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Problem of localization of eigenstates is examined for one-dimensional infinite disordered
systems with off-diagonal randomness. For this purpose Matsuda and Ishii’s theory, based on
Furstenberg’s convergent theorem on products of random matrices, is generalized by intro-
ducing “irreducible sequences” S and “irreducible transfer matrices” Q* as useful
mathematical tools.

A Furstenberg-type theorem is established for the product of matrices associated with
a Markov-chain. This theorem leads to some conclusions about the localization of eigenstates,
which are very similar, except for some minor differences, to those obtained by Matsuda and
Ishii for systems with diagonal-randomness only.

§ 1. Introduction

Recently Weissman & Cohan” and Bush® have discussed the density of states
and the extendedness of an eigenstate of some one-dimensional infinite systems with
nearest-neighbour random interaction. They predicted that there are some anomal-
ous features at the middle of the energy band (E=0) if the system has off-diagonal
randomness (ODR). Theodorou and Cohen® have given a rather general proof, on
the basis of the central limiting theorem, that the eigenstate is extended at E=0.
They predicted further that there exists an example in which all states are ex-
tended, by using a perturbation expansion of the Green function and the relation
proposed by Herbert & Jones” and Thouless.”

However, it has been known that rigorous investigations sometimes bring us
to the conclusions which are at variance with those obtained by approximate meth-
ods. Theoretical criticisms on Economou and Colien’s work® have been given most
clearly by Ishii.” Ishii has cast doubts also to Herbert & Jones and Thouless’s
relation.” A prediction has been given on the extended state mentioned above by
Fleishman and Licciardello.,¥ In a recent paper Odagaki and Yonezawa® have
noted that the L(E) method"® should be used very carefully for discussing the
localization problem.

The purpose of this paper is to discuss the problem of localization of eigenstates
through Matsuda and Ishii’s rigorous approach (hereafter referred to as MI'” and
1”). It becomes then necessary to generalize the Furstenberg convergent theo-
rem™ to the case of product of matrices associated with a Markov-chain. The

Furstenberg-type theorem thus obtained plays an essential role in this paper.
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Our formulation is general in the sense that it can treat the systems with
both kinds of randomness: diagonal one (DR) and ODR. For simplicity’s sake,
however, we confine ourselves in this paper to systems with ODR only and to
those with mutually independent DR and ODR.

In the next section the general formulation is given. In §§3 and 4 the
Furstenberg theorem is generalized to the case of matrices associated with a Mar-
kov-chain, for the system with ODR only. The concepts ‘“irreducible sequence”
and “irreducible transfer matrix” are introduced in these sections. In §5 it is
shown that the related theorems given in MI and [ can also be extended easily.
In §6 it is shown that the same considerations can be made also for systems with
ODR and DR. The final section is devoted to conclusions and discussion.

§ 2. Formulation of the problem

The system considered in this paper is an infinite linear chain desecribed by
the Hamiltonian

H=3"wye,{n + 3 (0t in+ 1 +in4+102, 40, (—o0n<oo)

2-1)
where £,,., and t,.,, are assumed to be nonzero, real and bounded:
taw. =4, 1. and O0Ze<|t,, . <T< . Hor all n) (2-2)

The system would become an assembly of separate pieces if some of #£s vanish.
We assume further that the transfer integrals {¢, ,.,} can take, mutually independ-
ently, r different values with a common probability distribution:

P,, ,=t")y=PY=P,, (independent of n) i=1, . r,

.
- RIS ey ey
PY=1, (2-3)
J0

For simplicity it is here assumed that the diagonal elements {g,} can take, in-

dependently of {£,,.;}, r' kinds of different values with a common probability:

’

P (s,=¢) =P P =P/, (independent of n) j=1, -, /7,

’

— 1);(/) =1 (21)

‘l\/‘- ~

The eigenvalue equation of our system can be written in the form of a set
of recurrence relations:

—_ 9.5
E'(I,,-G,,'(l,,'+f,,_,, l'arH)_*_[n.n—x'an Is (2’1))

where «, is the amplitude of the eigenstate at the site #.  Transfer matrix T, is

then defined as follows:
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where the signs + and T correspond to the cases £, ,.; .-, >0 and <0, re-

spectively. The sign of det Q,(= +1) coincides with that of ., ,tu,-.. The
following relation holds about the exponential growth |X,[|, (X, R* and | X,]
#=0):

. 1 » . . "
lim 2 Jog] (f] T Xo| = lim 2 1081 (T @) X0l (2-8)

Our final purpose is to discuss whether the limit (2-8) exists, the value of
which is finite and positive, i.e.,

lim - log] (] @) Xl =27>0, (2-9)

or not, independent of X,& (R*— {0}) and of sample systems. For this it is neces-
sary to generalize the Furstenberg convergent theorem to the case of a product
of matrices representing a Markov-chain. In the following two sections discussion
is made for the systems with ODR only. Discussion for the systems with ODR
and DR will be given briefly in §6.

§ 3. Random chains with ODR only

31. A set £° is defined as an aggregation of all sample systems of the
type defined in § I and with ODR only. A physically reasonable measure #,° can
be introduced on 2° in the same way as in I; 4° can be extended to a complete
measure on the whole Borel sets of the interval 2[0,1]. It will be seen later
that it is more convenient to omit from £2° a set of special sample systems {0}
with a sufficiently small measure &y>0 in order to avoid a mathematical difficulty
which occurs when we apply the Furstenberg convergent theorem. It will be
seen there that we can make the measure €y>0 as small as we hope so that &y
does not affect physical phenomena. We thus define 2=2"— {w’}.

Obviously a complete measure g=u#"/(1—¢y) is meaningfull (as #*({6,°})
=gy) also on the smallest Borel sets including the intervals 2 [0,1] — {7;"}, where
{6} is a set of intervals corresponding to the set {0v,}. We will use the expres-
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sion #°({0%}) for #°({g,}) in this paper. In the cases where we have no mathe-
matical difficulty we understand that {0} =¢ and ey=
The set of sample systems £ can be decomposed, in one way, as follows:

!2:;1‘ 29,
29 = {w: ty, (w) =t for Yo 2%}, (=1~r) (3-1)
2% is a subset of £ composed of systems for which
to () =t 3-2)
When we write

2@ =y = Q) /A2y =P" A —es") /(L —en), (i=1~1)
3-3

each (27, 3%, u® =n/v"”) becomes a probability space.

3.2. On each sample wE &P (i=1~r), the lth “irreducible sequence” of
the 7th kind S,’, and the corresponding Il-th “irreducible transfer matrix” of the
i-th kind Q*®, are defined as follows: An “irreducible sequence” of the i-th kind
S® is a sequence of f,..’s which fulfills the conditions that (1) the preceding
t is equal to t¥, (2) it ends with ¢t® and (3) no other f’s in the sequence are
equal to #¥. An “irreducible transfer matrix” of the i-th kind Q*” is a product
of transfer matrices Q corresponding to an “‘irreducible sequence” S of £. The
irreducible sequences and transfer matrices of the i-th kind are introduced in order
to describe the right semi-infinite chain starting from f,,=¢“. Obviously the left
semiinfinite chain can also be described with the correspondingly defined sequences
and matrices. More precisely, a right semi-infinite chain can be represented, under
the condition that f,,=¢", by an infinite sequence of the irreducible sequences

(S;“), Sz(i)’ e, S[(i)' “.) (34)
with probability 1, and also by a product of the irreducible transfer matrices

('"’Qs*m‘Qz*m'Qx*m) (3-5)

with probability 1. As an example some possible sets of the irreducible sequences
and the irreducible transfer matrices are shown in Table I, for the case »=2 and
i=1, with their values of probability distribution x® (Q*®) =x®(S*).

