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Summary

Differences in the innermost surface of developing secondary walls of conifer tracheids are seen from day to night
using field emission scanning electron microscopy (FE-SEM). Cellulose microfibrils are clearly evident during the day, while
amorphous material is prevalent at night. Immunogold-labeling experiments revealed that the amorphous material contains
abundant levels of glucomannans, indicating that the material is matrix containing hemicellulose. Diurnal fluctuation of
the tangential strain on the inner bark is also observed, suggesting that the diurnal differences in the innermost surface
of developing secondary walls occur, corresponding to the diurnal changes in the volume of differentiating cells. Our
further investigation showed that the diurnal differences were affected by light. When day and night in the photoperiodic
cycle were reversed, the volumetric changes in differentiating cells and the diurnal differences in the innermost surface of
developing secondary walls were also reversed. These findings suggest that there is a diurnal periodicity in the supply of
cell wall components to the innermost surface of developing secondary walls, corresponding to the 24-h light-dark cycle.
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Xylem cells in the stem of a tree are essential for
supporting the tree body, transporting water, and storing and
supplying nourishment. In order to maintain these functions,
xylem cells form highly developed cell walls. Xylem Cell
walls are classified as primary or secondary walls during
the course of their development. Primary walls are the thin
walls that form when differentiating cells elongate or enlarge.
Secondary walls are the thick walls formed inside the
primary wall after elongation and enlargement are complete.
Since the stems of trees consist primarily of xylem cells, tree
growth is controlled by xylem cell wall formation.

The main components of the wood cell wall are cellulose,
hemicellulose, and lignin; some wood species also contain
many extractives. Cellulose is a linear homopolymer of
B -1, 4-glucans, which associate to form the crystalline
entity known as a microfibril’. Hemicelluloses are branched
polymers composed of various polysaccharides. Lignin is an
aromatic amorphous molecule composed of three different
monolignols: p-coumaryl alcohol, coniferyl alcohol, and sinapyl
alcohol. Secondary walls consist of cellulose microfibrils
embedded in a lignin-hemicellulose matrix. Cellulose
deposition increases cell wall thickness. By contrast, the
deposition of hemicellulose and lignin increases cell wall
density. Hemicelluloses have many variations and form
physical and chemical bonds with cellulose and lignin. They
have an important role in building the three-dimensional
structures of cell walls. In secondary walls, three layers can
be differentiated based on the microfibril angles: the outer,
middle, and inner layers (S,, S,, and S, respectively).

Cell wall formation requires the expression of a number
of genes. Characteristic of plants, gene expression is affected
by external factors, such as water, temperature, light, and
nutrients. Natural environmental factors change diurnally.
It is probable that there is also diurnal periodicity in cell
wall formation. In order to elucidate the mechanism of
cell wall formation, we focused on diurnal periodicity. We
have examined the changes from day to night in the cell
walls in differentiating tracheids of Cryptomeria japonica D.
Don. In this paper, our recent studies regarding the diurnal
periodicity in cell wall formation are summarized.

SYNTHESIS AND DEPOSITION OF CELL WALL
COMPONENTS

The Golgi apparatus plays a central role in hemicellulose
biosynthesis® ®. Hemicelluloses synthesized in the Golgi
apparatus are transported to the plasma membrane by
the Golgi vesicles, and then secreted to the innermost
surfaces of cell walls by exocytosis of these vesicles™.
Secreted hemicelluloses absorb water to form a hydrated
gel that covers the innermost surfaces of cell walls”. The
deposition of hemicelluloses starts before the beginning
of lignification, and previously deposited hemicelluloses
guide lignin polymerization®. Cellulose is synthesized by
cellulose-synthesizing enzyme complexes called rosette
terminal complexes in the plasma membrane and newly
synthesized cellulose microfibrils deposited on exposure to

the hemicellulose gel. Lignin is deposited in the presence of
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hemicelluloses, regardless of the plant species. Monolignols
provided to the cell walls diffuse into the hemicellulose
gel, which fills the spaces between cellulose microfibrils.
Afterward, the hydrophobic cell walls are formed by water
removal via the dehydrogenative polymerization of lignin.

