
Abstract

There can be three types of heterogeneity among players in a rent-seeking contest. First, the 

effectiveness of agent's effort on the winning probabilities may differ among players.  Secondly, 

players may evaluate the rent or prize of the rent-seeking contest differently.  Thirdly, players 

may face different financial constraints. Without assuming that each player’s production function 

for lotteries is differentiable, Yamazaki (2008) proves under standard assumptions in the literature 

that there exists a unique pure-strategy Nash equilibrium in a general rent-seeking contest with 

these three types of heterogeneity among players. In this article, assuming the differentiability of 

each player’s production function for lotteries, we give a simple proof of Yamazaki’s (2008) 

result.
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1 Introduction

A rent-seeking contest is a strategic game in which player i expends effort xi to increase pi, 

player i's probability of winning a prize (rent). In the seminal work of Tullock (1980), player i's 

contest success function is given by   . Tullock’s contest has been extended in 

many directions. Perez-Castrillo and Verdier (1992) explore the implications of a contest success 

function of the form   , r > 0. They prove that if their contest success function 

satisfies r ≤ 1, there exists a unique pure-strategy Nash equilibrium. Skaperdas (1996) prove that 
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player i's probability of winning a prize satisfies five axioms if and only if player i's contest 

success function is specified as   , where   is a positive increasing 

function of its argument. He also prove that player i's probability of winning a prize satisfies 

five axioms together with homogeneity axiom if and only if player i's contest success function is 

specified as   , α > 0. Clark and Riis (1998) give an axiomatic foundation to 

an asymmetric and unfair contest success function. They prove that player i's probability of 

winning a prize satisfies four axioms, which include Skaperdas’ homogeneity axiom but does not 

include his“symmetric axiom” (A3), if and only if player i's contest success function is specified 

as   , αi > 0 for any i. Szidarovszky and Okuguchi (1997) assume that player 

i's contest success function has an asymmetric form of   . Assuming that 

player i's production function for lotteries fi (xi ) is strictly increasing and strictly concave in xi, 
Szidarovszky and Okuguchi (1997) prove that there exists a unique pure-strategy Nash 

equilibrium. Hillman and Riley (1989), Baik (1994), Nti (1999), Stein (2002) among others 

allow each player to have a player-specific valuation on the prize in rent-seeking contests. Che 

and Gale (1997) prove that there exists a unique pure-strategy Nash equilibrium in the budget-

constrained Tullock’s contest.

　　　　Except for Baik (1994) and Stein (2002), previous works mentioned above study only 

one of three types of heterogeneity among players in a rent-seeking contest, that is, 

heterogeneity of contest success functions, heterogeneity of players’ valuations on the prize, and 

heterogeneity of financial constraints.1 However, these three types of heterogeneities seem 

mutually related. For example, if all players have the same budget to finance their rent-seeking 

activities, then players’ financial constraints are likely to bind for players with high valuation. 

Using the graphical techniques similar to Watts (1996), without assuming that each player’s 

production function for lotteries is differentiable, Yamazaki (2008) proves that there exists a 

unique pure-strategy Nash equilibrium in a general asymmetric rent-seeking contest where each 

player’s production function for lotteries is increasing and concave, each player places a player-

specific value on the prize, and each player is budget-constrained.2 Unless Skaperdas’ (1996) six 

axioms or Clark and Riis’ (1998) four axioms are satisfied, it is not certain if the production 
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 １ Baik (1994) and Stein (2002) analyze asymmetric contests with heterogeneity of contest success functions and 
of players’ valuations on the prize.  However, models of Baik and Stein are rather specific.  Baik’s model 
has only two players.  In Stein’s model, player i's contest success function is Tullock’s type; 
 , αi > 0 for any i .

