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A theoretical study is made of phonons in amorphous solids using a self-consistent
phonon scheme. In treating the structural disorder inherent in the problem, a theory is for-
mulated from the viewpoint of multiple scattering theory and designed to give phonon eigen-
frequencies which are expressed in terms of many-body correlation functions of atoms as well
as of interatomic potentials in the solids. For this purpose, a conditional averaging procedure
is applied to equations for phonon Green’s functions, obtainable using the renormalized har-
monic approximation. A set of hierarchy equations is thereby obtained, for which various
decoupling approximations are employed. As an application of the results obtained here,
numerical calculations of the eigenfrequencies of longitudinal and transverse phonons in
liquid argon are made using the “quasi-crystalline approximation” and the Lennard-Jones
model potential. Fairly good agreement with experiment is obtained. A systematic and
approximate self-consistent method for treating the hierarchy equations, which may be of
some use in studying the general properties of the energy spectra of elementary excitations
in disordered systems, is also obtained.

§ 1. Introduction

The traditional theory of lattice dynamics has been developed, as in the case
of other fields of solid state physics, for perfect crystal lattices characterized by
their periodic structure.””® Much progress has also been made recently in lattice
dynamics of disordered crystal lattices, impure crystals,” and mixed crystals or
alloys.® In spite of their wide-spread existence in nature, however, the vibrational
properties of amorphous solids, glassy solids, etc., belonging to a different class
of disordered solids, have received little attention among theoretical solid state
physicists.

If we are concerned only with phonons of long wavelength, then we may
think of these disordered solids as a continuum and deduce the frequency spectra
by a combination of the Debye model and the mechanics of an elastic body.
When we study phonons of shorter wavelength, however, such an approach is
no longer appropriate, and a microscopic theory taking into account the microsco-
pic structure of the solids is required. Gubanov has formulated a variational
method for calculating the frequency spectra of amorphous solids.” The result
obtained by him is rather formal and no explicit result has been presented.
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Historically, it has been known for a long time that the thermal conductivity
of glassy solids has a different feature from that of pure or impure crystals.”
Several experiments have also revealed that there exists excess low-temperature speci-
fic heat in glassy solids”~® or glassy polymers” which cannot be accounted for
by the conventional Debye theory. Bell, Bird and Dean have made numerical
caleulations of the vibrational spectra of model glassy solids.'”® In recent years,
neutron scattering data from short-wavelength phonons in amorphous solids,™ as
well as liguids,™™ have become increasingly available. It has been shown that
there is a remarkable similarity between the scattered neutron spectra of amor-
phous or polycrystalline solids near their melting temperatures and those of
liquids.*'*® In the field of physics of liquids, there has recently been a growing
interest in collective motion or high-frequency phonons in simple liquids.™

It is the purpose of this paper to develop a theory of phonons in amorphous
solids, with application to high-frequency phonons in simple liquids of the re-
sults obtained. This paper is the first of a series of papers to be devoted to
developing theory of elementary excitations in disordered systems, impure or
mixed cystals, amorphous solids or liquids, from the viewpoint of multiple
scattering theory. In this series, a configurational averaging procedure, utilized
in a previous paper by one of the authors (S.T.), for studying the multiple
scattering of waves or particles in random media,'® is applied with modification
and generalization. Particular effort is made to obtain results for the energy
spectra and the other physical properties of elementary excitations in disordered
systems, which are expressed in terms of many-body correlation functions of
scatterers in the systems, in an approximate self-consistent manner. Such a
method, when viewed from many-body theory, is obviously a generalization of
the conventional random phase approximation. The method utilized in this paper
has, in its spirit, some similarity to that of Hubbard and Beeby in their theory
of collective motion in Simple liquids.” However, it is much more systematic,
and also self-comsistent, in treating the effect of spatial randomness on phonons
in disordered systems. In the second and the third papers of this series, the
energy spectra of an electron in mixed crystals or alloys and those in liquid
metals will be studied.

In the next section, a brief discussion is given of a general self-consistent
phonon scheme®™® to take into account the anharmonicity of atomic vibrations
to all orders of magnitude. In §3 a conditional averaging procedure is applied
to equations for phonon Green’s functions. A set of hierarchy equations is
thereby obtained, which are designed to be written in terms of many-body correla-
tion functions of atoms in amorphous solids. In §4 the lowest order decoupling
approximation, called the quasi-crystalline approximation, is employed for termi-
nating the hierarchy. Formal expressions for phonon eigenfrequencies are ob-
tained, which are written in terms of “effective pair potential” and pair correla-
tion functions. An attempt is made in the appendix to proceed to the second
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order approximation which yields the phonon damping. Section 5 is devoted to
obtaining a self-consistent method for treating the hierarchy equations from the
viewpoint of multiple scattering theory. An approximate self-consistent expres-
sion for phonon eigenfrequencies is obtained. In §6, as an application of the
results obtained in § 4, numerical calculations are made to obtain the eigenfre-
quencies of high frequency phonons in liquid argon. The last section is devoted
to a brief summary of the results obtained in this paper.

