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Abstract

We investigate the electronic states and the superconductivity in the two-dimensional 16-panddel extracted from a tight-
binding fit to the band structure of iron pnictides, in the presence of both the Coulomb interaction betvdeeleéteons and the
electron-lattice coupling with the orthorhombic mode which is crucial for reproducing the recently observed ultrasonic softening
of the elastic constar@ge. Due to the cooperativeffiects of these interactions, the ferro-orbital order witfiedent occupations

of dy, andd,y orbitals occurs and induces the tetragonal-orthorhombic structural transitiby) tigether with the stripe-type
antiferromagnetic (AFM) order beloWy. For a largeg case, we obtain the phase diagram consistent with the doped iron pnictides
with T4 > Ty for x > 0, where thes, , -wave superconductivity is mediated by the ferro-orbital fluctuation which is largely enhanced
near the ferro-orbital QCP at with T¢ — 0. On the other hand, for a smajicase, the simultaneous phase transition occurs at
Ts = Ty even forx > 0, where thes,.-wave superconductivity is mediated by the AFM fluctuation. Bothgwave states with

full superconducting gaps are consistent with most of the experiments but only the former is considered to account for the sm:
Tc-suppression against nonmagnetic impurities.

Keywords: A. Superconductors; D. Electron-electron interactions; D. Electron-phonon interactions; D. Phase transitions

1. Introduction transition is a common feature of iron-based superconductors
andTs is always higher thafiy for doped iron pnictides.

The discovery of the iron pnictide superconductors AS shown in Fig. 1, there are distingt three phqses: the tetrag-
RFePNO,_«Fy (R=Rare Earth,Pn=As, P) [1, 2] with a high onal phase foll > Ts, the orthorhombic phas_e with the stripe-
transition temperature exceeding 50K [3] has triggered an intyP& AFM for T < Ty, and the orthorhombic phase without
tense researchfert to search for new superconducting mate-the AFM for Ty < T < Ts. We note that the orthorhombic
rials and to investigate the physical properties of these materRhase without the AFM should be called the monoclinic phase
als. The parent compounds with= 0 show the tetragonal- N the or|g.|nal unit cell shown in Fig. 1, put we called it the or-
orthorhombic structural transition and the stripe-type antiferrothorhombic phase by using the magnetic unit cell beTaafor
magnetic (AFM) transition. For example, LaFeAsO shows thedvoiding confusion. Both the transitions B and Ty are the
structural phase transition @ ~ 155K from the tetragonal second-order as shown in the specific heat [11] and the neutron
phase T > Ts) to the orthorhombic phasd (< Ts) and the experiments [4]. In general, when the system approaches the
stripe-type AFM order beloWy ~ 137K with a magnetic mo- ;econd—order transitic_)n point, the ﬂuctuatiqn (the susceptibil-
ment~ 0.35uz at low temperature [4, 5]. The carrier dopirg ity) of thg correspondlng or(jer parameter diverges and may be
suppresses both of the transition temperatlitesdTy and in- respon5|ble for the pairing mterapﬂon for the superconductlv—
duces the superconductivity as shown in Fig. 1. Therefore, thi®: AS the orthorhombic phase without the AFM is next to the
magnetic order aridr the structural transition are considered to Superconducting phase (see Fig. 1), the fluctuation which di-
play important roles in the mechanism of the superconductivity/erges towards’s is considered to have most significarfiieet

When the carrier dopingis varied,Ts is found to be always N the superconductivity. .
higher thanTy in 1111 system such as RFeAsGFy [6, 7] Remarkably, _drastlc softening pf the el_astlc cons@yathas
and 111 system such as NaE&€oAs [8], while in 122 sys- been observed in recent uItraso_nlc experiments [11,12,13, _14].
tem such as Ba(RFe.Coy),As; [9], the simultaneous first-order The temperature dependence is well fitted by the expression,
transition {Ts = Ty) for x = 0 is found to split into two second- Css = Cee(T ~Ts)/(T —0), whereCes becomes zero at the struc-
order transitionsTs > Ty) with dopingx. In 11 system such as Fural transition tgmperatuﬁ'as, and then shows divergent pehav—
Fer xCoSes [10], the structural transition is observed with- 10F towards a critical temperatusg13, 14]. The systematic ul-

out AFM transition. It should be stressed that the structuraff@SONiC measurements in Ba{Fe0y)2As, with various dop-
ing x [13] have revealed that, with increasirgboth of Ts and

0 decrease with a huge Jahn-Teller energy giveRjyy= Ts—0
Email addressy . ono@phys. sc.niigata-u.ac. jp (YoshiakiOno) of ~ 50K or more, andl's becomes zero at, ~ 0.07 where a
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Figure 1: (Color online) Schematic phase diagram of iron pnictides as func- x’

tions of the carrier doping and the temperaturg, whereTs, Ty and T are

the transition temperatures for the tetragonal-orthorhombic structural transitiorf;igure 2: (Color online) Schematic figures of the strain fieldsfer= (C11 —

the stripe-type AFM transition and the superconducting transition, respectivelyc12)/2, C44 andCegs modes (a), (b) and (c), the orbital fluctuations coupled with

Dashed squares denote the unit cells of the corresponding three phases: the corresponding strain fields (d), (e) and (f), and the phonorBfoiEg and

tetragonal phase, the orthorhombic phase with the stripe-type AFM (arrowgnhorhombic modes which enhance the corresponding orbital fluctuations (g),

show spins), and the orthorhombic phase without the AFM. (h) and (i), respectively. The', y’ (x, y) axes are directed along the nearest
(second nearest) Fe-Fe bonds (reproduced from Ref. [15]).