 ２ Watts (1996) proves some theorems that ensure uniqueness of Nash equilibrium in sharing models and 
applies one of her theorems to obtain a uniqueness result for the Cournot oligopoly model without product 
differentiation. However, her theorems are not directly applicable to rent-seeking contests.



function for lotteries is differentiable or not. However, assuming differentiability simplifies 

analysis very much and a smooth model of the rent seeking contest with three types of 

heterogeneity seems useful for applied works. In this article, assuming that each player’s 

production function for lotteries is differentiable, we give a simple proof of Yamazaki’s (2008) 

result.3

2 Model

Let n be the number of players who participate in a rent-seeking contest (n ≥ 2). Players are 

assumed to be risk neutral. Player i is assumed to place a value Vi on the prize (rent), which 

the player seeks. Player i expends xi to win the prize, i = 1, 2, ..., n. It is assumed that player 

i's probability of winning the rent is determined as a function of x = (x1, x2, ..., xn) :

(1)　

The function in (1) is called a contest success function. Many economists assume that the 

contest success function has a specific functional form.

Assumption 1:  , fi ( 0 ) = 0, fi' ( xi ) > 0, fi'' ( xi ) ≤ 0 for i = 1, 2, ..., n.

Szidarovszky and Okuguchi (1997) call the function fi ( xi ) in Assumption 1 player i's production 

function for lotteries. 

　　　　Player i's expected payoff can be written as

(2)　

If all xi = 0, then π i is defined to be zero.4  Player i is assumed to maximize (2) with respect 

to xi ( ≥ 0 ) subject to his or her budget constraint: xi ≤ Ii, where Ii ( > 0 ) is player i's income or 

budget for his or her rent-seeking activities. As seen in the next section, if there is no budget 

constraint, the expected payoff is always positive, which implies xi < Vi.  Hence, if Ii > Vi for all 

i, that is, all players have income or budget larger than the prize, the budget constraint does not 
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 ３ Chapter 5 of Yamazaki (2013) ignores the budget constraints of players and proves the result of Yamazaki 
(2008) in a rent-seeking contest where each player’s production function for lotteries is differentiable. Hence, 
this article can be interpreted as a more rigorous version of Chapter 5 of Yamazaki (2013), although Chapter 
5 of Yamazaki (2013) contains other related materials.

 ４ Assuming πi to be 1/n instead of zero does not affect the following analysis.



bind at all. It can be interpreted that all previous works except for Che and Gale (1997) 

implicitly assume that all players have income or budget large enough.

　　　　Effective lobbying efforts yi = fi ( xi ) transform (2) into a function of yi and   :

(3)　

where gi = fi-1.5  The assumptions on fi in Assumption 1 imply 

(4)　

Player i's original maximization problem is equivalent to the one of maximizing (3) with respect 

to yi subject to yi ≤ fi ( Ii ).

3 Equilibrium Analysis

Forget the non-negativity and budget constraints on xi or equivalently on yi for a while. The 

first order condition of maximizing (3) is

(5)　

where   . This first order condition can be rewritten as

(6)　

The total derivative of hi ( yi, yi + Y-i ) with respect to yi given a fixed number Y-i ≥ 0 can be 

calculated as 

Assumption 1 ensures the second order condition of maximizing Πi (yi, Y ) with respect to yi for 

Y-i ≥ 0, that is,
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gi ( 0 ) = 0, gi' ( xi ) > 0, gi'' ( xi ) ≥ 0 for i = 1, 2, ..., n.

　　　　　　　　　　　　　　　　　　　　　　　　　
 ５ This transformation, due to Szidarovszky and Okuguchi (1997), converts the original game into an 
aggregative game where each player’s objective function is a function of his or her own choice variable and 
the sum of all players’ choice variables.



(7)　

Since the total derivative   is not equal to zero, a unique solution yi to (6) given 

Y-i ≥ 0 is a well defined and finite function of Y-i. Denote the function as φi (Y-i ).

　　　　The function φi (Y-i ) derived above does not take into account the non-negativity and 

budget constraints on yi. With taking these constraints into account, we can construct player i's 

best reply function φ̂i (Y-i ) from the function φi (Y-i ). First consider the non-negativity constraint. 

If

(8)　

which is satisfied for any Y-i > 0 sufficiently close to zero, φi (Y-i ) is positive. On the contrary, if 

(9)　

we can set player i's best reply function φ̂i (Y-i ) to be zero. Next consider the budget constraint. 

