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Abstract. We define a Galois embedding of a projective variety V and
give a criterion whether an embedding is Galois or not. Then we con-
sider several representations of the Galois group. Following the method
developed in the first half, we consider the structure of an abelian sur-
face with the Galois embedding in the latter half. We give a complete
list of all possible groups and show that the abelian surface is isogenous
to the square of an elliptic curve.
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1. Introduction

The main purpose of this article is to present a new viewpoint for the
study of projective varieties. Let k be the ground field of our discussion,
we assume it to be the field of complex numbers, however most results
hold also for an algebraically closed field of characteristic zero. Let V be a
nonsingular projective algebraic variety of dimension n with a very ample
divisor D; we denote this by a pair (V,D). Let f = fD : V ↪→ PN be
the embedding of V associated with the complete linear system |D|, where
N + 1 = dim H0(V,O(D)). Suppose that W is a linear subvariety of PN

satisfying dimW = N − n − 1 and W ∩ f(V ) = ∅. Consider the projection
πW with the center W , πW : PN ��� W0, where W0 is an n-dimensional
linear subvariety not meeting W . The composition π = πW ·f is a surjective
morphism from V to W0

∼= Pn.
Let K = k(V ) and K0 = k(W0) be the function fields of V and W0

respectively. The covering map π induces a finite extension of fields π∗ :
K0 ↪→ K of degree d = deg f(V ) = Dn, which is the self-intersection number
of D. It is easy to see that the structure of this extension does not depend
on the choice of W0 but only on W , hence we denote by KW the Galois
closure of this extension and by GW = Gal(KW /K0) the Galois group of
KW /K0. Note that GW is isomorphic to the monodromy group of the
covering π : V −→ W0, see [4].

Definition 1.1. In the above situation we call GW the Galois group at W .
If the extension K/K0 is Galois, we call f and W a Galois embedding and
a Galois subspace for the embedding respectively.
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Definition 1.2. A nonsingular projective algebraic variety V is said to have
a Galois embedding if there exist a very ample divisor D satisfying that the
embedding associated with |D| has a Galois subspace. In this case the pair
(V,D) is said to define a Galois embedding.

If W is the Galois subspace and T is a projective transformation of PN ,
then T (W ) is a Galois subspace of the embedding T · f . Therefore the
existence of Galois subspace does not depend on the choice of the basis
giving the embedding.

Remark 1.3. For a projective variety V , by taking a linear subvariety, we
can define a Galois subspace and Galois group similarly as above. Suppose
that V is not normally embedded and there exists a linear subvariety W
such that the projection πW induces a Galois extension of fields . Then,
taking D as a hyperplane section of V in the embedding, we infer readily
that (V,D) defines a Galois embedding with the same Galois group in the
above sense.

By this remark, for the study of Galois subspaces, it is sufficient to con-
sider the case where V is normally embedded.

We have studied Galois subspaces and Galois groups for hypersurfaces in
[13], [14] and [15] and space curves in [2] and [17]. The idea introduced above
is a generalization of the ones used in these studies. In what follows, we give
a criterion for an embedding to be Galois or not and show the existence
of several representations of the Galois group when (V,D) defines a Galois
embedding. Second we study the structure of abelian surfaces and their
Galois groups when the surface has Galois embedding.

Hereafter we use the following notation and convention:
· Aut(V ) : the automorphism group of a variety V
· 〈a1, · · · , am〉 : the subgroup generated by a1, · · · , am

· Zm : the cyclic group of order m
· Dm : the dihedral group of order 2m
· (f) : the divisor defined by a function f
· |G| : the order of a group G
· ∼ : the linear equivalence of divisors
· 1m : the unit matrix of size m
· G(k,m) : the Grassmanian parametrizing k-planes in m-dimensional pro-

jective space Pm

· em := exp(2π
√−1/m)

· ρ := e6

· D1 ·D2 : the intersection number of two divisors D1 and D2 on a surface
· D2 : the self-intersection number of a divisor D on a surface
· [α1, . . . , αm] : the diagonal matrix with entries α1, . . . , αm
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2. Statement of results

By definition, if W is the Galois subspace, then each element σ of GW

is an automorphism of K = KW over K0. Therefore it induces a birational
transformation of V over V0. This implies that GW can be viewed as a
subgroup of Bir(V/W0), the group of birational transformations of V over
W0. Further we can say the following:

Representation 1. The element of GW turns out to be regular on V , hence
we have a representation

α : GW ↪→ Aut(V ). (1)

Therefore, if the order of Aut(V ) is small, then V cannot have a Galois
embedding. On the other hand, we have examples such that there exist
infinitely many distinct Galois embeddings, see Example 4.1.

