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ABSTRACT. We give a new proof of the characterization theorem for
completely m-full ideals stated as follows: completely m-full ideals are
characterized as the ideals that have the same graded Betti numbers as
those of their generic initial ideals with respect to the reverse lexico-
graphic order, provided their generic initial ideals are stable.

1. INTRODUCTION

Let I be a homogeneous ideal of a polynomial ring R and Gin(/) the
generic initial ideal of I with respect to the reverse lexicographic order. In [1]
Aramova, Herzog and Hibi proved the theorem which states that, in charac-
teristic zero, I and Gin(I) have the same graded Betti numbers if and only if
I is componentwise linear. For the case of positive characteristic, this theo-
rem was proved by Nagel and Romer [10] with the additional assumption that
Gin(I) is stable, which is automatically satisfied in characteristic zero. On
the other hand, the authors [8] recently showed the result which states that
the notion of componentwise linearity and completely m-fullness are equi-
valent in the class of ideals whose generic initial ideals are stable. Hence,
combining those results, one immediately gets the following theorem on
graded Betti numbers of completely m-full ideals.

Theorem 1. Let I be a homogeneous ideal of R = Klz1,...,z,] and as-
sume that the generic initial ideal Gin(I) of I is stable. Then the following
conditions are equivalent:

(i) I is completely m-full.

(i) Biit+;(I) = Bi,i+;(Gin(l)) for all i and j.
(iii) Bi(I) = Bi(Gin(1)) for all .

(iv) 50,;( ) = Po,;(Gin(I)) for all j.

(v) Bo(I) = Bo(Gin(I)).

The purpose of this note is to give a new proof of the theorem above. It is
a direct proof obtained by an inductive argument using the notion of “m-
fullness”. Our techniques are completely different from those of the papers
[1] and [10] cited above. The notion of an m-full ideal was introduced by
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D. Rees. The m-full ideals form an important class of ideals having various
interesting properties (cf. [3], [4], [5], [7], [8], [9], [11], [12], [13]).

In Section 2 we state some remarks on a minimal generating set of an m-full
ideal, and review a result on graded Betti numbers obtained in [12]. These
are needed for our proof of the main theorem. The implications (ii) = (iii)
= (v) and (ii) = (iv) = (v) in Theorem 1 are obvious. We will give a proof
of (i) = (ii) in Section 3, and a proof of (v) = (i) in Section 4.

Throughout this note, we let R = K|[zy,...,z,] be the polynomial ring
in n variables over an infinite field K with the standard grading, and m =
(x1,...,x,) the homogeneous maximal ideal. Let Gin(I) denote the generic
initial ideal of an ideal I of R with respect to the graded reverse lexicographic
order induced by x1 > -+ > x,.

2. PRELIMINARIES ON m-FULL IDEALS

Definition 2 ([11], Definition 4). An ideal I of R is said to be m-full if there
exists a linear form z in R such that m/ : z = I.

Remark 3. Suppose that I is an m-full ideal of R. Then the equality m[ :
z = I holds for a general linear form z in R ([11], Remark 2 (i)). Moreover,
it is easy to see that the equality m/ : z = I implies that I : m = I : z for any
z € R. Let fi,..., f, be homogeneous forms in I : m such that {fi,..., f.} is
a minimal generating set of (I : m)/I, where f; is the image of f; in R/I. Then
Proposition 2.2 in [5] implies that {zfi,...,zf.} can be a part of a minimal
generating set of I.

Let f3; (1) be the (i, 7)th graded Betti number of I as an R-module, and
Bi(I) = 2, Bij(I) the ith total Betti number of I. Note that Sy(I) is the

minimal number of generators of I.

Proposition 4 ([12] Corollary 8 and [8] Proposition 5). Let I be an m-full
ideal of R and let z be a general linear form of R satisfying mI : z = I.
Let I be the image of I in R/zR and let B; ;(I) be the (i,j)th graded Betti
number of I as an R/zR-module. With the same notation as Remark 3, set
c; =#{i|1<i<l deg(zf;) =j} for all j. Then
- n—1
Biiwil) = Biars(D) +{ . ¢

fori=0,1,....n—1and j=0,1,2,....

Remark 5. With the same notation as Proposition 4, let

H((I:m)/I,j)=dimg[(I: m)/I],
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be the Hilbert function of (I : m)/I. Since ¢; = H((I : m)/I,j — 1), the
formula in Proposition 4 can be rewritten as:

Braes(D) = e (D + ("] H(E w1 = 1)

for all ¢ and j. In particular we see that

Po(I) = Bo(I) + length((I : m)/I).

Definition 6 ([12], Definition 2). Let I be a homogeneous ideal of R =
Klxy,...,x,]. We say that I is completely m-full if there exist general linear
forms zp,zp_1,...,21 of R satisfying the following conditions:

(i) mI : z, =1, ie., I is m-full.
(i) Ml :Z, g1 =1in R=R/(I,2n,...,2n_iso) foralli =23,... n,
where ¥ denotes the image * in R.

