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Existence of a refined effective “distance” mi(e+iI") (e; energy, I'; degree of coarse-graining) is
conjectured in infinite systems to measure, more precisely than the effective “distance” (E) (E=¢+il")
does, the contribution of local environment around the sites / and /’ to the Green function G..(E). The
effective “distance” #%(E) is numerically observed in some simple finite sample systems of 1-, 2- and 3-
dimension. If the quantity 2#(E) exists, it is expected to be an analytic continuation of the localization
length /(¢) on the upper half of the complex energy plane.

§1. Introduction

Any quantity observed with instruments is more or less coarse-grained and the
coarse-graining is related to throwing away some information of the system H under
observation. What kind of information of H do we need and what kind of information
can we throw away when, contrary to the above, some accuracy (degree of coarse-
graining) is required to a quantity? We have known very little on the detailed relation
between the degree of coarse-graining and the information of the system we need or the
information we can throw away, although we have a lot of good examples’~® which
suggest that a local character of the system determines the approximated (coarse-grained)
quantities.

In a previous paper” (hereafter referred to as I) we discussed the above-mentioned
relation about quantities derived from the one-particle Green function. The coarse-
grained quantities, with respect to energy ¢ by I" (degree of coarse-graining), are derived
from the coarse-grained Green function G(E)=(H —E)™" with the complex energy E=¢
+:I". We proved the existence of the effective “distance” m(E), which was a measure of
the range of local environment of the system which determined the coarse-grained
quantities for given € and I', in a disordered system of any desired dimension described
by a bounded Hamiltonian

Ng
H=Zl}ll>sl<l[+l§,|l>t1,u<l'l (1-1)

with short-range interaction. The proof was a generalization of Matsuda’s one® on a
linear chain model with nearest-neighbour interaction. This guaranteed that the Green
function G..(E)=<{|G(E)|l’>, decayed exponentially with the decaying factor
1/(2m(E)) for increasing m([, I') ( a “distance” between the sites / and !’ defined in I) and
that the value of G, (E) was essentially determined by the local environment of H of the
range #(E) around the sites / and /. More precisely,
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(D |GuB)=min{Gu(E), |G (E)}
X (m(E)] (1—exp{—1/m(E)}))"*
Xexp{—m(l, 1)/ 2m(E)} .

(2) The contribution of (the matrix elements of) H outside two spheres, centered
by [ and ! with a radius nX#m(E), to the value of G..(E) was less than
C/ exp{n} (C; some constant) for any »>0.

The “distance” #(e+:I") would be a monotonically increasing function with decreasing
I', because less coarse-grained Green function needs more information of the environment.

When we introduce a set of orthonormalized bases {{n), n=1, 2, ---, N < N,} starting
from an arbitrary state [1) by recursion method,*® the Green function satisfies the follow-
ing equation in this new representation in the subspace {|#)} (see I in detail)

Bn_Gn—l,n’(E)'*'(an‘E) Gn,n’(E)+Bn+Gn+1.n’(E) :é\n,n’, (n, n,:]-, """ s N)
B =Bn"=0. (L=2)

This pseudo-one-dimensional representation may be called “polar representation” in
contrast with the original one ({{/>}) as the new |») spreads, in the original space, over a
sphere with the radius ~ #» as if it were a scattered wave from a “pole” in the support of
[1). In this new representation (denoted by #, n’, m and m’) we have two independent
solutions {U.*(E, N)} (increasing solution with increasing #) and {U, (E, N)} (decreas-
ing solution with increasing #) of the homogeneous equation such that

UNE, N)=Ux(E, N)*0,
U (E,N)=Ux+(E, N)=0. (1-3)
Then we can claim that the effective distance #(E) is the inferimum of m(E) that satisfies

Ursm(E, N) |2, exp{m/m(E)} (l)
U."(E,N) | = m(E) 5/

Un-nlE, N)
Un (E, N)

2_expim/m(E)} (v
=SS (F) s

for any choice of m, #» and of the initial base [1), where y(>1I") is some constant. This
is just the definition of the effective “distance” #(FE) and the inequalities are essential to
guarantee the concluding inequalities in I((1) and (2) in this section).

