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An Exact Penalty Parameter of an Inner Approximation
Method for a Reverse Convex Programming Problem
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Abstract
In this paper, we consider a reverse convex programming problem constrained
by a convex set and a reverse convex set which is defined by the complement of
the interior of a compact convex set X. When X is not necessarily a polytope in
the problem, an inner approximation method using penalty functions has been pro-
posed by Yamada, Tanino and Inuiguchi[9]. In this paper, we show that there ex-

ists an exact penalty parameter of the proposed algorithm.
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1. Introduction

In this paper, we consider a reverse convex programming problem constrained by a con-
vex set and a reverse convex set which is defined by the complement of the interior of a
compact convex set X. When X is a polytope in the problem, a solution method using du-
ality has been proposed (Horst and Tuy[4], Horst and Pardalos[5], Konno, Thach and
Tuy[6], Tuy[8]). Duality is one of the most powerful tools in dealing with a global op-
timization problem like the problem described above. The dual problem to the problem is

a quasi-convex maximization problem over a convex set and solving one of the original
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and the dual problems is equivalent to solving the other (Konno, Thach and Tuy[6],
Tuy[8]). Since the feasible set of the dual problem is a polytope, there exists a vertex
which solves the dual problem. Moreover, since the objective function of the dual problem
is the quasi-conjugate function of the objective function of the original problem, for every
vertex, the objective function value is obtained by solving a constrained convex minimiza-
tion problem. Consequently, an optimal solution of the original problem is obtained by
solving a finite number of constrained convex minimization problems. When X is not nec-
essarily a polytope, an inner approximation method incorporating with a penalty function
method has been proposed by Yamada, Tanino and Inuiguchi[9]. The proposed algorithm
utilizes inner approximation of X by a sequence of polytopes to generate relaxed problems.

In this paper, we show that there exists an exact penalty parameter of the proposed inner
approximation algorithm. It follows from the existence of an exact penalty parameter that
for a sufficiently large initial penalty parameter, an optimal solution of the reverse convex
programming problem can be obtained by executing the inner approximation algorithm
using penalty functions without replacing a penalty parameter.

The organization of this paper is as follows: In Section 2, we explain a reverse convex
programming problem. Moreover, we describe an equivalent problem to the problem, and
its dual problem, where equivalence is understood in the sense that the sets of optimal so-
lutions coincide. In Section 3, we explain an inner approximation algorithm proposed by
Yamada, Tanino and Inuiguchi[9]. In Section 4, we explain another inner approximation
algorithm incorporating with a penalty function method proposed by Yamada, Tanino and
Inuiguchi [9]. In Section 5, we show that there exists an exact penalty parameter of the al-
gorithm explained in Section 4.

Throughout this paper, we use the following notation: int X, bd X and co X denote the
interior set of X C R” the boundary set of X and the convex hull of X, respectively. Let
R=RU {—o0o} U {+}. Let for a bER"]a, b[=ER" x=a+6 (b—a), 0<6<1, 0
€R} and ] a, bl ={xER™ x=a+06 (b—a), 0< 6 <1, 6 €R}. Given a convex polyhedral
set (or polytope) XCR", V(X) denotes the set of all vertices of X. For a subset XCR",
X={uer" (u x) <1, VxEX} is called the polar set of X. For a nonempty closed set
XCR", Nx(y) denote the normal cone to X at yEX. For a subset XCR”, the indicator of

X which is denoted by & (+|X) is an extended-real-valued function defined as follows:

if xEX

6 (6 X)
+oo if x&X

Given a function f: R" — RU {40}, the quasi-conjugate of f* is the function f* defined

as follows:
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—sup {f&x) : xER" if u=0

H
S —inf{f() : u, x) >1} if u¥0.

The gradient of f at x is denoted by Vf(x) and the subdifferential of f at x by o f(x).

2 A Reverse Convex Programming Problem

Let us consider the following reverse convex programming problem problem:

minimize f(x),

subject to xE€ Y \int X,

(RCP)

where f: R"—R is a convex function, X is a compact convex set and Y is a closed convex
set in R". In general, the feasible set of problem (RCP) is not convex. For problem (RCP),

we shall assume the following throughout this paper:

(A1) Y\int X+0.

(A2) For some a €R, (xER": f(x) < a}is nonempty and compact.

(A3) X={x€R": p(0) <0, j=1,...tband Y={xER" : r;(x) <0, j=1,...,ty} where p; : R"—R(
j=1l..tand r : R"—>R(j=1,..,tr)are convex functions. Moreover, there exists

xx, xyE€R" such that p;(xx) <0 (j=1,...,.tx) and r; (xy) <0 (j=1,....t7) .