§2. A self-consistent phonon theory

We consider the vibrational motion of N atoms in a solid. In view of the
possible importance of the anharmonicity of atomic vibrations in disordered
systems, particulary in liquids, no harmonic approximation is employed from the
outset. As a preliminary for later discussions, a brief account is given of a
general scheme to set up an equation of motion which yields the renormalized
eigenfrequencies of phonons in solids, using a self-consistent method.** To
treat structureless solids in general, the solid under consideration is taken to be
arbitrary in structure and in composition. Let r, and P, be the position vector
and the momentum of an atom, which are numbered by index z, in the solid
respectively. Throughout this paper, the index n and the Cartesian component
a are subsumed in a composite index z, whenever appropriate. The a compo-
nent A,, of a vector A, referring to the n atom, is abbreviated as A (x) {x= (n,
@)}. The Hamiltonian which describes the motion of atoms in the solid is generally
taken to be of the form

H=(1/2) X [P/M@]+ Vir(ru rar 7). 2-1)

where M (z) =M, is the mass of the z-atom, and Vy= Va(ir})=Vy (ry,ry -
ry) is the N.body potential which describes interactions of all the atoms in the
solid. We decompose r(z) into two terms:

r(z) =<{r(z) ) +u(x) =R(zx) +u(z), 2-2)

where R(x) is a mean or an equilibrium position of 7(z), #(z) is the displace-
ment of the n atom from its equilibrium position, and the angular bracket denotes
a thermal average. Here, it is understood that the solid under consideration is in
thermal equilibrium with a heat bath. The underlying assumption in using Eq.
(2-2) is that the free energy of the system has a minimum at a set of atomic
equilibrium positions {R}, which can be used for crystals and amorphous solids
at low temperatures. Ilowever, for amorphous or glassy solids near their melt-
ing temperatures, the equilibrium positions {R} may not be defined in a strict

*) Reference 20) will hereafter be referred to as (D).
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sense, so Eq.(2-2) may be used with certain restrictions. The physical back-
ground of the use of a solid-state-approach to phonons in liquids will be dis-
cussed in the beginning of §6.

We study atom-displacement waves or phonons in the solid. We therefore
expand the potential function in powers of the «’s:

Valirh) = Val{RD+ 33 (/3D 3 Kaeizs -z u (@) (z) - u (),
o (2-3)
where
Ko (@ur-z0) = [F @) F (@) -7 (@) Vick @9

is the 7n-th order force constant. Here, the symbol [ ], means that the bracketed
expression is evaluated with all atomic coordinates at the equilibrium positions.
We introduce the mass-reduced coordinates and momenta:

u(z) =M(x)™q(x) and P(x)=M(x)"p(z). (2-5)
The commutation relations obeyed by the ¢’s and the p’s areX
[¢(@,q@)]=[p(2),p(=z)]=0 and [g(x),2(z)]=0(zz).
(2-6)

The Hamiltonian of the system is then rewritten as

H= (1/2)233P(x)’+ g(l/n!) 2 Da(xizy-xn) g (x1) g (x3) -+q (Ta)

By Bye-Tyy
+ constant terms, 2-7

where

D, (1 x0) = Ko (a3 20) [M (1) M (23) -+ M (2.) T/ (2-8)

To study elementary excitations associated with the atomic motion in the
solid, we introduce a retarded or an advanced double-time Green’s function,™
composed of a pair of operators A and B and its Fourier transform

CA@®); BEDY=Fi0(+ (¢—¢N<[A®, BE) 1D, (2-9)
{A; BY,= (1/2r) I_i((A (&); B@)) explin(¢—2)]dE—1t"), 2-9)

where A () =exp ({Ht) A exp(—iHt) is the Heisenberg operator for A, and 6(2) is
Ileaviside’s step function. We are concerned here with Green’s function G (zz’,
t—t")={q(x, &); q(z’, ")) and its Fourier transform {g(x); g (") Ye=G (zz’, w)
=G(z, z'). From Egs.(2:6) and (2-7) an equation of motion satisfied by
G(xx’,t—¢t") is given by

*) We use units with #=1 throughout this paper.
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idG (xz’, t— ) [dt=i{p(x, £); q(z/, ¢') ). (2-10)

Differentiating the above equation again with respect to ¢ and taking into account
the fact that D,(xyz;---z,) is a symmetric function of xi, zs, -z, we obtain

—d'G(zxx’, t—¢") /d=08(t—¢t") 0 (xx’)

+ Z—_' A/nY) 3 Dau(xrzy--za){g(xy, t) g (xa )5 g (x, 2) ). (2-11)

Ty By Wy

An equation obeyed by G{zz’,»w) is therefore given by

2G (-I:.Z 0)) = (1/2”)6(1:3:,) + Z (1/72 ') 2 DnH (.27.131 .2,‘,.)

ERS

X g (x2) - q(za); q(z) ). (2-12)

We employ a self-consistent procedure to treat Eq.(2-12). It amounts to
using the following decoupling approximations:

(a(@)a (@) a @i a @)Y= F <L gt Xa @i a=))
+ DI gCae) Xa(xz) g (xs); q(x))
1<J k(Atd)
+ 2 TII gla) YXa(x)a(x) g (x); gz )H+ . (2-13)

1Tk UFIE)

Inserting this into Eq.(2-12), we get

0’G(zxx’, w) = 1/27) 0 (xx’) + Z 1/n)) 2 .99.,.“(.1'.2‘1 “Tn)

X Lg (x) g (xs) ---q (xa); g () D, (2-14)
where
Do ZrZa ) = [M (1) M (25) - M (22) T () V (2) -+ -F (2a) Ve ({r}) D
(2-15)

Here {Vx({r})>=<exp( 2 41 tta V) >Vx({R}) is the “effective potentjal” asso-
ciated with the “bare potential” Vy({R}), and D,(xy, x3 ', Ty) is the mass-
reduced “effective force constants”. In obtaining the above result, we have made
use of the following relation

E(l/n‘) 2. Dp(xzzy--za) 22 < 11 qz)?