The “distance” m(e+il") would diverge for I"'~0 in infinite systems because the
solution {U,*(e+:i0, N>o0) n=1,2, ---} has nodes for real H.

Now we have the following question concerning infinite systems. Is it necessary to
require an infinite range of environment to determine G, (e+i0) even when the
eigenfunctions of I at the energy ¢ are localized? In this case our intuition suggests that
especially for £=¢+ {0 the localization-length /(¢) (<o) of the eigenfunctions should
govern, instead of m(e+i0), some characteristics like (1) and (2), namely, G..(e+:0)
ocexp{—m(l, I')/Al(e)}, (A: some constant) and finite size (< /(g)) environment effects.
On the other hand, it is easy to show that the above characteristics are derived if we
replace m(E) in the two exponents in (1-4) by /(¢)/2. That is, the exponential increas-
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ing (decreasing) characteristic of U,*(U,”), in statistical sense, determines the
exponential decay of G:.- and its environment effect.

The above consideration is a principal motive of this paper leading to a concept of
refined effective “distance” m(E). The “distance” #M(E) is defined in §2 assuming its
existence and some qualitative characteristics are derived.

The existence of #(E) is numerically suggested in § 3 in some simple examples of 1-,
2- and 3-dimensional binary alloys.
The final section is devoted to the concluding remarks.

§ 2. Existence of a refined effective “distance” m(E)

Let us consider an ensemble of 1-dimensional (1-D), 2-D or 3-D systems with the
number of lattice points No (2 N) of the order of M? (d: dimension, M >1). We restrict
in this paper that the random variables {¢:} and {¢,.} constitute, respectively, stationary
processes. That is, the system is statistically homogeneous in the original ({li>}) repre-
sentation.

The transfer matrix ¢» and a renormalized one ¢.* of the system in the polar ({|»)})
representation are defined as

Unni(E, N)\ _ Un(E, N)
( Un(E, N) )‘t"(E)(U,._I(E, N))’

t(E)=((Bn"/Ba")"?) M ta(E), det ta*(E)=1. (2-1)

Then the strict upper bounds of the average rate of increasing of U.*(E, N) and the
average rate of decreasing of U. (E, N), over the range n=m" to m, are defined

1/ 25" me1-my(E)) =1/ (m+1—m) ‘Inltm-—alEl,
1/ (2”7_(M+1—m’)(E)) El/ (m+1—m')'ln"(tm—-m'(E))_lﬂ s

tnnl(E)= 11 1a(E)=(Bi/Bn) *th--m( E) .

(1=m',m=N-1) (2:2)

-

The subscript (m+1—m’) of #%* means that the " correspond to the product of a
sequence of (m+1—m') adjacent transfer matrices. The i (E), (M'= m+1—m'),
depend on the sample system and the initial base ).

To avoid the complicated effect from the boundary of the system an integer M is
selected in this paper such that the support of {M +1) just touches the boundary of the
system in the original ({|/>}) representation. By using the #itu(E), (M =M +1-1), we
can construct the following inequalities similar to (1+4)

U;;Hn(E, N) 22 (Y/F)
U (E,N) | “mE,M)

Usal BN J25 D ey i)

exp{m/n?*(m(E)} s

(1sn, ntms=M+1) (2-3)
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where the second factors of the right-hand sides represent an average behaviour of
Us*(E, N) and Ua"(E, N) over the range n=1 to M+1 and the first factors cover the
fluctuation of the left-hand sides from the second factors. The m,(E, M) has thus been
defined as the minimum value which satisfies the inequalities (2-3).

Next we consider an ensemble of infinite (No, N, M » ) systems. We have known
(from convergent property of {»~ in Ref. 8)) that the following limit exists,

U;n(E)/U:_(E)ELi_I_llU;ﬂ(E. N)/U~(E, N), (for I'>0) (2-4)

and obviously exists
U$+1(E)/Ul*(E)ELi_IBU;ﬂ(E, N)/UHE, N). (for I"'>0) (2-4")

Our fundamental assumptions throughout this paper are:
(A) ‘l'ijg}”lf (Zﬁfm(E))=Li£g1/m In|U%+(E)/ UM (E),

Jim 1/ (2e(E)) =~ lim1/m In| Uz n(E)/Us(E)|,

exist with probability 1 (w. p. 1) on our statistically homogeneous ensemble.
In this case the two limits must coincide to conserve the Wronskian for difference system.