Let p(x)=maxj=1..,pj(x) and r(x) =max;-i,_,#(x). Then, from assumption (A3), X={x
ER": p() <0}, Y=(€ER : r(x) <0}, int X={xER": p(x) <0} and int Y={xER" : r
(x) <0}. From assumption(A2), the minimal value of f over R" exists. Moreover, for any

B >min{f(x) : x ER}, {x€R" : f()< B }is nonempty and compact. From
assumption (A1), there exists a feasible solution x' of problem (RCP). Then, problem (RCP)
s equivalent to minimize f(x) subject to x€ (¥\int X) N {xER" : f(x) <f(x)}. Since {x

1

m~
i

=R f() <f(x)}is compact, problem (RCP) has an optimal solution. Denote by min
(RCP) the optimal value of problem (RCP). Then, we have min(RCP)<+ . From
assumptions (A1) and (A2), Y is nonempty and there exists a minimal solution x° of f
over Y. Then, it is fairly easy to find x°. In case x° €R"\int X, x° solves problem (RCP).
In the other case, we propose a solution method in this paper. Throughout this paper, with-

out loss of generality, we may assume the following:

(A4) p(0)<0 and r(0) <0, that is, 0€int X and 0E Y. Moreover, 0ER" is a minimal
solution of f over Y.
(A5) For any x€ (bd X) NY and w€ 3p(x), (YER": (w, y—x) >0} Nint Y+0.
By using the indicator of Y, problem (RCP) can be reformulated as
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minimize g(&)
(MP) .
subject to x€R"\int X
where g(x) : =f(x) + 6 (x|¥). The objective function g : R"—R is a quasi-convex function.
From assumption(A4), we have g(0) =inf{g(x) : x€R"}. The dual problem of problem
(MP) is formulated as

maximize g (u)

(DP) { _
subject to uE€EX°.

Hence, by assumption (A4) and the principle of the duality, X° is a compact convex set.
Furthermore, since g” is a quasi-convex function (Konno, Thach and Tuy[6], Chapter 2),
we note that problem (DP) is a quasi-convex maximization problem over a compact con-
vex set in R". Denote by min (MP) and max (DP) the optimal values of (MP) and
(DP), respectively. Since problem (MP) is equivalent to problem (RCP), we have min
(MP) =min (RCP) <+ oo, Moreover, it follows from the duality relation between prob-
lems (MP) and (DP) that min (MP)=-—max (DP) (cf, Konno, Thach and Tuy[6],
Chapter 4).

3 An Inner Approximation Method for Problem (MP)
3.1 Relaxed Problems for Problems (MP) and (DP)

One of the reasons for difficulty in solving problem (MP) is that X is not a polytope.
If X is a polytope, then the feasible set of problem (MP) can be formulated as the union
of finite halfspaces. In this case, problem (MP) is fairly easy to solve by minimizing g
over every halfspace.

In this subsection, we discuss the following problem:

minimize g(),

subject to x€R"\int S,

where S is a polytope such that SCX and O0€int S. Then, we get R"\int SOR"\int X.
Therefore, problem (P) is a relaxed problem for problem (MP). From the definition of g,
we note that problem (P) is equivalent to minimize f(x) subject to x€ Y \int S. Since
(y\int ) D (Y\int X) #0, by assumption (A2), a minimal solution of / on Y\int S ex-
ists and solves problem (P). Denote by min (P) the optimal value of problem (P). Then,
we have min (P) <min (MP) <+ >

The dual problem of problem (P) is formulated as
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maximize g (u),
(D) _

subject to u€S°.
Since S C X, the feasible set of problem (D) includes X°. Therefore, problem (D) is a
relaxed problem of (DP). We note that the feasible set S° is a polytope because S is a
polytope and 0 € int S. Hence, problem (D) is a quasi-convex maximization over a
polytope S°. There exists an optimal solution of problem (D) over the set of all vertices
of S°. Denote by max (D) the optimal value of problem (D). Since problem (D) is the
dual problem of problem (P) and a relaxed problem of problem (DP), we obtain max
(D) = —min (P) > — min (MP) =max (DP) > — oo (Konno, Thach and Tuy[6], Chapter 4).
Consequently, we can choose an optimal solution of problem (D) from V(S°). Since 0

€int S, from the principle of duality, we have
S’={ueERrR : (u, 22<1, Vze€V(§}and S=xER: (u, x) <1, YVvEV(S®)}.

Hence, we obtain 0€ V' (S°).
For any vEV(S°), we have g’(v) =—inf{g(x) : (v, x) >>1}. From the definition of g,
for any vEV(S),

— oo, if YO {x€R : (v, x) >1}=0,
g
—inf{f(x) : (v, x) >1, x€ Y} otherwise.

