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Abstract

We investigate the electronic states and the superconductivity in the two-dimensional 16-bandd-p model extracted from a tight-
binding fit to the band structure of iron pnictides, in the presence of both the Coulomb interaction between Fed-electrons and the
electron-lattice couplingg with the orthorhombic mode which is crucial for reproducing the recently observed ultrasonic softening
of the elastic constantC66. Due to the cooperative effects of these interactions, the ferro-orbital order with different occupations
of dyz and dzx orbitals occurs and induces the tetragonal-orthorhombic structural transition atTs, together with the stripe-type
antiferromagnetic (AFM) order belowTN. For a largeg case, we obtain the phase diagram consistent with the doped iron pnictides
with Ts > TN for x > 0, where thes++-wave superconductivity is mediated by the ferro-orbital fluctuation which is largely enhanced
near the ferro-orbital QCP atxc with Ts → 0. On the other hand, for a smallg case, the simultaneous phase transition occurs at
Ts = TN even forx > 0, where thes±-wave superconductivity is mediated by the AFM fluctuation. Both thes-wave states with
full superconducting gaps are consistent with most of the experiments but only the former is considered to account for the small
Tc-suppression against nonmagnetic impurities.
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1. Introduction

The discovery of the iron pnictide superconductors
RFePnO1−xFx (R=Rare Earth,Pn=As, P) [1, 2] with a high
transition temperature exceeding 50K [3] has triggered an in-
tense research effort to search for new superconducting mate-
rials and to investigate the physical properties of these materi-
als. The parent compounds withx = 0 show the tetragonal-
orthorhombic structural transition and the stripe-type antiferro-
magnetic (AFM) transition. For example, LaFeAsO shows the
structural phase transition atTs ∼ 155K from the tetragonal
phase (T > Ts) to the orthorhombic phase (T < Ts) and the
stripe-type AFM order belowTN ∼ 137K with a magnetic mo-
ment∼ 0.35µB at low temperature [4, 5]. The carrier dopingx
suppresses both of the transition temperaturesTs andTN and in-
duces the superconductivity as shown in Fig. 1. Therefore, the
magnetic order and/or the structural transition are considered to
play important roles in the mechanism of the superconductivity.

When the carrier dopingx is varied,Ts is found to be always
higher thanTN in 1111 system such as RFeAsO1−xFx [6, 7]
and 111 system such as NaFe1−xCoxAs [8], while in 122 sys-
tem such as Ba(Fe1−xCox)2As2 [9], the simultaneous first-order
transition (Ts = TN) for x = 0 is found to split into two second-
order transitions (Ts > TN) with dopingx. In 11 system such as
Fe1−xCoxSe1−δ [10], the structural transition is observed with-
out AFM transition. It should be stressed that the structural
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transition is a common feature of iron-based superconductors
andTs is always higher thanTN for doped iron pnictides.

As shown in Fig. 1, there are distinct three phases: the tetrag-
onal phase forT > Ts, the orthorhombic phase with the stripe-
type AFM for T < TN, and the orthorhombic phase without
the AFM for TN < T < Ts. We note that the orthorhombic
phase without the AFM should be called the monoclinic phase
in the original unit cell shown in Fig. 1, but we called it the or-
thorhombic phase by using the magnetic unit cell belowTN for
avoiding confusion. Both the transitions atTs andTN are the
second-order as shown in the specific heat [11] and the neutron
experiments [4]. In general, when the system approaches the
second-order transition point, the fluctuation (the susceptibil-
ity) of the corresponding order parameter diverges and may be
responsible for the pairing interaction for the superconductiv-
ity. As the orthorhombic phase without the AFM is next to the
superconducting phase (see Fig. 1), the fluctuation which di-
verges towardsTs is considered to have most significant effect
on the superconductivity.

Remarkably, drastic softening of the elastic constantC66 has
been observed in recent ultrasonic experiments [11, 12, 13, 14].
The temperature dependence is well fitted by the expression,
C66 = C0

66(T−Ts)/(T−θ), whereC66 becomes zero at the struc-
tural transition temperatureTs, and then shows divergent behav-
ior towards a critical temperatureθ [13, 14]. The systematic ul-
trasonic measurements in Ba(Fe1−xCox)2As2 with various dop-
ing x [13] have revealed that, with increasingx, both ofTs and
θ decrease with a huge Jahn-Teller energy given byEJT = Ts−θ
of ∼ 50K or more, andTs becomes zero atxc ∼ 0.07 where a
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Figure 1: (Color online) Schematic phase diagram of iron pnictides as func-
tions of the carrier dopingx and the temperatureT, whereTs, TN andTc are
the transition temperatures for the tetragonal-orthorhombic structural transition,
the stripe-type AFM transition and the superconducting transition, respectively.
Dashed squares denote the unit cells of the corresponding three phases: the
tetragonal phase, the orthorhombic phase with the stripe-type AFM (arrows
show spins), and the orthorhombic phase without the AFM.

quantum critical behavior is observed. For overdoped case with
x > xc, the system does not show the structural transition but
still shows the drastic softening ofC66 down to the supercon-
ducting transition temperatureTc below whichC66 shows the
hardening with a kink atTc.

Generally, the elastic constantCΓ is given by the second
derivative of the Free energy w.r.t. the strain fieldεΓ induced
by the ultrasound and includes the contribution such as−g2

Γ
χOΓ

with the susceptibilityχOΓ
for the electric quadrupole operator

OΓ linearly coupled with the strain field asgΓOΓεΓ. When the
irreducible quadrupole susceptibility shows divergent behavior
with a critical temperatureθ asχOΓ

∼ AΓ/(T − θ), we obtain the
expression forCΓ mentioned in the preceding paragraph, where
the Jahn-Teller energy is given byEJT = g2

Γ
AΓ/C0

Γ
. Then, the

enhancement ofχOΓ
is responsible for the softening ofCΓ and

the large value ofEJT indicates the presence of a large electron-
lattice couplinggΓ.