When (V,D) defines a Galois embedding, we identify f(V ) with V . Let
H be a hyperplane of PN containing W and D′ be the intersection divisor
of V and H. Since D′ ∼ D and σ∗(D′) = D′, for any σ ∈ GW , we see that
σ induces an automorphism of H0(V,O(D)).

Representation 2. We have a second representation

β : GW ↪→ PGL(N, C). (2)

In the case where W is a Galois subspace we identify σ ∈ GW with
β(σ) ∈ PGL(N, C) hereafter. Since GW is a finite subgroup of Aut(V ),
we can consider the quotient V/GW and let πG be the quotient morphism,
πG : V −→ V/GW .

Proposition 2.1. If (V,D) defines a Galois embedding with the Galois sub-
space W such that the projection is πW : PN ��� W0, then there exists an
isomorphism g : V/GW −→ W0 satisfying g · πG = π. Hence the projection
π is a finite morphism and the fixed loci of GW consist of only divisors.

Therefore, π turns out to be a Galois covering in the sense of Namba [7].
Now we present the criterion that (V,D) defines a Galois embedding.

Theorem 2.2. The pair (V,D) defines a Galois embedding if and only if
the following conditions hold:
(1) There exists a subgroup G of Aut(V ) satisfying that |G| = Dn.
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(2) There exists a G-invariant linear subspace L of H0(V,O(D)) of dimen-
sion n + 1 such that, for any σ ∈ G, the restriction σ∗|L is a multiple of
the identity.

(3) The linear system L has no base points.

It is easy to see that σ ∈ GW induces an automorphism of W , hence we ob-
tain another representation of GW as follows. Take a basis {f0, f1, . . . , fN}
of H0(V,O(D)) satisfying that {f0, f1, . . . , fn} is a basis of L in Theorem
2.2. Then we have the representation

β1(σ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λσ
...

. . .
... ∗

λσ
...

· · · · · · · · · ... · · ·
0

... Mσ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the representation is completely reducible, we get another representa-
tion using a direct sum decomposition:

β2(σ) = λσ · 1n+1 ⊕ M ′
σ.

Thus we can define

γ(σ) = M ′
σ ∈ PGL(N − n − 1,C).

Therefore σ induces an automorphism on W given by M ′
σ.

Representation 3. We get a third representation

γ : GW −→ PGL(N − n − 1,C). (3)

Let G1 and G2 be the kernel and image of γ respectively.

Theorem 2.3. We have an exact sequence of groups

1 −→ G1 −→ G
γ−→ G2 −→ 1,

where G1 is a cyclic group.

Corollary 2.4. If N = n + 1, then G is a cyclic group.

This implies that the Galois group is cyclic if the codimension of the
embedding is one (cf. [15]). Furthermore we have another representation.

Representation 4. We have a fourth representation

δ : GW ↪→ Aut(C), (4)

where C is a smooth curve in V given by V ∩ L such that L is a general
linear subvariety of PN with dimension N − n + 1 containing W .
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Note that there may exist several Galois subspaces and Galois groups for
one embedding (see, for example [2]). Generally we have the following.

Proposition 2.5. Suppose that (V,D) defines a Galois embedding and let
Wi (i = 1, 2) be Galois subspaces such that W1 �= W2. Then G1 �= G2 in
Aut(V ), where Gi is the Galois group at Wi.

Corollary 2.6. If V is of general type, then there are at most finitely many
Galois subspaces for one embedding.

Remark 2.7. It may happen that there exist infinitely many Galois sub-
spaces for one embedding if the Kodaira dimension of V is small. For exam-
ple, if V = P1 and deg D = 3, i.e., f(V ) is a twisted cubic, then the Galois
lines form two dimensional locally closed subvariety of the Grassmannian
G(1, 3) (cf. [17]).

3. Abelian Surfaces

We apply the methods developed in the previous sections to the study
of abelian varieties A. In the case where dim A = 1 and deg D = 3 or 4,
we have studied in detail in [2]. Hereafter we restrict ourselves to the case
where dim A ≥ 2.
First we consider several necessary conditions that (A,D) defines a Galois
embedding.