This implies that vE V' (S°) is not optimal to problem (D) if YN {x€R" : (v, x) >1} =0

Lemma 3.1 [9] There exists vEV(S°) such that YN x€ER": (v, x) >1} +0.
Denote by I' the set of all vE V(S°) such that YN {x€R" : (v, x) >1} +0. From
Lemma 3.1, I" #+0. For every v€ I, we consider the following convex minimization prob-

lem:

minimize  f(x)

subject to xEYN{xER": (v x) >1}.

SP())

From assumption (A2), for every vE€ I", problem (SP(v)) has an optimal solution x*. Then,
we have g”(v) =—min(SP(v)) = —f(x"), where min (SP(v)) is the optimal value of
problem (SP(v)). Hence, vE " is an optimal solution of problem (D) if f(x*) =min {f(x")
" vEV(S°)}. Moreover, x* is optimal to problem (P) (Konno, Thach and Tuy[7],
Proposition 4.3). However, it is hard to examine whether YN {x€R": (v, x) >1} is empty.
This examination is not necessary to execute the inner approximation algorithm proposed

in Section 4.
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3.2 An Inner Approximation Algorithm
From the discussion in Subsection 3.1, we notice that inner approximation of X by a se-
quence of polytopes is applicable in solving problem (MP).

The inner approximation algorithm proposed by Yamada, Tanino and Inuiguchi[9] is as

follows:

Algorithm IA

Initialization. Generate a finite set ¥, such that ¥, CX and that 0€int (co V.). Let S:
=co V. Compute the vertex set ¥((S,)°). For convenience, let ¥ ((So)°) =0. Set k
<1 and go to Step 1.

Step 1. Let 'k be the set of all vEV((S)) °) satisfying YN{ xER" : (v, x) >1}#0. For
every vE T\ V((Sk.1) °), let x* be an optimal solution of problem (SP(v)). Choose
WE Iy satisfying () =min {f(") : vE Tk Let x (k) =x*.

Step 2.
a. If p(x(k)) >0, then stop; x(k) solves problem (MP) and the optimal value of prob-

lem (SP(+*)) is the optimal value of problem (MP).

b. Otherwise, solve the following convex minimization problem:

minimize ¢ (x5 V) =max{p &), h(x, ¥V} )

subject to xER”

where A(x, v©) =— (V, x) +1. Let zF denote an optimal solution of problem (2).
It will be proved later in Theorems 3.1 and 3.2 that problem (2) has an optimal
solution and that zF € X, respectively. Set Vi+1=ViU {z*}. Let Six1=co Vi+1. Compute
the vertex set V((Sk+1) ). Set k<k+1 and return to Step 1.

Note that Sy, k=1,2,..., are polytopes. Since 0E€int(co V1) =int S:, Sk k=1,2,..., satisfy
that 0 Eint Sk. It follows from the following theorems that at every iteration of the algo-

rithm, problem (2) has an optimal solution and Sk is contained in X.

Theorem 3.1 [9] For any vER", the function ¢ (x; v) attains its minimum over R".
Theorem 3.2 [9] At iteration k of Algorithm IA, assume that Sy C X. Then
(i) vE&int X° for any vEV((SH°).
(i) ¢ <0,
(ii)) #EX.
From Theorem 3.2 and the definition of S:, we have

¢S5, CS, C--CS5C--CX
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Hence, for every iteration k of the algorithm, the following problems (Py) and (Di) are
relaxed problems of (MP) and (DP), respectively.
minimize g (x)
(Po) ) .
subject to x€R"\int S,
maximize gfi(u)
(D) { )
subject to u € (Sp) °.
From the discussion in Subsection 3.1, x(k) and V* obtained in Step 1 of the algorithm

solve problems (Px) and (D), respectively. Moreover, we note that max (Di.1) >>max (Dy)

for any k>2, that is,

gr ) > gtv?) > > g (V) >+~ >max (DP), (3)
and that min(Pr.1) <min(Px) for any k>2, that is,
g <Lghe (@) < <Lgle (b)) <+ <min(MP) . 4)

Since g(x) =-+o0 for any x&Y, x(k) belongs to Y. It follows from the following theo-
rem that x (k) solves problem (MP) if p (x(k)) >0.

Theorem 3.3 [9] At iteration k of the algorithm, x (k) solves problem (MP) if p (x (k)) >0.
For any &, the following assertions are valid.
° V(S CWe
e (S °={ueERrR: (u 2)<IVzEW}.
* (Si+) =S °N{uER: (u 2 <1}.

Moreover, the following lemma holds.