The detailed ultrasonic measurement in Ba(Fe0.9Co0.1)2As2

[14] has revealed a significant selection rule where the soften-
ing is observed only for the elastic constantC66 while the other
elastic constantsC44 andCE = (C11 − C12)/2 show no soft-
ening. In the case ofC66, the ultrasound introduces the strain
field εxy which corresponds to the orthorhombic distortion and
linearly couples to the quadrupoleOxy corresponding to the or-
bital fluctuations of the longitudinaldy′z-dzx′ and/or transverse
d3z2−r2-dxy modes, where thex′, y′ (x, y) axes are directed along
the nearest (second nearest) Fe-Fe bonds as shown in Fig. 2 [15]
(see also Fig. 3). Therefore, the drastic softening ofC66 indi-

Figure 2: (Color online) Schematic figures of the strain fields forCE = (C11 −
C12)/2,C44 andC66 modes (a), (b) and (c), the orbital fluctuations coupled with
the corresponding strain fields (d), (e) and (f), and the phonons forB1g, Eg and
orthorhombic modes which enhance the corresponding orbital fluctuations (g),
(h) and (i), respectively. Thex′, y′ (x, y) axes are directed along the nearest
(second nearest) Fe-Fe bonds (reproduced from Ref. [15]).

cates that theOxy quadrupole susceptibility (the corresponding
orbital susceptibilities) is largely enhanced at low temperature
down toTs andTc, and there exists a large electron-lattice cou-
pling g with the orthorhombic mode. Remarkably, the softening
of C66 is found to be almost unchanged under the external mag-
netic fields up to 10T [14] and up to 60T in more recent experi-
ments [16], indicating the nonmagnetic origin of the softening,
in contrast to the nematic fluctuation mechanism [12] where the
structural order and its fluctuation is induced by magnetic fluc-
tuations.

Theoretically, the orthorhombic phase with the AFM was
well described by first-principles calculations [17], where the
stripe-type AFM is realized due to the effect of nesting between
the hole and electron Fermi surfaces and induces different oc-
cupancy for they′z and zx′ orbitals and therefore breaks the
tetragonal symmetry resulting in the orthorhombic phase. The
similar induced orbital order was also obtained by the Hartree-
Fock calculations based on the multi-orbital Hubbard models
[18, 19]. However, the orthorhombic phase without the AFM
was not obtained there. The purpose of this paper is to present
a theoretical description of the phase diagram of iron pnictides
including the orthorhombic phase without the AFM, where the
effect of the electron-lattice coupling with the orthorhombic
mode, which is responsible for the softening ofC66 with the
large Jahn-Teller energy, is crucial for reproducing the phase
diagram withTs > TN.

As for the superconductivity, thes-wave pairing with sign
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change of the order parameter between the hole and electron
Fermi surfaces, so calleds±-wave, mediated by the AFM fluc-
tuation was proposed as a possible pairing state in the iron pnic-
tides [20, 21, 22, 23, 24]. Thes±-wave state with a full super-
conducting gap seems to be consistent with most of the experi-
ments [25]. As for the impurity effects, however, the smallTc-
suppression against nonmagnetic impurities [26, 27] is not con-
sistent with thes±-wave state whereTc is considered to rapidly
decrease with the nonmagnetic impurities [28]. Therefore, the
s-wave state without sign change of the order parameter, so
called s++-wave, mediated by the orbital fluctuation which is
enhanced due to the effects of the inter-orbital Coulomb inter-
action was proposed on the basis of the one-dimensional two-
band Hubbard model [29, 30] and the two-dimensional 16-band
d-p model [31].

The orbital fluctuation is known to be enhanced by the
electron-phonon interaction in addition to the inter-orbital
Coulomb interaction. Recently, the effects of the electron-
phonon interaction withB1g andEg modes on the orbital fluc-
tuation and its induceds++-wave superconductivity have been
investigated by Kontani and Onari [32] on the basis of the 5-
band Hubbard model. We have also investigated the effects of
the electron-phonon interaction withB1g, Eg andA1g modes on
the basis of the 16-bandd-p model [33]. As shown in Fig. 2,
theB1g phonon enhances the longitudinaldyz-dzx and transverse
d3z2−r2-dx2−y2 orbital fluctuations responsible for the softening of
CE, while theEg phonon enhances the transversedx2−y2-dyz, dxy-
dzx andd3z2−r2-dyz orbital fluctuations responsible for the soft-
ening ofC44.

More recently, we have also investigated the effect of the
electron-phonon couplingg with the orthorhombic mode which
enhances the longitudinaldy′z-dzx′ and transversed3z2−r2-dxy

orbital fluctuations (Oxy quadrupole fluctuation) responsible
for the softening ofC66 [15]. Due to the cooperative effect
of the Coulomb and electron-phonon interactions, the system
shows the ferro-orbital order which induces the tetragonal-
orthorhombic structural transition atTs, together with the
stripe-type AFM order belowTN. Near the phase transitions,
the s++-wave superconductivity occurs due to the orbital fluc-
tuation for a largeg case withTs > TN, while thes±-wave does
due to the magnetic fluctuation for a smallg case withTs = TN.
The former case is consistent with the phase diagram of doped
iron pnictides withTs > TN.

In this paper, we review our theoretical study on the elec-
tronic states and the superconductivity in iron pnictides based
on the recent published work [15, 24, 31, 33, 34, 35], using a
different parameter set. In addition, we present a more detailed
analysis of the phase diagram and the ultrasonic softening. We
first introduce our model Hamiltonian and formulation in Sec-
tion 2. Then, we show the calculated results in Section 3. Fi-
nally, we summarize and discuss our findings in Section 4.