quantum critical behavior is observed. For overdoped case with
X > X, the system does not show the structural transition bugates that th€®,, quadrupole susceptibility (the corresponding
still shows the drastic softening @fss down to the supercon- orbital susceptibilities) is largely enhanced at low temperature
ducting transition temperatufg below whichCgg shows the down toTs andT,, and there exists a large electron-lattice cou-
hardening with a kink aT.. pling g with the orthorhombic mode. Remarkably, the softening
Generally, the elastic consta@ is given by the second ©f C_Ge.is found to be almost unchanged u_nderthe external mag-
derivative of the Free energy w.rt. the strain fiejdinduced ~ Netic fields up to 10T [14] and up to 60T in more recent experi-
by the ultrasound and includes the contribution SUChGﬁor ments [16], indicating the nonmagnetic origin of the softening,
with the susceptibility,_ for the electric quadrupole operator in contrast to the nematic fluctu_atlo_n _mechanlsm [12] Wh_ere the
Or linearly coupled with the strain field @gOrer. When the stru_ctural order and its fluctuation is induced by magnetic fluc-
irreducible quadrupole susceptibility shows divergent behaviof!ations.
with a critical temperaturé asy, ~ Ar/(T - 6), we obtain the Theoretically, the orthorhombic phase with the AFM was
expression fo€ mentioned in the preceding paragraph, wherewell described by first-principles calculations [17], where the
the Jahn-Teller energy is given &7 = g2Ar/CP. Then, the  stripe-type AFM is realized due to théect of nesting between
enhancement of, is responsible for the softening 6f and the hole and electron Fermi surfaces and inducésrént oc-
the large value oE;r indicates the presence of a large electron-cupancy for they’z and zx orbitals and therefore breaks the
lattice couplinggr. tetragonal symmetry resulting in the orthorhombic phase. The
The detailed ultrasonic measurement in Bag&g 1)-As, similar induced orbital order was also obtained by the Hartree-
[14] has revealed a significant selection rule where the softerFock calculations based on the multi-orbital Hubbard models
ing is observed only for the elastic const&at while the other  [18, 19]. However, the orthorhombic phase without the AFM
elastic constant€s4 andCe = (C11 — C12)/2 show no soft-  Was not obtained there. The purpose of this paper is to present
ening. In the case o€, the ultrasound introduces the strain @ theoretical description of the phase diagram of iron pnictides
field ex, which corresponds to the orthorhombic distortion andincluding the orthorhombic phase without the AFM, where the
linearly couples to the quadrupdB, corresponding to the or- effect of the electron-lattice coupling with the orthorhombic
bital fluctuations of the longitudinaly,-d,x andor transverse Mode, which is responsible for the softening@js with the
ds2_2-Oxy modes, where the, y' (x, y) axes are directed along large Jahn-Teller energy, is crucial for reproducing the phase
the nearest (second nearest) Fe-Fe bonds as shown in Fig. 2 [Ehgram withTs > Ty.
(see also Fig. 3). Therefore, the drastic softenin@gfindi- As for the superconductivity, the-wave pairing with sign



change of the order parameter between the hole and electron (@)
Fermi surfaces, so callesl-wave, mediated by the AFM fluc-
tuation was proposed as a possible pairing state in the iron pnic-
tides [20, 21, 22, 23, 24]. The.-wave state with a full super-
conducting gap seems to be consistent with most of the experi-
ments [25]. As for the impurity féects, however, the small-
suppression against nonmagnetic impurities [26, 27] is not con-
sistent with thes, -wave state wher&. is considered to rapidly
decrease with the nonmagnetic impurities [28]. Therefore, the
swave state without sign change of the order parameter, so
called s,.-wave, mediated by the orbital fluctuation which is
enhanced due to thdfects of the inter-orbital Coulomb inter-

action was proposed on the basis of the one-dimensional two- (®)
band Hubbard model [29, 30] and the two-dimensional 16-band o @ °© © .uitcn
d-p model [31]. —

The orbital fluctuation is known to be enhanced by the ‘ °1 % °
electron-phonon interaction in addition to the inter-orbital y ° s ° ‘ ©® Fe
Coulomb interaction. Recently, thefects of the electron-

tuation and its induced, ,-wave superconductivity have been
investigated by Kontani and Onari [32] on the basis of the 5-
band Hubbard mOde_I' We h_ave a_lso investigated ffexes of Figure 3: (Color online) Crystal structure of fes, layer . Small and large

the electron-phonon interaction wiBig, Eq andAjg modes on  palls represent Fe and As atoms, respectively. The solid line represents the unit
the basis of the 16-bardtp model [33]. As shown in Fig. 2, cell. Itis noted that ASand A€ denote the As atoms on the upper side and on
the Blg phonon enhances the Iongitudim@—dzx and transverse the lower side of the E&s; layer, respectively (reproduced from Ref. [31])
ds2_r2-0ye_y Orbital fluctuations responsible for the softening of

Ck, while theEg phonon enhances the transvedige,2-dy, dy,-

d,x andds2_r2-dy, orbital fluctuations responsible for the soft- Perdew, Burke and Ernzerhof [36] by using the WIEN2k pack-
ening ofCas. age [37], where the lattice parametees £ 4.03268A,c =

