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An attempt is made to formulate a theory of phonon-like excitations in liquid helium by
generalizing the theory of phonons in quantum crystals to quantum disordered systems. By
using experimental data for pair correlation functions, dispersion curves of longitudinal phonon
modes are calculated, with a result for their over-all behavior in fairly good agreement with
phonon-roton dispersion curves obtained by neutron scattering measurements. It is shown
that the temperature-dependence of the calculated roton-minimum is in good agreement with
experiment for liquid helium I, but not for liquid helium II. A brief discussion is given on
the nature of rotons in liquid helium. It is suggested that, within certain restrictions, the
roton spectrum in liquid helium is likely to be a general feature of the dispersion of elementary
excitations in liquids, classical or quantum.

§1. Introduction

Since the pioneering work of Landau,® many attempts have been made to
study the physical properties of elementary excitations in liquid helium.”? On the
other hand, several works, both experimental and theoretical, have implied that
the over-all behavior of the dispersion of elementary excitations in classical simple
liquids bears some resemblance to that of phonon-roton excitations in liquid
helium.”™® It has also been shown that high-frequency collective modes in clas-
sical liquids are rather similar to phonons in amorphous or polycrystalline solids.»~
These results suggest that the dispersion of elementary excitations in non-crystalline
solids and liquids, classical or quantum, is likely to have several things in com-
mon and may evoke a renewed interest in the nature of rotons in liquid helium.
There is, however, a good reason to believe that such an analogy between clas-
sical and quantum disordered systems, as it stands, may only be meaningful for
liquid helium I. Recently a soft-mode behavior of rotons in liquid helium II has
been noted.'”®

The principal purpose of this paper is to develop a theory of phonon-like
excitations in liquid helium by generalizing the theory of phonons in quantum
crystals.”™® In a previous paper,” to be referred to as I, the present authors
have studied the general properties of elementary excitations in non-crystalline
solids and liquids by employing a phonons-in-amorphous-solids approach. Particular
attention was paid there to the interrelationship between the roton-like spectra

*) Permanent address.
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and the local ordering in disordered systems. This paper is intended to be as
compact as possible because a generalization of the theory developed in I to the
present case, which may be called a phonons-in-amorphous-quantum-solids approach,
is quite straightforward. Attention is called to the fact that a phonon dispersion
curve in liquid helium obtainable by such a method is in fairly good agreement
with phonon-roton excitations observed by neutron scattering measurements.'?

§ 2. Preliminary discussions

As a preliminary for later discussions, we first study phonons in a classical
non-crystalline solid composed of atoms of a single species within the framework
of the harmonic approximation. According to the results obtained in a previous
paper™? the dynamical matrix 9 giving the phonon eigenfrequencies w=w(%) as
a function of wave vector k is given by¥®

D=D (k) = (o/ M) degs* (R)FP7v(R)[1—exp(ik-R)]. ®

Here M and p are the atomic mass and the number density of the atoms, respec-
tively, v(R) is the “bare potential” describing the interaction of a pair of atoms
and ¢,*(R)=g*(R, w) is an “effective pair correlation function” in which the
effect of higher order correlations other than pairs for the distribution of the
atoms are exactly taken into account.” In this paper we neglect the difference
between ¢,* and ¢,, a “bare pair correlation function” for the sake of simplicity.
Physically this is mainly to neglect the damping of phonon modes arising from
the structural disorder. In the previous paper,” Eq. (1) was applied to an ana-
lytically tractable one-dimensional model disordered system. The principal result
obtained by such a calculation is that a partial disorder characterizing a non-crystal-
line solid gives rise to a frequency gap 4, in the phonon dispersion curve at
the value of % corresponding approximately to the first peak in the structure
factor and that the quantity 4; decreases with increasing local order and eventually
vanishes in the limit of complete ordering corresponding to a crystal lattice. It
has been shown® that if we make an attempt at identifying 4, with the roton
minimum 4 in liquid helium, the above result is in qualitative agreement with
the pressure and the temperature dependence of 4 observed experimentally”:'¥

§3. Generalization to a non-crystalline quantum solid

We next generalize Eq. (1) to a non-crystalline quantum solid, although the
present authors are not aware of the existence of such a disordered system. As
in the case of phonons in quantum crystals,”™® we do this by modifying the bare
pair potential v in Eq. (1) by an effective potential »* in which the effect of

* Equation (1) is obtained by combining Eqs. (3-11) and (2-3) in Ref. 5) with each other.
The quantity PPv(R) here corresponds to the force constant K in Eq. (2-3).
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the anharmonicity of vibrations and the short-range correlations arising from the
large zero-point atomic motion and the strong repulsive part of the bare potential,
respectively, are taken into account. Here we follow the method suggested by
Nosanow and co-workers®™' to approximate v* by™®

v*(R) = (A/21)"*(1/R) J;de’R’W(R’) {exp[—(A4/2) (R —R)]

—exp[— (A/2) (R"+ R)']}, @
where
W(R) =f(R)[v(R) —(¥/2M) 7" In f(R)] 3
in which
Sf(R) =exp[-K{(6/R)"— (6/R)’} ]=exp[ — (K/4€)v(R)] C))

is the Jastrow factor. In the above equations A and K are adjustable parameters
and ¢ and € are constants.