Ty gy <<l J(£1yigim)
X g (xe) g () - +q () a2 () )

=@A/m!) ,,,,,Z.;,, Dpir (@yiyse-ym) kg () q (va) ---a (ym) s 2 () )-
‘ (2-16)

Equation (2-14) gives renormalized eigenfrequencies of phonons. Truncating the
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series at =1 and n=m (>1) yields renormalized harmonic phonons and renor-
malized anharmonic phonons with (m+1) phonon scattering processes taken into
account, respectively. It is seen that the phonon eigenfrequencies are determined
by the effective force constants, rather than by the bare force constants.

An expression for the effective potential {Vy({r})> can be obtained most
easily by introducing the Fourier transform of Viy:

ValiR) = @ [ (2 Ve eGSR RY @1)
or
ValirDd>= @0 [ [ V() erp G Shard>. @18)

(d{k} =dk\dk,---dk,)
Uéing Eq.(2-17), we obtain

Valirhy= [ [2R} Va((R+ RN PyGRYD)

= [ [amyvy(irY Pe(iR=RD), 2-19)

(d{R} =dR.dR, --dRy)
where
Py({RY) = @oy™ [ [k <enp (i 35 barti) Yexp (=i 3 e Ra)
(2-20)
is the probability function for the displacement of all the atoms in the solids, in
which {exp(Z ¥, k,-u,) ) is the characteristic function or the moment generating

function of Py({R}). In almost all cases, the potential function Vjy can be con-
structed by pair-wise and spherically symmetric potentials, namely

Va({r}) = (l/Z)Ean(Irm—rnl)- (2-21)

As is the case for the Nbody potential, an effective two-body potential is then
expressed in the form

(Vilra—ro) >= f AR’ Vi(Ry+ R") P, (R) = de' Vi(R) P(R,— R,
(2-22)
where

PR, = (21) Jdk(exp (ik-un) Yexp(—ik- Ry, (2-23)

in which
Upo =1y —Up . (2-24)
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Here, r, is the instantaneous position of an atom whose mean position {ry)=R,
is taken to be the origin of the coordinate.

The conventional procedure here is to approximate P,(R) {or Py({R})} by
a Gaussian distribution function.® With the use of this approximation, Eq.(2-22)
reduces to (see Eq.(3-21) in (I))

(Vi(ra—r) >=CVi(R, A) = (1)~ (det A; (n0))~ f AR'V,(R,+ R’

xexp{— (1/2) % A7 (70) .p R R}

— (27)*(det 4, (n0))~" de' Vi(R")

xexp{— (1/2) § A7 (10)ap (Ra— R)a (Ra— R')g},
(2-25)
where
A (70) = (A4 (70)ag) = ({ (tn—uo)a (Un —u0)s)) (2-26)

is a 3x3 correlation matrix composed of the pair correlation function of the
relative displacement u,—u,. To reduce Eq.(2-25) to a tractable form, we make
use of a further approximation to neglect the correlation of the different com-
ponents of the displacement vectors of atoms:¥®

A4, (70)ap =2 (20) 0 (aB) = (1/3) { (ua—uo)> 0 (af). (2-27)
The last expression of Eq.(2-25) then reduces to (see Eq.(6-3) in (I))

(Vi(ramrd Y=V (Roy ) = [27(10) ] [ AR Vi (R)
xexp[ — (R"— R,)*/22(n0) ]

— (1/7R.) r’  {[20n0)] 7z + Ra} Vi([22(10)] Pz + Ry
Ry /[2i(n0)]1/2

X exp (—z")dzx— f {[22.(n0) ]/ — R.}

—Rp/[24(n0)]1/2
X Vi([22(n0) T’z — R,) exp(—2")dx. (2-28)

Jsing this result, we can evaluate analytically or numerically the effective pair
potential in a straightforward manner, once the bare pair potential is given.

§3. An averaging procedure using a renormalized harmonic
approximation

Let us suppose that the solid under consideration is a non-crystalline solid

*) This relation holds for cybic crystals,
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or an amorphous solid. We assume that probability functions for the distribu-
tion of all the atoms in the solid are given. Then, Eq.(2:14) constitutes a dif-
ferenece equation whose coefficients are stochastic variables. There have been
mainly two kinds of methods to treat such a stochastic equation. One is to
solve the difference equation for a fixed set of atomic positions and then average
over all possible atomic configurations. The other is to make use of a proce-
dure for first averaging the equation and then solving it. These two methods
have sometimes been called honest and dishonest methods, respectively.®® We
follow the latter method in this paper. In doing this, we employ the renor-
malized harmonic approximation, thus truncating the series on the right-hand side
of Eq.(2-14) at m=1, namely

0'G (zx’, 0) = (1/21) 0 (xx”) + 2 Di(z22) G (132, ). 3-1)
We limit our discussion henceforth to the case in which all the atoms in

the solid are identical. Let M be the mass of the atom in the solid. Equation
(3-1) is then rewritten as¥®