More recently, we have also investigated tiféeet of the 8 74111A) and the internal coordinates{ = 0.14134,zas =
electron-phonon couplingwith the orthorhombic mode which - 0.65166) are experimentally determined [38]. The crystal struc-
enhances the longitudinal,,-d,x and transverselsz_-Oyy  ture of FeAs;, layer is shown in Fig. 3 (a). Since As atoms
orbital fluctuations Q,, quadrupole fluctuation) responsible are tetrahedrally arranged around a Fe atom, there are two dis-
for the softening ofCes [15]. Due to the cooperativefiect tinct Fe and As sites in the crystallographic unit cell (see Figs.
of the Coulomb and electron-phonon interactions, the systerg (a), (b)). Considering these facts, we then derive the two-
shows the ferro-orbital order which induces the tetragonalgimensional 16-band-p model [24, 31], where @ orbitals
orthorhombic structural transition aks, together with the (g, ., dee_y2, Oy, Oy Or) OF two Fe atoms (Fe=A, F&=B)
stripe-type AFM order belowly. Near the phase transitions, gnd % orbitals (x, Py, pz) of two As atoms are explicitly in-
the s, .-wave superconductivity occurs due to the orbital fluc-cluded. We note that the’, y’ (x, y) axes are directed along
tuation for a largey case withTs > Ty, while thes, -wave does  the nearest (second nearest) Fe-Fe bonds as mentioned before.

due to the magnetic fluctuation for a smgllase withTs = Tn.  Hereafter, we number the Fet8rbitals as follows:dsz_2(1),
The former case is consistent with the phase diagram of dopqgjz_yz(z), dey(3), dy(4), dox(5).
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phonon interaction witB,q and E; modes on the orbital fluc @ o @ o Q »
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iron pnictides withTs > Ty. The total Hamiltonian of the-p model is given by
In this paper, we review our theoretical study on the elec-
tronic states and the superconductivity in iron pnictides based H = Hg + Hint + Hph + Helph, (1)

on the recent published work [15, 24, 31, 33, 34, 35], using a L )
different parameter set. In addition, we present a more detailé’éﬂhere Ho, Hint, Hpn @nd Heipn are the kinetic, Coulomb in-

analysis of the phase diagram and the ultrasonic softening. Wiraction, phonon and electron-phonon interaction parts of the
first introduce our model Hamiltonian and formulation in Sec-Hamiltonian, respectively. The kinetic part of the Hamiltonian

tion 2. Then, we show the calculated results in Section 3. FilS 9iven by the following tight-binding Hamiltonian,
nally, we summarize and discuss our findings in Section 4.

Ho = Z S?di;o.dit’o- + Z 8’¢‘piTmo- Pimo-
i,l,o i,mo
2. Model and formulation + Z 99, . df, dieo + Z PP oy Pl Pir
Nz i,j.mm .o
i ' [ i dp i
First of all, we perform the density functional calculation + Z ti,j,[,mdifo—pjm(f +he. )

for LaFeAsO with the generalized gradient approximation of [ Tme
3



(a) tg?ﬂ{ Fe' dgz_2 | Fer dxz_yz Fer Oy Fe dy, Fel dyy | F€ dgp_r2 | FE d><2—y2 Fe Oy
g (eV) Fe dzy2 | -0024 | —0184 —0.008 0.078
4 Fé'ds, | -0184 | —0023 0.143
j Fe! dyy 0.073 0.328
— d-p model Fed, —0012
X WIEN2K Fel dyy 0.012
tgﬁﬁf, Ast p [ Ast py | As!
t | As' px | Ast py [ As' p; [ As” px | AS” py [ AS” p; || Fé dazeyz | 0.646 ~0.2
n/,ﬂ[’ 3221
As! p, | 0.650 0311 | 0111 | 0297 || Fé'dy | 0.276 0.5¢
As' py 0.027 0311 Fel dyy 0.694
AsT p, 0.048 0.389 || Fe'd, 0.319
Feld, | 0.783 0.1¢
(e[ aprz | Oey | Gy | Gz | G | Px | Py |

[
| | -0687| -0.610| -0.921| -0.820| -0.820| ~1.789| ~1.789| —2.173]

Table 1: Tight-binding parameters (in units of eV) for the Hamiltonian eq.
(2). It is noted that we define thedp hopping and the in-planp-p hopping
parameters along-axis.
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(b) Due to the weak crystalline electric field from the®Asons
tetrahedrally arranged around a Fe atom and the strong hy-

i\\ bridization between the Fed3orbitals, the resulting energy
s bands have very complicated structure. The Fermi surface for
FSO FSI%82 the d-p tight-binding Hamiltonian is shown in Fig. 4 (b). We
= can see nearly circular hole Fermi surfaces (FSO, FS1 and FS2)
kyO " X around thd" point and elliptical electron Fermi surfaces (FS3
= X2- 2 and FS4) around thiel point, wheredy, d;x andor dy._y2 orbital
Fs3 —VZ.ZX characters are the most dominant. These results are consistent
F+4 Yz, . . . o .
P R \\\ with the previous first principle calculations [42, 43, 44, 45, 46].
-TT \ The Coulomb interaction part of the Hamiltonian is given as

Xy 0 i\xn/' follows,
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Figure 4: (Color online) (a) The band structure obtained frondtipemodel eq.