DIFFERENCES FROM DAY TO NIGHT IN THE
INNERMOST SURFACE OF DEVELOPING
SECONDARY WALLS

The recent development of field emission scanning
electron microscopy (FE-SEM) allows high-resolution
images of cell walls. FE-SEM has been used to observe
the orientation of cellulose microfibrils in woody plants™.
Yoshida et al' and Hosoo et al'? collected samples during
the day and at night from the trunk of Cryptomeria japonica
D. Don, and observed the innermost surface of developing
secondary walls in differentiating tracheids using FE-SEM.
The S, layer in conifer tracheids occupies a large part of the
cell wall, and most of the differentiating xylem cells were S,
forming tracheids. Therefore, these studies were made on
the innermost surface of the developing secondary walls
in Syforming tracheids. Cellulose microfibrils were clearly
observed during the day, while an amorphous material was
observed and cellulose microfibrils were not evident at
night (Fig. 1). The observed differences from day to night
indicate that a diurnal periodicity in the supply of cell wall
components to the innermost surface of developing secondary
walls exist in conifer tracheids.

DIURNAL DIFFERENCES IN THE AMOUNT OF
IMMUNOGOLD LABELED GLUCOMANNANS

What is the amorphous material on the innermost
surface of developing secondary walls that is present,
specifically, at night? The amorphous material clearly differs
from the cellulose microfibrils. Lignin is not produced until
the differentiating cells reach a specific developmental stage
because it is a product of secondary metabolism. First, the
lignification process begins at the cell corners and in the
middle lamella after the S, layer starts to form. Second,
lignin is slowly deposited in primary walls and in the S;
layer during S, layer formation. Finally, it is most actively
deposited throughout the secondary walls after the S; layer
has formed™® Therefore, the amorphous material is not
likely to be lignin. Instead, it is likely that the amorphous
material is a matrix containing hemicellulose and lignin
precursors.

Immunogold-labeling methods are frequently used to
study plants and microorganisms. The localization of xylans
in plant cell walls has been studied using immunogold
labeling® '. Recently, the localization of xylans in
differentiating xylem in Japanese beech was investigated by
transmission electron microscopy (TEM) and FE-SEM™ .
Maeda et al® studied the localization of glucomannans in the
cell walls of differentiating tracheids in Chamaecyparis obtusa

Fig. 1 Electron micrographs of the innermost surface of
developing secondary walls (S, layers) in differentiating
tracheids of Cryptomeria japonica D. Don grown in the
field. The longitudinal cell axes in the micrographs are
vertical. Bars = 500 nm. A: Samples collected at 14:00 h
(daytime). B: Samples collected at 5: 00 h (night).

by observing the differentiating cell walls using TEM. The
resolution of FE-SEM is adequate for detecting colloidal gold
particles as small as 5-20 nm" 2%,

Using FE-SEM, Hosoo et al.'? observed diurnal
differences in the innermost surface of developing secondary
walls in differentiating tracheids of Cryptomeria japonica D.
Don containing immunogold-labeled glucomannans. Cellulose
microfibrils were clearly evident and the amount of labeling
was small during the day (Fig. 2A). An amorphous material
was observed and a large amount of labeling was found as
bright spherical particles in the material at night (Fig. 2B).
These results indicate that the amorphous material contains
abundant levels of glucomannans. Glucomannans are the
most abundant hemicellulose in softwoods and account for
two-thirds of total hemicellulose®”, Thus, it was confirmed
that the amorphous material supplied to the innermost
surface of developing secondary walls at night was matrix
containing hemicellulose.



Ho0s00, IMAT and YOSHIDA : Diurnal Periodicity in Cell Wall Formation

Fig. 2 Electron micrographs of the innermost surface
of developing secondary walls (S, layers) immnogold-
labeled with anti-glucomannan antiserum in differentiating
tracheids of Cryptomeria japonica D. Don grown in the
field. The longitudinal cell axes in the micrographs are
vertical. Bars = 200 nm. A: Samples collected 14:00 h
(daytime). B: Samples collected at 5: 00 h (night).

CHANGES IN THE TANGENTIAL STRAIN ON THE
INNER BARK (VOLUMETRIC CHANGES OF
DIFFERENTIATING CELLS)

The water status of a tree is reflected in changes in stem
diameter®™ ®. The diurnal fluctuation of stem diameter is
caused mainly by changes in the water status of cells in the
cambium and developing cells in the xylem and phloem®**.
At the level of plant cells, the extent of growth depends on
the interaction between turgor pressure and the mechanical
strength of the cell wall. Turgor pressure is the pressure
of the protoplast against the cell wall and is proportional to
the volumetric increase of a cell. The volumetric changes
of differentiating cells can be estimated from changes in the
tangential strain on the inner bark®.