Proposition 3.1. Suppose that A has the Galois embedding with a Galois
group G. Let Rπ be the ramification divisor for the projection π : A −→ W0.
Then, each component of Rπ is a translation of an abelian subvariety of
dimension n − 1 and Rπ ∼ (n + 1)D. In particular, Rπ is very ample and
Rπ

n = (n + 1)n|G|.
Corollary 3.2. Simple abelian varieties do not have Galois embeddings.

We have further results. To state them, we need to prepare some notation.
Let G be a subgroup of Aut(A). Then σ ∈ G has the complex representation
σ̃z = M(σ)z + t(σ), where M(σ) ∈ GL(n, C), z ∈ Cn and t(σ) ∈ Cn.
Fixing the representation, we put G0 = { σ ∈ G | M(σ) = 1n} and H =
{ M(σ) | σ ∈ G}. Then, we have the following exact sequence of groups

1 −→ G0 −→ G −→ H −→ 1.

Suppose that A has a Galois embedding with the Galois group G. Then,
B = A/G0 is also an abelian variety and H ∼= G/G0 is a subgroup of Aut(B).
Moreover, it is easy to see that B/H is isomorphic to A/G ∼= W0. Using the
notation above, we have the following.

Theorem 3.3. If A has a Galois embedding, then H is not an abelian group.

Corollary 3.4. There exists no abelian embedding of an abelian variety of
dimension ≥ 2, i.e., the Galois embedding whose Galois group is abelian
does not exist.
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Note that these phenomena do not appear for elliptic curves. In fact, for
an elliptic curve we have H ∼= Zm, where m = 2, 3, 4 or 6. Moreover it may
happen that G is an abelian group (cf. [2]). We study the structure of H in
detail in the case of abelian surfaces.

Lemma 3.5. Let A be an abelian surface. Assume that G is a finite au-
tomorphism group of A satisfying that A/G is isomorphic to P2 and let
π : A −→ P2 be the quotient morphism. If deg π ≥ 10, then π∗(l) = D is
very ample for each line l in P2.

Combining Theorem 2.2 and Lemma 3.5 together, we infer readily the
following.

Corollary 3.6. Under the same assumption and notation of Lemma 3.5,
the pair (A,D) defines a Galois embedding.

Making use of the results of [5], we obtain the following theorem.

Theorem 3.7. If an abelian surface A has the Galois embedding, then H
is isomorphic to one of the following:
(1) D3

(2) D4

(3) the semi-direct product of groups: Z2 � H ′, where H ′ ∼= D4 or Zm ×
Zm (m = 3, 4, 6)

To state case (3) more precisely, we put Z2 = 〈a〉 and H ′ = 〈b, c〉. Then
the actions of Z2 on H ′ are as follows: In the former case H ′ ∼= D4, we
have aba = bc2, aca = c, c4 = 1, b2 = 1 and bcb = c−1 . In the latter case
H ′ ∼= Zm × Zm, we have aba = b−1, aca = c−1, bm = cm = 1 and bc = cb.

Corollary 3.8. If A has a Galois embedding, then the abelian surface B =
A/G0 is isomorphic to E × E for some elliptic curve E.

Remark 3.9. Although we have |H| ≤ 72, the order |G| can be arbitrarily
large. In fact, for any m ≥ 2 there exist examples with |G| = 8m2 in
Example 4.5 below.

Remark 3.10. In the case where W∩f(A) �= ∅ there exist examples of Galois
embeddings such that H is an abelian group, see Remark 4.8 below.

4. Examples

Example 4.1. Let E be the elliptic curve C/Ω, where Ω = (1, τ) is a period
matrix such that �τ > 0. Let a and b be the automorphisms of E defined by
a(z) = −z and b(z) = z +1/m respectively, where z ∈ C and m is a positive
integer ≥ 2. Let G be the subgroup of Aut(E) generated by a, b. Then
G = 〈a, b〉 ∼= Dm; the dihedral group of order 2m. Let y2 = 4x3 + px + q
be the Weierstrass normal form of E and K = C(x, y). Then the fixed field
of K by G is rational C(t), where t ∈ C(x). Putting D = (t)∞ ; the divisor
of poles of t, we infer readily that deg D = 2m and (E,D) defines a Galois
embedding for each m.
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We present several examples of abelian surfaces, to which we can apply
Corollary 3.6. In order to check that A/G is isomorphic to P2, we can use the
following lemmas. Using the notation in Section 3, we put H1 = { M(σ) ∈
H | det M(σ) = 1 } and let F (G) be the set of the fixed points of G, i.e.,
the set { x ∈ A | ∃ σ ∈ G, σ �= id, σ(x) = x}. Then the lemmas can be
stated as follows (cf. [12, Theorem 2.1]):

Lemma 4.2. If H satisfies all of the following conditions, then A/G is
rational.