2. Model and formulation

First of all, we perform the density functional calculation
for LaFeAsO with the generalized gradient approximation of

(a)

(b)

Figure 3: (Color online) Crystal structure of Fe2As2 layer . Small and large
balls represent Fe and As atoms, respectively. The solid line represents the unit
cell. It is noted that As1 and As2 denote the As atoms on the upper side and on
the lower side of the Fe2As2 layer, respectively (reproduced from Ref. [31])

Perdew, Burke and Ernzerhof [36] by using the WIEN2k pack-
age [37], where the lattice parameters (a = 4.03268Å, c =
8.74111Å) and the internal coordinates (zLa = 0.14134,zAs =

0.65166) are experimentally determined [38]. The crystal struc-
ture of Fe2As2 layer is shown in Fig. 3 (a). Since As atoms
are tetrahedrally arranged around a Fe atom, there are two dis-
tinct Fe and As sites in the crystallographic unit cell (see Figs.
3 (a), (b)). Considering these facts, we then derive the two-
dimensional 16-bandd-p model [24, 31], where 3d orbitals
(d3z2−r2, dx2−y2, dxy, dyz, dzx) of two Fe atoms (Fe1=A, Fe2=B)
and 4p orbitals (px, py, pz) of two As atoms are explicitly in-
cluded. We note that thex′, y′ (x, y) axes are directed along
the nearest (second nearest) Fe-Fe bonds as mentioned before.
Hereafter, we number the Fe-3d orbitals as follows:d3z2−r2(1),
dx2−y2(2), dxy(3), dyz(4), dzx(5).

The total Hamiltonian of thed-p model is given by

H = H0 + Hint + Hph + Hel−ph, (1)

whereH0, Hint, Hph and Hel−ph are the kinetic, Coulomb in-
teraction, phonon and electron-phonon interaction parts of the
Hamiltonian, respectively. The kinetic part of the Hamiltonian
is given by the following tight-binding Hamiltonian,

H0 =
∑
i,ℓ,σ

εd
ℓd
†
iℓσdiℓσ +

∑
i,m,σ

ε
p
mp†imσpimσ

+
∑

i, j,ℓ,ℓ′,σ

tdd
i, j,ℓ,ℓ′d

†
iℓσd jℓ′σ +

∑
i, j,m,m′,σ

tpp
i, j,m,m′ p

†
imσp jm′σ

+
∑

i, j,ℓ,m,σ

tdp
i, j,ℓ,md†iℓσp jmσ + h.c., (2)
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Figure 4: (Color online) (a) The band structure obtained from thed-p model eq.
(2) (solid line) and that obtained from the density functional calculation (cross)
for LaFeAsO, where the Fermi level is set to 0 on the energy axis. (b) The cor-
responding Fermi surface obtained from thed-p model. The solid and dashed
lines show the Fermi surfaces wheredyz,dzx anddx2−y2 orbital characters are
the most dominant, respectively.

wherediℓσ is the annihilation operator for Fe-3d electrons with
spinσ in the orbitalℓ at the sitei and pimσ is the annihilation
operator for As-4p electrons with spinσ in the orbitalm at the
site i. In eq. (2), the transfer integralstdd

i, j,ℓ,ℓ′ , tpp
i, j,m,m′ , tdp

i, j,ℓ,m and

the atomic energiesεd
ℓ
, εp

m are determined so as to fit both the
energy and the weights of orbitals for each band obtained from
the tight-binding approximation to those from the density func-
tional calculation. Similar models have been used by the other
authors[39, 40, 41] but the model parameters are different from
ours. The doping concentrationx corresponds to the number of
electrons per unit celln = 24+ 2x in the present model.

In Fig. 4 (a), we show the band structure obtained from the
d-p tight-binding Hamiltonian eq. (2), where the tight-binding
parameters are listed in Table 1 [31], together with that obtained
from the density functional calculation. It is found that the for-
mer reproduces the latter very well. We note that the weights of
orbitals also agree very well with each other (not shown). The
result of our density functional calculation is similar to that pre-
viously reported by the other authors [42, 43, 44, 45, 46, 21].

tdd
αℓ,βℓ′ Fe1 d3z2−r2 Fe1 dx2−y2 Fe1 dxy Fe1 dyz Fe1 dzx Fe2 d3z2−r2 Fe2 dx2−y2 Fe2 dxy Fe2 dyz Fe2 dzx

Fe1 d3z2−r2 −0.024 −0.184 −0.008 0.078
Fe1 dx2−y2 −0.184 −0.023 0.143
Fe1 dxy 0.073 0.328
Fe1 dyz −0.012 0.109 0.184
Fe1 dzx 0.012 0.109

tpp
αℓ,βℓ′ As1 px As1 py As1 pz As2 px As2 py As2 pz

As1 px 0.650 0.311 0.111 0.297
As1 py 0.027 0.311
As1 pz 0.048 0.389

tdp
αℓ,βℓ′ As1 px As1 py As1 pz

Fe1 d3z2−r2 0.646 −0.291
Fe1 dx2−y2 0.276 0.563
Fe1 dxy 0.694
Fe1 dyz 0.319
Fe1 dzx 0.783 0.164

εℓ d3z2−r2 dx2−y2 dxy dyz dzx px py pz

−0.687 −0.610 −0.921 −0.820 −0.820 −1.789 −1.789 −2.173

Table 1: Tight-binding parameters (in units of eV) for thed-p Hamiltonian eq.
(2). It is noted that we define thed-p hopping and the in-planep-p hopping
parameters alongx-axis.