(2) (solid line) and that obtained from the density functional calculation (cross) + _U’ Z Z Z d’ diz dicor
for LaFeAsO, where the Fermi level is set to 0 on the energy axis. (b) The cor- '&T 'Z‘T

responding Fermi surface obtained from the model. The solid and dashed N
lines show the Fermi surfaces whetg, d;x andd,z_,» orbital characters are " —J Z Z Z d o
the most dominant, respectively. .gg ] [(,/ ila’ wa
[
-y T i
whered;,, is the annihilation operator for Fed®lectrons with + ‘] Z Z Z dlt’rrdlffrd'fffd'fff’ ()
I (#t OFC

spino in the orbital¢ at the sitei and pin.- is the annihilation
operator for As-f electrons with spirr in the orb|talm atthe  whereU and U’ are the intra- and inter-orbital direct terms,
sitei. In eq. (2), the transfer integral¥, .t/ /. (P iemand  respectively, and andJ’ are the Hund’s coupling and the pair-
the atomic energies?, &b are determined so as to fit both the transfer, respectively. For the isolated atoms, the relations be-
energy and the weights of orbitals for each band obtained frortween Coulomb matrix element$ = U’ + 2J andJ = J are
the tight-binding approximation to those from the density func-derived due to the rotational invariance of the Coulomb inter-
tional calculation. Similar models have been used by the otheaction and the reality of the wave functions, respectively [47].
authors[39, 40, 41] but the model parameters affedint from  For the atoms in the crystal, however, the relation is not satis-
ours. The doping concentratiorcorresponds to the number of fied generally due to the crystallographitests and the many
electrons per unit cell = 24 + 2xin the present model. body dfects due to the Coulomb interaction which will be dis-

In Fig. 4 (a), we show the band structure obtained from thecussed later. Therefore, we tréhtU’, J andJ’ as independent
d-p tight-binding Hamiltonian eq. (2), where the tight-binding parameters in the present paper.
parameters are listed in Table 1 [31], together with that obtained Now we consider thefect of the phonon and the electron-
from the density functional calculation. It is found that the for- phonon interaction parts of the Hamiltoniddy, and Heiph
mer reproduces the latter very well. We note that the weights ofvhich includes the phonon energy and the electron-phonon
orbitals also agree very well with each other (not shown). Thecoupling constang’’’ between the orbital and¢’, respectively,
result of our density functional calculation is similar to that pre-wheres represents the phonon mode. In the present paper, we
viously reported by the other authors [42, 43, 44, 45, 46, 21]consider theB,4, Eq and orthorhombic modes as shown in Figs.
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2 (g), (h) and (i) [15]. We note that the orthorhombic modeeqgs. (10) and (11), the bare vertices for the spin and charge-

is not a normal coordinate but a general coordinate which

given by a linear combination of normal coordinates including

both optical and acoustic modes. To avoid thidlilty with
many phonon modes, we treat the orthorhombic mode as a
cal phonon similar to th&,5 and Eg modes as a simplest first

step in including the orthorhombic mode. The resulting phonon
and the electron-phonon interaction parts of the Hamiltoniarf

are given as,
th = Z Z wsbrsbis, 4)
i s
Helph = Z Z Z Z 0t df,_dieo (bl + bis), (5)
i

s U o

where bjs is the annihilation operator for the phonon of the

modes (Byg, Eg, E andd) at the sitd, ws is the phonon fre-

irbital susceptibilities andC are given by [32]

2 Ts\@.8
(S)ﬁfz,fg[‘; (U 3)5152,53[74’
© ()

(13)

o o D(ivn{il4)

0102,0304 12,030

lo-

- 2601ﬁ Z 922{1923[4
S

here theDs(ivm) = 2ws/(v§,+ w3) is the local phonon Green’s
function for the modesandU*® andU°€ are the bare vertices due
to the Coulomb interaction given as follows,

U (U) (@=PB, t1= o=l =Ly)
U' (U +2)) (@ =P, t1="Ll3%# lr=1{s)

UsSU% ={J@U' =J) (a=pB, t1=1=0#C3=10s) (15)
J(J) (=8, th="Cty# b= 3)
0 (otherwise)

It is noted that when the largest eigenvaldigin (1c-o) of

quency and‘:]g[l is the electron-phonon COUp”ng. We note that/\'}(o)(q)é (_/\'}(O)(q)é) reaches unity1 the magnetic (Charge_

Egll and Eé correspond to the oscillation along tkeandy-axis,

respectively, and denotes the orthorhombic mode (see Fig. 2).

orbital) instability occurs.
The linearized Eliashberg equation is given by

Following refs. 29 and 30, we expand the electrostatic poten-

tial variance for Fe-8 electrons from the four surrounding As
ions due to the oscillations of the Fe atoms for Byg and Eg

modes in the displacement of the Fe atoms up to the first order

and expand that in thg, y andz coordinates up to the second

order. The resulting electron-phonon coupling matrix element%hereAaﬁ

of the Byg andEg phonons are given as follows,

V3gg; = 0F = 0 = - V3ug: = 0% = ~9% = 9el6)

G5, = —O3, = V3/208 = sy, 7
g =g, (8)
g =0  (otherwise) 9)

In addition, we also consider the electron-phonon coupling m
trix elements of the orthorhombic phongg? coupled with the
transversel,-d, (i. €., the longitudinabl,,-d,y) orbital fluc-
tuation andgl® coupled with the transversi,._2-dy, orbital
fluctuation [15].