Diurnal fluctuation of the tangential strain on the inner
bark is observed" ' * *®  Figure 3 shows the changes
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Fig. 3 Changes in tangential strain on the inner bark
surface in Cryptomeria japonica D. Don. in the field at
the middle of June 1998.

in tangential strain on the inner bark in the stem of
Cryptomeria japonica D. Don. The tangential strain reaches
a maximum just before daybreak and gradually decreases
to a minimum during the day, due to transpiration from the
stomata of leaves. After reaching its minimum, the strain
increases at night when transpiration stops. These suggest
that cellulose microfibrils are observed on the innermost
surface of developing secondary walls during the day when
the volume of differentiating cells is low as a result of
water loss by transpiration, and that the matrix containing
hemicellulose is observed at night when differentiating cells
are turgid as a result of imbibition. The changes in the
supply of hemicellulose matrix and cellulose microfibrils to
the innermost surface of developing secondary walls might
be correlated with diurnal changes in phenomena such as
turgor pressure.

EFFECT OF A LIGHT-DARK CYCLE ON THE
DIURNAL DIFFERENCES

Xylem development is influenced by external factors,
such as water, temperature, light and nutrients. Differences
from day to night in the innermost surface of developing
secondary walls are observed in Cryptomeria japonica D.
Don. grown in the field, i.e., in the natural environment'" '?.
In the natural environment, factors such as illuminance,
temperatures and humidity change diurnally. Studies of
Cryptomeria japonica D. Don. in the field cannot tell which
of these factors is responsible for the diurnal periodicity in
the supply of cell wall components to the innermost surface
of developing secondary walls. In order to clarify this, it is
necessary to observe these changes in an environment in
which one factor changes diurnally and the others are kept
constant.

Light is one of the most important environmental factors
affecting plants. Light plays an important role in the processes
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Fig. 4 Changes in tangential strain on the inner bark
surface of Cryptomeria japonica D. Don. saplings in two
growth chambers. Shaded areas indicate dark periods.
A: A sapling grown in the natural light-dark cycle. B: A
sapling grown in the reverse light-dark cycle to nature.

of growth and differentiation, such as germination, elongation
growth, flower bud formation and aging. Plants always
monitor the light environment and respond to changes in it
appropriately. Hosoo et al® studied the effect of a light-dark
cycle on the diurnal differences seen in the innermost surface
of developing secondary walls in differentiating tracheids.
Saplings of Cryptomeria japonica D. Don. were grown in
two growth chambers, in which temperature and relative
humidity were kept constant and the light-dark phase of the
photoperiodic cycle differed. One chamber reproduced the
natural light-dark phase, while the other reversed it. The
tangential strain on the inner bark was measured, and the
innermost surface of developing secondary walls (S, layers)
immunogold-labeled with anti-glucomannan antiserum was
observed by FE-SEM. When the light and dark periods
of the photoperiodic cycle were reversed, the volumetric
changes in differentiating cells and the diurnal differences in
the innermost surface of developing secondary walls were
also reversed (Fig. 4, 5). Regardless of the sampling time,
cellulose microfibrils were observed during the light period
when the volume of differentiating cells is low, while the
hemicellulose matrix was observed during the dark period
when differentiating tracheids were turgid. This study
clarified the diurnal changes in the volume of differentiating
cells and aspects of the innermost surface of developing
secondary walls, corresponding to the 24-h light-dark cycle.
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Fig. 5 Electron micrographs of the innermost surface
of developing secondary walls (S, layers) immnogold-
labeled with anti-glucomannan antiserum in Cryptomeria
japonica D. Don. saplings. The longitudinal cell axes in the
micrographs are vertical. Bars = 200 nm. A: At 14:00 h
(light period) in a sapling grown in the natural light-dark
cycle. B: At 5:00 h (dark period) in a sapling grown in the
natural light-dark cycle. C: At 17:00 h (dark period) in a
sapling grown in the reverse light-dark cycle to nature.
D: At 2:00 h (light period) from a sapling grown in the
reverse light-dark cycle to nature.

CONCLUSION

Woody plants are perennial plants that undergo radial
growth via cambial activity. The cambium produces xylem
cells toward the inside and phloem cells toward the outside.
Since there is much more xylem than phloem, xylem
occupies a large part of the trunk. Since xylem supports
huge tree bodies by adding mechanical strength to the
stem, tree growth is controlled by xylem cell wall formation.
Elucidating the process of cell wall formation is important for
a more detailed understanding of tree growth.

The diurnal periodicity in the supply of cell wall
components to the innermost surface of developing
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secondary walls was found in conifer tracheids. However,
further studies are necessary to fully understand the diurnal
periodicity in xylem cell wall formation. For example, which
is the main signal to start the diurnal periodicity, changes
in the water status such as turgor pressure or the light
condition is not clear. Participation of the turgor pressure
in cell wall formation also remains uncertain. Detailed
knowledge of the mechanism of diurnal periodicity in cell
wall formation is proposed to be related to the understanding
of tree growth at the level of the cell wall.
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