Due to the weak crystalline electric field from the As3− ions
tetrahedrally arranged around a Fe atom and the strong hy-
bridization between the Fe 3d orbitals, the resulting energy
bands have very complicated structure. The Fermi surface for
the d-p tight-binding Hamiltonian is shown in Fig. 4 (b). We
can see nearly circular hole Fermi surfaces (FS0, FS1 and FS2)
around theΓ point and elliptical electron Fermi surfaces (FS3
and FS4) around theM point, wheredyz,dzx and/or dx2−y2 orbital
characters are the most dominant. These results are consistent
with the previous first principle calculations [42, 43, 44, 45, 46].

The Coulomb interaction part of the Hamiltonian is given as
follows,

Hint =
1
2

U
∑

i

∑
ℓ

∑
σ,σ̄

d†iℓσd†iℓσ̄diℓσ̄diℓσ

+
1
2

U′
∑

i

∑
ℓ,ℓ̄

∑
σ,σ′

d†iℓσd†
iℓ̄σ′

diℓ̄σ′diℓσ

+
1
2

J
∑

i

∑
ℓ,ℓ̄

∑
σ,σ′

d†iℓσd†
iℓ̄σ′

diℓσ′diℓ̄σ

+
1
2

J′
∑

i

∑
ℓ,ℓ̄

∑
σ,σ̄

d†iℓσd†iℓσ̄diℓ̄σ̄diℓ̄σ, (3)

whereU and U′ are the intra- and inter-orbital direct terms,
respectively, andJ andJ′ are the Hund’s coupling and the pair-
transfer, respectively. For the isolated atoms, the relations be-
tween Coulomb matrix elementsU = U′ + 2J andJ = J′ are
derived due to the rotational invariance of the Coulomb inter-
action and the reality of the wave functions, respectively [47].
For the atoms in the crystal, however, the relation is not satis-
fied generally due to the crystallographic effects and the many
body effects due to the Coulomb interaction which will be dis-
cussed later. Therefore, we treatU, U′, J andJ′ as independent
parameters in the present paper.

Now we consider the effect of the phonon and the electron-
phonon interaction parts of the HamiltonianHph and Hel−ph

which includes the phonon energyωs and the electron-phonon
coupling constantgℓℓ

′
s between the orbitalℓ andℓ′, respectively,

wheres represents the phonon mode. In the present paper, we
consider theB1g, Eg and orthorhombic modes as shown in Figs.
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2 (g), (h) and (i) [15]. We note that the orthorhombic mode
is not a normal coordinate but a general coordinate which is
given by a linear combination of normal coordinates including
both optical and acoustic modes. To avoid the difficulty with
many phonon modes, we treat the orthorhombic mode as a lo-
cal phonon similar to theB1g andEg modes as a simplest first
step in including the orthorhombic mode. The resulting phonon
and the electron-phonon interaction parts of the Hamiltonian
are given as,

Hph =
∑

i

∑
s

ωsb
†
isbis, (4)

Hel−ph =
∑

i

∑
s

∑
ℓ,ℓ′

∑
σ

gℓℓ
′

s d†iℓσdiℓ′σ(b†is + bis), (5)

where bis is the annihilation operator for the phonon of the
modes (B1g, E1

g, E2
g andθ) at the sitei, ωs is the phonon fre-

quency andgℓℓ
′

s is the electron-phonon coupling. We note that
E1

g andE2
g correspond to the oscillation along thex- andy-axis,

respectively, andθ denotes the orthorhombic mode (see Fig. 2).
Following refs. 29 and 30, we expand the electrostatic poten-

tial variance for Fe-3d electrons from the four surrounding As4−

ions due to the oscillations of the Fe atoms for theB1g andEg

modes in the displacement of the Fe atoms up to the first order
and expand that in thex, y andz coordinates up to the second
order. The resulting electron-phonon coupling matrix elements
of theB1g andEg phonons are given as follows,

√
3g15

E1
g
= g25

E1
g
= g34

E1
g
= −
√

3g14
E2

g
= g24

E2
g
= −g35

E2
g
= gEg,(6)

g44
B1g
= −g55

B1g
=
√

3/2g12
B1g
= gB1g, (7)

gℓℓ
′

s = gℓ
′ℓ

s , (8)

gℓℓ
′

s = 0 (otherwise). (9)

In addition, we also consider the electron-phonon coupling ma-
trix elements of the orthorhombic phonong45

θ coupled with the
transversedyz-dzx (i. e., the longitudinaldy′z-dzx′) orbital fluc-
tuation andg13

θ coupled with the transversed3z2−r2-dxy orbital
fluctuation [15].

Within the RPA [48, 49, 50], the spin susceptibility ˆχs(q) and
the charge-orbital susceptibility ˆχc(q) are given in the 50× 50
matrix representation as follows [15, 24, 31, 33],

χ̂s(q) = [1̂− χ̂(0)(q)Ŝ]−1χ̂(0)(q), (10)

χ̂c(q) = [1̂+ χ̂(0)(q)Ĉ]−1χ̂(0)(q) (11)

with the noninteracting susceptibility

χ
(0) α,β
ℓ1ℓ2,ℓ3ℓ4

(q) = −T
N

∑
k

Gβα
ℓ3ℓ1

(k)Gαβ
ℓ2ℓ4

(k+ q), (12)

whereα, β (=A, B) represent two Fe sites,ℓ represents Fe 3d
orbitals,Ĝ(k) = [(iεn+ µ)1̂− Ĥ0(k)]−1 is the noninteracting Fe-
3d electron Green’s function in the 10×10 matrix representation
with the chemical potentialµ, Ĥ0(k) is the kinetic part of the
Hamiltonian with the momentumk in eq. (2), k = (k, iεn),
q = (q, iνm) and εn = (2n + 1)πT and νm = 2mπT are the
fermionic and bosonic Matsubara frequencies, respectively. In

eqs. (10) and (11), the bare vertices for the spin and charge-
orbital susceptibilitieŝS andĈ are given by [32]