(1) H �= H1.
(2) If H is cyclic, then no eigenvalue of the generator is 1.

(3) If H has the representation 〈
( −1 0

0 1

)
,

(
1 0
0 −1

)
〉 or

〈
(

0 1
−1 0

)
,

(
1 0
0 −1

)
〉, then F (G) is not a finite set.

Since we have a morphism π : A −→ A/G, if A/G is smooth, then
C2 ≥ 0 for each curve C on A/G. Moreover we can say C2 > 0 if H has an
irreducible representation (cf. [11, Corollary 3.3.3]).

Lemma 4.3. If A/G is smooth and rational and H is irreducible, then A/G
is isomorphic to P2.

Now, let us state examples.

Example 4.4. Let A be the abelian surface with the period matrix

Ω =
( −1 ρ2 −τ τρ2

1 ρ τ τρ

)
=

( −1 ρ2

1 ρ

)(
1 0 τ 0
0 1 0 τ

)
,

where �τ > 0. Clearly we have A ∼= E × E where E = C/(1, τ). Letting
z ∈ C2 and vi be the i-th column vector of Ω (1 ≤ i ≤ 4), we define ti to be
the translation on A such that tiz = z+vi/m, where m is an integer ≥ 2.
Let a and b be the automorphism of A such that the complex representations
are (

0 1
1 0

)
and

( −ρ 0
0 ρ2

)

respectively. Put G0 = 〈t1, . . . , t4〉 and G = 〈G0, a, b〉. Then G0 is a normal
subgroup of G and G/G0

∼= D3. Clearly we have |G| = 6m4. Looking at the
fixed loci of H, we infer that A is smooth.

Example 4.5. Let E be the elliptic curve in Example 4.1, and let A be the
abelian surface E × E. We define several automorphisms on A as follows:
let a, b and c be the homomorphisms whose complex representations are(

0 1
1 0

)
,

( −1 0
0 1

)
,

(
1 0
0 −1

)
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respectively. Let t1 and t2 be translations on A defined by

t1z = z + t

(
1
m

, 0
)

and t2z = z + t

(
0,

1
m

)
,

where z ∈ C2 and m is an integer ≥ 2. Put G0 = 〈t1, t2〉 and G = 〈G0, a, b〉.
Then G0 is a normal subgroup of G and G/G0

∼= D4. Clearly |G| = 8m2.
We can make use of Corollary 3.6 and Lemma 4.2 to prove that (A,D) define
a Galois embedding. In another way we can show this as follows (the proof
will be done at the end of the paper): let ∆ and Γ be the elliptic curves in
A defined by

∆ =
{(

z
z

)
| z ∈ E

}
and Γ =

{(
z
−z

)
| z ∈ E

}
,

respectively. Clearly ∆2 = Γ2 = 0 and it is easy to see that ∆ · Γ = 4.
Put ∆i = t1

i(∆) and Γj = t1
j(Γ), where 1 ≤ i, j ≤ m − 1. Note that

∆i = t2
m−i(∆) and Γj = t2

j(Γ). Then put

D = ∆0 + ∆1 + · · · + ∆m−1 + Γ0 + Γ1 + · · · + Γm−1,

where we assume ∆0 = ∆ and Γ0 = Γ. We have D2 = 8m2 and infer that
D is very ample if m ≥ 2. We see from Theorem 2.2 that (A,D) defines a
Galois embedding with Galois group G.

Example 4.6. Let A be the abelian surface C2/Ω such that Ω is the period
matrix (

1 0 i (1 + i)/2
0 1 0 (1 + i)/2

)
,where i = e4.

Recalling Theorem 3.7, we define the homomorphisms a, b and c, whose
complex representations are( −1 0

0 1

)
,

(
0 1
1 0

)
,

(
i 0
0 −i

)
respectively. Put G = 〈a, b, c〉. Then G ∼= Z2 � D4 and G ⊂ Aut(A) and
A/G ∼= P2.