If

(10)　

which is satisfied for any Y-i > 0 sufficiently close to zero, φi (Y-i ) < fi ( Ii ), that is, player i’s 

budget constraint does not bind. On the contrary, if 

(11)　

we can set φ̂i (Y-i ) = fi ( Ii ), that is, player i’s budget constraint does bind. Summing up,

(12)　

Define   . We can prove the following lemma.

Lemma 1: Under Assumption 1,   = 0, i = 1, 2, ..., n.
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Proof Since   is a positive real number,   is also a positive real number. On 

the other hand,   . Hence,

for any α ≥ 0. This implies that for any α ≥ 0, φi ( Y-i ) > αY-i for any Y-i ≥ 0 sufficiently close to 

zero. Since for any α ≥ 0, φi ( Y-i ) > αY-i for any Y-i ≥ 0 sufficiently close to zero, 

On the contrary, suppose Y_  i > 0. If so,

holds for any ε ∈ ( 0, Y_  i ). This implies

hi ( φ ( Y-i )－ε, φi ( Y-i )－ε+ Y-i ) ≤ 0

for any Y-i ≥ 0 sufficiently close to zero. Since this result holds for any ε ∈ ( 0, Y_  i ). This 

contradicts the fact ensured by Assumption 1 that φi ( Y-i ) is a unique solution to the first order 

condition (5) for Y-i ≥ 0. Hence, Y_  i = 0. ■

　　　　Since for any n > 1, (1－(1/n))(1/Y-i ) Vi is positive and decreasing in Y-i and it 

approaches to zero as Y-i goes to infinity and since gi' ( Y-i / (n－1)) is positive and increasing in 

Y-i by Assumption 1, there exists a non-negative real number Y-i ≥ Y－-i such that

for any given Y-i ≥ Y－-i . This implies the following lemma.
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Lemma 2: Under Assumption 1, there exists a non-negative real number Y－-i such that 

  for any Y-i ≥ Y－-i, i = 1, 2, ..., n.

The function φi ( Y-i ) satisfies

(13)　

Differentiating (13) with respect to Y-i shows

(14)　

Since the denominator of (14) is positive under Assumption 1 and since the numerator of (14) 

is positive (zero, negative) if and only if 2yi－( yi + Y-i ) is positive (zero, negative),

Now consider the sign of hi ( yi, yi + Y-i ) for yi = Y-i .

The function φi ( Y-i ) is larger (equal to, smaller) than Y-i if and only if hi ( Y-i, Y-i + Y-i ) above is 

negative (zero, positive). If fi ( xi ) is concave as in Assumption 1, since fi' ( xi ) > 0 for some xi ≥ 

0,   ≥ 0 cannot be zero.6  Since   is a positive real number,   is also a 

positive real number. On the other hand,   . Hence,
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 ６ For the model to be meaningful, we need to require fi' ( xi ) > 0 for some xi ≥ 0. If  , the weak 
concavity of fi ( xi ) implies fi' ( xi ) ≤ 0 for any xi ≥ 0.



This implies that φi ( Y-i ) > Y-i for any Y-i ≥ 0 sufficiently close to zero. 

　　　　Since  ,   is a positive real number. Since  ,

This implies that φi ( Y-i ) < Y-i for any Y-i large enough. These observations inform us that under 

Assumption 1. φi ( Y-i ) has a single peak on the 45 degree line as in Figure 1. Remember 

Lemma 1, that is,  . In Figure 1, we assume that there exists a positive real 

number Ŷ-i such that φi ( Y-i ) > 0 for any Y-i ∈ [ 0, Ŷ-i ) and φi ( Y-i ) = 0 for any Y-i ≥ Ŷ-i. We can 

easily draw the graph of φ̂ i ( Y-i ) from the one of φi ( Y-i ). If player i’s budget constraint does 

bind for some Y-i, the graph of φ̂ i ( Y-i ) can be depicted as in Figure 2.

Figure 1 Graph of φi ( Y-i )

Figure 2 Graph of φ̂ i ( Y-i )
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　　　　The first order condition (5) can be treated as an implicit function of yi and Y, that is,

(15)　

The partial derivative of hi ( yi, Y ) with respect to yi for some Y ≥ 0 can be calculated as 

(16)　

which is negative under Assumption 1. Since the partial derivative   is not equal to 

zero, Assumption 1 ensures that a unique solution yi to (15) for given Y ≥ 0 can be written as 

a well defined and finite function of Y ≥ Y_  i = 0. Denote the function as Фi ( Y ).