(Ŝ)α,β
ℓ1ℓ2,ℓ3ℓ4

= (Ûs)α,β
ℓ1ℓ2,ℓ3ℓ4

, (13)

(Ĉ)α,β
ℓ1ℓ2,ℓ3ℓ4

= (Ûc)α,β
ℓ1ℓ2,ℓ3ℓ4

− 2δαβ
∑

s

gℓ2ℓ1
s gℓ3ℓ4

s Ds(iνm),(14)

where theDs(iνm) = 2ωs/(ν2
m+ω

2
s) is the local phonon Green’s

function for the modesandÛs andÛc are the bare vertices due
to the Coulomb interaction given as follows,

Ûs (Ûc) =


U (U) (α = β, ℓ1 = ℓ2 = ℓ3 = ℓ4)
U′ (−U′ + 2J) (α = β, ℓ1 = ℓ3 , ℓ2 = ℓ4)
J (2U′ − J) (α = β, ℓ1 = ℓ2 , ℓ3 = ℓ4)
J′ (J′) (α = β, ℓ1 = ℓ4 , ℓ2 = ℓ3)
0 (otherwise).

(15)

It is noted that when the largest eigenvalueλspin (λc−o) of
χ̂(0)(q)Ŝ (−χ̂(0)(q)Ĉ) reaches unity, the magnetic (charge-
orbital) instability occurs.

The linearized Eliashberg equation is given by

λsc∆
αβ
ℓℓ′(k) = −T

N

∑
k′

∑
ℓ1ℓ2ℓ3ℓ4

∑
α′,β′

Vα,β
ℓℓ1,ℓ2ℓ′

(k− k′)

× Gα′α
ℓ3ℓ1

(−k′)∆α
′β′

ℓ3ℓ4
(k′)Gβ′β

ℓ4ℓ2
(k′), (16)

where∆αβ
ℓℓ′(k) is the gap function andVα,β

ℓ1ℓ2,ℓ3ℓ4
(q) is the effective

pairing interaction for the spin-singlet state. Within the RPA
[48, 49, 50],Vα,β

ℓ1ℓ2,ℓ3ℓ4
(q) is given in the 50× 50 matrix,

V̂(q) = ηŜχ̂s(q)Ŝ − 1
2

Ĉχ̂c(q)Ĉ +
1
2

(
Ŝ + Ĉ

)
, (17)

whereη = 3
2 for the spin-singlet state andη = − 1

2 for the spin-
triplet state. The linearized Eliashberg equation (16) is solved
to obtain the gap function∆αβ

ℓℓ′(k) with the eigenvalueλsc. At
T = Tc, the largest eigenvalueλsc becomes unity.

3. Calculated results

In this section, we present the RPA results for the electronic
states and the superconductivity based on the recent published
work [15] by using a different parameter set of the electron-
phonon coupling matrix elements. In addition, we show the
Hartree-Fock phase diagram including the structural and the
magnetic phase transitions [51] which was discussed but not
explicitly shown in the previous paper [15]. We also present a
more detailed analysis on the ultrasonic softening of the elas-
tic constants [13, 14] on the basis of the RPA and the self-
consistent renormalization (SCR) theory [52].

In the numerical calculations for eqs. (10)-(17), we use 32×
32 k point meshes and 512 Matsubara frequencies (−511πT ≤
εn ≤ 511πT). For simplicity, we setωB1g = ωE1

g
= ωE2

g
=

ωθ = ω0 = 0.02eV as done in the previous study [15, 33]. To
reproduce the experimental results that the elastic softening is
observed exclusively for theC66 mode [14], we assumegB1g =

gEg =
g45
θ

2 andg13
θ = 0, and putg45

θ = g [53]. Here and hereafter,
we measure the energy in units of eV.
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Figure 5: (Color online) Several components of the charge-orbital susceptibility
χ̂c(q, ω = 0) for U′ = 0.6, J = J′ = 0.2, U = U′ + 2J = 1.0 andg = 0.089
at x = 0.1 andT = 0.035, where we number the Fe-3d orbitals as follows:
d3z2−r2(1), dx2−y2(2), dxy(3), dyz(4), dzx(5).

Fig. 5 shows several components of the static charge-orbital
susceptibilityχ̂c(q,0) for U′ = 0.6, J = 0.2 andg = 0.089 at
x = 0.1 andT = 0.035. In this case, the dimensionless electron-
phonon coupling parameter is given byλ = 2g2ρ0/ω0 ∼
2g2/ω0 = 0.80 with the density of states at the Fermi level
ρ0 ∼ 1/eV. We find that, whenT decreases, the transversedyz-
dzx orbital susceptibility [ ˆχc(q,0)]A,A45,45 with q ∼ (0,0), which is
equivalent to the longitudinaldy′z-dzx′ one, is most enhanced as
compared to the other orbital and magnetic susceptibilities (not
shown) due to the cooperative effects of the electron-phonon
interaction with the orthorhombic mode and the inter-orbital
Coulomb interactionU′ [31, 33]. We note that, the incommen-
surate peaks aroundq = (0,0) were observed in the previous
work [15] where the different parameter set of the electron-
phonon coupling matrix elements was used. However, the re-
sulting pairing state and the phase diagram are essentially un-
changed as shown below.