Mo'G%,.(nn’) — Bzmjé‘,")ﬂa,g (nm) {G},. (nn’) — G, (mn’)}

= (1/27)0 (nn")d (aa’), (3-2)
where Glo (nn’) =(tta (1) s (n) )** and
K (215 Zn) =V (x,) |4 (-ra) P () {Va( {r}) S, @3- 3)

where K,(zz’)=XK(zz’), is the n-th order effective force constant. Here, it is
convenient to introduce the “mixed” Fourier transform of Gau (nn’):

G (nn’) = (21)° J‘de,,‘,, (n, k) explik- (m—n7)]- (3-4)

Insertion of Eq.(3:4) into Eq.(3:2) gives
Mp*Geo (n, k) — %‘_, b )J{',,p (nm) {Ggo- (n, k) —exp{—ik- (n—m)}Ggp (m, k) }
m(==n

= (1/27)0 (aa’). (3-5)
To make mathematical procedures more compact, we define three 3 X3 matrices:

F(n, k)= (Gaa’ (m, k), L (nn,) = (Heaar (nn,) ), L=(0 (CZCK’) /2”) =I/2xn .
(3-6)

Equation (3-5) is then rewritten as
*) We hereafter rewrite R,, the equilibrium position of the » atom, as # for brevity, when-

ever appropriate. .
*%) We henceforth omit the superscript « attached on the G’s for brevity.
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Mo’F(n, k) — § )L(nm) {F(n, k) —exp{—ik- (n—m)}F(m, k)} =1,.
' 37
We now apply a configurational averaging procedure’® to Eq.(3-7). Let
PN(nlnz"‘nN)
with

f IPN(nlnf--ny)dnldn,---dny=1 3-8)
be the probability of finding the first atom in the solid in the region with its
center in the volume element dn; at m, while at the same time the second atom

is in dn,, at m, and so forth. Also introduced here is the conditional probability
functions:

Py (s iipsa Ry ans - 1) = Py(uny--ny) /Pr (i -ny), 3-9)

which denotes the probability of finding the (m+1) atom in dnrm.; at Ams, etc.,
when m atoms are definitely located at the positions ny, na, -+, im. A useful re-
lationship between the conditional probabilities is

Prm (s My T/ Mty M) = Py (s |t 1) Py (imsa - x| naty - ma)
(m<N) (3-10)

It is also convenient to introduce the number density and the conditional or
correlation number density functions by the equations

N, (nx) EN1=NP1 (nl)s
M(n,im) EM: (N—I)Pl(n2lnl), (3'11)
M(nslnxna) =N,= (N" 2)P, (nslnﬂla), etc.

In terms of these probability and conditional probability functions, the average
and the conditional averages with one or more atomic positions held fixed, of a
function f(ni, na, -+, ny) are defined as®

<f>= j‘ [dn;dmanPN(nl n,-~'nN)f(n1n,--°nN), (3'12)

Fommomm = ™= j j Artpsdmsy-dni

X Py (M i1y 137 ‘nylnng - ‘i) f (run,- ‘ny). @3- 13)

With the aid of the above prescription, we apply the first-order conditional
average to Eq.(8-7), obtaining

* Use is hereafter made of a symbolic notation {f)m for the m-th order conditional average
of . In this connection, { fD>™ is not to be confused with {f>a which denotes the first order con-
ditional average of f with one atomic position held fixed, where n, written in Roman letter, stands
for the position of an atom in the solid.
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Mo¥(F () da~ [dm, Grulm) L i)

X {<F(n) >1nm —€eXxp { —ik- (n - ml) } <F(m1) >nm,} =1 ’ (3 . 14)

where we have omitted the index k% appearing in the argument of the F’s for
the sake of brevity. Equation (3-14) expresses the first order conditional ave-
rage of F in terms of the second order conditional average, thus constituting a
set of hierarchy equations. These equations are written in the form

Mo CF () Y= | dmaNs (mslma) L (nms)
X {<F (n) >‘m,m,.n —€exXp { —ik- (n - m:) } <F(m2) >1nmm,} = Il, (3 * 15)
Mo<F @) dmmm— f dmaN, (ms|mumsn) L (nms)

X {<F(n) mmamm — €XP { —ik- (n —ms) } <F(m3) >m‘m,nm,} =1.
(3-16)

Each successive equation contains more and more information about the precise
details of atom-displacement waves multiply scattered by the structural disorder
of the solid. In the following two sections and also in the Appendix, we employ
several approximation procedures to obtain approximate solutions of the hierarchy
equations.

§ 4. Quasi-crystalline approximation

In this section we use the lowest order approximation, putting

<F (n) >1n,'u = <F (n) >w (4 . 1)

With the use of such a closure procedure, Eq.(3-14) reduces to
Ma*(F () Su— | domN; () L (o)

X {<F(n) >n —€xXp { —ik- (n - ml) } <F(m1) >m,} = I/ZTZ . (4 '2)

We limit our discussion henceforth to.the case in which the distribution of all
the atoms in the system is homogeneous, namely

Pin)=1/V or Ni(n)=N/V=p, (4-3)

where V is the volume of the solid. Then, <F(n)), becomes independent of
n, and the eigenvalues of Eq.(4-2) give the phonon eigenfrequencies in the sys-
tem. In this case it is convenient to rewrite Eq.(4-2) as

Mo (F(m) u—p [ dmg am) L (nm) [<F ()

