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Abstract. The Mott metal-insulator transition in the two-band Hubbard model in infinite dimensions is

studied by using the linearized dynamical mean-field theory recently developed by Bulla and Potthoff.

The phase boundary of the metal-insulator transition is obtained analytically as a function of the on-

site Coulomb interaction at the d-orbital, the charge-transfer energy between the d- and p-orbitals and

the hopping integrals between p − d, d − d and p − p orbitals. The result is in good agreement with the

numerical results obtained from the exact diagonalization method.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron

systems; heavy fermions – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

The Mott metal-insulator transition (MIT) is a fundamen-

tal problem in the theory of strongly correlated electrons.

Recently, significant progress has been achieved in under-

standing this transition by using dynamical mean-field

theory (DMFT) [1]. In the DMFT, the lattice problem

is mapped into an impurity problem embedded in an ef-

fective medium by neglecting the momentum dependence

of the self-energy. Various methods, such as the iterated

perturbation theory [1], the non-crossing approximation

[2], the quantum Monte Carlo (QMC) method [3], the ex-

act diagonalization (ED) method [4] and the numerical

renormalization group (NRG) method [5,6], enable one

to solve the corresponding impurity problem. The DMFT

becomes exact in the limit of infinite spatial dimensions

d = ∞ [7] and is believed to be a good approximation in

high dimensions.



2 Y. Ōno, R. Bulla, A. C. Hewson: Phase diagram of the Mott Transition in a two-band Hubbard model

The Mott MIT in the half-filled single-band Hubbard

model on the d = ∞ Bethe lattice is found to occur as

a first-order phase transition below a critical temperature

Tc ≈ 0.02W where W is the bare bandwidth [1]. Below

Tc, a coexistence of the metallic and insulating solutions

was found for the same value of the on-site Coulomb in-

teraction U in the range Uc1(T ) < U < Uc2(T ) [1,8–12].

At zero temperature, coexistence is also obtained for val-

ues of U such that Uc1 < U < Uc2. The results of the

ED method for the critical values of U (at T = 0) are

Uc1 ≈ 1.2W and Uc2 ≈ 1.5W [4] (see also Section 2.2).

It agrees well with the recent NRG result Uc1 ≈ 1.25W

and Uc2 ≈ 1.47W [13]. The energy of the metallic state

is lower than that of the insulating state for values of U

in the range Uc1 < U < Uc2. Therefore the Mott MIT

occurs at U = Uc2 as a continuous transition at T = 0. In

this paper we will concentrate solely on the Mott MIT at

T = 0 and, so from this point onwards we will denote the

critical value Uc2 simply by Uc.

The Mott MIT is observed in various 3d transition-

metal compounds, which are classified into two types: the

Mott-Hubbard type and the charge-transfer type [14,15].

In the Mott-Hubbard type such as Ti and V compounds,

the d−d Coulomb interaction U is smaller than the charge-

transfer energy ∆ between d- and anion p-orbitals. In this

case, the energy gap of the insulator is given roughly by

U and a MIT occurs at a specific value of U as this inter-

action strength is varied. In the charge-transfer type such

as Co, Ni and Cu compounds, U is larger than ∆. Then

the energy gap is roughly given by ∆ and a MIT occurs at

a critical value of ∆ when this energy difference is varied.

In the single-band Hubbard model, there is only the

parameter U/W . The DMFT satisfactorily explains the

Mott-Hubbard type MIT as a function of U/W . However

we need at least a two-band Hubbard model with the pa-

rameters U and ∆ to describe the both types of MIT.

In this paper we wish to study the Mott MIT with

both the Mott-Hubbard type and the charge-transfer type

mechanisms over the whole parameter regime. We use a

two-band Hubbard model characterized by the following

parameters: the on-site Coulomb interaction U at the d-

orbital, the charge-transfer energy ∆ between d- and p-

orbitals and the hopping integrals tpd, tdd and tpp between

p−d, d−d and p−p orbitals, respectively. Several authors

have studied the model using the DMFT approach [4,16–

19]. However, numerical problems make it difficult to ob-

tain the critical values of the Mott MIT for this model, in

contrast to the single-band Hubbard model. In the half-

filled single-band Hubbard model on the Bethe lattice,

the chemical potential is fixed to µ = U
2 because of the

particle-hole symmetry. On the other hand, for the two-

band Hubbard model, the Mott MIT occurs away from

particle-hole symmetry and so the chemical potential has

to be determined explicitly to fix the electron density per

unit cell to be unity. This calculation consumes a lot of

CPU time. Furthermore, the Mott MIT point is a function

of several parameters, all of which have to be calculated,

making it a difficult numerical problem.
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In this work we show that there is an alternative ap-

proach which has clear advantages as it can be handled

analytically. It is based on the linearized version of DMFT,

as developed by Bulla [20] and applied by Bulla and Pot-

thoff [21], where the critical value Uc of the Mott MIT

can be calculated analytically. In the linearized DMFT,

the hybridization function between the impurity level and

the conduction band is approximated by a single pole at

the Fermi level. For the single-band Hubbard model on the

Bethe lattice, the critical value is given by Uc = 1.5W . The

result is in good agreement with the numerical result from

the ED and the NRG calculations of the full DMFT men-

tioned above. The generalization of the linearized DMFT

to more complicated lattices was also discussed in ref. [21].