In Figs. 6 (a)-(d), we show several components of the super-
conducting gap function with the lowest Matsubara frequency
∆̂(k, iπT) obtained by solving the linearized Eliashberg equa-
tion (16) for the same parameters as in Fig. 5. In this case, the
enhanced orbital susceptibility ˆχc(q) for q ∼ (0,0) (see Fig. 5),
i. e., the ferro-orbital fluctuation yields the large negative value
of the effective pairing interactionŝV(q) for q ∼ (0,0) due to
the 2nd term of r.h.s. in eq. (17), resulting in the gap function
without sign change, i. e., thes++-wave state. For comparison,
we also show the gap function in the case with a smaller (larger)
value ofg (U′), U′ = 1.48, J = 0.2 andg = 0.032, in Figs. 6
(e)-(h). In this case, the enhanced magnetic susceptibility ˆχs(q)
for q ∼ (π, π) (not shown), i. e., the stripe-type AFM fluctua-
tion yields the large positive value ofV̂(q) for q ∼ (π, π) due to
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Figure 6: (Color online) Several components of the gap function∆̂(k, iπT) for
U′ = 0.6, J = 0.2 andg = 0.089 atx = 0.1 andT = 0.035 (a)-(d), and those
for U′ = 1.48, J = 0.2 andg = 0.032 atx = 0.1 andT = 0.034 (e)-(h).

the 1st term of r.h.s. in eq. (17), resulting in the gap function
with sign change, i. e., thes±-wave state. We note that, the
effects of the ferro-orbital and the AFM fluctuations on the su-
perconductivity do not compete to each other as they are mainly
responsible for the differentq regions inV̂(q), in contrast to the
case with the antiferro-orbital and the AFM fluctuations.

Fig. 7 (a) shows the phase diagram on thex-T plane in the
case with a largeg, U′ = 0.6, J = 0.2 andg = 0.065. As the nu-
merical calculation to obtain the phase diagram consumes much
CPU time, we show the same results as in the previous work
[15] where the different parameter set of the electron-phonon
coupling matrix elements was used [53]. WhenT decreases, the
ferro-orbital susceptibility [ ˆχc(0,0)]A,A45,45 (see Fig. 5 (c)) diverge
at a critical temperatureTQ. Below TQ, the ferro-orbital order
with different occupations of thedy′z anddzx′ orbitals occurs and
induces the orthorhombic distortion resulting in the tetragonal-
orthorhombic structural transition atTs = TQ. When approach-
ing TQ, the ferro-orbital fluctuation is largely enhanced and me-
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Figure 7: (Color online) RPA phase diagram on thex-T plane forU′ = 0.6,
J = J′ = 0.2, U = U′ + 2J = 1.0 andg = 0.065 (a) and that forU′ =
1.48, J = J′ = 0.2, U = U′ + 2J = 1.88 andg = 0.032 (b). The symbols
represent the instabilities for the ferro-orbital order (diamonds), the stripe-type
AFM order (squares), thes++-wave superconductivity (open circles) and the
s±-wave superconductivity (closed circles), respectively (reproduced from Ref.
[15]).

diates thes++-wave superconductivity (see Figs. 6 (a)-(d)).
We also investigate the same model within the Hartree-

Fock approximation for the Coulomb interaction between Fe
d-electrons together with the adiabatic approximation for the
electron-lattice couplingg with the orthorhombic mode [51].
For a largeg case, we obtain the phase diagram shown in Fig.
8, whereTs(= TQ) is the second order phase transition temper-
ature from the tetragonal phase (T > Ts) to the orthorhombic
phase (T < Ts) with the dy′z − dzx′ ferro-orbital order andTN

is that of the stripe-type AFM transition. The obtained ordered
pattern belowTN is consistent with the experimental observa-
tion where the Fe spins are aligned antiferromagnetically along
the longer axis while those are aligned ferromagnetically along
the shorter axis [10] (see Fig. 8). We note that the obtained
phase diagram shown in Fig. 8 is consistent with 1111 sys-
tem such as RFeAsO1−xFx whereTs = TQ is always higher
than TN, while, for a relatively-smallg case, we also obtain
the phase diagram (not shown) consistent with 122 system such
as Ba(Fe1−xCox)2As2 where the simultaneous first-order phase

T
S

T
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OrtOrt
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FOAFM+FO

Figure 8: (Color online) Hartree-Fock phase diagram of the 16-bandd-p model
for iron pnictides in the presence of both the Coulomb interaction between Fed-
electrons and the electron-lattice couplingg with the orthorhombic mode in the
case with a largeg, where the explicit values of the parameters in the model is
shown in Ref. [51].Ts(= TQ) is the second order phase transition temperature
of the tetragonal-orthorhombic structural transition accompanied by thedy′z −
dzx′ ferro-orbital transition andTN is that of the stripe-type AFM transition,
respectively.

transitionTs = TQ = TN for x = 0 splits into two transitions
Ts = TQ > TN with doping x. In both cases, the longitu-
dinal dy′z − dzx′ ferro-orbital fluctuation, which is responsible
for the softening ofC66, dominates over the AFM fluctuation
aboveTs = TQ where thes++-wave pairing without sign re-
versal of the superconducting gap function is mediated by the
ferro-orbital fluctuation as shown in Fig. 7 (a).

For comparison, we also show thex-T phase diagram in the
case with a smaller (larger) value ofg (U′), U′ = 1.48, J = 0.2
andg = 0.032, in Fig. 7 (b). WhenT decreases, the magnetic
susceptibility withq ∼ (π, π) diverges atTN below which the
stripe-type AFM order occurs and induces the ferro-orbital or-
der [18] together with the orthorhombic distortion resulting in
the tetragonal-orthorhombic structural transition atTs = TN, al-
though the RPA result ofTQ is smaller than that ofTN. When
approachingTN, the AFM fluctuation is largely enhanced and
mediates thes±-wave superconductivity [20, 21, 24]. In this
case, the simultaneous phase transition takes place atTs = TN

even forx > 0 and is inconsistent with the phase diagram of
doped iron pnictides withTs > TN which is reproduced for a
largeg case mentioned above.