It is now obvious that det Q*? =1 and Q*®&SL(2, R). We define G* as
the smallest closed subgroup of SL(2, R) including all kinds of the irreducible
transfer matrices of the i-th kind Q*®. Then an infinite sequence of Q*¥ {Q**;
1=1,2,3, -} can be regarded as a sequence of mutually independent G .valued
random variables with a common distribution #“. Now we apply the Furstenberg
convergent theorem to our set of irreducible transfer matrices to obtain the follow-
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Table I. An example of the irreducible sequences, the corresponding irreducible transfer
matrices and the values of the distribution in the case =2 and i=1. It is shown
in §4 that & is equal to the sum of (1—P®)!PD ((=NWM~o) in this case and

thus equal to (1—P®M)a®,

Q*® (5 £ (@) =4 USD))

Sw

(t(l))\t(l) Q(t(‘)’ t(l)) P(n/(l"‘fu(x))
(YN0 QU 1Y Q (e, 1) (1—PM) . PO /(1 —gy )
S el H :
Lo
(t(l))\t(')t(')...t(’)t(l) Q(t(’)’ t(’)) (Q(t(.), t(l))) ("")Q(t(’), t(l)) (1 _P(U) (n=1) ‘P(l)/(l“eﬂ(”)
: N(‘) 1 8 :

e,
(t(l))\t(x)t(’)...t(')t(‘) Q(t(‘), t(’)) (Q(t(’)’ t("))(N“"”Q(t(", t(l)) (I_P(l)) (N(I)—l).P(n/’(l_eN(l))

ing conclusion:

If G* satisfies F-condition'” for an energy E with the condition that [|Q*®}
du® (Q*®) <oo (| Q*?® | =sup|Q*®X]|}, X€ R® and |X| =1), then

lim L log} (T Qi*®) X, =2r*®>0 (3-6)
m-ee 331 i=1
with probability 1 on the sample space 2° for all X, (R*— {0}). We thus have

tim (- 7 ) Log) (] @) Xy = PO2rr O =2r9>0  (37)
mao\ 2®(m)/ m Py

with probability 1 on 2% for all X,(50), where n¥=»n'" (m) is the number of

Q) contained in the product of the sequence of Q*“’s, ie.,

) (m)

(I e)=[le~. 3-8)

3.3. It has been shown that there exists a positive number 7 defined in
(3:-7), if G¥ satisfies F-condition for an energy E with the condition [|Q*¥[du®
(Q*%) <co. Consequently, it is apparent in this case that for an sufficiently small
¢ there exists an integer N such as for n=>N®,

) _gyn® 2 ; [ (%]
a® v P=OrOM gt gy + @y D €80T (3-9)

for each »® @,

(m) where f,,.;= Quantities @™ and 8% are some positive finite
numbers.

The relation (3-9) provides us, however, with only partial information about
the exponential growth of the wave function; it does not guarantee the existence

of vin (2-9) with probability 1 on £ for any X,70. There are three cases.

Case a) Existence of 7® is guaranteed for every subsets (i=1~7) (for an energy
E with probability 1).
Case b) Existence of 7" is guaranteed for at least one subset but at the same
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time it is not guaranteed for at least one of another subsets.
Case ¢) Existence of 7¥ cannot be guaranteed for any subset.

It is shown in Appendix A that at least in the case a) the existence of j s
guaranteed for the energy with probability 1 on 2 for any X,70 and

;,: T(!) — r(z: = 000 = ;,(r). (3 10)

that is. the limiting value (2-9) exists for the energy with propability 1 on 2
for any X,50.

We thus reach the following conclusion: A sufficient condition for the ex-
ponential growth of the wave function is that the property (3-6) is proved for
every subset 29 (1=1~r).

It is noted that for the model adopted in this paper only the cases a) and
¢) appear.