However, the models considered there were restricted to

the particle-hole symmetric case where the chemical po-

tential is fixed to the value µ = U
2 .

In the present paper, we study a form of the two-band

Hubbard model, which shows the Mott MIT away from

the particle-hole symmetry. We generalize the linearized

DMFT to the particle-hole asymmetric case and obtain

an analytical expression for the critical values of the Mott

MIT. A detailed account of the calculations is given in

Section 2 and the analytical results are compared with

the numerical results from the ED method for the several

values of parameters in Section 3. A good agreement be-

tween the two approaches is found in every case. Some lim-

iting cases in the Mott-Hubbard type and charge-transfer

regimes are discussed in Section 3 and our conclusions are

given in Section 4.

2 Linearized dynamical mean-field theory

2.1 Single-band Hubbard model

First, we consider the single-band Hubbard model,

H = −
∑

<i,j>,σ

ti,j(c
†
iσcjσ + h.c.) + U

∑
i

c†i↑ci↑c
†
i↓ci↓. (1)

In the limit of infinite dimensions, the self-energy becomes

purely site-diagonal and the DMFT becomes exact. The

local Green’s function G(z) can be given by the impurity

Green’s function of an effective single impurity Anderson

model,

HAnd = εf
∑
σ

f†
σfσ + Uf†

↑f↑f
†
↓f↓

+
∑
k,σ

εkc
†
kσckσ +

∑
k,σ

Vk(f
†
σckσ + c†kσfσ), (2)

where εf is the impurity level and εk are energies of con-

duction electrons hybridized with the impurity by Vk. In

the model eq. (2), the non-interacting impurity Green’s

function,

G0(z) = (z − εf −∆(z))−1, (3)

with the hybridization function,

∆(z) =
∑
k

V 2
k

z − εk
, (4)

includes effects of the interaction at all the sites except

the impurity site and is determined self-consistently so as

to satisfy the self-consistency equation.

For simplicity, the calculations in this paper are re-

stricted to the Bethe lattice with the connectivity q and

the hopping ti,j = t√
q [22]. In the limit q = ∞, the self-

consistent equation is given by

G0(z)
−1 = z + µ− t2G(z), (5)
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where µ is the chemical potential for the original lattice

model. In the non-interacting case, the local Green’s func-

tion is obtained from eq.(5) with G0(z) = G(z). It yields

a semicircular density of states: D(ε) = 1
πt

√
1− ( ε+µ

2t )2

for |ε+ µ| < 2t. Because of the particle-hole symmetry at

half-filling, the chemical potential and the impurity level

are set to µ = U
2 and εf = −U

2 , respectively. Then, the

self-consistency equation (5) is simply written by

∆(z) = t2G(z). (6)

When the system approaches the MIT from the metal-

lic side at T = 0, the central quasiparticle peak is found to

appear to be isolated from the upper and the lower Hub-

bard bands [1,13]. The width of the quasiparticle peak

vanishes in the limit U → Uc. In this limit, the effect

of the Hubbard bands on the quasiparticle peak becomes

rather small [21]. Therefore, Bulla and Potthoff [21] used

an approximate form for the hybridization function where

the contribution from the Hubbard bands are completely

removed and that the quasiparticle peak is replaced by a

single pole at the Fermi level [23],

∆(z) =
∆0

z
, (7)

with the small weight ∆0 which will be determined self-

consistently. This model with eq.(7) corresponds to the

two-site Anderson model [24],

H2−site = εf
∑
σ

f†
σfσ + Uf†

↑f↑f
†
↓f↓

+ εc
∑
σ

c†σcσ + V
∑
σ

(f†
σcσ + c†σfσ), (8)

with V =
√
∆0, εc = 0 and εf = −U

2 . The model is solved

analytically to obtain the impurity Green’s function which

has four poles: two poles at ω ≈ ±U
2 and two poles near

the Fermi level ω ≈ 0 when U is large. These latter poles

are precursors of the Kondo resonance in the Anderson

model with complete conduction band.

When U → Uc, the hybridization becomes V =
√
∆0 →

0. In this limit, the impurity, and therefore, the local

Green’s function is given by G(z) = w/z near the Fermi

level with the residue [24] (see also Appendix A),

w = 36
V 2

U2
= 36

∆0

U2
, (9)

up to the second order in V . From eqs. (6) and (9), we

obtain a new hybridization function which has a pole at

z = 0 with the weight,

∆′
0 = 36

t2

U2
∆0. (10)

When we solve the self-consistency equation (6) by itera-

tion, ∆0 for the (N + 1)th iteration step is expressed in

terms of ∆0 for the Nth step through eq.(10). Therefore

the critical value for the MIT is given by

Uc = 6t = 1.5W, (11)

with the bare bandwidth W = 4t. For U < Uc, the weight

∆0 increases exponentially with iteration number and,

then, the single pole approximation for ∆(z) breaks down.