Example 4.7. Let E be the elliptic curve E in Example 4.1 such that
τ = em, m = 3, 4 or 6. Let A be the abelian surface E × E. We define
automorphisms on A as follows: let a, b and c be the homomorphisms whose
complex representations are(

0 1
1 0

)
,

(
τ 0
0 1

)
,

(
1 0
0 τ

)
respectively. Let G = 〈a, b, c〉. Clearly we have a2 = bm = cm = 1, bc =
cb, ca = ab and ba = ac, and |G| = 2m2. Moreover we have G ∼= Z2 � (Zm×
Zm). Put E1 = E×{0} and E2 = {0}×E, where 0 is the zero element of E,
then put D = m(E1 +E2), clearly we have D2 = 2m2. It is well known that
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D is very ample if m ≥ 3. We see from Theorem 2.2 that (A,D) defines a
Galois embedding whose Galois group is isomorphic to G.

Let us examine the case m = 3 in a different point of view. Since E is
defined by the Weierstrass normal form y2 = 4x3 + 1, we have that C(A) =
C(x, y, x′, y′), where y′2 = 4x′3 + 1. The automorphisms a, b and c induce
the ones of C(A) as follows:

(i) a∗ interchanges x and x′, y and y′.
(ii) b∗(x) = ρ2x and b∗ fixes y, x′ and y′.
(iii) c∗(x′) = ρ2x′ and c∗ fixes x, y and y′.

Therefore, the fixed field C(A)G is C(y+y′, yy′), and we have (y+y′)+D ≥ 0
and (yy′) + D ≥ 0. Embedding by 3(E1 + E2) is the composition of the
embedding E×E ↪→ P2×P2 followed by the Segre embedding P2×P2 ↪→ P8.
Using homogeneous coordinates (X,Y,Z) [resp. (X ′, Y ′, Z ′)] satisfying that
x = X/Z, y = Y/Z [resp. x′ = X ′/Z ′, y′ = Y ′/Z ′], we can express this
embedding as

f(X,Y,Z,X ′, Y ′, Z ′) = (XX ′, Y X ′, ZX ′,XY ′, . . . , ZZ ′).

Letting (T0, · · · , T8) be a set of homogeneous coordinates of P8, we can
express the Galois subspace by T5 + T7 = T4 = T8 = 0.

Remark 4.8. In the situation of the latter half of Example 4.7, let W be the
linear subspace defined by T5 = T7 = T8 = 0. Consider the projection πW

with the center W . In this case f(A) ∩ W consists of nine sets of points.
The projection πW |A induces the extension of fields C(A)/C(W0), which is
a Galois extension with the Galois group isomorphic to Z3 × Z3.

Example 4.9. Take the elliptic curve E in Example 4.7 such that m = 3.
If we take different actions of b and c, then we can get different Galois
subspaces. To show this, first we recall the result of Galois subspaces (i.e.,
Galois points) for plane elliptic curves. Let E be a smooth cubic in P2. If
there exists a Galois point, then E is projectively equivalent to the curve
defined by Y 2Z = 4X3+Z3 and it has just three Galois points (X : Y : Z) =
(1 : 0 : 0), (0 : −√−3 : 1) and (0 :

√−3 : 1). Then we have three projections
π : P2 · · · → P1 given by π(X : Y : Z) = (Y : Z), (X : Y +

√−3Z) and (X :
Y −√−3Z), which yields Galois covering π|E : E −→ P1. By taking these
projections, we can find nine Galois subspaces for the embedding E×E ⊂ P8.
For example, if we take π1(X : Y : Z) = (Y : Z) and
π2(X : Y : Z) = (X : Y +

√−3Z), then the fixed field of C(A) by G is equal
to C(y + u, yu), where u = (y′ +

√−3)/x′. Hence the Galois subspace is
defined by T1 + T5 +

√−3T8 = T4 +
√−3T7 = T2 = 0 using the coordinates

in the last part of Example 4.7.
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5. Proofs

We use the notation in Introduction. First we prove Representation 1.
Each element σ ∈ GW induces a birational transformation of V over W0,
we denote it by the same letter σ. In the case where dim V = 1, σ is a
morphism, so we assume dim V ≥ 2. For a point P ∈ V we denote by
〈W,P 〉 the linear subvariety spanned by W and P .

