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An attempt is made to forrrulate a theory of phononJike excitatione in liquid hclium by

genenlizing the theory of phonona in quant'- cryrtals to quantum dieordered sylternE. By
uring erpcrimental &ta for pair correJation functions, dirpenion cures of longitudind phonon
modes are calculated, with a result for their over-all behavior in fairly good agrecoeot with
phooon'roton diapersion cunes obtained by neutron scatterirg Eeuulemertr. It ir rbown
that the temperature-dependeoce of the calculalsd ys16a.6inimu' ir in good,4grecrneat with
cxperimeut for liquid hdium I, but not for liquid heliun II. A brief dircussion io givcn on
the natue of roton! in liquid heliu-. It ir ouggerted that, within certain restrictions, the
roton slrectrum in liquid hclium is lilely to be a general feature of the dispersion of elemcotary
excitations in liquids, classical or qurntum.

S l. Intr.oduction

since the pioneering work of Landau,r) many attempts have been made to
study the physical properties of elementary ercitations in liquid helium.r) Ou the
other hand, eeveral works, both e:perimental and theoretical, have implied that
the over-all behavior of the dispersion of elementary ercitations in classical slmple
liquids bears some resemblance to that of phonon-rotoa excitations in liquid
helium.t)-!) It has also been shown that high-frequetrcy collective modes in clar
sical liquids are rather sinilar to phonons in amorphous or polycrystalline solids.r){)
These results suggest that the dispersion of elementary ercitations in non-crystalline
solids and liquids, classical or quautum, is likely to have several things in com-
mon and may evoke a renewed interest in the Dature of rotons ia liquid helium.
There is, however, a good reason to believe that such an analogy between clae-
sical aud quantum disordered systems, as it stands, Dax only be meaningful for
liquid helium I. Recently a soft-mode behavior of rotons in liquid helium II has
been noted.ro),rt)

The principal purpose of this paper is to develop a theory of phononJike
excitations in liquid helium by geueralizing the theory of phonons in quantum
crystals.rr)'rr) rn a previous paper,!) to be referred to as r, the present authors
have studied the general properties of elementary ercitations in non-crystalliae
solids and liquids by employing a phonons-in-amorphous-solids approach. Particular
attention was paid there to the interrelationship between tle roton-like spectra

*) Permanent address.
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and the local ordering in disordered systems. This paper is intended to be as
compact as possible because a generalization of the theory developed in I to the
present case, which may be called a phonons-in-amorphous-quautum-solids approach,
is quite straightforward. Attention is called to the fact tfiat a phonou dispersion
cutve in liquid helium obtainable by such a nethod is in fairly good agreement
with phonon-roton ercitations observed by neutron scattering measurements.n)

S 2. heliminaqf diecursioru

As a preliminary for later discussions, we first study phonons in a classical
uon-crystalline solid composed of atoms of a single species within the framework
of the harmonic approximation. According to the results obtained in a previous
paper!)'e) the dynamical matrix I givrng the phonon eigenfrequencies rr-o([) as
a function of wave vector i is given by*)

0:9(p): (p/ M) | ano,*(R) VVzt (R) tl -exp (ik.R)1.
J

(1)

}Ierc M and p are the atomic mass and the number density of the atoms, respec-
tively, u(R) is the "bare poteutial" describing the interaction of a pair of atoms
aqd gr*(R)-g*(R,al) is an "effective pair correlation function" in which the
effect of higher order correlations other than pairs for the distribution of the
atoms are exactly taken into account.t) In this paper we neglect the difrerence
between gr* and gta"bare pair correlation function" for the sake of simplicity.
Physically this is mainly to neglect the damping of phonon modes arising from
tle structural disorder. In the previous paper,!) Eq. (1) was applied to an ana-
lytically tractable one-dimensional model disordered system. The principal reeult
obtaiued by such a calculation is that a partial disorder characterizing a non-crystal-
line solid gives rise to a frequency gap y't in the phonon dispersion curve at
the value of I corresponding approximately to the first peak in the structure
factor and that the quantity y'z decreases with increasing local order and eventually
vanishes in the limit of complete ordering corresponding to a crystal lattice. It
bas been shown!) that if we make an attempt at identifyiug y'r, with the roton
minimum if in liquid helium, the above result is in qualitative agreement with
the pressure and the temperature dependence cjf y' observed experimentally.t)'1')