For U > Uc, ∆0 decreases exponentially to obtain the self-

consistent value ∆0 = 0 corresponding to the insulating

solution.

2.2 Comparison with numerical methods

Here we estimate the reliability of the linearized DMFT by

comparing the analytical result of the critical value eq.(11)
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Fig. 1. The quasiparticle weight Z in the single-band Hubbard model on the Bethe lattice as a function of U : a comparison

between the NRG result [13] and the ED result (the system size ns = 8). The critical value from the linearized DMFT, ULDMF
c ,

and that from the PSCM [1] are also shown. We set t = 1.

with the available numerical results. The effective single

impurity Anderson model eq.(2) is approximately solved

by using the exact diagonalization of a cluster model with

finite system size ns [4] (the ED method). The Wilson’s

numerical renormalization group method is also used to

solve the model eq.(2) in the thermodynamic limit [5,6]

(the NRG method).

Fig. 1 shows the U dependence of the quasiparticle

weight defined by Z = (1 − dΣ(z)
dz |z=0)

−1, with the local

self-energy Σ(z) = G0(z)
−1 −G(z)−1, calculated from the

NRG method [13] and the ED method. The NRG and

the ED results agree very well over the whole range of

U -values.

When we approach the MIT point from the metallic

side, Z continuously becomes zero at a critical value Uc

as shown in Fig. 1. Recently, Bulla [13] obtained the pre-

cise result of the critical value Uc = 5.88t by using the

NRG method. In the ED method, an extrapolation of the

systems with up to ns = 11 yields the ns → ∞ extrapo-

lated value Uc = 5.87t [25]. The result from the linearized

DMFT, eq.(11), is in very good agreement with the NRG

and the ED results. It also agrees well with the value

of Uc = 5.84t from the projective self-consistent method

(PSCM) [1] and with the value of Uc = 6.04t obtained

in the NRG calculations of Shimizu and Sakai [26]. The

iterated perturbation method, where the effective single

impurity Anderson model eq.(2) is solved within the sec-

ond order perturbation with respect to U , gives a larger

critical value Uc = 6.6t as compared to the other non-

perturbative approaches. The random dispersion approx-

imation (RDA) [27] predicts a considerably lower critical

value Uc = 4.0t. The origin of this discrepancy is presently

not clear.
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2.3 Two-band Hubbard model

Next, we consider the two-band Hubbard model on a Bethe

lattice with connectivity q,

H =
tpd√
q

∑
<i,j>,σ

(d†iσpjσ + h.c.) + U
∑
i

d†i↑di↑d
†
i↓di↓

+
tdd
q

∑
<i,i′>,σ

(d†iσdi′σ + h.c.) + εd
∑
i,σ

d†iσdiσ

+
tpp
q

∑
<j,j′>,σ

(p†jσpj′σ + h.c.) + εp
∑
j,σ

p†jσpjσ, (12)

where d†iσ and p†jσ are creation operators for an electron

with spin σ in the d-orbital at site i and in the p-orbital

at site j, respectively. tpd, tdd and tpp are the hopping

integrals between the nearest neighbour p − d, p − p and

d−d orbitals, respectively. The charge-transfer energy∆ is

defined by∆ ≡ εp−εd > 0 [28]. In eq.(12), we assume that

p- and d-orbitals are on different sub-lattices of a bipartite

lattice, more explicitly, a Bethe lattice with connectivity

q. In the limit q = ∞, the self-consistency equations for

the local Green’s functions are given by [1,16]

G0(z)
−1 = z + µ− εd − t2pdGp(z)− t2ddGd(z), (13)

Gp(z)
−1 = z + µ− εp − t2pdGd(z)− t2ppGp(z), (14)

whereGp(z) is the local Green’s function for the p-electron

and Gd(z) is that for the d-electron which can be given by

the impurity Green’s function of an effective single impu-

rity Anderson model eq.(2).

The non-interacting local Green’s functions are eas-

ily obtained by solving the self-consistency equations (13,

14) with G0(z) = Gd(z). They yield the densities of states

which consist of two bands: a d-band with the bandwidth

Wd ≈ 4tdd around the d-level and a p-band with the band-

width Wp ≈ 4tpp around the p-level when tpd is small.

When the electron density per unit cell n = 1, the d-

band is half-filled and the system is metallic as shown in

Fig. 2(a).

In the presence of U , the system is found to show

the Mott MIT [16–19]. When U < ∆ (Mott-Hubbard

type), the energy gap of the insulating state is approxi-

mately given by U (Fig. 2(b)). On the other hand, when

U > ∆ (charge-transfer type), it is approximately given

by ∆ (Fig. 2(c)). When the system approaches the MIT

from the metallic side, the central quasiparticle peak is

found to be largely isolated from the upper and lower

Hubbard bands in the Mott-Hubbard type as observed

in the single-band Hubbard model. It is also found to be

largely isolated from the p-band and the lower Hubbard

band in the charge-transfer type [17,18]. The width of the

quasiparticle peak vanishes in the limit of the MIT point

in both types.