Here, we discuss the softening of the elastic constantC66 ob-
served in the recent ultrasonic experiments [11, 12, 13, 14]. As
mentioned before, the elastic constantCΓ includes the contribu-
tion proportional to theOΓ quadrupole susceptibility. Then, we
calculate the uniform quadrupole susceptibilities forOxy, Oyz/zx

and Ox2−y2, χOxy
, χOyz/zx

and χOx2−y2
[54], which are given by

linear combinations of the various components of the charge-
orbital susceptibility ˆχc with q = (0,0) andω = 0 (see Fig. 5).
In Fig. 9, the quadrupole susceptibilities obtained from the RPA
are plotted as functions of the temperature for the same param-
eters as in Fig. 5. We find thatχOxy

is largely enhanced due to
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with q = (0,0) andω = 0 for U′ = 0.6,

J = J′ = 0.2, U = U′ + 2J = 1.0 andg = 0.089 atx = 0.1.

the enhancement of [ ˆχc(0,0)]A,A45,45 as shown in Fig. 5 (c). When
T decreases,χOxy

increases forT > Tc and shows divergent be-

havior towardsTQ(< Tc) where [χ̂c(0,0)]A,A45,45 diverges (see Fig.
7 (a)), while it decreases forT < Tc due to the effect of the
superconducting gap. ThisT dependence well accounts for the
experimental observation whereC66 decreases with decreasing
T (softening) forT > Tc while increases forT < Tc [13, 14]. In
contrast toχOxy

, χOyz/zx
andχOx2−y2

are almost independent ofT.

This is also consistent with the ultrasonic experiments where no
softening is observed inCE = (C11−C12)/2 andC44 [14] which
include the contributions in proportion toχOyz/zx

andχOx2−y2
, re-

spectively.

The detailed analysis of the elastic constantC66 for
Ba(Fe1−xCox)2As2 [13] has revealed that the uniformOxy

quadrupole susceptibility shows the Curie-Weiss like behavior
in a wide temperature range from the room temperature down
to the structural or the superconducting transition temperature,
where the Weiss temperature monotonically decreases with in-
creasing the Co dopingx and is positive forx <∼ 0.07 while
negative forx >∼ 0.07. To analyze such behavior, we employ
the SCR theory originally developed for itinerant electron mag-
netism [52] and recently extended for orbital fluctuations [55].
The SCR theory includes the mode coupling effects neglected
in the RPA and enables us to describe the the Curie-Weiss like
behavior of the magnetic (orbital) susceptibility in a wide tem-
perature range in contrast to the RPA [52]. The present analysis
is a straight forward extension of the standard SCR theory to
the quadrupole fluctuations in itinerant electron systems such
as doped iron pnictides. The brief formulation is given in Ap-
pendix A.

To obtain theT dependence of the uniformOxy quadrupole
susceptibilityχOxy

, we need to solve the SCR equation given in
eq. (A.6) withQ = 0, θ = 1 andD = 2 which includes three
parameters,y0, y1 andT0, corresponding to the inverse of the
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Figure 10: Temperature dependence of
(
S66 − S66,0

)−1 in Ba(Fe1−xCox)2As2.
The marks represent the experimental results by Yoshizawaet al. [13] and the
solid lines represent the fitting results from the SCR theory (see in the text).

quadrupole susceptibility atT = 0, the mode coupling constant
and the energy scale of the quadrupole fluctuation, respectively
(see Appendix A). We assume thatT0 = 1812K [56] is inde-
pendent of the Co dopingx while y0 andy1 depend onx and are
determined so as to fit theT dependence ofχOxy

from the SCR
to that from the ultrasonic experiments as possible. Fig. 10
shows the fitting results of theT dependence of

(
S66 − S66,0

)−1

which is proportional to 1/χOxy
obtained from the SCR theory

together with the experimental results by Yoshizawaet al. [13],
whereS66 = C−1

66 is the elastic compliance andS66,0 is the back
ground part of that. It is found that the overall behavior of the
experiments is well reproduced by the SCR theory for the whole
temperature and doping range. Especially, forx = 0.06, 0.083
and 0.098, the SCR results are in good agreement with the ex-
perimental results atT > Tc or T > Ts. On the other hand, for
x = 0 and 0.037, the deviation between the SCR and experi-
mental results becomes significant at low temperature. This is
considered due to the effect of the three dimensionality which
is neglected in the present SCR theory withD = 2 where no
long-range order takes place at finite temperature in contrast to
the case withD = 3. It is expected that the fitting results for
x = 0 and 0.037 are improved at low temperature by using the
SCR theory withD = 3.

Fig. 11 shows the doping dependence ofy0 obtained by
fitting the experimental results in Ba(Fe1−xCox)2As2 (see Fig.
10). It is found thaty0 monotonically increases with increas-
ing x and crosses 0 atx ∼ 0.073 whereχOxy

diverges atT = 0
(see (A.6)). This means that theOxy ferro-quadrupole (or the
dy′z-dzx′ ferro-orbital) quantum critical point (QCP) is located
at x = xQCP ∼ 0.073. Remarkably, the superconducting tran-
sition temperatureTc shows a maximum atx ∼ xQCP [9, 57],
where the orbital fluctuation is expected to dominate over the
AFM fluctuation and mediate thes++-wave superconductivity
[58].
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4. Sumary and discussions

In summary, we have shown that the ferro-orbital fluctuation
relevant to the ultrasonic softening ofC66 is enhanced by the
electron-phonon couplingg with the orthorhombic mode and
diverges atTQ below which the ferro-orbital order with dif-
ferent occupations of thedy′z and dzx′ orbitals occurs and in-
duces the orthorhombic distortion resulting in the tetragonal-
orthorhombic structural transition atTs = TQ. Near the tran-
sition, the s++-wave superconductivity is realized due to the
ferro-orbital fluctuation. The obtainedx-T phase diagram is
consistent with the phase diagram of doped iron pnictides with
Ts > TN, in contrast to a relatively smallg case withTs = TN

where thes±-wave superconductivity is realized due to the an-
tiferromagnetic fluctuation.