Lemma 3.2 (9] At iteration k of Algorithm IA, if p(x(k)) <0, then (* z¢)>1.
From Lemma 3.2, Skr1=co(SiU {z%}) + 8k because SiC{xER" : (v, x) <1} and (& 25
>>1. Moreover, since V(Sk+1) CV (S U {z5}, we have
S+ = (S "N {uER: (u, 26 <1} # (80 ° (%)

Remark 3.1 A4t iteration k of Algorithm IA, for any vE V((Sk+1) )NV (S ), &, %) =1,
It follows from the following theorems that accumulation points of the sequences {x(k)}

and {*} are optimal solutions of problem (MP) and (DP), respectively.

Theorem 3.4 (9] Assume that {}} is an infinite sequence such that for all k, V* is an op-
timal solution of (Di) at iteration k of Algorithm IA and that vV is an accumulation point

of (VY. Then v solves problem (DP). Furthermore, limk—ocogf (%) =max (DP) .
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Theorem 3.5 [9] Assume that {x(k)} is an infinite sequence such that for all k, x(k) is
an optimal solution of problem (Py) at iteration k of Algorithm IA and that x is an accu-
mulation point of {x(k)}. Then X belongs to R*\int X and solves problem (MP).
Furthermore, limk—cg (x (k)) =min (MP).

4 An Inner Approximation Method Incorporating with a Penalty Function Method
4.1 Underestimation of the Optimal Value of Relaxed Problems by Using Penalty Functions

In order to obtain an optimal solution of problem (P:), problem(SP(v)) has been solved
for each vE TANV ((Sk1) °) at every iteration of Algorithm IA discussed in Section 3. In
Subsection 3.1, we remarked that problem(SP(v)) is a convex minimization problem with
convex constraints. In this section, we explain another inner approximation algorithm incor-
porating with a penalty function method proposed by Yamada, Tanino and Inuiguchi [9].
By using penalty functions, problem (SP(v)) can be transformed into an unconstrained con-
vex minimization problem. That is, without solving problem(SP(v)) at every iteration, the
algorithm guarantees the global convergence to an optimal solution of problem (MP) .
Furthermore, the problem is solvable for every vE F((Sy) °). Hence, by incorporating with
a penalty function method, the inner approximation algorithm does not need to generate
Ik at every iteration.

Let SCX be a polytope satisfying 0 € int S. For any vE V' (S), we consider the following
problem:

(PG 1)) minimize Fy . (&) =fG) + 1 0.,
subject to xER”,

where 6,(x) =¥, [max {0, r,()} ]+ [{max {0, A (x, w1}]s, s>1 and 1 >0. We know that
the objective function Fy, . of problem(SP1(v, 1)) is convex (Bazaraa, Sherali and Shetty
[1], Chapter 9). It follows from the following lemma that problem (SP1(v,£)) is solvable
for every vEV(S°).

Lemma 4.1 [9] For every vER" and 1L >0, the function F. . attains its minimum over R"
Denote by min(SP1(v, )) the optimal value of problem(SP1(v,1)). From the defini-
tion of g min(SP1 (v, £)) <—glf(v)=++o0 if v& T . In case vE I, since Fyy ) =f(x)
for any x€YN xER" . (vx) >1},
min (SP1(v, £)) =min{F., . &) : xER"}
<min{F,, &) : &, ©»>1, xEVN
=min {f(x) : (v, X >1LxEYV} (6)
=min (SP(v))
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=—ghv).
Hence, we have the following relations between problem (SP1(v, 1)) and relaxed prob-
lems (P) and (D) described in Subsection 3.1:
min (P) =min {min (SP(v)) : vE T}
>min{min(SP1 (v, 1)) : vET} @)
>min {min(SP1 (v, 1)) :vEV(S)},
and
max (D) =max {g"(v) : vEV(S°)} ®
<max {—min(SP1 (v, t)) : vEV(S9)}.
4.2 An Inner Approximation Algorithm Using Penalty Functions
An inner approximation algorithm for problem (MP) incorporating with an exterior penalty
method is as follows: |
Algorithm IA-P
Initialization. Choose a penalty parameter (., >0, a scalar B>1 and s>1. Generate a
polytope ¥: such that V1 CX and that 0€int(co V.). Let Si=co ¥,. Compute the
vertex set V((S:)). Set k<1 and go to Stepl.
Step 1. For every vE V((S:)°), let x* be an optimal solution of problem (SP1 (v, i 4)).
Choose VEarg min{F,, ., ) : vEV((SY °)}. Let x k) =x*.
Step 2.
a. If p(x(k)) >0 and r(x(k)) <0, then stop; x(k) is an optimal solution of problem
(MP).
b. Otherwise, for v, solve problem (2). Let z* and wx denote an optimal solution and

the optimal value of problem (2), respectively. Let

{Vku (4 if w<0,
k+1—
: Vi if w =0,

and let

Buk 1f¢ vk(X(k))>0y
wr if ¢, () =0.
Let Sk+1=co Vi+1. Compute the vertex set V' ((Si+1) °). Replace k by k+1, and return

U k+1=

to Step 1.