Now, we study the MIT of this system by using the

linearized DMFT. We assume that in the limit of the MIT

point the effect of both the Hubbard bands and the p-

band on the quasiparticle peak is negligible. Then we use

an approximate form for the hybridization function eq.(7)

as used in the single-band Hubbard model. In this case,

the effective single impurity Anderson model eq.(2) with

eq.(7) corresponds to the two-site Anderson model eq.(8)

with V =
√
∆0, εc = 0 and εf = ε̄d ≡ εd − µ. The

local d-Green’s function in this model is obtained by (see

Appendix A)

Gd(z) =
wd

z
+

w1

z − ε1
+

w4

z − ε4
, (15)
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(a)  d–band metal (U=0)
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(b)  Mott–Hubbard type insulator
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(c)  charge–transfer type insulator

Fig. 2. Schematic figures of the density of states in the two-band Hubbard model: (a) the d-band metal with U = 0, (b) the

Mott-Hubbard type insulator with U < ∆ and (c) the charge-transfer type insulator with U > ∆ [28]. EF is the Fermi level.

where the residue wd is (up to the second order in V )

wd = V 2

(
5

2ε̄2d
+

5

2(ε̄d + U)2
− 4

ε̄d(ε̄d + U)

)
, (16)

and w1, w4, ε1 and ε4 are given in Appendix A.

To calculate the local p-Green’s function, we assume

an approximate form [29]

Gp(z) =
wp

z
+

1− wp

z − ε̄p
, (17)

with ε̄p ≡ εp−µ. By using eq.(17) in eq.(14) together with

eq.(15), we obtain wp up to the second order in V :

wp =
t2pdwd(

ε̄p −
t2
pd

2ε̄d
− t2

pd

2(ε̄d+U) −
t2pp
ε̄p

)2
− t2pp

. (18)

Substituting eqs.(15, 17) into eq.(13) yields a new hy-

bridization function which has a pole at z = 0 with the

weight ∆′
0 = F∆0 with

F (tpd, tpp, tdd, U, ε̄d, ε̄p)

=

(
5

2ε̄2d
+

5

2(ε̄d + U)2
− 4

ε̄d(ε̄d + U)

)

×

 t4pd(
ε̄p −

t2
pd

2ε̄d
− t2

pd

2(ε̄d+U) −
t2pp
ε̄p

)2
− t2pp

+ t2dd

 . (19)

Following the same argument discussed in Section 2.1, we

have an equation to determine the MIT point within the

linearized DMFT:

F (tpd, tpp, tdd, U, ε̄d, ε̄p) = 1. (20)

In eq.(20), F includes the chemical potential µ (through

ε̄d and ε̄p). In the two-band Hubbard model, the MIT oc-

curs away from the particle-hole symmetry as shown in

Fig. 2. Then we have to determine the chemical poten-

tial explicitly to obtain the critical values of the MIT. In

general, the chemical potential is determined so as to fix

the electron density. In the linearized DMFT, we focus on

the low-energy part of the Green’s function and determine

it self-consistently. On the other hand, the high-energy

part, whose details are neglected, is not determined self-

consistently. Then we fail to obtain the precise expression

of the electron density calculated from the Green’s func-

tion within the linearized DMFT. However, in the next

paragraph we show that we can use an alternative condi-
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tion to determine µ, based on the fact that at the MIT

point ∆′
0 has a minimum value as a function of µ. This

condition gives

∂

∂µ
F (tpd, tpp, tdd, U, ε̄d, ε̄p) = 0. (21)

Combined use of eq.(20) and eq.(21) with eq.(19) enables

us to obtain an analytic expression for the phase boundary

separating the metallic and insulating regimes as a func-

tion of the parameters: tpd, tpp, tdd, U and ∆ ≡ εp − εd.

In the metallic regime, the chemical potential µ(n) is

continuous at n = 1 as a function of n. On the other

hand, in the insulating regime, µ(n) has a jump at n = 1.

When we approach the MIT phase boundary from the

metallic side, µ(n) is still continuous even in the limit of

the MIT point. Correspondingly, there are three cases in

the µ dependence of ∆′
0(µ) as below. (1) In the metallic

regime, ∆′
0(µ) > ∆0 for all µ resulting in the metallic

solution for all n. (2) In the insulating regime,∆′
0(µ) < ∆0

for µ− < µ < µ+, while, ∆
′
0(µ) > ∆0 for µ < µ− or

µ > µ+. Then the system is a Mott insulator for µ− <

µ < µ+, and µ shows a jump from µ− to µ+ at n = 1.

(3) On the phase boundary of the MIT, ∆′
0(µ) = ∆0 for

µ = µ(n = 1), while, ∆′
0(µ) > ∆0 for µ ̸= µ(n = 1).

Then ∆′
0(µ) has a minimum at µ = µ(n = 1). Therefore

the equation (21) is the unique condition to determine the

chemical potential on the MIT phase boundary within the

linearized DMFT.