Before calculating Eq. (1) numerically, along the line described above we
remark that various formulas giving the eigenfrequencies of short-wavelength
collective modes in simple liquids have forms similar to Eq. (1) and that
the results of numerical calculations yield dispersion curves which bear some
resemblance to phonon-roton-like excitations as obtained in our previous paper
for phonons in one-dimensional non-crystalline solid.” The underlying fact in
such a physical situation would be that for short-wavelength modes we could
expect the liquid to show a solid-like behavior.® In this meaning Eq. (1), when
applied to classical liquids, may be called a phonons-in-amorphous-solids approach.

§4. Application to liquid helium and numerical calculations

In this paper we have made an attempt at applying Eq.(1) with v replaced by
v* to liquid He', confining ourselves to those eigenvalues of 9 (k) which cor-
respond to longitudinal phonons. This may be called a phonons-in-amorphous-
quantum-solids approach to liquid helium. The numerical calculation has been
done using the values of the pair correlation function ¢, obtained by Henshaw?®”
and by Gordon et al® at T=1.06°K, 2.40°K and 4.20°K. Following Nosanow
and his co-workers,™~" we put ¢ =2.556A and K=0.178. The numerical value
of Ain Eq. (2) has been determined to fit roughly the velocity of sound waves
v, It is taken to be 1.30A-*, 1.20A-* and 0.90A-! for T=1.06°K, 2.40°K and
4,20°K, respectively (the values of v, thus obtained are 252 m sec™*, 226 m sec™*

*) Equation (2) is readily obtained from Eqs. (18) and (19) in Ref. (17). We do not intend
here to reiterate the cluster variation method, upon which Eq. (2) is based, employed in the theory
of phonons in quantum crystals. For a detailed discussion on this, see, for example, Refs. (15) and
(16) and also (13).



Phonon-Like Excitations in Liquid Helium

and 171 m sec™’, respectively). These numeri-
cal values are smaller than those used in the
case of solid He‘. This choice of the para-
meters K and A seems to be reasonable in the
sense that the anharmonicity of atomic vibrations
in liquid phase is generally larger than in solid
phase (the quantity A is a measure of the in-
verse of mean square displacement of atoms),
while the difference of a quantity characteriz-
ing hard cores in solids and liquids seems to
be negligible. The result of numerical calcula-
tions is shown in Fig. 1, together with the ex-
perimental result of Henshaw and Wood at
1.12°K.' It is seen that the agreement of the
over-all behavior of dispersion curves between
the theory and the experiment' is fairly good.
The numerical values of the roton minimum
energy 4 as a function of temperature are also
plotted in Fig. 2. It is seen that the quantity 4
decreases linearly with temperature and that
it well agrees with experimental result™ above
the superfluid transition temperature. It is, how-
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Fig. 1. Dispersion curve of elemen-

tary excitations in liquid helium.
The dashed curve shows the ex-
perimental result of Henshaw and
Woods (Ref. 14)) at T=1.12°K
obtained by neutron scattering
measurements, Curves (A), (B)
and (C) denote calculated values
of phonon eigenfrequencies using
the values of g, obtained by
Henshaw (Ref. 21)) at T=1.06°K
(curve (A)) and those by using
the values of g; obtained by
Gordon et al. (Ref. 22)) at T=
2.40°K (curve (B)) and T=4.20'K
(curve (C)).

ever, to be noted that its temperature dependence below the i-point T, is very

different from that obtained here.

This is probably due toc new mechanisms or

interactions arising from the onset of superfluidity which have not been taken

into account in our treatment.

There is a good reason to believe that our meth-

od of phonons-in-amorphous-quantum-solids approach cannot be used, as it stands,

for liquid helium IIL
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Fig. 2. Temperature dependence of the roton minimum. The continuous line denotes the ex-
perimental result (Ref. 14)). The solid circles (A), (B) and (C) show the calculated values
of the roton minimum obtained from the curves (A), (B) and (C) in Fig. 1, respectively.