§4. A Furstenberg-type theorem for the systems with ODR only

As mentioned just above, a sufficient condition for the exponential growth of the
wave function is that the property (3-6) is proved for every subset 2P G =1~r)
for the energy E with probability 1. We call it the GF-condition (generalized
F-condition). A sufficient condition for the property (3-6) to be valid (for a given
energy E) for one subset £ is

1) G satisfies F-condition,

2) Sstem 1 Q*m i dn? (Q*m) oo,

The second condition can be made to be satisfied when we omit from G the
irreducible transfer matrices corresponding to the irreducible sequences the lengths
of which are larger than a sufficiently large integer NY>=N/P®. The finite
integer N® can be made as large as one hopes so that the integer does not
affect physical phenomena, that is, the probability distribution of the subtracted
set can be made as small as one hopes by taking a large integer N. It can be
done by constructing the ensemble defined in §2 by subtracting from £2° a set
{0} with a sufficiently small measure &y>0. Now apparently, it is adequate to
understand

{“)jv} 53] E-Qom. ﬂn( {(010} «11) — 1)“)3_\»“'1 (i= 1"\/7‘)

r r
i 1 i . i)a :
o, =N, D, aa=N ple, -1
=) {fa]

and each {w,}® consists of sample systems, each sample of which includes at
least one irreducible sequence of the 7-th kind. the length of which is greater
than N, The ensemble £ should therefore be understood. when it is necessary,
as an aggregation of all sample systems in which each sample welP (i=1~7r)
can be represented by two infinite sequences of the irreducible sequences. the
i

lengths of which are less than or equal to N''. describing the right and the left
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parts of the chain.

After omitting the irreducible sequences of this kind, we have only to consider
the condition 1) for each subset 2. It is evident that we can make the finite
integer N as large as we hope and accordingly the positive value ¢y can be made
as small as we hope so that the existence of ¢y does not affect physical phe-
nomena,

The following results are obtained about the GF-condition, with a result in
Appendix B,
case (1) r=2 and [¢®|5["]

The GF-condition is satisfied for all the possible energies except E=0.
case (2) r=2 and t®P = —¢?
The GF-condition is not necessarily fulfilled for every energy in the
band.
case (3) =3 (r<{oo)
The GF-condition is satisfied for all of the possible energies except
E=0 because G{j} of the system includes at least one subgroup G@
which corresponds to that in the case (1).

§ 5. Extension of other theorems in MI and I

Once the GF-condition is proved to be satisfied, it is straightforward to derive
the conclusions about the localization of eigenstates; it suffices to establish some
auxiliary theorems. These theorems can easily be derived by slightly modifying
the corresponding theorems in MI and 1.

The theorems corresponding to the theorems 3, 4 and 6 in MI can be ob-
tained by extending the relation (4-1) in MI as

@ () " (n+1) —¢" (n+1) P () =to1/taner,s G-

and modifying the relations (4-5) ~(4-9), (2-9)~(2-11) and (4-13) ~(4-15) in
MI in an entirely similar way. The theorem 9.3 in I can be extended, in the
same way, by extending the relations (9-29) and (9-30) in I as

Xn+IYu - Yn-H‘ n= 1u,l/tu,1l-i—1 ) (5.2)
Can(E) =Y (E)Y W(B) S,  aflines (5-3)
i=m Y i(E)Y 1. (E)

respectively, and modifying similarly the relations (A5-6), (A5-8) ~(A5-11) and
(A5-14) in L

Thus we can conclude that eigenfunctions of the systems with ODR only
are localized with probability 1 on £ if the GF-condition is satisfied.

It is important to note that the extension indicated above is independent of
whether the system under consideration has only ODR or has both ODR and
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DR. Thus the same conclusions about the localization in MI and I can readily
be obtained also for the systems with ODR and DR, if the GF-condition is proved
to be valid for such systems. We shall prove it in the next section.