In the single-band Hubbard model on the Bethe lattice,

the condition to minimize ∆′
0 is written by ∂wd

∂µ = 0 where

wd is defined by eq.(16) with εd = 0 (ε̄d = −µ) without

assuming the particle-hole symmetry. It yields the exact

value of the chemical potential, µ = U
2 , as expected. In

the two-band Hubbard model, the chemical potential thus

obtained agrees well with that from the ED method where

the high-energy part is also determined self-consistently.

It will be shown in Section 3.

3 Discussion

3.1 Phase diagram

From the coupled equations (20,21) with eq.(19), we can

easily obtain the phase boundary of the MIT as a function

of tpd, tpp, tdd, U and ∆ within the linearized DMFT.

Figs. 3(a)-(c) show the phase diagrams of the MIT on the

∆−U plane for several values of tpp and tdd with tpd = 1

together with the result obtained from the ED method for

tpp = tdd = 0 [19]. The result from the linearized DMFT

is in good agreement with the ED result for all values of

∆ and U in the case with tpp = tdd = 0.

The MIT is observed when U is varied for U < ∆

(Mott-Hubbard type), while it is observed when ∆ is var-

ied for U > ∆ (charge-transfer type) as seen in Figs. 3(a)-

(c). The phase boundary smoothly connects the Mott-

Hubbard type and the charge-transfer type transitions for

all values of tdd and tpp. As tdd and/or tpp increase, the

metallic region monotonically increases. However, the ef-

fect of tpp on the critical value of the Mott-Hubbard type

transition is rather small as seen in Fig. 3(b). This will be

discussed in Section 3.3.

In the presence of tpp and tdd, we also calculated the

quasiparticle weight Z by using the ED method. When we
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Fig. 3. Phase diagrams of the two-band Hubbard model at T = 0 and n = 1. Solid lines are phase boundaries separating

the metallic and insulating regimes obtained from the linearized DMFT as functions of ∆ and U for several values of tdd with

tpp = 0 (a), for several values of tpp with tdd = 0 (b) and for several values of tpp = 5tdd (c). Closed circles are the critical values

for tpp = tdd = 0 calculated from the exact diagonalization method [19]. We set tpd = 1 in all figures.

approach the MIT point from the metallic side, Z contin-

uously becomes zero as shown in the insets of Figs. 4(a)

and (b). The critical value Uc (∆c) thus obtained is plot-

ted in Fig. 4(a) (Fig. 4(b)) as a function of tdd (tpp) for

a fixed value of ∆ (U) together with that obtained from

the linearized DMFT. The agreement between the two

methods is good even in the case with finite tpp and tdd.

Thus we conclude that the linearized DMFT gives a reli-

able estimate for the phase boundary of the Mott MIT in

the two-band Hubbard model over the whole parameter

regime. We note that the chemical potential at the MIT

point from the linearized DMFT also agrees well with that

from the ED method. This confirms that eq.(21) is a reli-
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Fig. 4. The critical value Uc as a function of tdd for tpp = 0 and ∆ = 10 (a), and the critical value ∆c as a function of tpp for

tdd = 0 and U = 6 (b), obtained from the linearized DMFT (solid line) and from the ED method (closed circle). Insets show

the quasiparticle weight Z from the ED method (the system size ns = 8) as a function of U for several tdd with tpp = 0 and

∆ = 10 (a), and as a function of ∆ for several tpp with tdd = 0 and U = 6 (b). We set tpd = 1 in all figures.

able condition to determine the chemical potential at the

MIT point.

By eliminating the chemical potential µ directly from

the coupled equations (20,21) with eq.(19), an analytic ex-

pression for the phase boundary of the MIT is obtained

within the linearized DMFT, although it is rather compli-

cated. We can however get some simple analytical expres-

sion in limiting cases as below.

3.2 Mott-Hubbard regime (U < ∆)

For the case with U < ∆, the MIT is observed when U

is varied as seen in Figs. 3(a)-(c). In the limit ∆ → ∞,

eqs.(20,21) with eq.(19) yield the chemical potential µ ≈

Uc

2 and the critical value Uc:

Uc ≈ 6

√
t4pd
∆2

+ t2dd. (22)

When tpd = 0, eq.(22) results in Uc ≈ 6tdd = 1.5Wd with

the bare d-bandwidth Wd = 4tdd which is equivalent to

eq.(11) in the case with single-band Hubbard model as

expected. When tdd = 0, eq.(22) yields Uc ≈ 1.5Wd with

the bare d-bandwidth of the d-p hybridized band given

by Wd = 1
2 [(∆

2 + 16t2pd)
1
2 − ∆] ≈ 4t2pd

∆ . In general, Uc is

approximately given by 1.5 times the bare d-bandwidth

in the Mott-Hubbard regime. We note that, in the limit

∆ → ∞, Uc is independent of tpp as shown in eq.(22) and

also shown in Fig. 3(b). This enables us to describe the

MIT in the Mott-Hubbard type by using the single-band

Hubbard model.

3.3 Charge-transfer regime (U > ∆)

For the case with U > ∆, the MIT is observed when ∆

is varied as seen in Figs. 3(a)-(c). In the limit U → ∞,
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eqs.(20,21) with eq.(19) yield the critical value ∆c:

∆c ≈


2
(√

5
2 − 1

2

) 1
2

tpd tpd ≫ tpp, tdd,

1+
√
5

2 tpp tpp ≫ tpd, tdd,√
5
2 tdd +

2t2dd
U tdd ≫ tpd, tpp.