(B) When the limiting value 1/ (2M(E)) exists, it does not depend on the sample
systems w. p. 1 and on the local initial base |1).

Assumptions (A) and (B) lead us to the existence and uniqueness of the Lyapunov
exponent of {Un*(E)} w. p. 1 defined as

1/2(E) = lim 1/ (2#%en(E)) = lim1/m In|U+(E)/U*(E)|,
= lim 1/ (2#a(E)) =— lim1/m In|Uz+(E)/ Uy (E)|. (2-5)

We have known that Lyapunov exponent exists, w. p. 1, in some class of disordered
systems'®~'? and the existence is expected in a wider class of disordered systems. Our
linear chain represented by (1-2) does not correspond to a stationary process but seems to
belong to a class of stochastic process in which |@x—<a>| and |8.*—<8*>| obey power law
as functions of ».'®

Our numerical data of M (E), (M’'<M) of finite systems (which are shown in § 3)
also suggest the existence of it.

We thus proceed in this section assuming the existence of the Lyapunov exponent and
leave it as a conjecture for a future study.

Once the existence of #(E) is guaranteed w. p. 1, we can derive the following
characteristics of it.

(i) We can write down the following inequalities for infinite system w. p. 1

| YiealB) s> G1D)

IR 5} exp{m/m(E)},
‘{i‘—‘(ﬁ) zg% exp{m/m(E)}, (1=n, ntm) (2:6)
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where the quantity m,(E) (<o for I" >0), named a measure of fluctuation, is defined as
the inferimum which satisfies the inequalities (2-6) for any choice of 7, m and the initial
base |1). This inequalities are (as are in I) essential to our conclusive results in this
paper.

(i) The following inequality is immediately derived by using the inequality (1-4) and
the definition of 7 (E) (2-5)

m(E)<m(E). 27
(iii) Localization length /(&) is defined for any desired dimension as

1/1(5)51/2»'2(5)51;{:3 1/2m(e+il™) . (2-8)

In 1-dimension(1-D) the quantity 1//(e) is the one Matsuda and Ishii,"**'® and Goda'®
studied extensively by using Furstenberg’s'® or Furstenberg-type'® theorem. Matsuda
and Ishii'¥ assumed in their “if assumption”, that the 1//(¢) just described the exponent of
the exponentially localized eigenfunctions of a very large but finite system. This has
been justified by Avron and Simon'” and Kotani'® by proving Hurbert-Jones-Thouless-
Avron-Simon-Kotani (HJTASK) formula '™~ (see Ref. 15)). In this sense the /(¢)
=2(¢) is the localization length describing a rough extent of the localized eigenfunc-
tions. Now we can claim that the /(¢) in 2- and 3-D is the extension of the localization
length of Matsuda and Ishii, because the /(¢) just guarantees the exponential decay of the
G..(e) with increasing m(/, [") and the exponential decay of the environment effect from
outside of the two spheres centered by the sites / and /" with increasing the radii.

(iv) An essential feature of introducing #(E) is that it remains finite for I >0 when
I(e)<oo,

(v) If the #(FE) is an analytic function of £ on the upper half of the complex energy
plane, the 2#%(E) is just the analytic continuation of /(¢).

(vi) The measure of fluctuation m,(E) is finite for I' >0 (from (2:6)) and thus we get
from (2:7)

m(E)sm,(EY<oo  for I'>0. (2-9)

The m(E) would also be a monotonically decreasing function with increasing I", because
the more coarse-grained a quantity is, the less information of the environment is neces-
sary.

§3. Numerical study of miiu-(E) of simple binary alloys

A binary (AB) alloy (es=—e¢5, 50%:50%, purely random) with only nearest-
neighbour (N. N.) isotopic interaction (¢=1) on 1-D chain (N =L=1200), 2-D square
lattice (N=L% L=100,200) and 3-D cubic lattice (N=L?* L=50) are numerically
examined as simple examples of (statistically) homogeneous (disordered) systems to show
that {Un"(E, N), m=1,2, -, M+1=L/2}({Un"(E, N)}) grows (decays) exponentially.
By adopting the periodic boundary condition in the original ({|/>}) representation we can
choose any |{> as the initial base |1) for which the boundary of the system does not affect
the {Ur*(E,N), m=1,2,--,M+1}. The atomic energy e«(=—e5) is chosen 0 for
ordered systems, or 1 for 1-D and 2 for 2- and 3-D in the unit of the isotopic N. N. transfer
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energy.