Lemma 5.1. If 〈W,P 〉 meets V at d distinct points, then σ is regular at P
and σ(P ) is one of the points in 〈W,P 〉 ∩ V .

Proof. The projection π is a finite morphism near π(P ) by the hypothesis.
Since σ is a birational transformation of V over W0 and π is finite near
π(P ) and V is smooth (normal is enough), by Zariski’s Main Theorem, we
see that σ is a morphism (necessarily an isomorphism) from a suitable open
set of the form π−1(U) containing P .

If P does not fulfill the assumption of Lemma 5.1, then π(P ) ∈ ∆π, where
∆π is the divisor of the discriminant of π. Let UP be a small neighborhood
of P . Then ZP = UP ∩ π−1(∆π) is a set of zero points of some holomorphic
function in UP . Let σ = (σ1, . . . , σn) be an expression of σ on UP . Then
each σi is regular and bounded on UP \ ZP by Lemma 5.1. By Riemann’s
Extension Theorem ([3, p. 9]), σ is regular at P . Thus σ is regular on V .
Hence it becomes an automorphism of V .

Next we prove Proposition 2.1. By definition we have a birational map
g := π · πG

−1 : V/GW ��� W0. Let W1 be a general hyperplane of W0

and let V1 = π∗(W1) be a very ample divisor. Then πG(V1) is ample, hence
V/GW is a projective variety. Moreover it is normal. Therefore we have only
to prove, by Zariski’s Main Theorem, that the total transform g(x) [resp.
g−1(y)], where x ∈ V/GW [resp. y ∈ W0] do not contain curves. Since πG

is a finite morphism, g(x) contains no curves. Thus, it is sufficient to prove
that π−1(x) does not contain a curve. Suppose the contrary. Then, let Γ
be the curve and W1 be a hyperplane in W0 not passing through x. Since
π∗(W1) ∼ D, it is a very ample divisor, hence we have π∗(W1) ∩ Γ �= ∅,
which is a contradiction. Thus g is an isomorphism. Since πG is a finite
morphism, so is π. By the theorem of purity of branch loci, due to Zariski,
each component of the loci has codimension one.

Now we prove Theorem 2.2. Suppose that (V,D) defines the Galois em-
bedding f : V ↪→ PN with the Galois subspace W . Then, by definition and
Representation 1, the first assertion (1) is clear. Let W1 be a general hyper-
plane in W0. Then V1 = π∗(W1) is an irreducible smooth subvariety of codi-
mension one in V by Bertini’s theorem, and σ∗(V1) = V1 for any σ ∈ GW .
Take n+1 independent general hyperplanes W1i of W0 (i = 0, 1, . . . , n) and
let fi be the section of H0(V,O(D)) defined by the pullback of W1i by π.
Then the linear subspace L generated by {f0, f1, . . . , fn} satisfies conditions
(2) and (3).
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Conversely, we assume that conditions (1), (2) and (3) hold.
Let {f0, f1, . . . , fN} be a basis of H0(V,O(D)), where f0, f1, . . . , fn are given
in (2). Then f = (f0, f1, . . . , fN ) defines an embedding V ↪→ PN .
Let (X0,X1, . . . ,XN ) be the corresponding set of homogeneous coordinates
on PN and let W be the linear subspace defined by X0 = X1 = . . . = Xn = 0.
Since the linear system corresponding to L has no base points, we infer that
W ∩ f(V ) = ∅. Therefore the projection induces a morphism π : V −→
W0. Since D is ample, π is surjective. Hence K is a finite extension of
K0 := k(f1/f0, f2/f0, . . . , fn/f0) and [K : K0] = Dn. Let KG be the fixed
field of K by G. Then, since σ∗(fi/f0) = fi/f0 for any σ ∈ G, we see that
KG ⊃ K0. By the assumption |G| = Dn we have that KG = K0, hence W
turns out to be a Galois subspace. This completes the proof.

The proof of Theorem 2.3 is simple. For any σ ∈ G1, define a homo-
morphism h : G1 −→ k∗ = k \ {0} by h(σ) = λσ/µσ, where γ(σ) =
λσ · 1n+1 ⊕ µσ · 1N−n. Since h is injective and G1 is a finite multiplica-
tive subgroup of k∗, G1 is cyclic.