(23)

Correspondingly, the chemical potential is given by µ ≈

εp+εd
2 for tpd ≫ tpp, tdd, µ ≈ εd for tpp ≫ tpd, tdd and

µ ≈ εp for tdd ≫ tpd, tpp. We note that for the small value

of ∆ < ∆c the system is metallic even in the limit U → ∞

as mentioned in ref. [15]. When U ≫ ∆ ≫ tpd, tpp, tdd,

d-orbitals are almost singly occupied and p-orbitals are

nearly empty. The electron transfer from a d-orbital to

a p-orbital costs the charge-transfer energy ∆ while it

gains the kinetic energy: K ∼ t2pd
∆ for tpd ≫ tpp, tdd,

K ∼ tpp for tpp ≫ tpd, tdd and K ∼ tdd + O(
t2dd
U ) for

tdd ≫ tpd, tpp. Equation (23) means an energy balance be-

tween the charge-transfer energy and the kinetic energy

[30].

For general values of tpd, tpp and tdd, the explicit ex-

pression for ∆c is still complicated even in the limit U →

∞. However the critical value ∆c is roughly given by the

energy balance mentioned above in the charge-transfer

regime. We note that ∆c is positive for all values of U ,

tpd, tpp and tdd in contrast to the negative-∆c predicted

by the local impurity approximation [31] where the im-

purity Anderson model is solved (not self-consistently) to

determine the critical value of the MIT. This descrepancy

will be discussed in Section 4.

4 Conclusions

Within the linearized DMFT, we have obtained a good

description of the phase diagram of the Mott MIT analyt-

ically in the two-band Hubbard model over the whole pa-

rameter regime including the Mott-Hubbard regime, charge-

transfer regime and the intermediate regime. The ana-

lytical result agrees well with the numerical result ob-

tained from the ED method. Although the ED method is

an approximate calculation, it is in very good agreement

with the recent NRG method in the single-band Hubbard

model and is expected to be reliable for the two-band Hub-

bard model.

We have used the two-site Anderson model in the lin-

earized DMFT. The same model was also used in the ED

method with the smallest cluster size ns = 2 and obtained

the self-consistent solution which does not show the MIT

up to U = 100t. The difference between two methods is

the self-consistent procedure. In the linearized DMFT, we

focus only on the lowest-energy poles and determine them

self-consistently. On the other hand, in the ED method,

all of the poles are determined self-consistently so as to

satisfy the self-consistency condition as close as possible

even in the case with ns = 2. The ns = 2 system is insuffi-

cient to describe the high-energy poles and fails to obtain

the MIT within the ED method, while it is sufficient to

describe the low-energy poles to obtain the critical value

of the MIT within the linearized DMFT.

In the linearized DMFT, we have assumed that as the

MIT is approached the central quasiparticle peak becomes

isolated from the upper and lower Hubbard bands and
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the p-band. Such an isolated quasiparticle peak occurs

for the single-band Hubbard model [1,13] and also for

the two-band Hubbard model [17,18]. The phase bound-

ary smoothly connects the Mott-Hubbard type and the

charge-transfer type transitions, showing that the cen-

tral quasiparticle peak also smoothly changes from one

type to the other. Even in the case of large p- and/or d-

bandwidth, a finite tpd yields a hybridization gap between

the p- and the d-bands and a central quasiparticle peak

is found within the hybridization gap isolated from these

bands in the limit of the MIT point.

When tpd = 0 and U > Uc ≈ 6tdd, there is a transition

from the Mott insulator to a metal at ∆c = 2tpp =
Wp

2 .

In this case the p and the d electron states are decoupled.

There is a correlated d-band and a separate free p-band,

and the transition at ∆c = 2tpp is simply due to the over-

lap of these bands. The quasiparticle weight in the p-band

remains unity as the transition is approached. This is quite

different from the Mott MIT considered here, which is a

many-body transition where the weight and the width of

the quasiparticle peak within the hybridization gap due to

tpd decrease to zero. The value of ∆c for this transition,

given by eq.(23) in the limit tpd → 0, differs from the

value ∆c = 2tpp for the simple overlap transition, showing

that tpd = 0 is a singular point of the two-band Hubbard

model.

Zaanen, Sawatzky and Allen previously obtained a sim-

ilar phase diagram of the Mott MIT by using the local im-

purity approximation (LIA) [15]. They mapped the lattice

model onto the impurity Anderson model where the hy-

bridization function is assumed and is not determined self-

consistently in contrast to the DMFT. In the DMFT, the

self-consistency condition plays an important role to take

into account of the translational symmetry. By neglect-

ing the translational symmetry, the LIA fails to describe

precisely the metallic state and the MIT phase boundary

although it gives reasonable description for the insulating

state when the gap is large [32]. For the case with small

p-bandwidth Wp = 4tpp, the LIA predicts a negative value

of ∆c in the charge-transfer type [31] in contrast to the

DMFT where ∆c is always positive. As mentioned in Sec-

tion 3.3,∆c is roughly given by an energy balance between

the charge-transfer energy and the kinetic energy. Even in

the case with tpp = tdd = 0, the kinetic energy due to tpd,

which is underestimated in the LIA, gives a positive value

of ∆c in the DMFT.