Within the RPA [48, 49, 50], the spin susceptibility(§) and
the charge-orbital susceptibilifgF(@) are given in the 5& 50
matrix representation as follows [15, 24, 31, 33],

i@ = [@ —2‘0)(Q)§]‘1£(°)(Q), (10)
@ = [1+220aCT ) (11)
with the noninteracting susceptibility
a, T @ Q)
Xt @ = = Zk] G, (WG, (k+q), (12)

wherea, 8 (=A, B) represent two Fe siteg,represents Fed3
orbitals,G(k) = [(ien + 1)1 — Ho(K)]~* is the noninteracting Fe-
3d electron Green'’s function in the £Q0 matrix representation
with the chemical potentiat, Ho(K) is the kinetic part of the
Hamiltonian with the momentunk in eq. (2),k = (k,igy),
q = (g,ivy) ande, = (2n + aT andvy, = 2neT are the
fermionic and bosonic Matsubara frequencies, respectively.

5

T
aof _ @B ,
Aschgp () = N Z Z vafl,fzf'(k_ K)
K tilalabs o B
X GLL (KA ()G (K), (16)

. (K) is the gap function an\IZ’fz :0,(0) s the efective
pairing interaction for the spin-singlet state. Within the RPA

[48, 49, 50],V,% , . (d) is given in the 50< 50 matrix,

(@) = i8S - 5EH@C + 5 (5 +€), (17)

wheren = % for the spin-singlet state ang= —% for the spin-

triplet state. The linearized Eliashberg equation (16) is solved

alo obtain the gap function‘,’f(k) with the eigenvaluelg.. At
T =T, the largest eigenvalu. becomes unity.

3. Calculated results

In this section, we present the RPA results for the electronic
states and the superconductivity based on the recent published
work [15] by using a dferent parameter set of the electron-
phonon coupling matrix elements. In addition, we show the
Hartree-Fock phase diagram including the structural and the
magnetic phase transitions [51] which was discussed but not
explicitly shown in the previous paper [15]. We also present a
more detailed analysis on the ultrasonic softening of the elas-
tic constants [13, 14] on the basis of the RPA and the self-
consistent renormalization (SCR) theory [52].

In the numerical calculations for egs. (10)-(17), we us32
32 k point meshes and 512 Matsubara frequenci€d {zT <
en < 511nT). For simplicity, we setws,, = Wgl = Wg2
wy = wo = 0.02eV as done in the previous study [15, 33]. To
reproduce the experimental results that the elastic softening is
observed exclusively for th€ss mode [14], we assumgs,; =

Og, = g andg!® = 0, and puty}® = g [53]. Here and hereafter,

Ive measure the energy in units of eV.
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Fig. 5 shows several components of the static charge-orbital ‘ k 0001 -0.001
susceptibilityy®(qg, 0) for U’ = 0.6, J = 0.2 andg = 0.089 at 0008 -0.002
x = 0.1 andT = 0.035. In this case, the dimensionless electron- kyO '8:%2 k0 -0.003
phonon coupling parameter is given By = 2g%0o/wg ~ '8:% -0.004
20%/wo = 0.80 with the density of states at the Fermi level ‘ r 381829 'g-ﬁz
po ~ 1/eV. We find that, wheiT decreases, the transverse I 0 noo T o o

d,y orbital susceptibility £°(q, 0)],/,s With g ~ (0,0), which is

equivalent to the longitudinal, ,-d,x one, is most enhanced as Figure 6: (Color online) Several components of the gap fundlitig iz T) for
compared to the other orbital and magnetic susceptibilities (nd¢’ = 0.6, J = 0.2 andg = 0.089 atx = 0.1 andT = 0.035 (a)-(d), and those
shown) due to the cooperativéfects of the electron-phonon Y’ =148,J=02andg = 0032 atx= 0.1 andT = 0.034 (€)-(h).
interaction with the orthorhombic mode and the inter-orbital

Coulomb interactiotd’ [31, 33]. We note that, the incommen-

surate peaks arourgl = (0, 0) were observed in the previous ) o ]
work [15] where the dferent parameter set of the electron-th_e 1s_t term of r.h._s. in eq. (17), resulting in the gap function
phonon coupling matrix elements was used. However, the reéVith sign change, i. e., the.-wave state. We note that, the

sulting pairing state and the phase diagram are essentially ufffects of th.e.ferro-orbital and the AFM fluctuations on the su-
changed as shown below. perconductivity do not compete to each other as they are mainly

In Figs. 6 (a)-(d), we show several components of the S,upe,r_espon.slble for the tﬁerentq regions inVv(g), in contrast to the
conducting gap function with the lowest Matsubara frequencyFaS€ with the antiferro-orbital and the AFM fluctuations.
A(k,ixT) obtained by solving the linearized Eliashberg equa- Fig. 7 (a) shows the phase diagram on %€ plane in the
tion (16) for the same parameters as in Fig. 5. In this case, thease with a largg, U’ = 0.6, J = 0.2 andg = 0.065. As the nu-
enhanced orbital susceptibiligf(Q) for g ~ (0,0) (see Fig. 5), merical calculation to obtain the phase diagram consumes much
i. e., the ferro-orbital fluctuation yields the large negative valueCPU time, we show the same results as in the previous work
of the dfective pairing interaction¥(q) for q ~ (0,0) due to  [15] where the dierent parameter set of the electron-phonon
the 2nd term of r.h.s. in eq. (17), resulting in the gap functioncoupling matrix elements was used [53]. WHedecreases, the
without sign change, i. e., th& . -wave state. For comparison, ferro-orbital susceptibility (0, 0)]4’*“5’;5 (see Fig. 5 (c)) diverge
we also show the gap function in the case with a smaller (largemt a critical temperatur€g. Below Tg, the ferro-orbital order
value ofg (U’), U’ = 1.48,J = 0.2 andg = 0.032, in Figs. 6  with different occupations of tté,, andd, orbitals occurs and
(e)-(h). In this case, the enhanced magnetic susceptipfiity ~ induces the orthorhombic distortion resulting in the tetragonal-
for g ~ (7, 7) (not shown), i. e., the stripe-type AFM fluctua- orthorhombic structural transition @t = To. When approach-
tion yields the large positive value ¥¥q) for q ~ (r,7) dueto  ing To, the ferro-orbital fluctuation is largely enhanced and me-
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(b) Figure 8: (Color online) Hartree-Fock phase diagram of the 16-Hamchodel
. | foriron pnictides in the presence of both the Coulomb interaction betweén Fe
stripe-type AFM order electrons and the electron-lattice couplgngith the orthorhombic mode in the