§6. Validity of the GF-condition for the chains with ODR and DR

In this section we shall prove that the GF-condition is fulfilled by the systems
with ODR and DR, if those are independent of each other. To do this it is only
necessary to introduce a slightly different measure #,’ for the sample space and to
define the “irreducible sequences” more carefully.

6.1. Each sample system characterized by a sequence {ep tan-sn=1,2,3, -}
can be represented by an 7 and r’-adic number

620"11'@10:"" (61)

or

0=0.4y, (and &) (6-19
contained in 3 = [0, 1], where one-to-one correspondence is established by
e.=¢e(g,) and t,,.=t(g). (=123, (6-2)

Then a suitable measure " can be introduced on the ensemble of systems £2° in
the almost same way as that in I

6.2. The “irreducible sequence” of the i-th kind S*® should be defined more
carefully in this stage. It is the sequence of ¢, and ¢,,., which fulfills the
conditions that (1) the preceding ¢ is equal to t®, (2) it ends with ¢¥ and (3)
there appear no t* in any other position in the sequence. Obviously each ¢, can
take all possible values in the sequence. Then the right half of the chain from
£, (=t®) can be represented, with probability 1, by an infinite sequence of the
irreducible sequence of the i-th kind

(S,m, Sz“), S;m, o) (6.3)

6.3. Now the GF-condition of the system can be discussed in the almost same
way as that in §§3 and 4. The following result is readily obtained, as each
G contains the subgroup G,*, which corresponds to systems with DR only.
Each subgroup G, is the same as what has been discussed extensively in MI and L
Case (4): General case where both ODR and DR exist. The GF-condition is

satisfied for all of the possible energies including E=0.

§ 7. Concluding remarks

The first conclusion obtained in this paper is that a Furstenberg-type theorem
can be established for products of random matrices representing a Markov-chain;
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the GF-condition is a sufficient condition for the convergence of the quantity (2-8).
It should be remarked here that our method will be effective also for systems
which are more general than those treated in this paper, so that the Furstenberg-
type theorems can be established also for these systems.

Our second conclusion is that any infinite chain which belongs to the category
considered can be made to have an exponentially localized solution for a given
energy E for which the GF-condition is satisfied, by modifying a transfer integral
t,.; (or an atomic energy &) such that it gets a suitable value, except for the
chains with measure zero on 2.

The third conclusion is that almost all of the eigenstates (for the energy E)
are exponentially localized, in infinite systems, with probability 1 on £,* in the
sense that the following relation hold with probability 1 on £,

|G, (E—i0) | <O (exp{—7(E) |n—ml}), in the limit {n—ml|-—>oco .

The fourth conclusion is that the weak absence of diffusion” takes place also
with probability 1 on £, for above mentioned energies.

The fifth conclusion is drawn in the case (2) that all of the eigenstates,
except those for E=E. = +2{t""| (the values of band edges of the regular system
with ' or ) are extended. This is because every irreducible transfer matrix in
G? (and G”) can be diagonalized by a non-unitary transformation, so that the
diagonal matrix elements have the from €' and ¢ * (f:real). In this case the
randomness of phase of the transfer energies does not seem to play any role for
the localization of the eigenstates. The value of 7 is obviously 0 in this case except
for E=F .

It will be interesting to discuss the rate of exponential growth 7 and the
feature of spectral densities. Here we confine ourselves to note, however, that
some recent developments in the theory of spectral densities' (on some different
model {rom ours) are possibly helpful to obtain some further conclusions on the
localization problem.
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Appendix A

———A Proof of the Statement Given in (3-3) for the Case a)—--

In the case a) existence of ¥ is guaranteed on each subset 2% (i=1~r).