—exp{—ik- (n—m)}{F(m)>,]=1/2n, 4-4)
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where
g (nm) = (1/p) N:(m|n) =g (ln—m|) (4-5)

is the pair correlation function normalized to unity at large [m—m|.
Equation (4:1) has sametimes been called a “quasi-crystalline approxima-
tion”.* Let

det|00 (aB) — Dap (k)| =0 (4-6)

be the secular equation giving the phonon ecigenfrequencies, where Dgq(k) is
the dynamical matrix. From Eq.(4-4), we then obtain

Doy 8) = (0/M) [(dm 9 (In—m]) Hp (rrm) [1— exp (k- (m — )} 1.
47
It is to be noted that within this approximation there exists no phonon damping
arising from the structural disorder. The second order approximation which
yields the phonon damping is discussed in the Appendix. Equation (4-4), when

specialized to the case of a crystal lattice in which all the atoms are definitely
located at the lattice points, namely®

N (m|m) = 33 0@—m), (4-8)

gives the following expression for the dynamical matrix:

Dap (k) = /M )mngCap (nm) [1—exp{—ik- (n—m)}]. 4-9)

Equation (4-6) with 9,,(k) given by Eq.(4-9) is an eigenvalue equation for phonons
traditionally used in lattice dynamics of a crystal lattice, provided the effective
force constants X are replaced by bare force constants K.

If the effective force constants are derived from a spherically symmetric
two-body potential, Eq.(4-9) is written in the form

Do (®) = (o/M) [dmg (jm~ )P o Vi(lra—ra)>
X [1—exp{ik- (m—n)}]. (4-10)

Here, replacing the effective potential {V,(|rn—r,|)> by the bare potential V(|Rx
—R,|) is equivalent to the conventional harmonic approximation. Within this
approximation, an alternative expression for the dynamical matrix written in terms
of the Fourier transform Vi(k) of Vi(R) is given by

Das (B) = (o/ M) (27)° j dqVi(q) 4a2s

X {S(k—q) —S(g) + @n)o(k—q}, (4-11)

* Here, no averaging procedure is required,
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where
Vi(R) = (21)"* J dkV, (k) exp (ik- R) (4-12)
and
Sk —1= fdn{y(n)—l}exp(—ik-n) (4-13)

is the structure factor of the amorphous solid.

As an application of Eq.(4-10) for the calculation of the phonon frequen-
cies, we make use of the renormalized harmonic approximation, replacing
Villrm—rol)> by CVi(Rm &) (see Eq.(2-28)). For the evaluation of the inte-
gral on the righthand side of Eq.(4-10), we choose the Cartesian coordinate
with the z-axis in the direction of the wave vector k. Performing the volume
integral in spherical coordinate, we obtain®

Dz (k) =Dy (k) =07 (k)= (0/M) 47 Lde.g(R) [RCV{ (R)(l_sin(kR)>

kR

+ (R (R)~RV! (R} {3 i%:ge)TR)i%%’?}], (4-19)

Do (B) =00, () =(o/M) 4 de 9(R) [RCVI’ ®)(1- SingéR))

+ {Rﬂq}lll (R) —RCV;’ (R)} {_:13_ . sin (kR) _2?08 (k.R)+ Zsin (kR) }],

kR (*R) (kRY
(4-15)
Dy (B) = Do (k) = Dys (k) = Dy (k) = D (k) = Du (k) =0, (4-16)

where the conventional abbreviations CV/(R)=0CVy(R)/8R and V" (R)=8'CV,(R)
/OR® have been used. Ifere, vanishing of the nondiagonal terms stems from the
use of the spherically symmetric pair-potential model, and Do (B)=9D,, (k)
=wrk)® and D, (k) =0.(k)* themselves are equal to the squared-frequencies
of the transverse (two-fold degenerate) phonon modes and those of the longitudinal
phonon modes, respectively.

Certain asymptotic properties of the phonon eigenfrequencies in the long
wave-length limit can be obtained from Egs.(4:14) and (4-15). It can be shown
that for small values of % wy(k) and w,(k) are proportional to |k|=k, thus hav-
ing the character of elastic waves, namely

wr(k) =Crk, (4-17)
oL(k) =Cik, (4-18)

* We omit 4 in the argument of CV((R, %) for the sake of simplicity,
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where
Cr=[(o/M) (4/30) [dRR'G(R) RV (R) +4<0/ (R (4:19)
and
Co=[(o/M)4n/30) [ dRRG(R)BRVY (R) +4VY (R}T”  (4-20)

can be identified with the velocities of the transverse and the longitudinal elas-
tic waves, respectively. An approximate relationship between Cyr and C; can be
obtained by observing the fact that the contribution from the terms involving
the first derivative of the effective potential CV;(R) is small. Thus, we get

C,=3"Cy. (4-21)

An application of the results obtained in this section will be made in §6.