From the discussion of Subsection 4.1, at every iteration k of the algorithm, we have

S &) <Fuk ) (x (k)) <min (Pr) <min (MP). 9
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Theorem 4.1 [9] At iteration k of Algorithm IA-P, if p(x(k)) >0 and r(x(k)) <0, then
x (k) solves problem(MP).
It follows from the following theorems that accumulation points of the sequences {x(k)}

and {V} are optimal solutions of problem(MP) and (DP), respectively.

Theorem 4.2 Let {x(k)} be an infinite sequence generated by Algorithm IA-P. Then, every
accumulation point x of {x(k)} solves problem (MP).

Theorem 4.3 Let (!} be an infinite sequence generated by Algorithm IA-P. Then, every

accumulation point v of {V}} solves problem(DP).

5 An Exact Penalty Parameter of an Inner Approximation Method Using Penalty
Functions
In this section, we assume s=1 at Initialization of Algorithm IA-P. Then, we shall show
that there exist an exact penalty parameter A > and % such that for each ©>A and k>
%, every optimal solution of problem (SP1 (v 1)) solves problem (SP(1¥)).
Let Qu and Qp be the optimal solution sets of problems(MP) and (DP), respectively.

Lemma 5.1 Assume that Vf(x)# 0 for some x'€ Qu. Then, for any u€ Qp, {yER":
(u, y) >1} Nint Y#0.

Proof. Since V/f(x) #0 for some x'€ Qu, Vf(x) #0 for any x€ Qu By assumption (A4),

QuCbd X. From the definition of g and g#, g(0) =—sup{g(y) : yER"} =—0o, that is,

0€ Qp. Hence, g7(w) =—inf{g(y) : (u, y) >1} =—inf{f(p) : @ y) >1, y€Y} for any u

€ Qp. Since max (DP) >—o0, {yER" : {u, y) >1} N Qu+0 for any uE€ Qp, i.e., there ex-

ists x () € Qa such that {(u, x(w)) > 1. Moreover, since Qp CX° and QuCbd XNY, for

any u€ Qp, XC{yER": {4,y <1} and {yER": (4, ») =1} is a supporting hyperplane of
X at x(u). Therefore, by assumption(A5), {yER": {u, y) >1} Nint Y#0 for any u€ Qp.
]

For any #€ (S;) °\iint Y°, let Q(spa) be the optimal solution set of problem (SP(u)).

Lemma 5.2 Qu=_] Q(sPw).

Proof. We shall show that QuD Uueca,Q spw). Since QpCX°, UueapQ spw) CR™\int
X. From the definition of g, g(x) =+0o0 for any x&Y, so that 0ER" is not optimal to
problem (DP). Hence, from the duality of problems(MP) and (DP), we get that for any
u€ Qp,

min (MP) = —max (DP)
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=—gl(u)
=inf{g(x) : {u, x) >1}
=inf{f(x) : (u x)>1, xEY}
=min (SPW)).
Therefore, QuDO UuecapQ spe).
Conversely, since QunCR"\int X, for any x'E€ Q u, there exists #'€X such that (' x"
>1. Then, we have g”(u) <max (DP) and
g’w) =—inflgk) : @’ x) <1}
>—gx)
= —min (MP)
=max (DP).
Hence, we get that ¥'€ Qp and inf{g(x) @ @’ x) >1} =g(x"). Since QuCY and inf{g ) :
W', x) >1} =inf{f(x) : (' x) >1, x€Y}, x' is an optimal solution of problem (SP(u")).
Therefore, QuCucapQ spw). L]

Lemma 5.3 Assume that Vf(x) 0 for some x'E Q. Then, for any u€ Qp, Q spe))C Ix
ER": (u, x) =1}.
Proof. Since Vf(x) #0 for some x'€ Qu, Vf(x) #0 for any x€ Qu. From Lemma 5.2,
Vf(x) #0 for any € Qp and xE Q (spew). Assume that x& {(xER" : (&, x) =1} for some
u€ Qp and x€ Q spiy). Since 0, x€7Y, (u, 0) =0<1 and (% x) >1, we get that there ex-
ists x€ {x€Y: (& x) =1} N]0, x[. Since f(x)>f(0), from assumption(A4) and the con-
vexity of £ f(y) <f(x) for any y€]0. x[. This implies that f(x) <f(x). Since xE {xEY:
(u, x) >1}, this contradicts the optimality of x to problem (SP(%)). Consequently, Q (spw)
C&€ER: (u, x) =1} for any u€ Qp. ]

For any u€ (S,)°\int Y, let Y(w)={xEY: — (u, x) +1<0}. Then, Y(u) is the feasible
set of problem (SP(u)). Moreover, let r(u, x) =max {r;(u, x) : j=1,..., ty+1} where r (u,
x)=r;(x), j=L..,tr and ry,, (u, x)=— (4, x) +1, and let 37y x) =co(Vr &),
riy(x), —u). Note that ¥Y(u) = {xER" : r,(x) <0}.