To check the convergence of 1/(2#%&u~(E)) as M’ increases up to M we adopt
real-space-renormalization technique which includes no approximation in our pseudo-one
dimensional polar representation. First, we pick out two sequences of 2’ (j; integer)
adjacent ¢-matrices {fn’, tns1, =**, tnrs2s-1}, Starting from two different sites (two 7”’s), so
that none of (#'+2'—1)’s exceed M, and calculate the sequence of 2’ pairs of 1/ (2, (E))
and —1/ (2%, (E)) for each »’ from the eigenvalues of the transfer matrices. Next we
calculate the sequence of the 277! products of two adjacent transfer matrices {tnrtnoes,
bnrsabnres, =y Enrszi—abwsai-1) and calculate the sequence of the corresponding 2”~! pairs of
+1/ (2% (E)) for each »” from the eigenvalues of the new transfer matrices. In the same
way we can, successively, calculate the corresponding sequence of 2% pairs of
+1/(2m&(E)) for each #’, -+, the sequence of the 2 pairs of +1/ (2#&,-1( E)) for each »”and
the two single-pairs of +1/ (2#&,(E)). More precisely we choose for 1-D (M +1=600)7=9
and two sequences of 2° =512 pairs of =1/ (2#%,(E)) starting from tz0 (E) and tss (E), for
2-D (M +1=100) j=6 and two sequences of 2°=64 pairs of +1/(2#{)(E)) starting from
tis and tss (M +1=50, =5 for regular system), and for 3-D (M +1=25) j=4 and two
sequences of 2*=16 pairs of =1/ (2#%,(E)) starting from ¢s and #s. From the numerical
point of View fa--='(E) is replaced by ¢hm--m(E), that is, Miu(E) =#iu(E) when M'=m
+1—m’ =210 in our case. The actual deviation from the symmetry is, for each pair, of the
order of 0.01 for M'=8 and these tend to cancel out when we take the average over the
sequence. Thus to keep the symmetry for the help of our eyes the tm--=(E) is always
replaced by tm-—a(E) in this section even for small M’. The results are as follows.
3.1. 1-D chain

First, we calculate the Lyapunov exponent 1/ (2/%(E)) of the regular chain where all
an(n=1,2, -+ M+1)=0 and all 8,*(n=2, ---, M) =1 except for fr*'(=v2)=8,". This is
the case where the exponent is guaranteed to exist. The analytic expression of #%(E) is
obtained such that

1/ (2m(E)) =|Re(In(E/ 2£V(E/ 2)*—1))]. (3-1)

An overall feature of 1/(2#%(E)) is shown in

Fig. 1. It is worth to mention

"0 | OO? n-‘l(€+iF)OC1/P
@ °°o°.A‘ for |e}< 2 except for band edges,
e . 0% A (3-2a)
D 0® &
= 00000000 N w(e+il)ocl/ VT

0.5600000000°° K for € at the band edges (l|=2),

& (3-2b)
A.
aans® W(e+il") =const (&)
0 dassassssssabadll | outside the band (le|>2), (3-2¢)
Y ! Ce € 3 as I' decreases to zero. As will be seen

Fig. 1. Lyapunov exponent 1/ (2#(E)) of the order- ?ater’ the types (3-2a) and (3-2c) appear also
ed chain for (O)'=1, (A)"'=0.1 and (@ I'=0, in 2- and 3-D regular systems and are under-
as functions of &. stood as typical examples of m(E) for
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Fig. 2. From the left, two sequences of 32 pairs of 1/(2#%*ue(E)) (upper half) and ~1/ (Zﬁ_(le)(é))
(lower half) stitched with straight lines, (starting from /2 and fss), the corresponding two
sequences of 16 pairs of +1/(2M*u(E)), 8 £1/(2W%ealE)), 4 x1/(2H*u2lE)), 2
+1/(2/*ese(E)) and the two single-pairs of £1/(2/*s12(E)), of a 1200 disordered chain with €4
=—gp=1 for (a) I'=1,e=0, (b) I"=0.1,e=0, (c)"=0.1,£=2, and (d) '=0.1,e=3. The last

two single-pairs are connected with straight lines to see that the difference due to different starting
points is small.