We have also analyzed the experimental results ofC66 in
Ba(Fe1−xCox)2As2, where the Curie-Weiss like behavior in a
wide temperature range is observed, based on the phenomeno-
logical SCR theory which includes mode coupling effects ne-
glected in the RPA. It has been found that the experimental re-
sults are well reproduced by the SCR theory for quadrupole
fluctuations and there exists theOxy ferro-quadrupole (dy′z-dzx′

ferro-orbital) QCP atx = xQCP ∼ 0.073, around which the
ferro-orbital fluctuation is largely enhanced at low temperature
and the superconducting transition temperatureTc is expected
to show a maximum as observed in the experiments.

For both cases withs++- and s±-wave superconductivities,
the RPA result ofTc is always higher than that ofTs(= TQ)
and/or TN, where the orbital and/or the magnetic fluctuations
diverge. In experiments, however, for small dopingx, Ts(= TQ)
and/or TN are higher thanTc. With including the effects of the
self-energy correction and the vertex correction neglected in the
RPA, it is expected that the ferro-orbital order and/or the antifer-
romagnetic orders are realized for relatively smallx, while the
superconductivity is realized for relatively largex and shows a
maximum around the QCP mentioned above. The explicit cal-
culations to include such effects by using the dynamical mean-

field theory [59] and the self-consistent fluctuation theory [60]
are now under the way.

The obtaineds++-wave superconductivity seems to be con-
sistent with experimental results of iron pnictides including the
impurity effects. The enhanced ferro-orbital fluctuation above
TQ might be observed by experiments with a kind of external
field inducing the anisotropy ofx′, y′ axes, similar to the case
with the ferromagnetic fluctuation above the Curie temperature
observed by experiments with the external magnetic field. In
fact, a resistivity anisotropy forT > Ts is induced by uniaxial
stress [61]. In the present paper, we treated the orthorhombic
mode as a optical phonon, as a simplest first step. More realistic
model including acoustic phonons will be discussed elsewhere.
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Appendix A. SCR theory for quadrupole fluctuations

In this appendix, we briefly summrize the SCR theory for
quadrupole fluctuations as a straight forward extension of the
standard SCR theory for itinerant electron magnetism [52]. In
the vicinity of the phase transition for theOxy quadrupole or-
der with the wave vectorQ, we expand the free energyF with
respect to theOxy quadrupole operator with the wave vectorq,
Oxy(q), as

exp(−F/T) =
∫ ∏

q

dOxy(q) exp(−Ψ/T) (A.1)

with

Ψ =
∑

q

 1

2χ(0)
Oxy

(q)
− I

 |Oxy(q)|2

+
1
4

FQ

∑
q,q′,q′′

Oxy(q)Oxy(−q′)Oxy(q′′)Oxy(q′ − q′′ − q),(A.2)

where I and FQ are the phenomenologicalOxy quadrupole-
quadrupole interaction and the mode coupling constant, respec-
tively. By performing functional derivatives in eq. (A.1) with
respect toOxy(q) andOxy(−q), we obtain the following equation

1

χ(0)
Oxy

(Q)
− 2I + 3FQ⟨(Oloc

xy )2⟩ + FQ⟨Oxy(Q)⟩2 = 1
χOxy

(Q)
,(A.3)

whereOloc
xy =

1
N

∑
q Oxy(q) is the localOxy quadrupole opera-

tor andχ(0)
Oxy

(q) andχOxy
(q) are the noninteracting and interact-

ing Oxy quadrupole susceptibilities. Here, we assume that the
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dynamicalOxy quadrupole susceptibilityχOxy
(Q+ q, ω) can be

expanded as follows,

1
χOxy

(Q+ q, ω)
=

1
χOxy

(Q)
+ Aq2 − iC

ω

qθ
, (A.4)

whereθ = 1 for Q = 0 andθ = 0 for otherwise. By using the
fluctuation-dissipation theorem, eq. (A.4) yields

⟨(Oloc
xy )2⟩ = 1

N

∑
q

∫ ∞

0

dω
2π

coth
ω

2T
ImχOxy

(Q+ q, ω).(A.5)

Substitute eq. (A.5) into eq. (A.3), we obtain the following
SCR equation

1
2TAχOxy

(Q)
= y0 +

D
2

y1

∫ xc

0
dxxD+θ−1

[
ln u− 1

2u
− ψ(u)

]
(A.6)

with

y0 =
1

2TAχOxy
(Q,T = 0)

, y1 =
3FQT0

T2
A

,

TA =
Aq2

B

2
, T0 =

q2+θ
B

2π
A
C
,

u =
xθ(y+ x2)

T/T0
, qB =

(
2DπD−1

v0

)1/D

,

whereψ, xc, D andv0 represent the digamma function, the wave
number cut-off, the spatial dimention and the unit cell volume,
respectively. Note that we negelect the zero-point fluctuations
in deriving eq. (A.6). In eq. (A.6), there are three independent
parameters,y0, y1 andT0, which are proportional to the inverse
of the quadrupole susceptibility atT = 0, the mode coupling
constant and the energy scale of the quadrupole fluctuation, re-
spectively. By solving the SCR equation eq. (A.6) for a given
parameter set ofy0, y1 andT0, we obtain theT dependence of
the quadrupole susceptibilityχOxy

(Q).
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