Lemma 5.4 For any u€ Qp and x€bd Y(u), 0€ 3w (u, x).

Proof. From Lemma 5.1, for any u€ Qp,{y ER" : (4, y) >1} Nint Y+ 0. Hence, by

assumption (A3), for any u€ Qp, there exists y(u) € Y(u) such that r(uyu))<0. Since

r(u, +) is a convex function for each u, for any y€bd Y and a€ 9. (u, y), we have
0>r(uy @) t >r(uy) +{ay@w —y) = (ay W) —y).

The proof is complete. ]
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Lemma 5.5 Let T CR™\int X satisfy that(int Y) N {xE€R" . (u, x) >1} +0 for all u€ T.

Then, Q (spw)) is upper semicontinuous over T.

Proof. Since f is continuous, Y is a closed set and Y(w)=cl{xEY : (u, x) >1} for any u
€ T, the point-to-set map Q (spw) is closed on T. Moreover, from the definition of T,
for any u€ T, there exists x,Eint Y such that (u,x.) >1. Then, there exists a neighbor-
hood N() of u such that (', x,) >1 for any #'€EN(u) N T. Therefore, min(SP ")) <
f(x) for any w’'€N@) N'T, so that Uwenwnt Q re) C xER ! f&x) <f(u)}. From
assumption (A2), {x€R": f(x) <f(x.)} is compact. That is, Q (sp@w) is uniformly compact

and upper semicontinuous on T. ]

Lemma 5.6 The point-to-set map Uxeq spuy) O (u, x) is upper semicontinuous over T.
Proof. We shall show that for any u€ T and & >0, there exists 0 >0 such that

U 80rwoC (U 2w@n)+el,  Vu€B@H), (10)

X€ Q wun X€Qwan

where U is the Euclidean unit ball in R". Since Vr;(x) (j=1,..., ty) are continuous on R”,
for any X€ Q (spG)), there exists @1 (x) >0 such that

| Vi) — VG Il <e, j=1,.., tr, VxEBK, a.&)). (11)
Let G =1 :r,@x) =r@x), j=1,., tr+1}, and Bz: =max{rn@x :jE€ {1, 1} \
LG} <r@Xx). Then, since r(ux) and r;(ux), j=1,.. tr, are continuous, there exists
@2 (x) >0 such that

1 1
r(ﬁ,x)>5(r(17,f)+3;) and max rj(ﬁ,x)<‘2‘r@§)+ﬁf),

JE L. t3 LK)

VxEB& a.()).

(12)

Moreover, since { -, - ) is continuous on R"XR", there exist @s(x)>0 and 6 .>0 such
that
reye1 (ux) = — (ux) +1>;— r@x)+B» VxeEB&x a:®), u€BwW6.)NT
if r+t1€kK),
e @) == ) H1< P G0+ B VxR, wEBE O NT

otherwise.

(13)

Let @ G=min{a. &), a¢.&), as&}. From assumption(A2), Q pa) is compact, so
that there exists x',...x € Q (spa@) such that
L
Q@ CUBG, a&)NC U Bk a®). (14)
-1

€ Qe

By (14), there exists @ >0 such that
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Q(sp@>+alt)1CBG'1,a(?))C Y BGH a (). (15)
From Lemma 5.5, Q (sp) is upper semicontinuous on T. Hence, there exists 0 ;>0 such
that

QeranCQer@+alU, — VYucB@ 6.)NT. (16)
Let 0 =min{6.,0.,€}. Then, lu—ul <& for any u€EBw 6)NT. By (11), (12),
(13), (14), (15) and (16), for any u€B(, 6) N T and x€ Q (spww), there exists x €
Q (spa) such that

| Vriwx) —Vr@x) | <e, j=1,., ty+1. (17)
and that for all j€ {1,..., ty+1},

1
ri (u,x) >E (rux) + By if jERK),

1 (18)
ri (ux) < E (r(ux) + Bz otherwise.

By (18), Ju(x) CK(x). Consequently, O .r(ux) C dxr(ux)+ ¢ U.