Within the linearized DMFT, we have determined the

chemical potential by using the condition that the hy-

bridization function has a minimum instead of fixing the

electron density to be unity. The chemical potential thus

obtained is equivalent to the exact result in the single-

band Hubbard model on the Bethe lattice. It also agrees

well with the result from the ED method in the two-

band Hubbard model. This method is applicable for the

single-band Hubbard model without particle-hole symme-

try such as the fcc-type lattice in d = ∞ [33]. It is also in-

teresting to apply this method to more complicated mod-

els, e.g., the model with the orbital degeneracy and the

Hund rule coupling, where the numerical method of the

full DMFT becomes rather difficult.
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Appendix A

Here we discuss the two-site Anderson model eq.(8) [24].

We assume that the conduction level is between the atomic

f -level and the upper Hubbard level: εf < εc < εf + U.

The one electron eigenstates

|E±⟩ = α±f
+
σ |0⟩+ β±c

+
σ |0⟩, (24)

correspond to the eigenenergies

E± =
1

2

(
εc + εf ±

√
(εc − εf )2 + 4V 2

)
. (25)

For the small hybridization V 2 ≪ εc − εf , eq.(25) is sim-

plified as

E+ = εc +
V 2

εc − εf
, E− = εf − V 2

εc − εf
, (26)

to leading order in V 2, with the corresponding eigenstates

|E+⟩ = α

(
V

εc − εf
f+
σ + c+σ

)
|0⟩, (27)

|E−⟩ = α

(
f+
σ − V

εc − εf
c+σ

)
|0⟩, (28)

with α = 1 − V 2

2(εc−εf )2
. Similarly, we obtain the three

electron (one hole) eigenenergies

Ē± =
1

2

(
3εc + 3εf + U ±

√
(εf + U − εc)2 + 4V 2

)
.(29)

For the small hybridization V 2 ≪ εf + U − εc, eq.(29) is

simplified as

Ē+ = εc + 2εf + U +
V 2

εf + U − εc
, (30)

Ē− = 2εc + εf − V 2

εf + U − εc
, (31)

to leading order in V 2. The corresponding eigenstates are

|Ē+⟩ = ᾱ

(
V

εf + U − εc
fσ + cσ

)
|4⟩, (32)

|Ē−⟩ = ᾱ

(
fσ − V

εf + U − εc
cσ

)
|4⟩, (33)

with ᾱ = 1− V 2

2(εf+U−εc)2
and |4⟩ = f+

↑ f+
↓ c+↑ c

+
↓ |0⟩.

The two electron states can be classified as singlets

or triplets. In the triplet state, the spatial part of the

wavefunction is antisymmetric and the interaction U plays

no role. Then the total energy of the triplet state is given

by E+ + E− = εc + εf . There are three possible singlet

states which can be written by the linear combination of

the states,

|ϕ1⟩ =
1√
2
(c+↑ f

+
↓ − c+↓ f

+
↑ )|0⟩, (34)

|ϕ2⟩ = c+↑ c
+
↓ |0⟩, (35)

|ϕ3⟩ = f+
↑ f+

↓ |0⟩. (36)

The eigenenergies are given by the solutions of the equa-

tion, ∣∣∣∣∣∣∣∣∣∣∣
E − εc − εf −

√
2V −

√
2V

−
√
2V E − 2εc 0

−
√
2V 0 E − 2εf − U

∣∣∣∣∣∣∣∣∣∣∣
= 0. (37)



14 Y. Ōno, R. Bulla, A. C. Hewson: Phase diagram of the Mott Transition in a two-band Hubbard model

To leading order in V 2, the eigenenergies are

E1 = εc + εf − 2V 2

εc − εf
− 2V 2

εf + U − εc
, (38)

E2 = 2εc +
2V 2

εc − εf
, (39)

E3 = 2εf + U +
2V 2

εf + U − εc
, (40)

and the corresponding eigenstates are

|E1⟩ = α1

(
|ϕ1⟩ −

√
2V

εc − εf
|ϕ2⟩ −

√
2V

εf + U − εc
|ϕ3⟩

)
,(41)

|E2⟩ = α2

( √
2V

εc − εf
|ϕ1⟩+ |ϕ2⟩

)
, (42)

|E3⟩ = α3

( √
2V

εf + U − εc
|ϕ1⟩+ |ϕ3⟩

)
, (43)

with α1 = 1− V 2

(εc−εf )2
− V 2

(εf+U−εc)2
, α2 = 1− V 2

(εc−εf )2
, and

α3 = 1− V 2

(εf+U−εc)2
. In our situation with εf < εc < εf +

U, we find the singlet ground state, |E1⟩, with an energy

gain of 2V 2

εc−εf
+ 2V 2

εf+U−εc
due to the hybridization. This is

equivalent to the energy gain 2J in the s-d model with the

Kondo coupling J corresponding to the Schrieffer-Wolff

transformation for V 2 ≪ εc − εf and V 2 ≪ εf + U − εc.