§5. Formal properties of hierarchy equations

We are concerned in this section with the formal properties of solutions of
the hierarchy equations, which may be of some use in studying the energy spectra
of disordered systems in general. We begin our discussion by introducing a
symbolic notation to rewrite Eq.(3-7) and Eqgs.(3-14), (3-15), (3:16), etc. as

(Mo*'I-L)F=1, (5-1)
and
M F)?— Ny LLFY**' =1, =123, -, (5-2)

respectively, where L is an operator. It is understood that Eq.(5-2) is derived
from Eq.(5-1) by applying the p-th order conditional average to it. Combining
Egs.(5.1) with (5-2) gives a formal relationship:

(LF)*=NpulLF>*" GR:))
or
{LY*=N,..L. 54

Let us define a factor S(p+1,p) which characterizes the hierarchy equa-
tions by relating <F)»® to <F)>?" in the form

;

CFY*H=8(p+1, p){F)” (5-5)
Then, truncating the hierarchy equations at p=p" is equivalent to setting
S(p'+1,p) =1. (5-6)

In terms of this factor, an equation obeyed by (F)?® is written as

CFY?P=(Fy*"'+ (1/Mo*) KL)*S(p+1, p) —<LY*}FD?, 6-7
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which is an obvious generalization of Eq.(A-3). Equation (5-7), when com-
bined with Eq.(5-5), gives the following recurrence formula for the S’s:

S(p,p—1) = [I- (1/Mo*) {LY*S(p+1,p) —<L>*} ] (5-8)

which has the form of a continued fraction.
We next introduce an “ellective force constant operator™* by the equation

(Ml — L2)FY? =1, (5-9)
which has a property similar to the self-energy in many-body problems. This

definition, in conjunction with Egs.(5-1) and (5-5), yields the following expres-
sions for _[?:

Lr=LLy*S(p+1,0)- (5-10)

Such a result written in the form of a continued fraction, although formally ele-
gant, is of less practical use for the evaluation of phonon eigenfrequencies. It is
seen that the zero-th and the first order approximations for L can be expressed
symbolically as

LP=LY?*=L* (5-11)
and

L2 =(LYP[I— (1/Mo?) {LLY** =LY} =L, (5-12)

respectively. We now make a correspondence of the above results with those
obtained in the other parts of this paper. It can be shown that .['=(L}' is a
symbolic notation of the result obtained in §4. Its explicit form is written as

(Ly'=NL=p |dmg (im—~n))PP{Vi(Ira=ra) Y1~ expiik: (m—m)}].
(5-13)

It can also be shown that Eq.(5-12) with p=1 is equivalent to a solution of
Eqgs.(A-11) and (A-12).

We now give a self-comsistent procedure™ for the evaluation of L?. An
equation for F is generally expressed as

F=(FY 4 (FY? (L~ L) F=(F)>+ F(L— L?)(F)". (5-14)

Applying the p-th order conditional average, we get the equation determining
the self-consistent _[?:

{L-LOFY=0 or (FL-L")>*=0. (5-15)

Here, it is convenient to introduce the related z-matrix T” by the equation

* In this paper the phrase “effective force constants” has been used in two senses. The one
is dynamical in origin, and is defined as derivatives of dynamically smeared effective potentials due
to the anharmonicity of atomic vibrations (see Eq. (2-19)). The other is statistical in character,
and originates from the spatial randomness of the distribution of atoms in the solids.
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F=(FY?+ (FY*T*(FH. (5-16)
Averaging of Eq.(5-16) gives
{T*H?=0 (5-17)

for the self-consistent .L?. Inserting Eq.(5-16) to Eq.(5-15), we then obtain an
implicit equation for L*

L2 =LLY?+ LLEYPT®)P. (5-18)
An equation obeyed by T7? is
T?=L— L7+ (L L)ET” (5-19)
or
TP=L— L2+ TFY(L—.L%). (5-19%)

An equation satisfied by (L{(F)*T*)* is directly obtained from Eq. (6-19) or
Eq. (5-19’). Using Eq.(5-19), we get

KLLEYPTEY? = (L YPLY? = LY F P L7+ KLEYLAF P TR
—LLFYP LY F YT . (5-20)

The third and the fourth terms on the right-hand side of the above equation
can also be calculated in a straightforward manner, using the same procedure
as before. A set of equations obtainable using such a procedure in a successive
manner constitutes hierarchy equations.

Here, we make use of an approximation to terminate such hierarchy equa-
tions at Eq.(5-20), thus putting

LLFYPLLFY P TPy ? = LY F Y LKE DY TP, (5-21)
In the spirit of the same approximation, the last term on the right-hand side of

Eq.(5-20) can be neglected in view of Eq.(5-17). Combining Egs.(5-20) and
(5-21) with Eq. (5-18) gives
L2= LY? 4 (LLFYPLY? — (LYPEY™L)?, (6-22)

which is a self-consistent expression for _L®, correct to the first order with res-
pect to the (F)®s. It is easily seen that Eq.(5-12) can be derived from Eq.
(5-22) by replacing <F)®* and <L) by 1/Mp' and L?, respectively. The ef-
fective force constants thus obtained yield the shift and the damping of phonon
eigenfrequencies which are obtained by using the lowest order approximation

Mp*—{L)?=0 for {F)*.
§6. A numerical example and phonons in liquid argon

Once pair correlation function and pair potential are given, the phonon eigen-
frequencies can be calculated, within the framework of the quasi-crystalline ap-
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proximation, in a quite straightforward manner using Eqgs. (4-14) and (4-15).
As a typical example for which such a simple model is applicable, an attempt is
made here to study phonons in liquid argon. Before calculating phonon disper-
sion curves using such a procedure, a brief remark is given on a possible ap-
proach to collective motion or phonons in simple liquids, which is a generaliza-
tion of the present theory developed originally for phonons in disordered anhar-
monic solids.®

When studying atomic motions in classical liquids, we can distinguish two
possible regimes, depending on whether we look at short- or long-time behavior
of atomic motion. Let ¢ be some time scale characterizing atom-atom collisions
in the liquids, which may be of the order of 107*~107*sec, while typical vib-
rational frequencies of an atom are of the order of 10" sec”®. Then, the two
limits #<7 and >t are known as the collisionless and statistical or hydrodyna-
mical regimes, respectively.’® Historically, most of the work on liquids has
been concentrated on the hydrodynamic regime. Our observation is that in the
limit z<¢ atoms in liquids look something like those in solids.™ Recently, there
have been several experimental indications that a remarkable similarity exists
between the scattered neutron spectra of liquids and those of polycrystalline or
amorphous solids near their melting temperatures.**™ It should be noted that
results for phonons in liquids, obtainable using the method developed here, can
be considered to be valid for frequencies greater than the inverse characteristic
relaxation time for local thermal equilibrium, and/or for wave vectors greater than
the mean free path or mean collision distance, i.e., in the zero-sound region.