§ 5. Discussion

Aside from their over-all behavior, the main difference of the result obtained
here from that of Feynman expressed by the formula®-®

*) The quantity S(k) is the structure factor of liquid helium.
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e (k) =ho (k) =HE/2MS(k) . )

or that of the more elaborate work of Feynman and Cohen is that the former,
as we can show from Eq. (1), gives the second maximum in w-versus-k curve,
while the latter yield a monotone increasing function for k>%. Here % is the
value of % at which the roton minimum takes place. The experimental result of
Henshaw and Woods,® although indefinite, seems to suggest the existence of
such a second maximum. This difference in the behavior of dispersion curves
are illustrated in Fig. 3. It is worthy of note in this connection that the second

maximum in the dispersion of elementary excitations has been observed for clas-
sical liquids.l)p‘),ﬂ),ﬁ),18),10),15)
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Fig. 3. Dispersion curves of elementary excitations obtained by Feynman and Cohen (curve
(a), at T=0"K), by Henshaw and Woods (curve (b), at T=112'K) and in the present
paper (curve (c), at T=1.06'K).

In view of these facts, it appears that the dispersion of elementary excitations
in liquid helium looks something like that in classical liquids. This point has
been discussed previously by Singwi, Skéld and Tosi,” by Murase® and by the
present authors.” The claim made by Singwi, Skosld and Tosi was that the
plateau beyond the roton minimum might be a general feature of liquids. In this
paper it is suggested that the behavior of excitations in the roton region itself
does reflect some general features of liquids. To study this point, in particular,
the nature of rotons, a systematic investigation of the temperature and the pressure
dependence of dispersion curves of elementary excitations in classical as well as
in quantum liquids is required for a wide range of momentum transfer utilizing
neutron scattering measurement. Very recently, suchan experimental study has been
made by Dietrich et al. for liquid helium.? Theoretical studies of this point have
also been made by Schneider and Enz'® and by Ruvalds."> These workers remarked
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Fig. 4. A tentative illustration of the temperature dependence of the roton minimum 4 as
being composed of two branches 41 and 4p.
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soft-mode behaviors of rotons in liquid helium II with respect to their dependence
on external pressure and temperature. Qualitatively the experimental result for
the temperature dependence of the roton minimum 4=4(7") as shown in Fig. 29
might be understood by noting that the discontinuity near T =T, is the result
of the joining of two distinct branches of the excitation spectra of the system
(see Fig. 4). Then the result obtained here (see Fig. 2) and that of Ruvalds
may correspond to 4,(T") and 4;(T), respectively. He has shown that the behavior
of the roton minimum 4;(7T), particularly its temperature dependence, can be
accounted for by taking into account roton-roton interactions giving the renormali-
zation of the roton energy 4y,(T)=4,+2(T"). Here 4, is the value of 4,(T)
without roton-roton interactions. For example, neutron data at 77=1.1°K gives
4,=8.65°K. The quantity J(7") is the roton self-energy. The result obtained
by him for X¥(T) can be expressed in the form of self-consistent equations:

Z(T)=2gNx(T) ©)
with
Ne(T) = [2p* (uksT Y7/ ()" ) exp[— {4o+ Z(T )} /ksT ]. )

Here g is the roton coupling parameter, Ng(7T') denotes the number of rotons,
kg is the Boltzmann constant and # is the effective mass of rotons when expressed
in the form of the Landau formula:®

e=e(p) =4+ [(p—p)'/2u]. (p=hk, py="Hk,) ®

Based upon these formula, he was also successful in explaining the temperature
dependence of the superfluid density. By such a calculation, 4;(7") tends to zero
as T approaches 7', from below, thus giving a soft-mode behavior. As shown
in Fig. 4, the underlying fact here would be that the nature of rotons below
and above 7', must be quite different.

It is not yet clear what is the interrelationship between 4;(7") obtained by
Ruvalds and 4,(T) obtained here. In view of the results obtained in this paper
and also of the temperature dependence of the width as well as the energy of
the roton minimum,'” it is suggested as an alternative conjecture that a roton-
minimum curve is likely to be composed of a single branch (rather than two
branches as shown in Fig. 4), undergoing an abrupt change in the vicinity of
T=T,. In this meaning it appears that rotons below and above T, although
their behaviors are qualitatively different, are likely to be of similar nature, some-
what reflecting a general feaure of liquids. To confirm whether this is true or
not, a further examination and a generalization of the method developed herein
taking into account the effect of Bose-Einstein condensation are probably required.

§6. Concluding remarks

The main results obtained in this paper can be summarized as follows: (a)
Equation (1) with »(R) replaced by the effective potential v*(R) (cf. Eq. (2))
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gives dispersion curves of phonon-like excitations in liquid helium with their
over-all behavior below and above the transition temperature 7', in fairly good
agreement with experiment. (b) Upon closer examination it is shown that the
temperature-dependence of the roton-minimum obtained here is in good agreement
with experiment for liquid helium I, but not for liquid helium II. (¢) It appears
that the important properties of the roton minimum for 7<7T, are determined
by quantum effects other than those taken into account in this paper. (d) In
this sense quantum effects to be taken into account in quantum liquids seem to
be different from those in quantum solids. (e) The present theory is, therefore,
not applicable, as it stands, to liquid helium II.
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