Now we calculate the f -electron Green’s function of

this model. When a f, ↑ electron is removed from the

ground state |E1⟩, there are two possible final states: |E+⟩

and |E−⟩. Correspondingly, there are two possible single-

hole excitations with excitation energies,

E+ − E1 = −εf +
3V 2

εc − εf
+

2V 2

εf + U − εc
≡ −ε1, (44)

E− − E1 = −εc +
V 2

εc − εf
+

2V 2

εf + U − εc
≡ −ε2, (45)

to leading order in V 2. The matrix elements for these tran-

sitions are

⟨E+|f↑|E1⟩ =
αα1√

2

(
1− 2V 2

(εc − εf )(εf + U − εc)

)
,

⟨E−|f↑|E1⟩ =
αα1√

2

(
− V

εc − εf
− 2V

εf + U − εc

)
,

which yield the transition probabilities:

|⟨E+|f↑|E1⟩|2 =
1

2
− 3V 2

2(εc − εf )2
− V 2

(εf + U − εc)2

− 2V 2

(εc − εf )(εf + U − εc)

≡ w1, (46)

|⟨E−|f↑|E1⟩|2 =
V 2

2(εc − εf )2
+

2V 2

(εf + U − εc)2

+
2V 2

(εc − εf )(εf + U − εc)

≡ w2, (47)

to leading order in V 2.

When a f, ↑ electron is added to the ground state |E1⟩,

possible final states are |Ē−⟩ and |Ē+⟩. Correspondingly,

there are two possible single-particle excitations with ex-

citation energies,

Ē− − E1 = εc +
2V 2

εc − εf
+

V 2

εf + U − εc
≡ ε3, (48)

Ē+ − E1 = εf + U +
2V 2

εc − εf
+

3V 2

εf + U − εc

≡ ε4, (49)

to leading order in V 2. The matrix elements for these tran-

sitions are

⟨Ē−|f+
↑ |E1⟩ =

ᾱα1√
2

(
2V

εc − εf
+

V

εf + U − εc

)
,

⟨Ē+|f+
↑ |E1⟩ =

ᾱα1√
2

(
1− 2V 2

(εc − εf )(εf + U − εc)

)
,

which yield the transition probabilities:

|⟨Ē−|f+
↑ |E1⟩|2 =

2V 2

(εc − εf )2
+

V 2

2(εf + U − εc)2

+
2V 2

(εc − εf )(εf + U − εc)

≡ w3, (50)

|⟨Ē+|f+
↑ |E1⟩|2 =

1

2
− V 2

(εc − εf )2
− 3V 2

2(εf + U − εc)2

− 2V 2

(εc − εf )(εf + U − εc)

≡ w4, (51)
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to leading order in V 2.

From eqs.(44)-(51), we obtain the f -electron Green’s

function which has four poles:

Gσ(z) =
4∑

i=1

wi

z − εi
. (52)

In the limit V → 0, high-energy poles at ε1 ≈ εf and

ε4 ≈ εf + U have large residues w1 ≈ w2 ≈ 1
2 , while low-

energy poles merge together at ε2 ≈ ε3 ≈ 0 with small

total residue w ≡ w2 + w3:

w =
5V 2

2(εc − εf )2
+

5V 2

2(εf + U − εc)2

+
4V 2

(εc − εf )(εf + U − εc)
. (53)
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10. N. Blümer, R. Bulla, M. Jarrell, P.G.J. van Dongen, D.

Vollhardt, A Newton Institute Workshop on Strongly Corre-

lated Electron Systems - Novel Physics and New Materials,

unpublished.

11. W. Krauth, Phys. Rev. B 62, 6860 (2000).

12. R. Bulla, T.A. Costi, D. Vollhardt, cond-mat/0012329.

13. R. Bulla, Phys. Rev. Lett. 83, 136 (1999).

14. A. Fujimori, F. Minami, S. Sugano, Phys. Rev. B 29, 5225

(1984).

15. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett.

55, 418 (1985).

16. A. Georges, G. Kotliar, W. Krauth, Z. Phys. B 92, 313

(1993).

17. T. Mutou, H. Takahashi, D. S. Hirashima, J. Phys. Soc.

Jpn. 66, 2781 (1997).
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19. Y. Ōno, K. Sano, Proceedings of CREST International

Workshop: J. Phys. Chem. Solids 62, 285 (2001) .

20. R. Bulla, (1998); unpublished.

21. R. Bulla, M. Potthoff, Eur. Phys. J. B 13, 257 (2000).

22. This simplification is not essential. The general case is dis-

cussed in ref.[20].

23. The Fermi level for the impurity Anderson model is set to

be zero.

24. A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge Univ. Press, 1993).

25. Y. Ōno (in preparation).

26. Y. Shimizu, O. Sakai, Computational Physics as a New

Frontier in Condensed Matter Research, edited by H.

Takayama et al. (The Phys. Soc. Jap., 1995), p. 42.
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