extended (transparent) energy region and localized (damping) energy region.
Next we consider a sample of e«=1, N =1200 binary alloy. Numerical data of {@»}
and {8.*} show that the processes look like stationary ones with

{a>=0 and <#*>=1.18. (3-3)

Some examples (I"=1, =0 and I"=0.1, e=0, 2, 3) of the two sequences of 32 pairs of
1/ (2wt ae(E)) and —1/ (24 e(E)) , (starting from #20 and f4ss), the corresponding two
sequences of 16 pairs of *=1/(2m*(E)), 8 £1/(2m ey (E)), 4 +1/(2m*02s(E)), 2
+1/(2m*2s6(E)) and the two single-pairs of +1/(2#*s:12(E)) are shown in Fig. 2 to show
that these quantities seem to be statistically homogeneous in the polar ({|n)}) representa-
tion and thus seem to converge.

When we decreases I" from 0.1 to 0, the feature almost does not change probably
because the 2#tu+(E) in this (small I') case is essentially determined by the localization
length [(e).

When I’ is large (>0.5), the damping effect due to it predominates over that from
localization and remarkably smoothed almost constant lines are obtained. In Fig. 3 an
overall feature of 1/ (2#&.12(E)) is shown with the density of state (DOS) of the sample
to show that the details of 1/ (2#%&:12(e+:0)) indicate a sharp reflection of the details of
the DOS of the sample system known as the HJTASK relation.'”~** Some typical



Coarse-Grained Quantities and Local Environment Effects

06

1/ (27 gg)(E)
o
~
o
o o]
[o]

(o]
©0000000° a®
Awe

o
N
T
%>
4

L]

AAbAA ®e
.
A™
L - AAAAAAA"Y ..,.
et 0t

MMM

3 -2 1 0 1 _2 3

8o
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The histogram is the DOS of the system in ar-
bitrary unit by the negative factor counting

method.
=]
A -
+Q1 - ® . 0 ®
v 3 o480, @’ ° e,
1 - Toa teTa ‘°gw$°o 5 .98
I BRI A
Qe * ERRE SRS
= '_._: 2 - .0822'5 e’é‘“‘
S bo 1T ST
i a .'A‘n".:”.-;“?
— T ' .; -3 ’
A o o8
¥ 3 . ]
Vo4 °
Yo b4
=] e p
L -
e T3
- 3
L
i T T T T 1T 1°1¢7 T T T T rTrT
10 10 b2
LN(N)
Fig. 5. (QO) Inlan—<a>| and (+) In|B.* — <8} of two

samples of a 200X 200 disordered square lattice
with ex=—es=2 as functions of =.

965

2M(E)

15

2Mieg) (E)

)

—_— ,"
Fig. 4. Effective “distance” 2#* s E) (real line) of
a 1200 disordered chain with £.=1 as functions of
I', with an inset for I'~0 region. The 2/ (E)

(broken line) of the ordered system are shown for
reference.

examples of 2#7&:2(E) are shown in Fig. 4
with an inset for I"' -0 region.
3.2. 2-D square lattice

Regular system is examined first
numerically as we do not know the exact
expression of {8.*} and get that f."—2
obeys the following power law with
respect to »n

Bnt—2=c(—1)"/n*, 1.10<£<1.18,
0.2<¢<0.3, (1=n=49)

(1= #<50) (3-4)

The overall feature of 1/(2%Ga(E)) is
quite similar to that in Fig. 1 with remark-
ably fine convergent property and with the
characteristics (3-2a) and (3-2c).