9(R)
30r (°K)
"(RJ
2.0
- 50
1Op————=
_1m-
g oeqrallon g sy R
0 5 10 (16%m)
Fig. 1. Pair distribution function g(R) for liquid Fig. 2. Lennard-Jones 12-6 potential for liquid
argon at 84.4°K calculated by Khan. argon used to calculate the pair distribution

function. The energy is in degrees Kelvin.

% This line of approach has also been made previously by Hubbard and Beeby (reference
17)).
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Keeping the above situation in mind, of a number of results obtained
theoretically or experimentally for pair correlation functions and pair potentials,
we have adopted the result of the calculations of Khan for the pair correlation

function as an example, which is also in good
agreement with experimental data.®  The nu-
merical result of the pair correlation function
for liquid Ar at 84.4°K with p=2.113x10-%/A® is
reproduced in Fig. 1. The corresponding Lennard-

Jones potential is

Vi(R) =4¢{(0/R)"— (¢/R)} (6-1)
with
¢/kp=119.7°K and ¢=3.405A, (6-2)
in which k5 is the Boltzmann constant. Equation

(6-1) is depicted in Fig. 2. Using these data, we
have evaluated the integrals (4-14) and (4:15) nu-
merically using Simpson’s rule, replacing <V (R)
by the bare potential Vi(R). As mentioned be-
fore, this amounts to using the conventional har-
monic approximation for describing atomic vibra-
tions in the liquid. Similar results have been
obtained previously by Zwanzig,” by Hubbard and
Beeby,” by Schneider, Stoll and Szabo,*” which
are equivalent to Eq. (4-10) with the effective

S(k)

K(107%cm)

1
]

i

3 4(107%m)

Fig. 3. Calculated dispersion cur-
ves of longitudinal (L) and
transverse (7") phonons in li-
quid argon. The structurc
factor S(%) is also drawn to
show its relation with the dis-
persion of the longitudinal

potential replaced by bare potential. It is worth phonons.
10 (a)
. : (b)
- ‘:l‘un‘
& il
v b * *
ﬂg :\
g e i L :‘é’ ¥ )
3 x ox =N
e = ..
FR 3 | " .
1 S— L 1 1 1
1 2 3 k(10%m™) 1 2 3 k(0*em™)

Fig. 4 Comparison of the calculated dispersion curves of the longitudinal (Fig. 4(a)) and the

transverse (Fig. 4(b)) phonons with experiments.

The solid circles gives the results of the

machine calculations of Rahman and the crosses give the experimental results of Shsld and

Larsson.
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mentioning that the harmonic approximation itself is only a zero-th order approxi-
mation since the atomic vibration in liquids can be considered to be highly an-
harmonic. We should instead employ a self-consistent procedure, a brief account
of which has been given in §2. In this paper its implementation, which gener-
ally leads to involved calculations, is omitted. Phonon dispersion curves thus
obtained are shown in Fig. 3, together with the schematic feature of the struc-
ture factor S(%). It may be noted that the first minimum in (k) for longitu-
dinal phonon modes and the first maximum in the structure factor S(k) occur
nearly at the same value of k~2A-'. In Fig. 4 the calculated dispersion curves
for the longitudinal and the transverse modes are compared with the results of
machine calculations of Rahman® and those of the experimental results of Skéld
and Larsson.®® In view of the fact that there is no adjustable parameter in our
calculations, agreement between the theory and the experiments is rather good,
particularly for the longitudinal modes. In the case of transverse modes, the
results obtained here give frequencies generally larger than those obtained by
Rahman. This fact may suggest that the transverse phonons undergo larger
modulation than do longitudinal phonons due to the anharmonicity of atomic vib-
rations, which may be intimately connected with the instability of transverse
phonons in liquids. For a crystal lattice, the equivalent conclusion has been
reached by the author using a self-consistent phonon theory,”™ which is also in qua-
litative agreement with the result obtained by Dickey and Paskin using computer
simulations.® Besides the use of the self-consistent phonon scheme, the main
difference of the results obtained in this section from those of Zwanzig, of Hub-
bard and Beeby, and of Schneider, Stoll and Szabo is the elucidation of the exis-
tence of “high frequency” transverse phonons in simple liquids. We must also
mention here that there have recently been several theoretical studies of phonons
in simple liquids by Rahman,*® by Singwi, Skéld and Tosi,™ by Chung and Yip,®
by Chihara,®™ using different methods from that employed here.