case with a largg, where the explicit values of the parameters in the model is
shown in Ref. [51].Ts(= Tq) is the second order phase transition temperature
of the tetragonal-orthorhombic structural transition accompanied bghthe

—Ee

— 0.05 d,x ferro-orbital transition and'y is that of the stripe-type AFM transition,
| respectively.
| U=U+2J=1.88 q
| U'=1.48,J==0.2 b ]
I %:0é02'9:0'032 ] transitionTs = To = Ty for x = 0 splits into two transitions
0 A-glay=0.1 Ts = To > Tn with doping x. In both cases, the longitu-
0 0.04 0.08 0.12 dinal dy, — d,x ferro-orbital fluctuation, which is responsible
X for the softening ofCgs, dominates over the AFM fluctuation

aboveTs = Tg where thes,.-wave pairing without sign re-
Figure 7: (Color online) RPA phase diagram on th& plane forU’ = 0.6,  versal of the superconducting gap function is mediated by the

J=J =02,U=U +2J) =10 andg = 0.065 (a) and that fotJ’ = ferro-orbital fl ion hown in Fig. 7
148,J =Y =02,U = U’ +2J = 1.88 andg = 0.032 (b). The symbols erro-orbital fluctuation as sho 9.7 (a).

represent the instabilities for the ferro-orbital order (diamonds), the stripe-type FOr comparison, we also show tRel phase diagram in the
AFM order (squares), the,,-wave superconductivity (open circles) and the case with a smaller (larger) valueg@{U’), U’ = 1.48,J = 0.2

s.-wave superconductivity (closed circles), respectively (reproduced from Refandg = 0.032, in Fig. 7 (b) WhefT decreases, the magnetic

[13D)- susceptibility withq ~ (r, 7) diverges affy below which the
stripe-type AFM order occurs and induces the ferro-orbital or-
der [18] together with the orthorhombic distortion resulting in

diates thes, ,-wave superconductivity (see Figs. 6 (a)-(d)).  the tetragonal-orthorhombic structural transitio at= Ty, al-

We also investigate the same model within the HartreefN0ugh the RPA result ofq is smaller than that ofy. When
the AFM fluctuation is largely enhanced and

Fock approximation for the Coulomb interaction between Fe2PProachingry, 11 _
d-electrons together with the adiabatic approximation for thdnediates thes.-wave superconductivity [20, 21, 24]. In this

electron-lattice coupling with the orthorhombic mode [51]. Case. the simultaneous phase transition takes plateatTy

For a largeg case, we obtain the phase diagram shown in FigEVen forx > 0 and is inconsistent with the phase diagram of

8, whereTg(= To) is the second order phase transition temperd0P€d iron pnictides witfTs > Ty which is reproduced for a
ature from the tetragonal phask ¢ Te) to the orthorhombic ~1argeg case mentloned above.. _

phase T < Ts) with the dy, — d,« ferro-orbital order andy Here,. we discuss the softepmg of the elastic constggnob-

is that of the stripe-type AFM transition. The obtained orderecferved in the recent ultrasonic experiments [11, 12, 13, 14]. As
pattern belowTy, is consistent with the experimental observa- mentioned before, the elastic const@htincludes the contribu-
tion where the Fe spins are aligned antiferromagnetically alon§on proportional to th€©r quadrupole susceptibility. Then, we
the longer axis while those are aligned ferromagnetically alongalculate the uniform quadrupole susceptibilities@y, Oy«

the shorter axis [10] (see Fig. 8). We note that the obtaine@"d Ox-y2, X0+ Xq,,. a”d)(oxz_y2 [54], which are given by
phase diagram shown in Fig. 8 is consistent with 1111 syslinear combinations of the various components of the charge-
tem such as RFeAsOFx whereTs = Tq is always higher orbital susceptibilityy® with g = (0,0) andw = 0 (see Fig. 5).
than Ty, while, for a relatively-smallg case, we also obtain InFig. 9, the quadrupole susceptibilities obtained from the RPA
the phase diagram (not shown) consistent with 122 system suehre plotted as functions of the temperature for the same param-
as Ba(Fe_«Coy)2As; where the simultaneous first-order phaseeters as in Fig. 5. We find th;%xy is largely enhanced due to
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Figure 9: (Color online) Temperature dependence of the quadtupole SUsCeRigure 10: Temperature dependencd s — Seso) " in Ba(Fa_xCox)2As,.
tibilities xo, » Xo,,,, and)(oxzw2 with q = (0,0) andw = 0 for U’ = 0.6,  The marks represent the experimental results by Yoshizawh [13] and the
J=Y=02,U=U’"+2)=10andg=0.089 atx = 0.1. solid lines represent the fitting results from the SCR theory (see in the text).