When we introduce disorder (4= —¢€s

while @, =0.
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Fig. 6. From the left, two sequences of 32 pairs of 1/ (21 *w(E)) (upper half) and —1/(2# o(E))
(lower half) stitched with straight lines (stating from fis and f:s), the corresponding two
sequences of 16 pairs of ®1/{2M#(E)),8 +1/(2/m&(E)), 4 1/ (2Mmaal(E)), 2 1/ (2/5(E))
and the two single-pairs of +1/(2/%o(E)), of a 200X 200 disordered square lattice with e4= —e&s
=2 for (a) '=1,¢e=0 (b) I'=0.1, €=0, {c) '=0.1, €=2, and (d) "'=0.1, e=6. The last two

single-pairs are connected with straight lines.
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Fig. 7. Lyapunov exponent 1/(2#%*wo(E)) of a 200
X 200 disordered square lattice with e4=2 for
(Q) I'=1, (A) =05, (A)'=0.1 and (@) " =0,
as functions of «.

=2), both {a.} and {#.*} fluctuate around the
average values

<a>=0, <B*>=263. {(3:5)

It has been reported that a power law exists
in |@s—<adl and\lﬁn+ —<{B">| of the disordered
system.’¥ The trend is shown in Fig. 5.
Some examples (I'=1,e=0, and I"'=0.1, ¢
=0, 2, 6) of the two sequences of 32 pairs of
1/ 2m&(E)) and —1/(2mx(E)), starting
from ¢15 and {35, the corresponding two
sequences of 16 pairs of +1/(2#% (E)),
8 +1/0¢2m&(E)), 4 1/ (2mie(E)), 2
+1/(2m&2(E)), and the two single-pairs of
+1/(2#E0(E)) are shown in Fig. 6 to
represent the convergent property of
1/ (2#tu~(E)) for not so smaill I'. When we
increase I, the convergent property becomes
much more distinguishable. When we
decrease I" down to 0, we also obtain rather
good convergent property for strongly local-
ized region (5.3=l|e]=6). However, con-

trary to the above we get a wrong convergent property of 1 / (28 for weakly localized
region (|€]=5.2). In this case 1/(2#%u-)strongly depends on the M’~64 when I'-0,
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reflecting a (weak but) wide range of local
fluctuation of {U.*} in the polar space or of
the eigenfunctions in the original space. We
judge that in this case the size of the system
we adopt (L =200, M +1=100) is not large
enough to get M. An overall feature of
1/ (2#%E4(E)) is shown in Fig.7 with a refer-
ence of bad data of the case I' =0, |e|<5.2 of
wrong convergence.

3.3. 3-D cubic lattice

The quantity [8.* —3| of the regular sys-
tem vibrates below an asymptotic form

>0.597 1/n*, €159, (n=1,--,24)
while @,=0. (n=1,2, -, 25) (3-6)
An overall feature of the 1/(2mfe(E)) is

Fig. 8. (O) Inlan—<a>| and (+) InlBa*—<8*| of quite similar to that in Fig. 1 with remark-

seven samples of a 50%50x50 disordered cubic ably fine convergent property and with the
lattice with e4=—¢&s=2 as functions of .
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Fig. 9. From the left, the sequence of 24 pairs of 1/(24"w(E)) (upper half) and ~1/(2m ufE))
{(lower half) stitched with straight lines, starting from # and the two sequences of 8 pairs of the
1/ (2W* (E)) and —1/ (27 o)(E)) starting from ¢s and fs, the corresponding two sequences of 4
pairs of +1/ (2M*w(E)),2 +1/(2H*e(E)), and the two single-pairs of *1/(2/@*us(E)), for
(a) I'=1, =0, (b) I'=0.1, €=0, (c)I'=0.1, ¢=4, and (d) I'=0.1, e=8. The last two single-pairs
‘are connected with straight lines.
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characteristics (3-2a) and (3-2c).

As for the disordered system (e4=—e¢5
=2) the matrix elements {@.} (=1 to 25)
and {8-.*} (n=1 to 24) are shown in Fig. 8
with

{a>=0, <BH=34. (37

/(2@ (E)
4
o]
(o]

o © o ¢ | Some examples (I"=1,e=0 and I"=0.1,
€=0,4,8) of the sequence of 24 pairs of
1/ (2m&(E)) and —1/2mGy(E)) starting
from ¢, the two sequences of 8 pairs of
+1/(2me(E)), (starting from #s and ¢s), the
=5 corresponding two sequences of 4 pairs of
Fig. 10. Lyapunov exponent 1/(2%*ue(E)) of a 50 il/ (Zm(‘f)(E)),Z +1/ SZm(%)(E)) and the two
X 5050 disordered cubic lattice with e4=2 for Single-pairs of +1/(27ifis(E)) are shown in
(O) I'=1, (&) I'=05, (A)I'=0.1 and (@ I Fig. 9. Except for weakly localized region
=0, as functions of «. and extended region for small I" (<0.1) the
convergent property is remarkably good
even though the sequence in the polar ({|#)}) representation is short (M+1=25). An
overall feature of 1/ (2 (E)) is shown in Fig. 10, with a reference of bad data for the
case I'=0, |e|<6.6 of wrong convergence.