Lemma 5.7 Assume that Vf(x) 0 for some x'E Q. Then, the following assertion holds:

inf {lwll :w€ U (U 9wux) >0.

vEL, x€Qgy

Proof. It follows from assumption (A2) that Q (sp@) is compact for each € Qp. Hence,
Ux€ Q sp@) (0 x(wx)) is compact (Rockafellar[7], Theorem 24.7). Hence, from
Lemmas 5.3 and 5.4,

inf {lwl :we U 9x@x) } >0. (19)

*€ Qe

For any u€ Qp, let ¢ @ =1/2)inf{llwl :wEUEQ spw) @+ G@x)}. From Lemma
5.6, for any u€ Qp, there exists 6 (u) >0 such that
U @ur@x))C U @srwx)+e@U VYu€ Bu é @)NQp

€ Qe *x€Q pa

From the compactness of Qp, there exists u',..., #t € Qp such that
QpUBW', 6 (')). (1)
=1
By (20) and (21), we have
L
U (U 8r@))cU( U (w@x)+e U (22)

u€Q, "x€Q =1 *€EQga

Let €¢=min{¢e () : I[=1,.., L}>0. Then, we have
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EUﬂ(LLJ( U (8w )+ e @)U))=0.

=1 " x€Qgan

The proof is complete. ]

Theorem 5.1 There exists A>0 such that for any u€ Qp and x€ Q spwv)), there exists
A (ux);>0G=1,..., tr+1) satisfying

_max A (ux) <A, (23)
VI +E A ), V() = A (4 eperu=0, (24)
Awx) () =0G=1.., tv) and A (4,x)p+1(— (ux) +1) =0. (25)

Proof. Note that for each ¥ € Qp, problem(SP(x)) is a convex programming problem.
Hence, for any »€ Qp and x€ Q (spw), there exist A (u,x);,>0(=1,..., ty+1) satisfying
conditions (24) and (25). In case Vf(x)=0 for some u'€ Qp and x'€ Q spw)), Vf(x)=0
for any u€ Qp and x€ Q (spe). Then, A (u,x);=0(j=1,..., ty+1) satisfy conditions(24) and
(25). Therefore, A=0 satisfies condition (23).

In the other case, for any u€ Qp and x€ Q (spw)), since x is an optimal solution of
problem (SP (1)) and problem (SP(u)) is a convex programming problem, — Vf(x) € Nyw)
(x). By assumptions (A3) and (A5), we note that for any #€ Qp and x€ Q (spw), Nrw
W=yER" i y=Aw, A>0, wE Ir.(x)}. From Lemma 5.2, we have Uu.cq,Q spw)=
Qs that is, Uueo,Q spw) is compact. Let hax= {1 V&) | :xE Qp>0. Since V
f(x) #0 for any x€ Q (spw) and u€ Qp, Qspw) T bd Y(w). Hence, by Lemma 5.7,

inf {llwl :we U (U 9rk) >0

WEQ, x€Quu
Let ainr=infllwl : wE Uucap(Urca gy ()} >0 and @ = afux/ @in>0. Then,
we note that for any € Qp and x€ Q sprw),

— Vi) € yER 1 y=Aw, 0< A< a, wE (W},
and

yer :y=2Aw 0<A<La, wE K}

= {yGR” ly=AZ [Lerj(x) — Wryriu, <i<a,
J=t

tyt+1

2 Mj:]ﬂ LL]20, j=1 ..... tY+1}
j=1

'y
C{yER"Iy:Z)thrj(x)—)hYﬂu, OgAjga,j=l ,,,,, tr+1}.
j=1
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This implies that A=a satisfies condition(23). ]

Lemma 5.8 Let {}} be generated by Algorithm IA-P. Assume that Vf(x") #0 for some x'
€ Qum Then, there exists k such that YN {xER" . (K x) >1} #+0 for all K>k

Proof. Since {V}} C(S:)° and (S.) is compact, without loss of generality, we can assume
that {¥¥} converges to v. By Theorem 4.3, vE€ Qp. From the assumption of this lemma and
Lemma 5.1, for any u€ Qp, {yER": (uy) >1} N int Y+0. Hence, there exists xE {y €
R : {vy) >1} N int Y. Then, we have

lim (K x) = (v,x) >1.

That is, there exists k such that (V£ x) >1 for all k>k. The proof is complete. U]

Theorem 5.2 Assume that s=1 at Initialization of Algorithm IA-P. Then, there exists k such
that 0 x(x(k)) =0 for all k>k. Furthermore, for all k>K, an optimal solution x(k) of
problem (SP1 (%, 1L1)) solves problem (SP(\%)).