the enhancement of§(0, 0)]/,5 as shown in Fig. 5 (c). When

. ) uadrupole susceptibility &t = 0, the mode coupling constant
T decreases;goxy increases foll > T, and shows divergent be- d P ptibility bing

and the energy scale of the quadrupole fluctuation, respectively
havior towardsT o(< Tc) where (0, 0)],,; diverges (see Fig. (see Appendix A). We assume tHig = 1812K [56] is inde-
7 (a)), while it decreases far < T due to the #ect of the  pendent of the Co dopingwhile y andy; depend orxand are
superconducting gap. Thisdependence well accounts for the determined so as to fit tie dependence of,  from the SCR
experimental observation whe@gs decreases with decreasing 1o that from the ultrasonic experiments as possible. Fig. 10
T (softening) forT > T, while increases for < Tc[13,14]. In  shows the fitting results of tHE dependence dfSgs — See,o)fl
contrast oo, , Xo,,, andx,, , are almostindependent®  which is proportional to Ay, obtained from the SCR theory
This is also consistent with the ultrasonic experiments where nebgether with the experimenxtya| results by Yoshizawal. [13],
softening is observed @e = (C11-C12)/2 andCss [14] Which  whereSgs = C;l is the elastic compliance ar®#e, is the back
include the contributions in proportion o, andx,, .. re-  ground part of that. It is found that the overall behavior of the
spectively. experiments is well reproduced by the SCR theory for the whole
The detailed analysis of the elastic constadds for ~ temperature and doping range. EspeciallyXcer 0.06, Q083
Ba(Fe_xCoy):As, [13] has revealed that the unifor®,, and 0098, the SCR results are in good agreement with the ex-
quadrupole susceptibility shows the Curie-Weiss like behavioPerimental results a > T or T > Ts. On the other hand, for
in a wide temperature range from the room temperature dows = 0 and 0037, the deviation between the SCR and experi-
to the structural or the superconducting transition temperaturdnental results becomes significant at low temperature. This is
where the Weiss temperature monotonically decreases with ifonsidered due to theffect of the three dimensionality which
creasing the Co doping and is positive forx < 0.07 while IS neglected in the present SCR theory with= 2 where no
negative forx > 0.07. To analyze such behavior, we employ /0ng-range order takes place at finite temperature in contrast to
the SCR theory originally developed for itinerant electron magine case wittD = 3. It is expected that the fitting results for
netism [52] and recently extended for orbital fluctuations [55].X = O and 0037 are improved at low temperature by using the
The SCR theory includes the mode couplirfteets neglected SCR theory withD = 3.
in the RPA and enables us to describe the the Curie-Weiss like Fig. 11 shows the doping dependenceygfobtained by
behavior of the magnetic (orbital) susceptibility in a wide tem-fitting the experimental results in Ba(E@Coy)-As; (see Fig.
perature range in contrast to the RPA [52]. The present analysigy). It is found thaty, monotonically increases with increas-
is a straight forward extension of the standard SCR theory tghg x and crosses 0 at ~ 0.073 wherey,, diverges afl = 0
the quadrupole fluctuations in itinerant electron systems SUC(&ee (A.6)). This means that i, ferroxzquadrupole (or the
as dqped iron pnictides. The brief formulation is given in Ap-dy’z'dzx ferro-orbital) quantum critical point (QCP) is located
pendix A. atx = Xocp ~ 0.073. Remarkably, the superconducting tran-
To obtain theT dependence of the unifor@,y quadrupole  sition temperaturd, shows a maximum at ~ Xacp [9, 57],
susceptibilityy,, , we need to solve the SCR equation given inwhere the orbital fluctuation is expected to dominate over the
eqg. (A.6) withQ = 0,0 = 1 andD = 2 which includes three AFM fluctuation and mediate the, ,-wave superconductivity
parametersyp, y1 andTo, corresponding to the inverse of the [58].
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20 , , field theory [59] and the self-consistent fluctuation theory [60]
T,=1812 [K] are now under the way.
3 The obtaineds, .-wave superconductivity seems to be con-
sistent with experimental results of iron pnictides including the
o) 4 impurity effects. The enhanced ferro-orbital fluctuation above
To might be observed by experiments with a kind of external
Xoc=0.073 | field inducing the anisotropy of , y axes, similar to the case
with the ferromagnetic fluctuation above the Curie temperature
Ferro—orbital observed by experiments with the external magnetic field. In
QCP ] fact, a resistivity anisotropy foF > Ts is induced by uniaxial
stress [61]. In the present paper, we treated the orthorhombic
mode as a optical phonon, as a simplest first step. More realistic

0 O.‘05 (‘).1 model including acoustic phonons will be discussed elsewhere.
X

Yo [GPa]

=200

Figure 11: Doping dependencewfin the SCR theory obtained by fitting the ACknOWIGdgemem

experimental results in Ba(legCox)2As; (see in the text).
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relevant to the ultrasonic softening 6§ is enhanced by the

electron-phonon coupling with the orthorhombic mode and

diverges atTq below which the ferro-orbital order with dif- Appendix A. SCR theory for quadrupole fluctuations

ferent occupations of thd,, andd,y orbitals occurs and in-

duces the orthorhombic distortion resulting in the tetragonal- |n this appendix, we briefly summrize the SCR theory for
orthorhombic structural transition 8 = Tq. Near the tran-  quadrupole fluctuations as a straight forward extension of the
sition, thes,,-wave superconductivity is realized due to the standard SCR theory for itinerant electron magnetism [52]. In
ferro-orbital fluctuation. The obtainextT phase diagram is the vicinity of the phase transition for th®@,, quadrupole or-
consistent with the phase diagram of doped iron pnictides witlgjer with the wave vecto®, we expand the free energywith

Ts > Ty, in contrast to a relatively smajl case withTs = Tn  respect to th@®,, quadrupole operator with the wave vectpr
where thes,-wave superconductivity is realized due to the an-O,(q), as

tiferromagnetic fluctuation.