S 3. Generalization to a non crystelline quantun eolid

We nert generalize Eq. (1) to a nou-crystalline quantum solid, although the
present authors are not aware of the existence of such a disordered system. As
in the case of phonons in quantum crystals,rt)'u) we do this by modifying the bare
pair potential a it Eq. (1) by an effective potential z* in which the effect of

+) Eqtration (1)
The quantity 77v(R)

is obtained by combining Eqs. (3.11) and (2.3)
here coresponds to the force constant K in Eq.

in Ref. 5) with each other,
(2.3) .
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the anharmonicity of vibrations and the short-range correlations arising from the
large zero-point atomic motion and the strorg repulsive part of tlhe bare potential,
respectively, are taken into account. Here we follow the method suggested by
Nosanow and co-workers[)-17) to approrimate zf by*)

冽R′R′7(R′){eXp[―(■/2)(R′―R)8]υ中(R)

where

"ア(R)=ノ (Rソ[υ(R)― (力
2/22r)/81nノ

(R)]

in which

ノ(R)=exp[― XI(σ /R)18_(σ /Rソ )]=eXp[― (K/4c)υ (R)]

―(4/2)(R′十R)8]}, (2)

(3)

(4)

is the Jastrow factor. In the above eguations A and K are adjustable parameters

and d and e are constants.
Before calculating Eg. (f) numerically, along the line described above we

remark that various formulas giving the eigenfrequencies of short-wavelength
collective modes in simple liquids have forms similar to Eq. (1)ut'n1 and that
the results of nr'-erical calculations yield dispersion curves which bear some
resemblance to phonon-roton-like excitations as obtained in our previous paper
for phonous in one-dimensional non-crystalline solid.r) The underlying fact in
such a physical situation would be tlat for short-wavelength modes we could
erpect the liquid to show a solidJike behavior.ro) In this meaning Eq. (1), when
applied to classical liquids, may be called a phonons-in-amorphous-solids approach.

S 4 Application to liquid helium and nurnerical calculations

In this paper we have made an attempt at applying Eq.(l) with z replaced by
z* to liquid Het, confining ourselves to those eigenvalues ot 0 (h) which cor-
respond to longitudinal phonons. This may be called a phonons-in-amorphous-
qubntum-solids approacft to liquid helium. The numerical calculation has been
done using the values of the pair correlation function gr obtained by Henshawil)
and by Gordon et al.tr) at 7:1.06"K,2.40oK and 4.20"K. Following Nosanow
and his co-workers,tr)-r?) -u pat 6:2.556A and K:0.178. The numerical value
of .4 in Ee. (2) has been determined to fit roughly the velocity of sound waves
nz. It is taken to be 1.30A-r, 1.20A-r and 0.904-r for ?:1.06oK,2.40oK and
4.2OoK, respectively (ttre values of z, thus obtained arc 252 nsec-t,2% msec-l

t) Ihuation (2) is readily obtained from Eg* (18) and (r9) in Ref. (fD. \ile do not intend
here to rciterate thc clurter variation method, upon which F4. @ is baced, enployed in the theory
of phoaonr in quantum cryetalr. For a deailed discussion on thir, aeg for examplg Re6. G5) and
(16") and alro (13).
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and LTL tn sec-', respectively). These numeri- n
cal values are smaller than those used in the
case of solid Het. This choice of the para- t5
meters K and A seems to be reasonable in the
sense that the anharmonicity of atomic vibrations 10
in liquid phase is generally larger than in solid
phase (the quantity A is a measure of the in- s