In this case we say that (I; 2z, zp—1,. .., 21) has the complete m-full property.
Definition 7. A monomial ideal I of R = Klz1,...,z,] is said to be stable
if I satisfies the following condition: for each monomial v € I, the monomial
TiU/ Ty () belongs to I for every i < m(u), where m(u) is the largest index j
such that xz; divides u.

Remark 8. Stable ideals (I; 2y, %,—1,...,21) have the complete m-full prop-
erty ([8], Example 17).
3. PROOF OF (i) = (ii)
For the proof of (i) = (ii) we need the following lemma.

Lemma 9. Let I be an m-full ideal of R, and assume that Gin(I) is stable.
Then the equalities

H((I :m)/I,7)=H((Gin() : m)/Gin(I), j)
hold for all j.

Proof. Set J = Gin(I). Since I and J are m-full, there exists a general linear
form z of R satisfying m/ : 2 =1 and mJ : z = J. Then it is easy to see that
I:m=1:zand J:m=J:z Furthermore, from the exact sequence

0— (I:m)/I - R/I*SR/I— R/(I+2zR)— 0,
we have
H((I:m)/I,j—1)=H(R/I+ zR,j)—H(R/I,j)+H(R/I,j —1)
for all 5. Similarly, we have
H((J:m)/J,j—1)=H(R/J+ zR,j) —H(R/J,j) + H(R/J,j — 1).
for all j. Here recall the well-known facts:
e H(R/I,j) =H(R/J,j) for all j.
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e H(R/(I +2R),j) = H(R/(J + zR), j) for all j ([2], Lemma 1.2).

Hence we get the desired equalities. U

Proof of (i) = (ii) in Theorem 1. After a generic linear change of variables
we may assume that (I;x,,z,_1,...,21) has the complete m-full property.
Since I and Gin(I) are m-full, it follows by Remark 5 that

n

Bass (D) = Boans@ + ("7 ) BT w1 - )

and
ass () = ans() + (") X BT w07 1)

for all i and j. Since J is the generic initial ideal of I ([6], Corollary 2.15), it
follows by an inductive argument on the number of variables that

5i,z‘+j (7) = /Bi,i+j (j)

for all ¢ and j. Hence, by Lemma 9, we get §; i4;(I) = Bi,i+;(J) for all i and
J- O

4. PROOF OF (v) = (i)
For the proof of (v) = (i) we need the following lemma.

Lemma 10. Let I be a homogeneous ideal of R, and assume that Gin(I) is
stable. If Bo(I) = Bo(Gin(I)), then Gin(mI) = mGin([).

Proof. There exists a generic linear change of variables ¢ such that Gin(7) co-
incides with the initial ideal In(¢(1)) of ¢(I). We first show that R/In(mp([]))
and R/mIn(p(I)) have the same Hilbert function. Since By(¢ (1)) = Bo(Ine(1))
holds by Bo(I) = Bo(Gin(I)), there exists a minimal generating set { f1...., f-}
of ¢(I) such that {In(f1),...,In(f,)} is a minimal generating set of In( (1)),
where In(f;) denotes the initial monomial of f;. Hence, it gives that

H(p(I)/mp(I),j) = H(In(p(1)) /mIn(e(1)), 5)
for all j, Thus we get that
H(R/In(me(1)),j) =

H
= H
= H

H

for all j.
Since the inclusion mIn(p(I)) C In(mp(I)) is obvious, we have proved the
equality mIn(o(7)) = In(mp(I)). Thus, for a sufficient generic linear change
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of variables ¢, we have that

Gin(mI) = In(p(ml)) = In(p(m)e(l))
= In(my(I)) = mIn(p(I)) = mGin(I).

0

Proof of (v) = (i) in Theorem 1. Set J = Gin(I). Let z be a general linear
form of R. We first show that I is m-full. From the exact sequence

0— (mI:z)/ml — R/mI~5 R/mI — R/(mI + zR) — 0,
it follows that
H((mI :z)/ml,j) =H(R/mI,j)—H(R/mI,j+ 1)+ H(R/(mI+zR),j+ 1)
for all j. Similarly, we have
H((mJ : z)/mJ,j) =H(R/mJ,j) —H(R/mJ,j + 1)+ H(R/(mJ + zR),j + 1)

for all j. Furthermore, by Lemma 10 above and Lemma 1.2 in [2], it follows
that

H(R/mI,j) =H(R/mJ,j), H(R/(mI+ zR),j) =H(R/(mJ + zR),j)
for all j. Hence we have
H((mi : 2)/ml, ) = H((mJ : 2)/mJ],j)
for all j. Moreover, since J is m-full, this implies that
length(mJ : z/mJ) = length(J/mJ) = Bo(J).
Hence we get that
Bo(I) = length(//mI) < length(mI : z/mI) = length(mJ : z/mJ) = By (J).

Thus, by the assumption Sy(I) = Bo(J), it follows that m/ : z = I.
Since I and J are m-full, it follows by Remark 5 that

Bo(I) = Bo(I) + length((I : m)/I)

and

Bo(J) = Bo(J) + length((J : m)/.J).

Hence we have the equality By(I) = Bo(J) by Lemma 9 and £o(I) = Bo(J).
Thus, our assertion can be obtained by an inductive argument on the number
of variables, since J is the generic initial ideal of I ([6], Corollary 2.15). [
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