Finally, Eqs.(4-19) and (4-20) are applied to evaluate the velocities of the
transverse and the longitudinal phonons. The result obtained is

Cr=7.9%x10*cm/sec and C;=1.3x10cm/sec, (6-3)
whereas the experimental value for Cj is
C.=8.7 x10*cm/sec. (6-4)

It is seen that Eqs.(6-3) and (6-4) satisfy the relation (4-21). The slight
discrepancy between theory and experiment may be due to the use of the harmonic
approximation and the inadequacy of the use of a solid-state-approach to phonons
in liquids in the low frequency region. Together with the implementation of
the self-consistent procedure for the evaluation of phonon eigenfrequencies, these
points will be discussed elsewhere.
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§ 7. Concluding remarks

The purpose of this paper is to develop a theory of phonons in amorphous
solids and liquids. In view of the possible importance of the anharmonicity of
atomic vibrations in disordered solids as well as in liquids, the formulation of
the problem has been intentionally based on the self-consistent phonon scheme.
In treating such structureless discrdered systems, our particular intention was to
obtain expressions for phonon eigenfrequencies which, aside from the interatomic
potential, are written in terms of many-body correlation functions of atoms. This
objective has been achieved, using a conditional averaging procedure and techni-
ques employed in multiple scattering theory. Such a theory could be considered
as a generalization of the conventional phonon theory in crystal lattices. In this
connection it is of interest to note that the method utilized here may be equally
applicable to electrons in amorphous solids, and liquid metals using the tight-bind-
ing approximation, excitons in disordered systems, etc.

In the calculation of phonon eigenfrequencies, as an application of the reults
obtained here, a simple model for the pair potential and the pair correlation
function has been used, both of which have been taken to be spherically sym-
metric. No discussion has been given to phonons in glassy solids, for which
such a simple model cannot be used at it stands. As a typical example for
which such a simplified model can be applicable, numerical calculations of the
phonon frequencies in liquid argon have been made using the quasi-crystalline
approximation. Although fairly good agreement with experiments has been ob-
tained, there remain several points to be taken into account in the calculation
of the phonon eigenfrequencies. These are, for example, an implementation of
the self-consistent procedure in the numerical calculation and the evaluation of
the life-time of phonons in liquid argon. Also, it is of interest to do such calcula-
tions for a series of other simple liquids. These will be studied in a forthcoming

paper.
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Appendix

Second order approximation

To take into account phonon damping, we employ the second order approxi-
mation:

<F (l‘l) >m,m,n = <F (n) >m,n and <F (’n‘z) >'m1nm, = <F (m2> >um, (A & 1)
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on the righthand side of Eq.(3-15). Inserting these into Eq.(3-15), we obtain
Mo™CF @) Spun— | sV, Gl mim) L (i) 4CF () D

—exp[ik (m;—n) [KF (ma) dum,} =11 - (A-2)
In view of Eq.(3-14), Eq.(A-2) is rewritten as

CF (1) D= {F (1) St (Mo jdm, (N, (malmum) — N, (ma|m) }
X L (nmz) [<F (n) >1u,u —exp [lk : (m'! - n) ]<F(m2) >nmg] e
(A-3)

It is seen that a solution of this equation for {F(1))m. characterized by the
factor N;—N,, when inserted into Eq.(3:14), gives a phonon damping.

To express the conditional number density functions defined by Eq.(3-11)
in a more familiar form, we introduce the s-body correlation function (s=1,2,3, +-*)

V‘P(nlna' . 'na) =9, (nlni' : 'na) 3 (A * 4)

which is normalized to unity at a large mutual separation of the atoms in the
solid. In terms of this the factor N;(my|mun) —N;(m;|n) is rewritten as

N, (my|m;n) — N; (ma|n) =p (9 (nmum,) /9, (nm,)) —g.(nma)}.  (A-5)

To treat the three-body correlation function, an attempt is made here to employ the
Kirkwood superposition approximation which has been used extensively in the
theory of physics of liquids.'® We then obtain

N, (my|mun) — N, (ms|n) = g (nmy) h (myms) (A-6)
where
h (m;m,) = g (mlmg) - l (A 0 7)
is the total correlation function. By virtue of Eq.(A-6), Eq.(A-3) reduces to

CF) Smam = {F (1) Sut (0/ M) Jdm,g (nma) b (mums) L (rms)

X [{F (1) Dmgn— exp [k - (my— 1) J<F (M) Do, 1 (A-8)

Equation (3-14) with N;(muln) replaced by pg (nm,) and Eq.(A-8) must be
treated simultaneously.
To proceed further, we introduce the momentum representation for {F(n))mu:

F@) = 200 [dgF (@ exp i (mi—m)q) (A-9)

as well as

{F(n)>,=F (independent of n). (A-10)
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Then, we can reduce Eqs(3-14) and (A-8) to
oF— @y [{ek—g) ~c@}F (@dg =1 (A-11)
and

F (q) = 2n)"0 (@) F+ (h(q) /") 2m)7° j{c (k—q—q") —c(q’—}F (q)dq’

(A-12)
respectively, where
h(g) =9(q) -1 (A-13)
and
c(k) = (o/M) )" | dgqaVa(@)9 (k). (A-14)

Here CVi(q) is the Fourier transform of Cli(R) the definition of which is simi-
lar to Eq.(4-12). Thus, within the second order approximation the problem is
reduced to solving the simultaneous equations (A-11) and (A-12). It is seen
that a solution of the integral equation (A-12), when inserted into Eq.(A-11),
gives the shift and the dampimg of phonon frequencies which are obtained by
using the quasi-crystalline approximation. A study of such a higher order effect
is omitted in this paper.
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