The proof of Representation 4 is done inductively. Suppose that (V,D)
defines a Galois embedding and let G be a Galois group for some Galois
subspace W . Then, take a general hyperplane W1 of W0 and put V1 =
π∗(W1). The divisor V1 has the following properties:

(i) If n ≥ 2, then V1 is a smooth irreducible variety.
(ii) V1 ∼ D.
(iii) σ∗(V1) = V1 for any σ ∈ G.
(iv) V1/G is isomorphic to W1.

Put D1 = V1 ∩ H1, where H1 is a general hyperplane of PN . Then (V1,D1)
defines a Galois embedding with the Galois group G (cf. Remark 1.3).
Iterating the above procedures, we get a sequence of pairs (Vi,Di) such that

(V,D) ⊃ (V1,D1) ⊃ · · · ⊃ (Vn−1,Dn−1).

These pairs satisfy the following properties:
(a) Vi is a smooth subvariety of Vi−1, which is a hyperplane section of Vi−1,

where Di = Vi+1, V = V0 and D = V1 (1 ≤ i ≤ n − 1).
(b) (Vi,Di) defines a Galois embedding, with the same Galois group G.

In particular, letting C be the curve Vn−1, we get the fourth representation.

Next we prove Proposition 2.5. Let 〈W,P 〉 denote the linear subvariety
spanned by W and a point P . Suppose the contrary, i.e., G1 = G2. Then,
we infer readily that 〈W1, P 〉 ∩ V = 〈W2, P 〉 ∩ V for any P ∈ V . This
implies that 〈W1 ∩ W2, P 〉 ∩ V = 〈W1, P 〉 ∩ V . Since W1 �= W2, we have
W1 ∩ W2 � W1, therefore we have dim(W1 ∩ W2) ≤ N − n − 2. Thus V is
contained in a linear subvariety W̃ such that dim(π−1

W (Q)∩W̃ ) ≤ N −n−1,
where Q is a general point in W0. Hence we conclude that V is contained
in a hyperplane, which is a contradiction.

We proceed with the proof of the assertions in Section 3. First we consider
Proposition 3.1. By the ramification formula we have KA ∼ π∗(−(n +
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1)W1)+Rπ, where KA is a canonical divisor of A and W1 is a hyperplane in
W0. Since A is an abelian variety, we have KA ∼ 0, hence Rπ ∼ (n + 1)D.

By the way, we note that if σ ∈ G, where σ̃z = M(σ)z + t(σ), then the
matrix part M(σ) induces an automorphism σ̂ of A defined by σ̂z = M(σ)z.

Let R be a reduced part of the irreducible component of Rπ. Then there
exists σ ∈ G (σ �= id) such that σ|R = id. This implies that some translation
of R is contained in the kernel of the homomorphism σ̂ − id, where σ̂ is the
homomorphism defined above. This means that R is a translation of an
abelian subvariety.

Now the proof of Corollary 3.2 is clear, because π : A −→ W0 is not an
unramified covering.

Now we consider the proof of Theorem 3.3. Referring to [11, Corollary
3.2.2], since B/H ∼= Pn, we see that H is generated by reflections. Suppose
that H is an abelian group. Then it can be generated by elements whose
complex representations are diagonal matrices σi = [αi1, . . . , αin] such that
αij = 1 if i �= j and αii is a root of unity and �= 1. Take an element σ1 and
consider the homomorphism h : B −→ B defined by h(z) = σ1(z)−z, where
z ∈ Cn. Then h(B) is an elliptic curve E. Since H is assumed to be an
abelian group, we have σ̄·h = h·σ, where σ̄ is an automorphism on E induced
by σ. We infer from this that there exists a morphism h̄ : B/H −→ P1, which
is a contradiction, since B/H ∼= Pn.

In order to prove Lemma 3.5, we make use of the following lemma (cf.
[9], [1]).

Lemma 5.2. Let (A,D) be a polarized abelian surface, where D is an ample
divisor on A with D2 ≥ 4d + 6. Then D is d-very ample unless there exists
an effective divisor ∆ on A such that

D · ∆ − d − 1 ≤ ∆2 < D · ∆/2 < d + 1.

