uniform linear array (ULA), it is obvious that the DOF becomes 2(M, — 1).

4. Two-Level Nested Array

The 2-Level Nested Array (2L.-NA) is the array antenna which consists of two different ULA element
spacing [2]. Figure.1(a) shows a 4-element 2L.-NA. The first level ULA has M, with element spacing of
Ad, and the second level ULA has M,, elements with spacing of Ad,. Element spacing Ad, is arranged
so as to satisfy Adr = (M, + 1)Ad;. When we apply the KR product array processing to the 2L.-NA, the
DOF becomes 2M,,(M, + 1) — 1 for plane wave incidence.

5. Degrees-of-Freedom of the Khatri-Rao Product Array

In this section, we will show characteristic of the DOF of the KR product array for spherical wave
and the plane wave incidence, respectively. Order DOF is equivalent to the maximum number of resolv-
able wavesby the array. This can be identical to the maximum rank of A. Rank of the matrix is equal to
the number of non-zero eigenvalues in the correlation matrix without noise. So, we assume that all the
incoming wave is uncorrelated having power of 1, and calculate eigenvalues of rank[R] = rank[AA].
Figure.2(a) and 2(b) show magnitude of eigenvalues by the maximum value in each K with the 4-element
2L-NA for plane-wave and spherical-wave incidence, respectively. For the plane-wave incidence, the
number of non-zero eigenvalues are limited to 11 even when K is greater than 11. On the other hand, the
number of non-zero eigenvalues increases for the spherical-wave incidence according to increase of K,
therefore, more DOFs are obtained.

6. EM-ML Method for Correlated Waves in Khatri-Rao Product Array

When incident waves are correlated, signal correlation terms remain in the KR product array, hence
the DOA/location estimation accuracy often deteriorates. However, it can be improved when we estimate
signal parameters including the correlated components [3]. The algorithm listed below is the proposed
Expectation-Maximization Maximum Likelihood (EM-ML) algorithm for considering signal correlation
terms.

[Step O:Initialize] Set the number of iterations / = 0, and initialize the value @"|,.
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Figure 2: Magnitude of normalized eigenvalues for each number of incident waves

00 = [(0) .. A0 ¢(0)’- ¢(0)] (6)

B K ]

where ¢r = ¢;j(i < j) is the phase component of the correlation coefficient p;;. The complex
amplitude and the mode vectors can be calculated by the following equation.

s© = (AOHAO-1 4OH )
AO = a0, .dY, §?+1(¢(’)> L@ (B0, 8)
a! = vec(a(r)a@)! >- (k£ K), )

(0] _
([)(¢(l)) — ([) ]¢k¢ +a ([) ]¢ ’ al(j) — VeC(a(rl(.l))a(r;[))H) . (k > K), (10)

where a,((l) and a(l)(¢(l)) are the KR-product modevector of each wave source and correlation term,
respectively.

[Step 1:E-Step] Estimate each data vector, zi, as follows

(l) _ a(l)s,(([) + Bz — APsDy. .. (k < K), (11)
z/((/) = a" @) + Bz - AVSD) -k > K. (12)
[Step 2:M-Step] Estimate @ and s for each z; and update estimated parameters.
anica(r) a@®CVa
) arg max S D k2 k), 60 =g man e D s, 13)
v a(r)a(r) ¢ a(@)’a(®)

where C](Cl) is the correlation matrix of z,(f). s are updated at once after all the elements of @/+!
are estimated. These steps are repeated as [ « [ + 1 until the estimated values are converged.

7. Computer Simulation Results

Table 1 shows the simulation parameters in this study. We assume in this study that distances be-
tween the #1 element of the array and each source, r¢, are 24 in the near-field case (spherical waves)
assuming that such as the medical application. We employed two types of array here. One is the 4-
element 2L.-NA as shown in Fig.1(a) and the other is the 4-el. array with much larger aperture as shown
in Fig.1(b). Table 2 shows the estimated RMSE of the estimated parameters. Note that the problem
considered here is coherent signal detection, therefore number of resolvable signal becomes half in com-
parison with that for uncorrelated waves. For the far-field case (plane wave incidence) , both the proposed
and conventional methods cannot estimate DOAs correctly. This is because the number of incident waves
plus correlated terms exceeds the DOF of the array. On the other hand, the proposed method can reduce
estimation error effectively in the near-field case (spherical wave incidence). It is clear that we can de-
crease RMSE effectively by increasing array length or aperture. Figures 3(a) and 3(b) show the residue
at each iteration and RMSE of the distance with the 2L-NA. The residue cannot decrease by the con-
ventional method. However it can decrease rapidly by the proposed method. As shown in Fig.3(b), the
proposed technique is effective only for near-field source location estimation problem.
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8. Conclusion

In this paper, we examined available of the Khatri-Rao product array for near-field source location
estimation having spherical wave incidence. In this problem, we show that the KR product increases
the degrees-of-freedom of the array effectively. Furthermore, we propose the EM-ML algorithm which
can remove signal correlation error in the KR product array. Simulation results show that the proposed
algorithm can improve estimation accuracy effectively.
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Table 1: Simulation Parameters

Simulation Array 1 Array 2
Shape of Array 2L-NA Refer to Figure.1(b)
Number of elements 4 4
Number of waves 3 3
Diretion of arrival 6[deg.] | [-35, 25, 45] [-35, 25, 45]
Correlation coefficient 1 1
SNR [dB] 20 20
Number of snapshots 1000 1000
Number of trial 100 100

Table 2: Simulation Results

Plane wave (ry — o0) | Spherical wave (r; = 22)
method RMSE 6 [deg.] RMSE r [wavelength]
Array 1 | Array2 |Arrayl| Array2
conv. EM-ML || 3.6630 27.9316 5.2363 1.0666
prop. EM-ML || 17.8469 28.8052 0.3208 0.1436
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Figure 3: Simulation Results
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