力ぼka(°K)

verse of mean square displacement of atoms),
while the difference of a quantity characteriz-
ing hard cores in solids and liquids seems to
be negligible. The result of numerical calcula=
tions is shown in Fig. 1., together with the ex-
perimental result of Henshaw and \il'ood at

over-all behavior of dispersion curves between
the theory and the experimentr') is fairly good.
The numerical values of the roton minimum
energy y' as a function of ternperature are also
plotted iu Fig. 2. It is seen that the quantity /
decreases linearly with temperature and that
it well agrees with experimental resulttt) above
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Fig。1。 DispersiOn c― e of elemen‐

t〔uv excitations in liquid helim.

The dashed ctte shows the ex_

permen餞 遭result of Hmshaw and

W∞ ds(Rel lo)at r=1.12・ K

measurernents. Cunres (A), (B)
and (C) denote calculated vdues
of phonon eigenfrequencies usi'g
the values of h obained by
Henshaw (Ref ,21)) at !-1.06.K
(curve (A)) and thoge by using
the values of h obtained by
Gordon et al. (Ref. nD at T-,
2.&'K (curve (B)) and T-4.20.K

1.12"K.r') It is eeen tbat the agreement of the obtai.ed by Deutroo scattering

the superfluid transition temperature. It is, how- (curve (C)).
eve!, to be noted that its temperature dependence below the l-point I is very
different from that obtained here. This is probably due to new mechanisms or
interactions arising from the onset of superfuidity which bave not been taken
into account in our treatment. There is a good reason to believe that our meth-
od of phonons-in-amorphous-quantum-solids approach cannot be used, as it stands,
for liquid helium II.

1 0
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乙/4.(°K)
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Fig. 2 Temperature dependence of the roton minimum. The continuoug line denotes the or-
perimental result @ef. 14)). The solid cilcles (A), (B) and (C) show the calculated values
of thc roton minimum obtaincd from the curves (A), (B) and (C) in Fig. l, reapectively.

S 5. Diecussion

Aside from ttreir over-all behavior, the main difference of the result obtained
here from that of Feynman expressed by the formulatr)'*)

*) The qrrantity S(t) is the structure factor of liquid helium.
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((1)=れKλ)=″λソ2MS(λ)

or that of the more elaborate work of Feynman and Cohenxr is ttat the former,

as we can show from Eq. (1), gives ttre second marimum in O'versus'& cuf,ve,

while the latter yicld a monotone increasing function for k)ho. Here &o is the

value of & at which tle roton minimum takes place. The experimental result of

Heushaw and \{oods,tt) although indef,nite, seems to suggest the eristence of

such a second maximum. This differeuce in the behavior of dispersion curves

are illustrated in Fig. 3. It is worthy of note in this connectiou that the second

marimun in the dispersion of elementary ercitations has been observed for clas-

sical liquids.t)")'l)'0)'rt)'tl)'r!)

(a)

(5)

b)

C)

Fig. B. Dirp€rgion curveg of elemeotary ercitations obtaircd by Feynman and Cohen (cure

(a), at i:g.K), by Henshaw and Woods (cune (b), at T:L.72'K) and in the present

paper (curve (c), at ?:1.06'K).

In view of these facts, it appears that the dispersion of elementary ercitations

in liquial helium looks something like that in classical liquids. This point has

been discussed previously by Singwi, Sk6td and Tosi,r) by Murase') aud by the

preseDt authors.r) The claim made by Singwi, SkOld afd Tosi was tbat the

plot""., beyond the roton minimum might be a general feature of liquids. In tlis

paper it is suggested that the bebavior of ercitations in the roton region itself

does reflect some general features of liquids. To study this Point, in particular,

the nature of rotons, a systematic investigation of the temperature and the Pressure

dependence of dispersion curves of elementary excitations in classical as well as

in quantum liquids is required for a wide range of momentum transfer utilizing

neutron scattering measutement. Very recently, such an exPerimental study has been

made by Dietrich et al. for liquid helium.tt) Theoretical studies of this point have

also been made by Schneider and Enzro) and by Ruvalds.tt) These workers remarked

TL

Fig. 4 A tentative illustration of the temperature

being composed of two branches lt and lg'