　　　　The function Фi ( Y ) derived above does not take into account the non-negativity and 

budget constraints on yi. With taking these constraints into account, we can construct player i's 

cumulative best reply function Ф̂ i ( Y ) from the function Фi ( Y ).7 First consider the non-

negativity constraint. If

(17)　

which is satisfied for any Y > 0 sufficiently close to zero, Фi ( Y ) is positive. On the contrary, if 

(18)　

we can set player i's cumulative best reply Ф̂ i ( Y ) to be zero. Next consider the budget 

constraint. If

(19)　

which is satisfied for any Y > 0 sufficiently close to zero, Фi ( Y ) < fi ( Ii ), that is, player i’s 

budget constraint does not bind. On the contrary, if 

(20)　
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 ７ The terminology “cumulative best reply” is cited from Vives (1999). Cornes and Hartly (2003, 2005) call the 
cumulative best reply function a replacement function. Wolfstetter (1999) calls it an inclusive reaction function.



we can set Ф̂ i ( Y ) = fi ( Ii ), that is, player i’s budget constraint does bind. Summing up,

(21)　

　　　　Lemma 1 proves the following lemma.

Lemma 1’: Under Assumption 1,   = 0, i =1, 2, ..., n.

By Lemma 2, there exists a non-negative real number Ȳ-i such that

i = 1, 2, ..., n. By adding φ̂ i ( Y-i )/(n－1) to the both sides of the above inequality,

i = 1, 2, ..., n. Hence, Lemma 2 proves the following lemma.

Lemma 2’: Under Assumption 1, there exists a non-negative real number Y̅ -i such that 

  for any Y-i ≥ Y̅ -i, i =1, 2, ..., n.

　　　　The function Фi ( Y ) satisfies

(22)　

Differentiating (22) with respect to Y, we get

From this equality, we can get

(23)　

Since the denominator of (23) is positive under Assumption 1 and since the numerator of (23) 
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is positive (zero, negative) if and only if 2Фi ( Y )－Y is positive (zero, negative),

　　　　Now consider the sign of hi ( yi , Y ) for yi = Y / 2.

The function Фi ( Y ) is larger (equal to, smaller) than Y/2 if and only if hi ( Y / 2, Y ) above is 

negative (zero, positive). If fi ( xi ) is concave as in Assumption 1, since fi ' ( xi ) > 0 for some xi ≥ 

0,   cannot be zero. Since   is a positive real number,   is also a 

positive real number. On the other hand,  . Hence,

This implies that Φi ( Y ) >Y / 2 for any Y ≥ 0 sufficiently close to zero. Since   ≥ 0, 

  is a positive real number. Since  ,

This implies that Φi ( Y ) <Y / 2 for any Y large enough.

　　　　These observations inform us that under Assumption 1 the function Φi ( Y ) has a single 

peak on the line Y / 2 as in Figure 3. If player i’s budget constraint binds for some Y, player i’s 

cumulative best reply function Φ̂ i ( Y ) can be depicted as in Figure 4. Player i’s cumulative best 

reply function Φ̂ i ( Y ) in Figure 4 corresponds to player i’s best reply function φ̂ i (Y-i ) in Figure 

2 where it is assumed that there exists a positive real number Ŷ-i such that φi (Y-i ) > 0 for any 

Y-i ∈ [0, Ŷ-i ) and φi (Y-i ) = 0 for any Y-i ≥ Ŷ-i.
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Figure 3 Graph of Φi ( Y )

Figure 4 Graph of Φ̂ i ( Y )

　　　　As in Cornes and Hartley (2003, 2005), define player i’s share function σi (Y )≡ Φ̂ i (Y )

 / Y, which is defined on (Y_  i, ∞) = (0, ∞). Differentiating σi (Y ) = Φ̂ i (Y ) / Y with respect to Y 

from the right-hand or left-hand side, we get

(24)　

where D+ f ( x ) and D- f ( x ) stand for the right-hand and left-hand derivatives of a function f ( x ), 

respectively. As seen in Figure 4, the right-hand and left-hand derivatives of Φ̂ i (Y ) at Y =Y 0 > 0, 

the slope of Φ̂ i (Y ) at Y =Y 0, is always smaller than Φ̂ i (Y ) / Y, the slope of the ray passing 
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through the origin and the point (Y 0, Φ̂ i (Y 0 )). That is, 

(25)　

Hence, this fact together with (24) proves the following lemma.