By this lemma it is sufficient to prove that there exists no effective divisor
∆ on A satisfying that ∆2 = 0 and D · ∆ = 1 or 2. Put ∆ =

∑r
i=1 miCi,

where mi is an integer > 0 and Ci is an irreducible curve (1 ≤ i ≤ r). Since
Ci · Cj ≥ 0 for any i, j, we have that C2

i = 0 and Ci ∩ Cj = ∅ if i �= j.
Thus Ci is an elliptic curve and we infer readily, by taking a translation,
that ∆ is algebraically equivalent to mE, where E is an elliptic curve and
m > 0. Since D · ∆ = 1 or 2, we get D · E = 1 or 2. In the former
case, we consider the morphism g : A −→ A/E0, where E0 is a subabelian
variety, which is a translation of E. Then D will be a section of g, which
is a contradiction, since the genus of D is not less than 6. In the latter
case, by taking a translation of E, we may assume that it does not belong
to the ramification divisor of π. Put D2 = d, which is an even number,
and GE = { σ ∈ G | σ(E) = E }, which is a subgroup of G. Let f be
the rational map associated with |D|. Then f(E) is a rational curve, since
D · E = 2. Thus there exists σ ∈ G such that σ(E) = E and σ �= id,
therefore GE �= {id}. Put G/GE = 〈σ̄1, · · · , σ̄r〉, where σi ∈ G (1 ≤ i ≤ r).
Then r < d and r is a factor of d. If deg π(E) = d′, then π∗(π(E)) ∼ d′D.
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We can put π∗(π(E)) = E1 + · · · + Er, where E = E1, Ei = σi(E). Since
σ(D) = D, we have D · Ei = 2 for 1 ≤ i ≤ r. Therefore we get 2r = d′d,
hence d′ = 1 and r = d/2. For 1 ≤ i ≤ r we have E1 · Ei + · · · + Er · Ei = 2
and Ei

2 = 0. Since r ≥ 5, there exists j satisfying that (E1 + E2) · Ej = 0
and E1 ·E2 ≥ 1. This is a contradiction, because, since (E1 + E2)2 ≥ 2, the
divisor E1 + E2 is ample (cf. [6, Ch.4, (5.2)]).

The proof of Corollary 3.8 is as follows. Looking at Theorem 1 in [5], we
infer easily that except in the case (4, 2)1 B is a product type. Concerning
the exceptional case, the period matrix of the abelian surface B = C2/Ω has
the expression

Ω =
(

1 0 i (1 + i)/2
0 1 0 (1 + i)/2

)
,where i = e4.

Put B0 = Ei × Ei, where Ei = C/(1, i). Then B is isogenous to B0, hence
B is a singular abelian surface, this implies B ∼= F1 × F2, where F1 and F2

are elliptic curves (cf. [10]). Since the scalar matrix [i, i] acts on B, F1 and
F2 have the automorphism defined by z �→ iz, where z ∈ C, hence we have
F1

∼= F2
∼= Ei.

Finally we mention the proof of the last assertion of Example 4.5. Thanks
to Lemma 5.2 we have only to prove that there does not exist an elliptic
curve F satisfying that D · F = 2 or D · F = 1. If ∆i · F = 0 for some i and
for some elliptic curve F , then F is a translation of ∆i, hence F · Γj = 4
(j = 0, . . . ,m − 1). This implies D · F ≥ 4m. If ∆i · F ≥ 1 and Γj · F ≥ 1,
then we have D · F ≥ 2m. Therefore we conclude that D · F ≥ 2m. Clearly
we have A/G ∼= P2. Take three general lines li (i = 0, 1, 2) on A/G and let
fi be the pull back of li by π : A −→ A/G. We infer from Theorem 2.2 that
(A,D) defines a Galois embedding.

Finally we raise problems.

Problems.

(1) In the situation of Introduction find the set
{ W ∈ G(N − n − 1,N) | GW

∼= Sd}.
In particular, is it true that the codimension of the complement of the
set is at least two (cf. [8])?

(2) Suppose that dim Lin(V ) = 0, W is close to W ′ (in the Grassmanian)
and W �= W ′. Then is it true that KW is not isomorphic to KW ′ ? (cf.
[16])

(3) For an embedding (V,D) find the structure of Galois group GW for each
W ∈ G(N − n − 1,N).

(5) Find all the Galois subspaces for one Galois embedding. Especially find
the rule of arrangements of Galois subspaces (cf. [2], [15]).

(6) Consider the similar subject in the case where f(V ) ∩ W �= ∅.
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