Proof. In case Vf(x)=0 for some x'€ Qp, from assumption (A4) and (9), it follows that
for all k f(0) =fGc(k)) =Fy , (x(k))=min(SP1 (% 1 ©)) =min(MP). Since 146 x(x)>0
for any x€Y(H), Fey ) =)+ 16 40 >f(0)+ 1Lk 0 4 () >f(0) for any x €Y (A).
This implies that Y(*) #+0 and that problem (SP1 (1% 1)) is equivalent to the following
problem:
minimize F, , (x),
subject to x:;:(v"). 26
Moreover, since Fu , (x) =f(x) for any x€Y(¥), problem(26) is equivalent to problem
(SP(+)), that is, problem(SP1(v 114)) is equivalent to problem (SP(1*)) for all kK>1.
In the other case, since {V} C(S:) and (S:) is compact, without loss of generality, we
can assume that {*} converges to v. By Theorem 4.3, VE Qp. From, Lemma 5.1, {x€
R*: (vx)>1} N int Y#0. Let x'€ {x€R": (yx) >1} N int Y. Then, there exists 6 ,>0
such that (ux)>1 for any u€B(v, 1), so that {xER": (ux) >1} N int Y+0 for any
u€B®,0,). Let ¥ () =max{(ux) : f(x) =f(0), xEY}. Then, since Vf(x)=0 for any x
€ xER": f()=f(0), xEY} and Vf(&)+0 for any xE Q (sp(»), from the convexity of £,
¥ () <1. From assumption (A2), {x€R": f(x)=f(0), x€Y} is compact. Therefore, ¥ is
continuous. Hence, there exists 6 >0 such that ¥ () <l for any u€B(, 6 ,), so that
ker : wx) >N xEY: f()=f0)}=0 for any u€BH, 6.). Let 6 :=min{0 .,
6 2}. Then, Qerw)C bd Y(), 0€ 3 (ux) and Vf(x) +0 for all u€B(, 65) and x
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Now, we shall show that for any € >1, there exists k(€ ) >0 such that for all k>k
(&) and x€ Q spoh), there exists A (VK x);>0(=1,..., ty+1) satisfying conditions(24),
(25) in Theorem 5.1 and

max A (FAx),;<e A,

=L, 11

where A satisfies condition(23) in Theorem 5.1. Let

o W¥a=max{ll V/&) | : x€ Qepw)},

@ () nt=inf { Iwl :we U  0w(x) } :

*€ Qi

Then, we get that @ (Wihw>0 and @ () w>0 for any uE€B(, 6 ;). From Lemma 5.6,
since Uxea(gpqy) O+ (wx) is upper semicontinuous on B(v, 6 5), there exists 6,(&)>

0 (6,(e)<63) such that

e—1
U 2.€QwwC( U awr@nl——a®@ul. Yu€BF5.(e)). (28)

XE Q oy xEbd Y&) e+1

Moreover, by Lemma 5.5, Q (spa)) is upper semicontinuous over B(v,0 3), so that there

exists 02(&)>0(0.(e)<d3) such that

-1
Vf(x)E( U Vf(x))'i'%a@‘{mlf, Vu€EB, 6 .(e))and x€ Q spaw). (29)

*€Q wen
Let 6 (¢)=min{6.(e),0:(e)}. From the proof of Theorem 5.1, we obtain

@ e
— <A (30)
a (V) inf

By (28), (29) and (30) for any u€B(v,0 (€)),
@ e @ @What 570 W 282 O

@ (V) inf a@mf—%a@mf 20 (V) it
Therefore, for any & >0, there exists k( € ) >0 satisfying condition (27).

<eA (31)

In order to obtain a contradiction, suppose that there is no % such that ¢ (x(k)) =0 for

any k>k. Without loss of generality, we can assume that ¢ (x(k)) >0 for all k. Then,
limg—»ooV*=x and limx—oo i ¥=—+ . Hence, there exist & >0 and k( &) >0 such that

eA<tre) and (W iok(e)CBG, 6 (€)). This implies that for all k>k(¢),

max A GAx®)<eA<Uuk (32)

J=l.., ty+1

Then, for any k>k( &), an optimal solution x(k) of problem(SP1(* (tx)) solves prob-
lem (SP (4*)) (Bazaraa, Sherali and Shetty [1], Chapter 9, Theorem 9.3.1). Hence, 8 .

(x(k)) =0 for all k>k(¢e). The proof is complete. L]
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6 Conclusion

In this paper, we show that there exists an exact penalty parameter of an inner approxima-
tion method proposed by Yamada, Tanino and Inuiguchi [9]. This implies that for a suf-
ficiently large penalty parameter (. >0, an optimal solution of the reverse convex
programming problem can be obtained by executing the inner approximation algorithm

using penalty functions without replacing a penalty parameter (L >0.
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mE
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