We have also analyzed the experimental result€gfin - _ .
Ba(Fa_xCo,),As,, Where the Curie-Weiss like behavior in a eXpEF/T) = fl:[doxy(q) expCE/T) A1)
wide temperature range is observed, based on the phenomeno-
logical SCR theory which includes mode couplineets ne-  with
glected in the RPA. It has been found that the experimental re-
sults are well reproduced by the SCR theory for quadrupole N Z 1 1 10x(9)12
fluctuations and there exists tkig, ferro-quadrupoledy -d,x 3 2/\5(3) () i
ferro-orbital) QCP atx = xgcp ~ 0.073, around which the 1 Y
ferro-orbital fluctuation is largely enhanced at low temperature ZFQ Z Ouy(q) Oxy(—a")Oxy(d")Oxy(d — 9" (AD)
and the superconducting transition temperaflyés expected a.q.q"
to show a maximum as observed in the experiments. )

For both cases witls, .- and s.-wave superconductivities, where | anq Fo are the phenomenologm@xy quadrupole-
the RPA result off, is always higher than that ofs(= Tq) quadrupole mterac;ﬂon and.the modg cqupllng constant, respec-
andor Ty, where the orbital aridr the magnetic fluctuations tively. By performing functional den_vatwes in eq. (A1) v_wth
diverge. In experiments, however, for small dopiad s(= Tq) respect t@,y(d) andOxy(—0), we obtain the following equation

4. Sumary and discussions

+

andor Ty are higher thaf.. With including the &ects of the 1
self-energy correction and the vertex correction neglected inthe  —5—— - 21 + 3|:Q<(O'x°yC ) + Fo(Oxy(Q))? = Q (A.3)
RPA, itis expected that the ferro-orbital order grdhe antifer- Xoyy Xo,

romagnetic orders are realized for relatively smalvhile the oo 1 )
superconductivity is realized for relatively largeand shows a whereox% = § 2qOx/(0) is the localO, quadrupole opera-
maximum around the QCP mentioned above. The explicit caltor andy$) (q) andy, (q) are the noninteracting and interact-

culations to include suchffiects by using the dynamical mean- ing Oy, quadrupole susceptibilities. Here, we assume that the
9



dynamicalO,, quadrupole susceptibilityoxy(Q + g, w) can be [9]

expanded as follows,

1 1 w [10]
= +Aq -iC—, A4
o0 e 1@ ATy (A4)

[11]
whered = 1 for Q = 0 andd = 0O for otherwise. By using the
fluctuation-dissipation theorem, eq. (A.4) yields

1 * dw w [12]
locy2y _ — bt el
(Og)D) = N Zq: fo o coth T IMyo,, (Q + 0, w)(A.5)
(13]

Substitute eq. (A.5) into eq. (A.3), we obtain the following
SCR equation

[14]
1 D h +6-1 1

_t _,.2 = 6)15]
Tt (@ Yo+ ¥ fo dx>® Inu o Y(u) (A 6)[ ;

1
with Hg
Vi _ 1 yi = 3FQTO [19]
° 2TAXOW(Q’T =0y 7~ T: [20]

A 2+0

Ta = % To= q;ﬂ g, [21]
o oo X (ZL)/ i
T/To Vo ’ [24]

wherey, X, D andvp represent the digamma function, the wave EZ]
number cut-€f, the spatial dimention and the unit cell volume,

respectively. Note that we negelect the zero-point fluctuation&”!
in deriving eq. (A.6). In eq. (A.6), there are three independenf28
parametersyp, y1 andTg, which are proportional to the inverse [29]
of the quadrupole susceptibility a = 0, the mode coupling [30]
constant and the energy scale of the quadrupole fluctuation, r%—”
spectively. By solving the SCR equation eq. (A.6) for a given[32]

parameter set ofp, y1 and Ty, we obtain theT dependence of [33]
the quadrupole susceptibiliwoxy(Q). ]
[35]
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The diferent parameter set of the electron-phonon coupling matrix ele-
ments was used in ref. [15], where the transvelge, orbital suscepti-
bility shows the incommensurate peaks arogne (0, 0) in contrast to the
present case. However, the resulting pairing state and the phase diagram
was essentially unchanged.

Inthe present paper, we calculgig- atT < T, as follows. First, we solve
the Eliashberg equation @ = 0.035 to obtain the gap functioﬁ(k),
whered = 1.15. Then, neglecting the,-dependence of the gap func-
tion and assuming the usual temperature dependence of the gap function
AK) = aA(k,inTe) tanh(1A74\/Tc/T - 1), we calculateyo, atT < T,
where we seT; = 0.035. It is noted that is determined so as to satisfy
the condition Amax/kgTc = 8, whereAmax is the maximum value of the
gap functionA(k) at T = 0 on the Fermi surfaces.
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The value ofTg is determined as follows. First, we fit the experimental
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