§4. Concluding remarks

The existence of a refined effective “distance” #(E) w. p. | in infinite systems was
conjectured to measure the contribution of local environment around the sites / and !’ to
the Green function G..-(E).

Numerical investigation of #{u+(E) for some simple finite systems (1-D chain with N,
=L =1200, 2-D square lattice with No=L? L =100, 200 and 3-D cubic lattice with No=L?,
L =50) suggested its existence.

We can classify the upper half of the complex energy plane into three regimes.
Regime (a), where I" is large and the forced damping due to it predominates for G, (E)
as m(l, I’) increases. Regime (b) is constituted of the energy e (and small I') on which
the eigenfunctions are strongly localized or of the energy in the energy gap where the
damping of G../(E) due to the localization or due to the energy gap predominates, and
regime (c) with small I" and with ¢ at which the eigenfunctions are weakly localized (/(&)
>M)or extended. In regimes (a) and (b) the #{u~(E) has good convergent property
which suggests the existence of the #%(E) in infinite systems and also suggests that the
2m(e+10) = [(e) remains finite in regime (b), while in regime (c) the #s(E) depends on
the size M’ suggesting the not large enough size of the system.

It is our guess that the size dependence of #iu~(E) will disappear when the size
increases because some trend toward convergence has been observed in our numerical
data and also because we have no good reason to believe that only (c) is the exceptional
case of the convergence. Actually, for regular systems in 1-, 2- and 3-D we have obtained
convergent 1/ (2#{(E)) on all over the upper half of the complex energy plain (regimes
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(a), (b) and (c)). The exponent 1/ (27t (E)) converges to zero (within the double
precision we adopted) for I'=0 and for ¢ in the energy band (regime (c)). The wrong
convergent property presumably comes from the fact that the localization length / (&)
exceeds far over the sample size L we investigated. When the disorder e4(=—¢s)
increases regime (c) would shrink. In 2-D at least L=600, M +1=2300 may be necessary
to check the convergent property in the regime (c) of the case in this paper. In3-D our
computational power may be far from checking it. Some other technique such as finite
size scaling®?? is necessary to overcome the difficulty in regime (c).

One of the theoretical backgrounds of yielding the Lyapunov exponent may be a kind
of quasi-stationality in which |a»—<@>} and |8.* —<8*>| obey power law as functions of 7.
In 2- and 3-D ordered systems the trend is clearly found while in disordered systems the
trend contains an increasing variance of Inla, —<a>|(In|8* —<8*>|) with increasing ». In
1-D the {@»} and {B.*} behave like stationally processes.

Once the inequalities (2-6) are established for the m(E) and the optimal m,(E), the
following results are derived just like in I,

1l 1GLA{BE)=min{lGLE), |Gr.v(E)}
X (ms(E)/ (1—exp{—1/m(E)}))""?
xXexp{—m(l, 1)/ 2m(E)}, w. p. 1.

[11] The Green function G..(E) is essentially determined by the local situa-
tion within the refined effective “distance” #m(E) from the sites / and !’ in the
sense that the dependence of G..(E) on the martix elements {e.~} and {t.}
in the region m([”, 1), m(1”, I’) >m decreases with increasing m by a factor of
exp{—m/m(E)}, w. p. 1.

] 0<A(E)<m(E)<me=(1+(|H|/I? for I'>0.
[IV] m(E)Sm,(E)<oco for I'>0.

An essential feature of defining #(E) is that the #(e+70) remaines finite for finite
I(€) though the (e +i0) diverges. If 2m(E) is analytic this is expected to be the analytic
continuation of /(¢) on the upper half of the complex energy plane.
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