Lemma 3: σi (Y ) is strictly decreasing in Y, i = 1, 2, ..., n.

We have already shown   = 0 under Assumption 1. Since σi (Y ) =Φ̂ i (Y ) / Y and Φ̂ i (Y ) ≤ 

Y,   ≤ 1. Since   = 0,   = 0 and Φ̂ i (Y ) = Φi (Y ) for any positive Y sufficiently 

close to zero, by L’Hospital’s rule,

(26)　

On the other hand, from (23), we can get the following relation.

(27)　

Substituting (27) into (26), we can get

We have already shown under Assumption 1 that there exists a non-negative real number Y̅ -i 

such that   for any Y > Y̅ -i. Since σi (Y ) =Φ̂ i (Y ) / Y, this fact implies that   for 

any  . Summing up, we have proved the following lemma.

Lemma 4:   =1 and there exists a non-negative real number Y̅ i such that   for 

any Y >Y̅ i, i =1, 2, ..., n.

Figure 5 depicts the graph of player i’s share function σi (Y ), which satisfies the properties in 
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Lemmas 3 and 4. Player i’s share function σi (Y ) in Figure 5 corresponds to player i’s best 

reply function φi (Y-i ) in Figure 2 where it is assumed that there exists a positive real number 

Ŷ-i such that φi (Y-i ) > 0 for any Y-i ∈ [0, Ŷ-i ) and φi (Y-i ) = 0 for any Y-i  ≥ Ŷ-i.

Figure 5 Graph of σi (Y )

　　　　A Nash equilibrium Y corresponds to a solution to

(28)　

Figure 6 graphically shows how the graph of   can be depicted in a special case where 

there are only two players in the game, that is, n =2. As seen in Figure 6, Lemma 3 ensures 

that   is strictly decreasing in Y, while Lemma 4 ensures

and 

for any  . Hence, as seen in Figure 7, there exists a unique positive solution 

Y E to the equation (28). This equilibrium Y E uniquely determines all relevant equilibrium values: 

pEi =σi (Y E ), yEi =σi (Y E ) Y and xEi = gi ( yEi ), for all i. Hence, we have proved the following 

theorem.
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Theorem: Under Assumption 1, there exists a unique pure-strategy Nash equilibrium in a 

smooth rent-seeking contest with asymmetric valuations.

Figure 6 Graph of  , n = 2

Figure 7 Unique Existence of Nash Equilibrium

4 Concluding Remarks

Without assuming that each player’s production function for lotteries is differentiable, Yamazaki 
(2008) proves that there exists a unique pure-strategy Nash equilibrium in a general asymmetric 

rent-seeking contest where each player’s production function for lotteries is increasing and 

concave, each player places a player-specific value on the prize, and each player is budget-

constrained. In this article, with assuming that each player’s production function for lotteries is 

differentiable, we have given a simple proof of Yamazaki’s (2008) result. The asymmetric 
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contest of this paper and Yamazaki (2008) is very general among risk-neutral rent-seeking 

contests, which are standard in the literature. The result of this article can be generalized in 

several directions. For a contest with risk-averse players, Cornes and Hartley (2003) analyze a 

risk-averse rent-seeking contest where the Arrow-Pratt measure of absolute risk aversion of 

players is assumed to be constant. They prove that their risk-averse rent-seeking contest 

possesses a unique pure-strategy Nash equilibrium. Yamazaki (2009, 2010) proves that there 

exists a unique pure strategy Nash equilibrium in a rent seeking contest if the Arrow-Pratt 

measure of absolute risk aversion of players is non-increasing.
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