* It should be mentioned that probability 1 on £ represents probability 1--&x on £2° and
measure zero on £ does measure &y on 2°
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We rearrange here the indices 7 such that
}.u.\gr(z)g.r(aig“.gr(r)‘ (A 1)

We have for each m& Q¥ (i=1~r) a sequence of numbers » (i) appeared in
(3-7):

2P0y, (m=1.2,3,) (A-D)

From the exponential properties (3-6) and (3-7) it follows that for sufficiently
small positive number >0 there exist integers ! ? such that

(((()(,aU)‘m){;’fu;(B)-é: <a‘;’““<m) (E) 4 ai“) s (E)
<ﬂm‘,a Ay (m)y @y (Ey+e) for ”m (m) 21\]‘(1) (i= 1"‘-’7’) (A3)

independent of the initial condition @, and a,. Obviously the site corresponding
to #¥ (m) has lewmawm 1=¢". From the independence of the property (A-3)
of the initial condition X,(#0) we can conclude that the exponential properties
(3-6) and (3:7) and thus (A-3) are valid with probability 1 on the set of
systems 2. It is apparent from (A-3) that at least one of the quantities, @nmm (E)
and dnomy.1 (E). satisfies the following inequalities

(%a(n ") (B :}) <afl(')(u)(E) , (A4)
1 7 niTI (miy MY T gy |
(_2 Q'™ " Ao (E) '})<(lim(mm(E) (A-4)

for each ™ (m) (m=1,2,3, ).
When the inequality (A-4) is satisfied we have

| l i r {N(E)— 2y (r) (B) - P
i .‘J'“ T o {2r"(E)-s e’\n(r)(m) By (EB) - 8 <(lf.m<,,.)_,(E) + az(r)(”) (E),
thilt iS,

(; Q) B (Ei-n )0"”')(""} EOE -8 g e mn (B) + aiunmnys1 (E) (A-5)
independent of the kind of the corresponding (the preceding) transfer integral
t9°. When the inequality (A-4’) is satisfied, we have

1 Ly ) ) (m)y+1{2r¢n - 2 2
(-'Z—CUU) e ¥ ")e{" AR A <LazmmsrT Creymy 2

that is,

] 1 4) Y - (f' ¥y (r) - 8 - ] 5 ’
(_a(r) e TV a})cn ymmy 2r ) - &) <\‘l;7;(")(m’) + ai“,)(m,)“ (A.s )

/
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independent of the kind of the corresponding (the next) transfer integral £,
These inequalities show that

r(r)gru)g.r(z)gu_gr(r) (AG)

and hence

($})

T =rm=...=«r

(r)

=7. (A7)
This implies that the limiting value (2-9) exists (with rin (3-9)) for the energy
with probability 1 on £ for any X 0.

Appendix B

— A Proof of the Result about the GF-Condition for E=0
in the Cases (1), (2) and (3)

It is shown in this Appendix that each G does not necessarily satisfy the
GPF-condition for E=0 in the cases (1), (2) and (3).

First consider the cases (1) and (2). In these cases it is easily seen that
the closed subgroup G* (or G®) is composed of the elements

:t(o _1> d {iil 0) i(a2 0)} B-1
an y » .

1 0 (0 1 0 a’? (B-1)

where a=vV[t®/t®| (orvV[t®/t®|). In the case (2) (a=1), it is obvious that

the closed subgroup is compact. This completes the proof. In the case (1) (0

<a<oo and a51), the following reducible non-compact subgroup R of G (or
G®) can be constructed

R = (“h 0 ) 1 i ! (B-2
== ,. |+ »: all integers ;. .
0 a/ | )
: 0 —1\
The (left and right) co-set of R on the elements x| 1 0 | is
U o M :
C= { ( ) |; z: all integers ;. (B-3)
" 0 )

It is seen that the product of any elements ¢, ¢’=C is an element in R and the
coset of R on any element c=C is C. Accordingly it is concluded that

G?=R"+C", (i=1,2) (B-4)

that is, there exists a reducible non-compact subgroup R of G with the index
2.

It is now apparent that the essential feature is the same also in the case (3).
The difference lies only in rather complex expressions which appear on constructing
the non-compact reducible subgroup (of the type R) with the index 2.
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