T

dependence of the roton minimum / as
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soft-mode behaviors of rotous in liquid helium II with respect to their dependence
on erternal pressure and temperature. Qualitatively the erperimental result for
the temperature dependence of the roton minimum /-/(T) as shown in Fig. 2t'l
might be understood by noting tbat the discoutinuity Dear T:T* is the result
of the joining of two distinct branches of the excitation spectra of the system
(see Fig. 4). Then the result obtained here (see Fig. 2) and that of Ruvalds
may correspond to y'{T) and r'o(T), respectively. He bas shown that the behavior
of the roton minimum y'o(?), particularly its temperature dependence, can be
accounted for by taking into accouut roton-roton interactions giving the renormali-
zation of the roton energv /o(T):r'0*2(T). Here 4 is the value of /o(T)
without roton-roton interactions. For example, neutron data at ?:1.1T( gives

4:8.65"K. The quantitv 2(T) is the rotou self-eDergy. The result obtained
by him f.ot 2(T) can be expressed in the form of self-consistent equations:

with

Here 0 is the roton coupling parameter, JVa(?) denotes the number of rotoas,
la ie the Boltzmann couetant aud g is the effective mass of rotong when expressed
in the form of the Landau formula:t)

C = C ( 夕 )〓 ∠+ [ ( p ― 夕0 ) 3 / 2 μ] . ( p = 力 た, p O = 滝 為 ) (8)

Based upon these formula, he was also successful iq explainiag the temperature
dependence of the superfuid deusity. By such a calculation, y'y(T) tends to zero
as ? approaches ?* from below, thus giving a soft-mode behavior. As showu
in Fig. 4, the uuderlying fact here would be that the nature of rotons below
and above ?r must be quite difierent.

It is not yet clear what is the interrelationship between /r(T) obtained by
Ruvalds and 4(T) obtained here. In view of the results obtained in this paper
and also of the tempersture dependence of the width as well as the energy of
the roton minimum,r') it is suggested as an alternative conjecture that a roton-
minimum curve is likely to be composed of a single branch (rather than two
branches as shown in Fig. 4), undergoing an abrupt change in the vicinity of
T:Tx. In this meaning it appears that rotons below and above ?*, although
their bebaviors are qualitatively different, are likely to bd of similar nature, some-
what reflecting a general feaure of liquide. To confirm whether this is true or
not, a further eramination and a geueralization of the method developed herein
taking into account the effect of Bose-Einstein condensation are probably required.

S 6. Concluding remarks

The main results obtained inthis paper can be summarized as follows: (a)
Equation (1) with z(R) replaced by the effective potential 

"*(R) 
(cf. Eq. (2))

ガ(7)=2σ lVE(7)

鳩 (7)〓 [2p08(μんB7)lμ/(2π)3/8″]eXp[―{ノ0+】(7)}/ルBT].

(6)

(7)
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gives dispersion curves of phononJike excitations in liquid helium with their
over-all behavior below and above the transition temperature ?* in fairly good
agreement with experiment. (b) Upon closer eramination it is shown tbat the
temperature-dependence of the rotou-minimum obtained here is in good agreement
with erperiment for liquid helium I, but not for liquid helium II. (c) It sppears
that the importaut properties of the roton minimum for T1T, are determined
by quantum efrects other than those taken into account in this paper. (d) In
this sense quantum efrects to be taken into account in quantum liquids seem to
be difrerent from tlose in quantum eolids. (e) The present theory is, therefore, :
not applicable, as it stauds, to liquid helium II.
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